Jump to ContentJump to Main Navigation
Chern-Simons Theory, Matrix Models, and Topological Strings$
Users without a subscription are not able to see the full content.

Marcos Mariño

Print publication date: 2005

Print ISBN-13: 9780198568490

Published to Oxford Scholarship Online: September 2007

DOI: 10.1093/acprof:oso/9780198568490.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2019. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see www.oxfordscholarship.com/page/privacy-policy).date: 21 July 2019

TOPOLOGICAL SIGMA MODELS

TOPOLOGICAL SIGMA MODELS

Chapter:
(p.71) 3 TOPOLOGICAL SIGMA MODELS
Source:
Chern-Simons Theory, Matrix Models, and Topological Strings
Author(s):

Marcos Mariño

Publisher:
Oxford University Press
DOI:10.1093/acprof:oso/9780198568490.003.0003

String theory can be regarded, at the algebraic level, as a two-dimensional conformal field theory coupled to two-dimensional gravity. When the conformal field theory is also a topological field theory (i.e., a theory whose correlation functions do not depend on the metric on the Riemann surface), the resulting string theory turns out to be very simple and in many cases can be completely solved. A string theory that is constructed in this way is called a topological string theory. The starting point for obtaining a topological string theory is therefore a conformal field theory with topological invariance. Such theories are called topological conformal field theories and can be constructed out of N = 2 superconformal field theories in two dimensions by a procedure called twisting. This chapter considers a class of topological string theories in which the topological field theory is taken to be a topological sigma model with target space a Calabi-Yau manifold. The N = 2 supersymmetric sigma model is reviewed, and the twisting procedure is then introduced. The A-type and B-type topological sigma models resulting from two possible twists in two dimensions are examined in detail.

Keywords:   string theory, topological sigma models, topological twist, Calabi-Yau manifold, topological string theory

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .