Jump to ContentJump to Main Navigation
Living machinesA handbook of research in biomimetics and biohybrid systems$
Users without a subscription are not able to see the full content.

Tony J. Prescott, Nathan Lepora, and Paul F.M.J Verschure

Print publication date: 2018

Print ISBN-13: 9780199674923

Published to Oxford Scholarship Online: June 2018

DOI: 10.1093/oso/9780199674923.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2019. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see www.oxfordscholarship.com/page/privacy-policy).date: 24 June 2019

Toward living nanomachines

Toward living nanomachines

Chapter:
(p.380) Chapter 39 Toward living nanomachines
Source:
Living machines
Author(s):

Christof Mast

Friederike Möller

Moritz Kreysing

Severin Schink

Benedikt Obermayer

Ulrich Gerland

Dieter Braun

Publisher:
Oxford University Press
DOI:10.1093/oso/9780199674923.003.0039

How does inanimate matter become transformed into animate matter? Living systems evolve by replication and selection at the molecular level and this chapter considers how to establish a synthetic, minimal system that can support molecular evolution and thus life. Molecular evolution cannot be explained by starting with high concentrations of activated chemicals that react toward their chemical equilibrium; persistent non-equilibria are required to maintain continuous reactivity and we especially consider thermal gradients as an early driving force for Darwinian molecular evolution. The temperature difference across water-filled compartments implements a laminar fluid convection with periodic temperature oscillations that allow for the melting and replication of DNA. Simultaneously, dissolved molecules are moved along the thermal gradient by an effect called thermophoresis. The combined result is an efficient molecule trap that exponentially favors long over short DNA and thus maintains complexity. Future experiments will reveal how thermal gradients could actively drive the Darwinian process of replication and selection.

Keywords:   living matter, non-equilibrium, molecular evolution, synthetic life, origin of life, thermophoresis, convection, PCR, thermal trap

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .