Jump to ContentJump to Main Navigation
Relativity in Modern Physics$
Users without a subscription are not able to see the full content.

Nathalie Deruelle and Jean-Philippe Uzan

Print publication date: 2018

Print ISBN-13: 9780198786399

Published to Oxford Scholarship Online: October 2018

DOI: 10.1093/oso/9780198786399.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2020. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 30 March 2020

Kinetic theory

Kinetic theory

Chapter:
(p.92) 10 Kinetic theory
Source:
Relativity in Modern Physics
Author(s):

Nathalie Deruelle

Jean-Philippe Uzan

Publisher:
Oxford University Press
DOI:10.1093/oso/9780198786399.003.0010

This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.

Keywords:   kinetic theory, statistics, Liouville equation, Jeans equations, Boltzmann–Vlasov equation, Hamiltonian, Poisson brackets

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .