- Title Pages
- Preface
- Acknowledgments
- General References
- 1 Algebraic Preliminaries
- 2 Euclidean Path Integrals In Quantum Mechanics
- 3 Path Integrals In Quantum Mechanics: Generalizations
- 4 Stochastic Differential Equations: Langevin, Fokker–Planck Equations
- 5 Path And Functional Integrals In Quantum Statistical Physics
- 6 Quantum Evolution: From Particles To Fields
- 7 Quantum Field Theory: Functional Methods and Perturbation Theory
- 8 Relativistic Fermions
- 9 Quantum Field Theory: Divergences and Regularization
- 10 Introduction to Renormalization Theory. Renormalization Group Equations
- 11 Dimensional Regularization, Minimal Subtraction: RG Functions
- 12 Renormalization Of Composite Operators. Short Distance Expansion
- 13 Symmetries And Renormalization
- 14 The Non-Linear σ-Model: An Example Of a Non-Linear Symmetry
- 15 General Non-Linear Models In Two Dimensions
- 16 St And Brs Symmetries, Stochastic Field Equations
- 17 From Langevin Equation To Supersymmetry
- 18 Abelian Gauge Theories
- 19 Non-Abelian Gauge Theories: Introduction
- 20 The Standard Model. Anomalies
- 21 Gauge Theories: Master Equation And Renormalization
- 22 Classical And Quantum Gravity. Riemannian Manifolds And Tensors
- 23 Critical Phenomena: General Considerations
- 24 Mean Field Theory For Ferromagnetic Systems
- 25 General Renormalization Group. The Critical Theory Near Dimension Four
- 26 Scaling Behaviour In The Critical Domain
- 27 Corrections to Scaling Behaviour
- 28 Non-Magnetic Systems and The (φ<sup>2</sup>)<sup>2</sup> Field Theory
- 29 Calculation Of Universal Quantities
- 30 The <i>O</i>(<i>N</i>) Vector Model For <i>N</i> Large
- 31 Phase Transitions Near Two Dimensions
- 32 Two-Dimensional Models and Bosonization Method
- 33 The <i>O</i>(2) Classical Spin Model In Two Dimensions
- 34 Critical Properties Of Gauge Theories
- 35 Uv Fixed Points In Quantum Field Theory
- 36 Critical Dynamics
- 37 Field Theory in a Finite Geometry: Finite Size Scaling
- 38 Quantum Field Theory At Finite Temperature: Equilibrium Properties
- 39 Instantons In Quantum Mechanics
- 40 Unstable Vacua In Quantum Field Theory
- 41 Degenerate Classical Minima And Instantons
- 42 Perturbation Series At Large Orders. Summation Methods
- 43 Multi-Instantons In Quantum Mechanics
- Index

# From Langevin Equation To Supersymmetry

# From Langevin Equation To Supersymmetry

- Chapter:
- (p.419) 17 FROM LANGEVIN EQUATION TO SUPERSYMMETRY
- Source:
- Quantum Field Theory and Critical Phenomena
- Author(s):
### JEAN ZINN-JUSTIN

- Publisher:
- Oxford University Press

A particular class of Langevin equations is of special interest: equations with gaussian noise, in which the drift force derives from a static action and is thus conservative (the corresponding stochastic processes satisfy the detailed balance condition). This chapter shows that the dynamic action then has a second Grassmann symmetry which, combined with the first one, provides the simplest example of supersymmetry: quantum mechanics supersymmetry. It discusses a few consequences of the supersymmetry like WT identities, renormalization properties, and equilibrium distribution. It describes some subtleties of the formalism in the case of two-dimensional models defined on various manifolds. In the two last sections, the chapter briefly discusses supersymmetric quantum field theories, since supersymmetry has been proposed as a principle to solve the so-called hierarchy problem in particle physics by relating the masses of scalar particles (like Higgs fields) to those of fermions which can be protected against ‘large’ mass renormalization by chiral symmetry.

*Keywords:*
Langevin equations, gaussian noise, Grassmann symmetry, quantum mechanics supersymmetry

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .

- Title Pages
- Preface
- Acknowledgments
- General References
- 1 Algebraic Preliminaries
- 2 Euclidean Path Integrals In Quantum Mechanics
- 3 Path Integrals In Quantum Mechanics: Generalizations
- 4 Stochastic Differential Equations: Langevin, Fokker–Planck Equations
- 5 Path And Functional Integrals In Quantum Statistical Physics
- 6 Quantum Evolution: From Particles To Fields
- 7 Quantum Field Theory: Functional Methods and Perturbation Theory
- 8 Relativistic Fermions
- 9 Quantum Field Theory: Divergences and Regularization
- 10 Introduction to Renormalization Theory. Renormalization Group Equations
- 11 Dimensional Regularization, Minimal Subtraction: RG Functions
- 12 Renormalization Of Composite Operators. Short Distance Expansion
- 13 Symmetries And Renormalization
- 14 The Non-Linear σ-Model: An Example Of a Non-Linear Symmetry
- 15 General Non-Linear Models In Two Dimensions
- 16 St And Brs Symmetries, Stochastic Field Equations
- 17 From Langevin Equation To Supersymmetry
- 18 Abelian Gauge Theories
- 19 Non-Abelian Gauge Theories: Introduction
- 20 The Standard Model. Anomalies
- 21 Gauge Theories: Master Equation And Renormalization
- 22 Classical And Quantum Gravity. Riemannian Manifolds And Tensors
- 23 Critical Phenomena: General Considerations
- 24 Mean Field Theory For Ferromagnetic Systems
- 25 General Renormalization Group. The Critical Theory Near Dimension Four
- 26 Scaling Behaviour In The Critical Domain
- 27 Corrections to Scaling Behaviour
- 28 Non-Magnetic Systems and The (φ<sup>2</sup>)<sup>2</sup> Field Theory
- 29 Calculation Of Universal Quantities
- 30 The <i>O</i>(<i>N</i>) Vector Model For <i>N</i> Large
- 31 Phase Transitions Near Two Dimensions
- 32 Two-Dimensional Models and Bosonization Method
- 33 The <i>O</i>(2) Classical Spin Model In Two Dimensions
- 34 Critical Properties Of Gauge Theories
- 35 Uv Fixed Points In Quantum Field Theory
- 36 Critical Dynamics
- 37 Field Theory in a Finite Geometry: Finite Size Scaling
- 38 Quantum Field Theory At Finite Temperature: Equilibrium Properties
- 39 Instantons In Quantum Mechanics
- 40 Unstable Vacua In Quantum Field Theory
- 41 Degenerate Classical Minima And Instantons
- 42 Perturbation Series At Large Orders. Summation Methods
- 43 Multi-Instantons In Quantum Mechanics
- Index