Jump to ContentJump to Main Navigation
Relativity in Modern Physics$
Users without a subscription are not able to see the full content.

Nathalie Deruelle and Jean-Philippe Uzan

Print publication date: 2018

Print ISBN-13: 9780198786399

Published to Oxford Scholarship Online: October 2018

DOI: 10.1093/oso/9780198786399.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2020. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 30 March 2020

Hamiltonian mechanics

Hamiltonian mechanics

(p.83) 9 Hamiltonian mechanics
Relativity in Modern Physics

Nathalie Deruelle

Jean-Philippe Uzan

Oxford University Press

This chapter gives a brief overview of Hamiltonian mechanics. The complexity of the Newtonian equations of motion for N interacting bodies led to the development in the late 18th and early 19th centuries of a formalism that reduces these equations to first-order differential equations. This formalism is known as Hamiltonian mechanics. This chapter shows how, given a Lagrangian and having constructed the corresponding Hamiltonian, Hamilton’s equations amount to simply a rewriting of the Euler–Lagrange equations. The feature that makes the Hamiltonian formulation superior is that the dimension of the phase space is double that of the configuration space, so that in addition to point transformations, it is possible to perform more general transformations in order to simplify solving the equations of motion.

Keywords:   Hamiltonian mechanics, Hamiltonian, Lagrangian, Euler–Lagrange equations, Newtonian equations of motion, first-order differential equations

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .