Jump to ContentJump to Main Navigation
Numerical Methods for Image Registration$
Users without a subscription are not able to see the full content.

Jan Modersitzki

Print publication date: 2003

Print ISBN-13: 9780198528418

Published to Oxford Scholarship Online: September 2007

DOI: 10.1093/acprof:oso/9780198528418.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2020. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 05 June 2020

DIFFUSION REGISTRATION

DIFFUSION REGISTRATION

Chapter:
(p.137) 11 DIFFUSION REGISTRATION
Source:
Numerical Methods for Image Registration
Author(s):

Jan Modersitzki

Publisher:
Oxford University Press
DOI:10.1093/acprof:oso/9780198528418.003.0011

A gradient-based regularization for registration is introduced, and a fast and stable implementation is developed. In contrast to the physically motivated elastic and fluid registrations, the diffusion regularizer is motivated by smoothing properties of the displacement. Another important motivation is that a registration step can be performed in linear complexity of the number of given data. The main tool is the so-called additive operator splitting scheme (AOS). The idea is to split the original problem into a number of simpler problems which allow for a fast numerical solution. A new proof for the accuracy of AOS is given, which is based purely on matrix analysis. Thus, the result also applies to more general situations. Thirion's demons registration is discussed.

Keywords:   non-parametric registration, additive operator splitting, Laplace operator, Thirion's demons registration

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .