- Title Pages
- Dedication
- Preface
- Acknowledgements
- Part I Kinetic Theory of Fluids
- 1 Why a Kinetic Theory of Fluids?
- 2 Boltzmann’s Kinetic Theory
- 3 Approach to Equilibrium, the <i>H</i>-Theorem and Irreversibility
- 4 Transport Phenomena
- 5 From Kinetic Theory to Navier–Stokes Hydrodynamics
- 6 Generalized Hydrodynamics Beyond Navier–Stokes
- 7 Kinetic Theory of Dense Fluids
- 8 Model Boltzmann Equations
- 9 Stochastic Particle Dynamics
- 10 Numerical Methods for the Kinetic Theory of Fluids
- Part II Lattice Kinetic Theory
- 11 Lattice Gas-Cellular Automata
- 12 Lattice Boltzmann Models with Underlying Boolean Microdynamics
- 13 Lattice Boltzmann Models without Underlying Boolean Microdynamics
- 14 Lattice Relaxation Schemes
- 15 The Hermite–Gauss Route to LBE
- 16 LBE in the Framework of Computational-Fluid Dynamics
- Part III Fluid Dynamics Applications
- 17 Boundary Conditions
- 18 Flows at Moderate Reynolds Numbers
- 19 LBE Flows in Disordered Media
- 20 Lattice Boltzmann for Turbulent Flows
- Part IV Lattice Kinetic Theory: Advanced Topics
- 21 Entropic Lattice Boltzmann
- 22 Thermohydrodynamic LBE Schemes
- 23 Out of Legoland: Geoflexible Lattice Boltzmann Equations
- 24 Lattice Boltzmann for Turbulence Modeling
- Part V Beyond Fluid Dynamics: Complex States of Flowing Matter
- 25 LBE for Generalized Hydrodynamics
- 26 Lattice Boltzmann for reactive flows
- 27 Lattice Boltzmann for Non-Ideal Fluids
- 28 Extensions of the Pseudo-Potential Method
- 29 Lattice Boltzmann Models for Microflows
- 30 The Fluctuating Lattice Boltzmann
- 31 LB for Flows with Suspended Objects: Fluid–Solid Interactions
- Part VI Beyond Newtonian Mechanics: Quantum and Relativistic Fluids
- 32 Quantum Lattice Boltzmann (QLB)
- 33 QLB for Quantum Many-Body and Quantum Field Theory
- 34 Relativistic Lattice Boltzmann (RLB)
- 35 Advanced RLB models
- 36 Coda
- 37 Notation
- Appendices
- Part VII Hands-On
- Index

# Lattice Boltzmann Models for Microflows

# Lattice Boltzmann Models for Microflows

- Chapter:
- (p.534) 29 Lattice Boltzmann Models for Microflows
- Source:
- The Lattice Boltzmann Equation
- Author(s):
### Sauro Succi

- Publisher:
- Oxford University Press

The Lattice Boltzmann method was originally devised as a computational alternative for the simulation of macroscopic flows, as described by the Navier–Stokes equations of continuum mechanics. In many respects, this still is the main place where it belongs today. Yet, in the past decade, LB has made proof of a largely unanticipated versatility across a broad spectrum of scales, from fully developed turbulence, to microfluidics, all the way down to nanoscale flows. Even though no systematic analogue of the Chapman–Enskog asymptotics is available in this beyond-hydro region (no guarantee), the fact remains that, with due extensions of the basic scheme, the LB has proven capable of providing several valuable insights into the physics of flows at micro- and nano-scales. This does not mean that LBE can solve the actual Boltzmann equation or replace Molecular Dynamics, but simply that it can provide useful insights into some flow problems which cannot be described within the realm of the Navier–Stokes equations of continuum mechanics. This Chapter provides a cursory view of this fast-growing front of modern LB research.

*Keywords:*
microfluids, nanofluids, continuum mechanics, Knudsen number, capillarity, molecular dynamics

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .

- Title Pages
- Dedication
- Preface
- Acknowledgements
- Part I Kinetic Theory of Fluids
- 1 Why a Kinetic Theory of Fluids?
- 2 Boltzmann’s Kinetic Theory
- 3 Approach to Equilibrium, the <i>H</i>-Theorem and Irreversibility
- 4 Transport Phenomena
- 5 From Kinetic Theory to Navier–Stokes Hydrodynamics
- 6 Generalized Hydrodynamics Beyond Navier–Stokes
- 7 Kinetic Theory of Dense Fluids
- 8 Model Boltzmann Equations
- 9 Stochastic Particle Dynamics
- 10 Numerical Methods for the Kinetic Theory of Fluids
- Part II Lattice Kinetic Theory
- 11 Lattice Gas-Cellular Automata
- 12 Lattice Boltzmann Models with Underlying Boolean Microdynamics
- 13 Lattice Boltzmann Models without Underlying Boolean Microdynamics
- 14 Lattice Relaxation Schemes
- 15 The Hermite–Gauss Route to LBE
- 16 LBE in the Framework of Computational-Fluid Dynamics
- Part III Fluid Dynamics Applications
- 17 Boundary Conditions
- 18 Flows at Moderate Reynolds Numbers
- 19 LBE Flows in Disordered Media
- 20 Lattice Boltzmann for Turbulent Flows
- Part IV Lattice Kinetic Theory: Advanced Topics
- 21 Entropic Lattice Boltzmann
- 22 Thermohydrodynamic LBE Schemes
- 23 Out of Legoland: Geoflexible Lattice Boltzmann Equations
- 24 Lattice Boltzmann for Turbulence Modeling
- Part V Beyond Fluid Dynamics: Complex States of Flowing Matter
- 25 LBE for Generalized Hydrodynamics
- 26 Lattice Boltzmann for reactive flows
- 27 Lattice Boltzmann for Non-Ideal Fluids
- 28 Extensions of the Pseudo-Potential Method
- 29 Lattice Boltzmann Models for Microflows
- 30 The Fluctuating Lattice Boltzmann
- 31 LB for Flows with Suspended Objects: Fluid–Solid Interactions
- Part VI Beyond Newtonian Mechanics: Quantum and Relativistic Fluids
- 32 Quantum Lattice Boltzmann (QLB)
- 33 QLB for Quantum Many-Body and Quantum Field Theory
- 34 Relativistic Lattice Boltzmann (RLB)
- 35 Advanced RLB models
- 36 Coda
- 37 Notation
- Appendices
- Part VII Hands-On
- Index