Jump to ContentJump to Main Navigation
Relativity in Modern Physics$
Users without a subscription are not able to see the full content.

Nathalie Deruelle and Jean-Philippe Uzan

Print publication date: 2018

Print ISBN-13: 9780198786399

Published to Oxford Scholarship Online: October 2018

DOI: 10.1093/oso/9780198786399.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2020. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 30 March 2020

The free field

The free field

(p.309) 14 The free field
Relativity in Modern Physics

Nathalie Deruelle

Jean-Philippe Uzan

Oxford University Press

This chapter studies the structure of Maxwell’s equations in a vacuum and the action from which they are derived, while emphasizing the consequences of their gauge invariance. Gauge invariance, on the one hand, allows one of the components of the magnetic potential to be chosen freely. Here, the chapter shows how the gauge-invariant version of the Maxwell equations in the vacuum can also be derived directly by extremizing. On the other hand, the chapter argues that gauge invariance imposes a constraint on the initial conditions such that in the end the general solution has only two ‘degrees of freedom’. Finally, the chapter develops the Hamiltonian formalisms in the Maxwell theory and compares them to the formalisms using non-gauge-invariant or massive vector fields.

Keywords:   free field, gauge invariance, Maxwell’s equations, Hamiltonian formalisms, non-gauge-invariant fields, massive vector fields

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .