Jump to ContentJump to Main Navigation
Living machinesA handbook of research in biomimetics and biohybrid systems$
Users without a subscription are not able to see the full content.

Tony J. Prescott, Nathan Lepora, and Paul F.M.J Verschure

Print publication date: 2018

Print ISBN-13: 9780199674923

Published to Oxford Scholarship Online: June 2018

DOI: 10.1093/oso/9780199674923.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2019. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see www.oxfordscholarship.com/page/privacy-policy).date: 15 June 2019

Evo-devo

Evo-devo

Chapter:
(p.82) Chapter 8 Evo-devo
Source:
Living machines
Author(s):

Tony J. Prescott

Leah Krubitzer

Publisher:
Oxford University Press
DOI:10.1093/oso/9780199674923.003.0008

This chapter explores how principles underlying natural evo-devo (evolution and development) continue to inspire the design of artificial systems from models of cell growth through to simulated three-dimensional evolved creatures. Research on biological evolvability shows that phenotypic outcomes depend on multiple interactions across different organizational levels—the adult organism is the outcome of a series of genetic cascades modulated in time and space by the wider embryological, bodily, and environmental context. This chapter reviews evo-devo principles discovered in biology and explores their potential for improving the evolvability of artificial systems. Biological topics covered include adaptive, selective, and generative mechanisms, and the role of epigenetic processes in creating phenotypic diversity. Modeling approaches include L-systems, Boolean networks, reaction-diffusion processes, genetic algorithms, and artificial embryogeny. A particular focus is on the evolution and development of the mammalian brain and the possibility of designing, using synthetic evo-devo approaches, brain-like control architectures for biomimetic robots.

Keywords:   evo-devo, epigenetics, phenotypic variability, regulatory gene networks, L-systems, Boolean networks, reaction-diffusion process, genetic algorithm, artificial embryogeny

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .