Jump to ContentJump to Main Navigation
Relativity in Modern Physics$
Users without a subscription are not able to see the full content.

Nathalie Deruelle and Jean-Philippe Uzan

Print publication date: 2018

Print ISBN-13: 9780198786399

Published to Oxford Scholarship Online: October 2018

DOI: 10.1093/oso/9780198786399.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2020. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 30 March 2020

Lagrangian mechanics

Lagrangian mechanics

(p.73) 8 Lagrangian mechanics
Relativity in Modern Physics

Nathalie Deruelle

Jean-Philippe Uzan

Oxford University Press

This chapter shows how the Newtonian law of motion of a particle subject to a gradient force derived from a ‘potential energy’ can always be obtained from an extremal principle, or ‘principle of least action’. According to Newton’s first law, the trajectory representing the motion of a free particle between two points p1 and p2 is a straight line. In other words, out of all the possible paths between p1 and p2, the trajectory effectively followed by a free particle is the one that minimizes the length. However, even though the use of the principle of extremal length of the paths between two points gives the straight line joining the points, this does not mean that the straight-line path is traced with constant velocity in an inertial frame. Moreover, the trajectory describing the motion of a particle subject to a force is not uniform and rectilinear.

Keywords:   Lagrangian mechanics, Newtonian law of motion, gradient force, potential energy, principle of least action, straight-line path

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .