Jump to ContentJump to Main Navigation
Living machinesA handbook of research in biomimetics and biohybrid systems$
Users without a subscription are not able to see the full content.

Tony J. Prescott, Nathan Lepora, and Paul F.M.J Verschure

Print publication date: 2018

Print ISBN-13: 9780199674923

Published to Oxford Scholarship Online: June 2018

DOI: 10.1093/oso/9780199674923.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2019. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see www.oxfordscholarship.com/page/privacy-policy).date: 24 June 2019

Implantable neural interfaces

Implantable neural interfaces

(p.471) Chapter 50 Implantable neural interfaces
Living machines

Stefano Vassanelli

Oxford University Press

Establishing direct communication with the brain through physical interfaces is a fundamental strategy to investigate brain function. Starting with the patch-clamp technique in the seventies, neuroscience has moved from detailed characterization of ionic channels to the analysis of single neurons and, more recently, microcircuits in brain neuronal networks. Development of new biohybrid probes with electrodes for recording and stimulating neurons in the living animal is a natural consequence of this trend. The recent introduction of optogenetic stimulation and advanced high-resolution large-scale electrical recording approaches demonstrates this need. Brain implants for real-time neurophysiology are also opening new avenues for neuroprosthetics to restore brain function after injury or in neurological disorders. This chapter provides an overview on existing and emergent neurophysiology technologies with particular focus on those intended to interface neuronal microcircuits in vivo. Chemical, electrical, and optogenetic-based interfaces are presented, with an analysis of advantages and disadvantages of the different technical approaches.

Keywords:   probe, network, brain, circuit, electrode, implant, biohybrid

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .