Jump to ContentJump to Main Navigation
Fluid MechanicsA Geometrical Point of View$
Users without a subscription are not able to see the full content.

S. G. Rajeev

Print publication date: 2018

Print ISBN-13: 9780198805021

Published to Oxford Scholarship Online: October 2018

DOI: 10.1093/oso/9780198805021.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2019. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see www.oxfordscholarship.com/page/privacy-policy).date: 16 July 2019

Euler’s Equations

Euler’s Equations

Chapter:
(p.14) 2 Euler’s Equations
Source:
Fluid Mechanics
Author(s):

S. G. Rajeev

Publisher:
Oxford University Press
DOI:10.1093/oso/9780198805021.003.0002

Euler derived the fundamental equations of an ideal fluid, that is, in the absence of friction (viscosity). They describe the conservation of momentum. We can derive from it the equation for the evolution of vorticity (Helmholtz equation). Euler’s equations have to be supplemented by the conservation of mass and by an equation of state (which relates density to pressure). Of special interest is the case of incompressible flow; when the fluid velocity is small compared to the speed of sound, the density may be treated as a constant. In this limit, Euler’s equations have scale invariance in addition to rotation and translation invariance. d’Alembert’s paradox points out the limitation of Euler’s equation: friction cannot be ignored near the boundary, nomatter how small the viscosity.

Keywords:   Euler’s equations, ideal fluid, Helmholtz equation, conservation laws, d’Alembert’s paradox, viscosity

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .