Jump to ContentJump to Main Navigation
Relativity in Modern Physics$
Users without a subscription are not able to see the full content.

Nathalie Deruelle and Jean-Philippe Uzan

Print publication date: 2018

Print ISBN-13: 9780198786399

Published to Oxford Scholarship Online: October 2018

DOI: 10.1093/oso/9780198786399.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2020. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 04 April 2020

The Kepler problem

The Kepler problem

Chapter:
(p.110) 12 The Kepler problem
Source:
Relativity in Modern Physics
Author(s):

Nathalie Deruelle

Jean-Philippe Uzan

Publisher:
Oxford University Press
DOI:10.1093/oso/9780198786399.003.0012

This chapter considers Newton’s 1665 explanations of the dynamics in the laws governing the motion of a planet around the Sun, which were established by Johannes Kepler in 1618. The first law states that the motion is planar and the trajectories are ellipses. The second states that the area swept out by the radius vector per unit time is constant. Finally, the cube of the semi-major axis a is proportional to the square of the period P, a3 = (const)P2. The chapter begins with the reduced equations of motion before turning to the ellipses of Kepler. It then illustrates the Kepler problem in the Lagrangian formalism, as well as central forces.

Keywords:   Johannes Kepler, Kepler’s ellipses, planetary motion, Lagrangian formalism, central forces

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .