Jump to ContentJump to Main Navigation
Playing for RealGame Theory$
Users without a subscription are not able to see the full content.

Ken Binmore

Print publication date: 2007

Print ISBN-13: 9780195300574

Published to Oxford Scholarship Online: May 2007

DOI: 10.1093/acprof:oso/9780195300574.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2019. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 14 October 2019

 Fighting It Out

 Fighting It Out

Chapter:
(p.215) 7 Fighting It Out
Source:
Playing for Real
Author(s):

Ken Binmore (Contributor Webpage)

Publisher:
Oxford University Press
DOI:10.1093/acprof:oso/9780195300574.003.0007

This chapter describes the theory of two-person, zero-sum games invented by John Von Neumann in 1928. It begins with an application to the computation of economic shadow prices. It shows that a two-person game is strictly competitive if, and only if, it has a zero-sum representation. Such a game can be represented using only the first player's payoff matrix. The minimax and maximin values of the matrix are defined and linked to the concept of a saddle point. The ideas are then related to a player's security level in a game. An inductive proof of Von Neumann's minimax theorem is offered. The connexion between the minimax theorem and the duality theorem of linear programming is explained. The method of solving certain two-person, zero-sum games geometrically with the help of the theorem of the separating hyperplane is introduced. The Hide-and-Seek Game is used as a non-trivial example.

Keywords:   strictly competitive game, shadow price, zero-sum game, matrix game, saddle point, security level, John Von Neumann, minimax theorem, duality theorem, separating hyperplane

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .