Jump to ContentJump to Main Navigation
The Diophantine Frobenius Problem$
Users without a subscription are not able to see the full content.

Jorge L. Ramírez Alfonsín

Print publication date: 2005

Print ISBN-13: 9780198568209

Published to Oxford Scholarship Online: September 2007

DOI: 10.1093/acprof:oso/9780198568209.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2019. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see www.oxfordscholarship.com/page/privacy-policy).date: 17 July 2019

Sylvester denumerant

Sylvester denumerant

Chapter:
(p.71) 4 Sylvester denumerant
Source:
The Diophantine Frobenius Problem
Author(s):

J. L. Ramírez Alfonsín

Publisher:
Oxford University Press
DOI:10.1093/acprof:oso/9780198568209.003.0004

In 1857, while investigating the partition number function, J. J. Sylvester defined the function d(m; a1, . . . , an), called the denumerant, as the number of nonnegative integer representations of m by a1, . . . , an. This chapter is devoted to the study of the denumerant and related functions. After discussing briefly some basic properties of the partition function and its relation with denumerants, the general behaviour of d(m; a1, . . . , an) and its connection to g(a1, . . . , an) are analyzed. Two interesting methods for computing denumerants — one based on a decomposition of the rational fraction into partial fractions and another due to E. T. Bell — are described. An exact value of d(m; p, q) — first found by T. Popoviciu in 1953 — is proved, and the known results when n = 2 and n = 3 are summarized. The calculation of g(a1, . . . , an) by using Hilbert series via free resolutions, and the use of this approach to show an explicit formula for g(a1, a2, a3), are shown. The connection among denumerants, FP, and Ehrhart polynomial as well as two variants of d(m; a1, . . . , an) are discussed.

Keywords:   generating function, Hilbert series, Ehrhart polynomial, E. T. Bell, T. Popoviciu, denumerant, J. J. Sylvester

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .