- Title Pages
- Dedication
- Preface
- Acknowledgements
- Part I Kinetic Theory of Fluids
- 1 Why a Kinetic Theory of Fluids?
- 2 Boltzmann’s Kinetic Theory
- 3 Approach to Equilibrium, the <i>H</i>-Theorem and Irreversibility
- 4 Transport Phenomena
- 5 From Kinetic Theory to Navier–Stokes Hydrodynamics
- 6 Generalized Hydrodynamics Beyond Navier–Stokes
- 7 Kinetic Theory of Dense Fluids
- 8 Model Boltzmann Equations
- 9 Stochastic Particle Dynamics
- 10 Numerical Methods for the Kinetic Theory of Fluids
- Part II Lattice Kinetic Theory
- 11 Lattice Gas-Cellular Automata
- 12 Lattice Boltzmann Models with Underlying Boolean Microdynamics
- 13 Lattice Boltzmann Models without Underlying Boolean Microdynamics
- 14 Lattice Relaxation Schemes
- 15 The Hermite–Gauss Route to LBE
- 16 LBE in the Framework of Computational-Fluid Dynamics
- Part III Fluid Dynamics Applications
- 17 Boundary Conditions
- 18 Flows at Moderate Reynolds Numbers
- 19 LBE Flows in Disordered Media
- 20 Lattice Boltzmann for Turbulent Flows
- Part IV Lattice Kinetic Theory: Advanced Topics
- 21 Entropic Lattice Boltzmann
- 22 Thermohydrodynamic LBE Schemes
- 23 Out of Legoland: Geoflexible Lattice Boltzmann Equations
- 24 Lattice Boltzmann for Turbulence Modeling
- Part V Beyond Fluid Dynamics: Complex States of Flowing Matter
- 25 LBE for Generalized Hydrodynamics
- 26 Lattice Boltzmann for reactive flows
- 27 Lattice Boltzmann for Non-Ideal Fluids
- 28 Extensions of the Pseudo-Potential Method
- 29 Lattice Boltzmann Models for Microflows
- 30 The Fluctuating Lattice Boltzmann
- 31 LB for Flows with Suspended Objects: Fluid–Solid Interactions
- Part VI Beyond Newtonian Mechanics: Quantum and Relativistic Fluids
- 32 Quantum Lattice Boltzmann (QLB)
- 33 QLB for Quantum Many-Body and Quantum Field Theory
- 34 Relativistic Lattice Boltzmann (RLB)
- 35 Advanced RLB models
- 36 Coda
- 37 Notation
- Appendices
- Part VII Hands-On
- Index

# LBE for Generalized Hydrodynamics

# LBE for Generalized Hydrodynamics

- Chapter:
- (p.447) 25 LBE for Generalized Hydrodynamics
- Source:
- The Lattice Boltzmann Equation
- Author(s):
### Sauro Succi

- Publisher:
- Oxford University Press

This chapter presents the main techniques to incorporate the effects of external and/or internal forces within the LB formalism. This is a very important task, for it permits us to access a wide body of generalized hydrodynamic applications whereby fluid motion couples to a variety of additional physical aspects, such as gravitational and electric fields, potential energy interactions, chemical reactions and many others. It should be emphasized that while hosting a broader and richer phenomenology than “plain” hydrodynamics, generalized hydrodynamics still fits the hydrodynamic picture of weak departure from suitably generalized local equilibria. This class is all but an academic curiosity; for instance, it is central to the fast-growing science of Soft Matter, a scientific discipline which has received an impressive boost in the past decades, under the drive of micro- and nanotechnological developments and major strides in biology and life sciences at large.

*Keywords:*
fluids and fields, external forces, potential energy interactions, generalized hydrodynamics, driven fluids

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .

- Title Pages
- Dedication
- Preface
- Acknowledgements
- Part I Kinetic Theory of Fluids
- 1 Why a Kinetic Theory of Fluids?
- 2 Boltzmann’s Kinetic Theory
- 3 Approach to Equilibrium, the <i>H</i>-Theorem and Irreversibility
- 4 Transport Phenomena
- 5 From Kinetic Theory to Navier–Stokes Hydrodynamics
- 6 Generalized Hydrodynamics Beyond Navier–Stokes
- 7 Kinetic Theory of Dense Fluids
- 8 Model Boltzmann Equations
- 9 Stochastic Particle Dynamics
- 10 Numerical Methods for the Kinetic Theory of Fluids
- Part II Lattice Kinetic Theory
- 11 Lattice Gas-Cellular Automata
- 12 Lattice Boltzmann Models with Underlying Boolean Microdynamics
- 13 Lattice Boltzmann Models without Underlying Boolean Microdynamics
- 14 Lattice Relaxation Schemes
- 15 The Hermite–Gauss Route to LBE
- 16 LBE in the Framework of Computational-Fluid Dynamics
- Part III Fluid Dynamics Applications
- 17 Boundary Conditions
- 18 Flows at Moderate Reynolds Numbers
- 19 LBE Flows in Disordered Media
- 20 Lattice Boltzmann for Turbulent Flows
- Part IV Lattice Kinetic Theory: Advanced Topics
- 21 Entropic Lattice Boltzmann
- 22 Thermohydrodynamic LBE Schemes
- 23 Out of Legoland: Geoflexible Lattice Boltzmann Equations
- 24 Lattice Boltzmann for Turbulence Modeling
- Part V Beyond Fluid Dynamics: Complex States of Flowing Matter
- 25 LBE for Generalized Hydrodynamics
- 26 Lattice Boltzmann for reactive flows
- 27 Lattice Boltzmann for Non-Ideal Fluids
- 28 Extensions of the Pseudo-Potential Method
- 29 Lattice Boltzmann Models for Microflows
- 30 The Fluctuating Lattice Boltzmann
- 31 LB for Flows with Suspended Objects: Fluid–Solid Interactions
- Part VI Beyond Newtonian Mechanics: Quantum and Relativistic Fluids
- 32 Quantum Lattice Boltzmann (QLB)
- 33 QLB for Quantum Many-Body and Quantum Field Theory
- 34 Relativistic Lattice Boltzmann (RLB)
- 35 Advanced RLB models
- 36 Coda
- 37 Notation
- Appendices
- Part VII Hands-On
- Index