Jump to ContentJump to Main Navigation
Phase Transitions and Renormalization Group$
Users without a subscription are not able to see the full content.

Jean Zinn-Justin

Print publication date: 2007

Print ISBN-13: 9780199227198

Published to Oxford Scholarship Online: January 2010

DOI: 10.1093/acprof:oso/9780199227198.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2019. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 17 October 2019

The non-linear s-model

The non-linear s-model

Chapter:
(p.353) 15The non-linear s-model
Source:
Phase Transitions and Renormalization Group
Author(s):

Jean Zinn-Justin

Publisher:
Oxford University Press
DOI:10.1093/acprof:oso/9780199227198.003.0015

This chapter discusses the non-linear s-model, a field theory characterized by an orthogonal O(N) symmetry acting non-linearly on the fields. The study has several motivations. From the viewpoint of statistical physics, the model appears in the study of the large-distance properties, in the ordered phase at low temperature, of lattice spin models with O(N) symmetry and short-range interactions. Indeed, in the case of continuous symmetries, the whole low-temperature phase has a non-trivial large-distance physics due to the presence of Goldstone modes with vanishing mass or infinite correlation length. Moreover, the model possesses, in two dimensions, the property of asymptotic freedom (the Gaussian fixed point is marginally stable for the large-momentum or short-distance behaviour) and the spectrum is non-perturbative. These properties are shared, in dimension 4, by quantum chromodynamics (QCD), a non-Abelian gauge theory and a piece of the Standard Model of fundamental interactions describing physics at the microscopic scale.

Keywords:   non-linear s-model, lattice spin models, renormalization group, RGE, correlation functions

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .