Jump to ContentJump to Main Navigation
Computer Simulation of LiquidsSecond Edition$

Michael P. Allen and Dominic J. Tildesley

Print publication date: 2017

Print ISBN-13: 9780198803195

Published to Oxford Scholarship Online: November 2017

DOI: 10.1093/oso/9780198803195.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 20 June 2018

(p.536) Bibliography

(p.536) Bibliography

Source:
Computer Simulation of Liquids
Author(s):

Michael P. Allen

Dominic J. Tildesley

Publisher:
Oxford University Press

Bibliography references:

Abascal, J. L. F. and Vega, C. (2005). A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505.

Abraham, F. F. (1982). Statistical surface physics: a perspective via computer simulation of microclusters, interfaces and simple films. Prog. Phys. Rep.45, 1113–1161.

Adams, D. J. (1974). Chemical potential of hard sphere fluids by Monte Carlo methods. Molec. Phys.28, 1241–1252.

Adams, D. J. (1975). Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid. Molec. Phys.29, 307–311.

Adams, D. J. (1979). Computer simulation of ionic systems: distorting effects of the boundary conditions. Chem. Phys. Lett. 62, 329–332.

Adams, D. J. (1980). Periodic truncated octahedral boundary conditions. The problem of long-ranged forces in the computer simulation of condensed media. NRCC Workshop Proceedings. 9, 13. (Menlo Park, USA, 1980). Ed. by D. Ceperley.

Adams, D. J. (1983a). Alternatives to the periodic cube in computer simulation. CCP5 Quarterly 10, 30–36.

Adams, D. J. (1983b). On the use of the Ewald summation in computer simulation. J. Chem Phys. 78, 2585–2590.

Adams, D. J. and McDonald, I. R. (1976). Thermodynamic and dielectric properties of polar lattices. Molec. Phys.32, 931–947.

Adams, D. J., Adams, E. M., and Hills, G. J. (1979). Computer simulation of polar liquids. Molec. Phys.38, 387–400.

Adelman, S. A. (1979). Generalized Langevin theory for many-body problems in chemical dynamics: general formulation and the equivalent harmonic chain representation. J. Chem. Phys. 71, 4471–4486.

Adhikari, R., Stratford, K., Cates, M. E., and Wagner, A. J. (2005). Fluctuating lattice Boltzmann. Europhys. Lett.71, 473–479.

Aguado, A. and Madden, P. A. (2003). Ewald summation of electrostatic multipole interactions up to the quadrupolar level. J. Chem. Phys.119, 7471–7483.

Ahlrichs, P. and Dünweg, B. (1999). Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. J. Chem. Phys. 111, 8225–8239.

Aidun, C. K. and Clausen, J. R. (2010). Lattice-Boltzmann method for complex flows. Ann. Rev. Fluid Mech.42, 439–472.

Aimoli, C. G., Maginn, E. J., and Abreu, C. R. A. (2014). Force field comparison and thermodynamic property calculation of supercritical CO2andCH4 using molecular dynamics simulations. Fluid Phase Equilibria 368, 80–90.

Akhmatskaya, E. V. and Reich, S. (2008). GSHMC: an efficient method for molecular simulation. J. Comput. Phys. 227, 4934–4954.

(p.537) Akhmatskaya, E. V., Bou-Rabee, N., and Reich, S. (2009). A comparison of generalized hybrid Monte Carlo methods with and without momentum flip. J. Comput. Phys. 228, 2256–2265. Erratum: ibid. 228, 7492–7496 (2009).

Akino, N., Schmid, F., and Allen, M. P. (2001). Molecular dynamics study of the nematic– isotropic interface. Phys. Rev. E 63, 041706.

Alder, B. J. (1986). Molecular dynamics simulations. Molecular dynamics simulation of statistical mechanical systems. Proc. Int. School Phys. Enrico Fermi. 97, 66–80. (Varenna, Italy, 1985). Ed. by G. Ciccotti and W. G. Hoover. Bologna: Soc. Italiana di Fisica.

Alder, B. J. and Wainwright, T. E. (1957). Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209.

Alder, B. J. and Wainwright, T. E. (1959). Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459–466.

Alder, B. J. and Wainwright, T. E. (1960). Studies in molecular dynamics. II. Behavior of a small number of elastic spheres. J. Chem. Phys. 33, 1439–1451.

Alder, B. J. and Wainwright, T. E. (1969). Enhancement of diffusion by vortex-like motion of classical hard particles. J. Phys. Soc. Japan Suppl. 26, 267–269. Proc. Int. Conf. on Statistical Mechanics, Kyoto, 1968.

Alder, B. J. and Wainwright, T. E. (1970). Decay of the velocity autocorrelation function. Phys. Rev. A 1, 18–21.

Alder, B. J., Frankel, S. P., and Lewinson, V. A. (1955). Radial distribution function calculated by the Monte Carlo method for a hard sphere fluid. J. Chem. Phys. 23, 417–419.

Alder, B. J., Gass, D. M., and Wainwright, T. E. (1970). Studies in molecular dynamics. VIII. The transport coefficients for a hard sphere fluid. J. Chem. Phys. 53, 3813–3826.

Alejandre, J. and Chapela, G. A. (2010). The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions. J. Chem. Phys. 132, 014701.

Alfe, D., Bartok, A. P., Csanyi, G., and Gillan, M. J. (2014). Analyzing the errors of DFT approximations for compressed water systems. J. Chem. Phys. 141, 014104.

Allen, M. P. (2006a). Computer simulation of liquid crystals. Computer simulations in condensed matter systems: from materials to chemical biology, vol 2. Lect. Notes Phys. 704, 191–210. (Erice, Italy, 2005). Ed. by M. Ferrario, G. Ciccotti, and K. Binder. Heidelberg: Springer.

Allen, M. P., Frenkel, D., and Talbot, J. (1989). Molecular dynamics simulation using hard particles. Comput. Phys. Rep. 9, 301–353.

Allen, M. P. (1980). Brownian dynamics simulation of a chemical reaction in solution. Molec. Phys. 40, 1073–1087.

Allen, M. P. (1982). Algorithms for Brownian dynamics. Molec. Phys. 47, 599–601.

Allen, M. P. (1984). Atomic and molecular representations of molecular hydrodynamic variables. Molec. Phys. 52, 705–716.

Allen, M. P. (1993). Calculating the helical twisting power of dopants in a liquid crystal by computer simulation. Phys. Rev. E 47, 4611–4614.

Allen, M. P. (2006b). Configurational temperature in membrane simulations using dissipative particle dynamics. J. Phys. Chem. B 110, 3823–3830.

(p.538) Allen, M. P. (2006c). Evaluation of pressure tensor in constant-volume simulations of hard and soft convex bodies. J. Chem. Phys. 124, 214103.

Allen, M. P. and Cunningham, I. C. H. (1986). A computer simulation study of idealized model tetrahedral molecules. Molec. Phys. 58, 615–625.

Allen, M. P. and Germano, G. (2006). Expressions for forces and torques in molecular simulations using rigid bodies. Molec. Phys. 104, 3225–3235.

Allen, M. P. and Imbierski, A. A. (1987). A molecular dynamics study of the hard dumb- bell system. Molec. Phys. 60, 453–473.

Allen, M. P. and Kivelson, D. (1981). Nonequilibrium molecular dynamics simulation and the generalized hydrodynamics of transverse modes in molecular fluids. Molec. Phys. 44, 945–965.

Allen, M. P. and Mare´chal, G. (1986). Nonequilibrium molecular dynamics simulation of a molecular fluid subjected to an oscillatory perturbation. Molec. Phys. 57, 7–19.

Allen, M. P. and Masters, A. J. (1993). Computer simulation of a twisted nematic liquid crystal. Molec. Phys. 79, 277–289.

Allen, M. P. and Masters, A. J. (2001). Molecular simulation and theory of liquid crystals: chiral parameters, flexoelectric coefficients, and elastic constants. J. Mater. Chem. 11, 2678–2689.

Allen, M. P. and Qyigley, D. (2013). Some comments on Monte Carlo and molecular dynamics methods. Molec. Phys. 111, 3442–3447.

Allen, M. P. and Schmid, F. (2007). A thermostat for molecular dynamics of complex fluids. Molec. Simul. 33, 21–26.

Allen, M. P., Evans, G. T., Frenkel, D., and Mulder, B. (1993). Hard convex body fluids. Adv. Chem. Phys. 86, 1–166.

Allen, M. P., Warren, M. A., Wilson, M. R., Sauron, A., and Smith, W. (1996). Molecular dynamics calculation of elastic constants in Gay–Berne nematic liquid crystals. J. Chem. Phys. 105, 2850–2858.

Allen, R. J., Frenkel, D., and ten Wolde, P. R. (2006a). Forward flux sampling-type schemes for simulating rare events: efficiency analysis. J. Chem. Phys. 124, 194111.

Allen, R. J., Frenkel, D., and ten Wolde, P. R. (2006b). Simulating rare events in equilibrium or nonequilibrium stochastic systems. J. Chem. Phys. 124, 024102.

Allen, R. J., Valeriani, C., and ten Wolde, P. R. (2009). Forward flux sampling for rare event simulations. J. Phys. Cond. Mat. 21, 463102.

Allinger, N. L., Chen, K. S., and Lii, J. H. (1996). An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem. 17, 642–668.

Almarza, N. G. and Lomba, E. (2007). Cluster algorithm to perform parallel Monte Carlo simulation of atomistic systems. J. Chem. Phys. 127, 084116.

Ambrosiano, J., Greengard, L., and Rokhlin, V. (1988). The fast multipole method for gridless particle simulation. Comput. Phys. Commun. 48, 117–125.

Andersen, H. C. (1980). Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393.

Andersen, H. C. (1983). RATTLE: a ‘velocity’ version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34.

Anderson, J. B. (1975). A random-walk simulation of the Schrödinger equation: H3+. J. Chem. Phys. 63, 1499–1503.

(p.539) Anderson, J. B. (1976). Qyantum chemistry by random walk. H 2P, 2P,H3+D3h1A1',H23u+,H41g+Be 1s. J. Chem. Phys. 65, 4121–4127.

Anderson, J. B. (1980). Qyantum chemistry by random walk: higher accuracy. J. Chem Phys. 73, 3897–3899.

Ando, T., Chow, E., Saad, Y., and Skolnick, J. (2012). Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics simulations. J. Chem. Phys. 137, 064106.

Andrea, T. A., Swope, W. C., and Andersen, H. C. (1983). The role of long ranged forces in determining the structure and properties of liquid water. J. Chem. Phys. 79, 4576– 4584.

Anisimov, V. M., Lamoureux, G., Vorobyov, I. V., Huang, N., Roux, B., and MacKerell, A. D. (2005). Determination of electrostatic parameters for a polarizable force field based on the classical Drude oscillator. J. Chem. Theor. Comput. 1, 153–168.

Antila, H. S. and Salonen, E. (2013). Polarizable force fields. Biomolecular simulations, methods and protocols. Methods Molec. Biol. 924. Chap. 9, 215–241. Ed. byL. Monticelli and E. Salonen. New York: Humana Press.

Applequist, J., Carl, J. R., and Fung, K. K. (1972). Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. Soc. 94, 2952–2960.

Apte, P. A. and Zeng, X. C. (2008). Anisotropy of crystal–melt interfacial free energy of silicon by simulation. Appl. Phys. Lett. 92, 221903.

Arias, T. A., Payne, M. C., and Joannopoulos, J. D. (1992). Ab initio molecular dynamics: analytically continued energy functionals and insights into iterative solutions. Phys. Rev. Lett. 69, 1077–1080.

Arnold, A., Fahrenberger, F., Holm, C., Lenz, O., Bolten, M., Dachsel, H., Halver, R., Kabadshow, I., Gaehler, F., Heber, F., Iseringhausen, J., Hofmann, M., Pippig, M., Potts, D., and Sutmann, G. (2013). Comparison of scalable fast methods for long-range interactions. Phys. Rev. E 88, 063308.

Asenjo, D., Paillusson, F., and Frenkel, D. (2014). Numerical calculation of granular entropy. Phys. Rev. Lett. 112, 098002.

Ashurst, W. T. and Hoover, W. G. (1972). Nonequilibrium molecular dynamics: shear viscosity and thermal conductivity. Bull. Amer. Phys. Soc. 17, 1196.

Ashurst, W. T. and Hoover, W. G. (1973). Argon shear viscosity via a Lennard-Jones potential with equilibrium and nonequilibrium molecular dynamics. Phys. Rev. Lett. 31, 206–208.

Ashurst, W. T. and Hoover, W. G. (1975). Dense fluid shear viscosity via nonequilibrium molecular dynamics. Phys. Rev. A 11, 658–678.

Assfeld, X. and Rivail, J. L. (1996). Qyantum chemical computations on parts of large molecules: the ab initio local self consistent field method. Chem. Phys. Lett. 263, 100– 106.

Attard, P. (1992). Simulation results for a fluid with the Axilrod–Teller triple dipole potential. Phys. Rev. A 45, 5649–5653.

Attard, P. (1995). On the density of volume states in the isobaric ensemble. J. Chem. Phys.103, 9884–9885.

(p.540) Aviram, I., Tildesley, D. J., and Streett, W. B. (1977). Virial pressure in a fluid of hard polyatomic molecules. Molec. Phys. 34, 881–885.

Axilrod, B. M. and Teller, E. (1943). Interaction of the van der Waals type between three atoms. J. Chem. Phys. 11, 299–300.

Babadi, M., Ejtehadi, M., and Everaers, R. (2006). Analytical first derivatives of the RE-squared interaction potential. J. Comput. Phys. 219, 770–779.

Backer, J. A., Lowe, C. P., Hoefsloot, H. C. J., and Iedema, P. D. (2005). Poiseuille flow to measure the viscosity of particle model fluids. J. Chem. Phys. 122, 154503.

Bagchi, K., Balasubramanian, S., Mundy, C. J., and Klein, M. L. (1996). Profile unbiased thermostat with dynamical streaming velocities. J. Chem. Phys. 105, 11183–11189.

Bai, P. and Siepmann, J. I. (2013). Selective adsorption from dilute solutions: Gibbs ensemble Monte Carlo simulations. Fluid Phase Equilibria351, 1–6.

Bailey, A. G., Lowe, C. P., and Sutton, A. P. (2008). Efficient constraint dynamics using MILCSHAKE. J. Comput. Phys. 227, 8949–8959.

Bailey, A. G., Lowe, C. P., and Sutton, A. P. (2009). REVLD: a coarse-grained model for polymers. Comput. Phys. Commun. 180, 594–599. Special issue based on the Conference on Computational Physics 2008.

Baker, C. M. (2015). Polarizable force fields for molecular dynamics simulations of bio- molecules. Comp. Mol. Sci. (Wiley Interdisc. Rev.) 5, 241–254.

Ballenegger, V., Cerda, J. J., and Holm, C. (2012). How to convert SPME to P3M: influence functions and error estimates. J. Chem. Theor. Comput. 8, 936–947.

Banchio, A. J. and Brady, J. F. (2003). Accelerated Stokesian dynamics: Brownian motion. J. Chem. Phys. 118, 10323–10332.

Bannerman, M. N., Sargant, R., and Lue, L. (2011). DynamO: a free O (N) general event- driven molecular dynamics simulator. J. Comput. Chem. 32, 3329–3338.

Baranyai, A. and Cummings, P. T. (1999). Steady state simulation of planar elongation flow by nonequilibrium molecular dynamics. J. Chem. Phys. 110, 42–45.

Barash, L. Y. and Shchur, L. N. (2013). RNGSSELIB: Program library for random number generation. More generators, parallel streams of random numbers and Fortran compatibility. Comput. Phys. Commun. 184, 2367–2369.

Barducci, A., Bussi, G., and Parrinello, M. (2008). Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603.

Barker, A. A. (1965). Monte Carlo calculations of the radial distribution functions for a proton–electron plasma. Aust. J. Phys. 18, 119–133.

Barker, J. A. (1979). A quantum-statistical Monte Carlo method: path integrals with boundary conditions. J. Chem. Phys. 70, 2914–2918.

Barker, J. A. (1980). Reaction field method for polar fluids. The problem of long-range forces in the computer simulation of condensed matter. NRCC Workshop Proceedings.9, 45–46(Menlo Park, USA, 1980). Ed. by D. Ceperley.

Barker, J. A. and Henderson, D. (1976). What is ‘liquid’? Understanding the states of matter. Rev. Mod. Phys. 48, 587–671.

Barker, J. A. and Watts, R. O. (1969). Structure of water: a Monte Carlo calculation. Chem. Phys. Lett. 3, 144–145.

Barker, J. A. and Watts, R. O. (1973). Monte Carlo studies of dielectric properties of water- like models. Molec. Phys. 26, 789–792.

(p.541) Barker, J. A., Fisher, R. A., and Watts, R. O. (1971). Liquid argon: Monte Carlo and molecular dynamics calculations. Molec. Phys. 21, 657–673.

Barojas, J., Levesque, D., and Qyentrec, B. (1973). Simulation of diatomic homonuclear liquids. Phys. Rev. A 7, 1092–1105.

Baroni, S. and Moroni, S. (1999). Reptation quantum Monte Carlo: a method for unbiased ground-state averages and imaginary-time correlations. Phys. Rev. Lett. 82, 4745– 4748.

Barrat, J.-L. and Bocquet, L. (1999a). Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Disc. Chem. Soc. 112, 119–127.

Barrat, J.-L. and Bocquet, L. (1999b). Large slip effect at a non-wetting fluid–solid interface. Phys. Rev. Lett. 82, 4671–4674.

Barrat, J.-L. and Hansen, J.-P. (2003). Basic concepts for simple and complex liquids.Cambridge: Cambridge University Press.

Barrett, J. (2006). Some estimates of the surface tension of curved surfaces using density functional theory. J. Chem. Phys. 124, 144705.

Barth, E., Kuczera, K., Leimkuhler, B., and Skeel, R. D. (1995). Algorithms for constrained molecular dynamics. J. Comput. Chem. 16, 1192–1209.

Basconi, J. E. and Shirts, M. R. (2013). Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J. Chem. Theor. Comput. 9, 2887–2899.

Bates, M. A. and Frenkel, D. (1998). Influence of polydispersity on the phase behavior of colloidal liquid crystals: a Monte Carlo simulation study. J. Chem. Phys. 109, 6193– 6199.

Batôt, G., Dahirel, V., Meériguet, G., Louis, A. A., and Jardat, M. (2013). Dynamics of solutes with hydrodynamic interactions: comparison between Brownian dynamics and stochastic rotation dynamics simulations. Phys. Rev. E88, 043304.

Bauke, H. and Mertens, S. (2004). Pseudo random coins show more heads than tails. J. Stat Phys. 114, 1149–1169.

Baxter, R. J. (1970). Ornstein–Zernike relation and Percus–Yevick approximation for fluid mixtures. J. Chem. Phys. 52, 4559–4562.

Baxter, R. J. (1982). Exactly solved models in statistical mechanics. London: Academic Press.

Bayly, C. I., Cieplak, P., Cornell, W. D., and Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280.

Bechinger, C., Sciortino, F., and Ziherl, P., eds. (2013). Physics of complex colloids. Vol. 184. Proc. Int. School Phys. Enrico Fermi. Italian Physical Society.Amsterdam: ISO Press. (Varenna, Italy, 2012).

Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100.

Becker, S., Urbassek, H. M., Horsch, M., and Hasse, H. (2014). Contact angle of sessile drops in Lennard-Jones systems. Langmuir 30, 13606–13614.

Bedrov, D. and Smith, G. D. (2000). Thermal conductivity of molecular fluids from molecular dynamics simulations: application of a new imposed-flux method. J. Chem. Phys. 113, 8080–8084.

(p.542) Beenakker, C. W. J. (1986). Ewald sum of the Rotne–Prager tensor. J. Chem. Phys. 85, 1581–1582.

Begau, C. and Sutmann, G. (2015). Adaptive dynamic load-balancing with irregular domain decomposition for particle simulations. Comput. Phys. Commun. 190, 51–61.

Behler, J. (2011). Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem. Phys. 13, 17930–17955.

Behler, J. and Parrinello, M. (2007). Generalized neural-network representation of high- dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401.

Belardinelli, R. E. and Pereyra, V. D. (2007a). Fast algorithm to calculate density of states. Phys. Rev. E 75, 046701.

Belardinelli, R. E. and Pereyra, V. D. (2007b). Wang–Landau algorithm: a theoretical analysis of the saturation of the error. J. Chem. Phys. 127, 184105.

Bellemans, A., Orban, J., and van Belle, D. (1980). Molecular dynamics of rigid and non- rigid necklaces of hard disks. Molec. Phys. 39, 781–782.

Benet, J., MacDowell, L. G., and Sanz, E. (2014). A study of the ice–water interface using the TIP4P/2005 water model. Phys. Chem. Chem. Phys. 16, 22159–22166.

Benet, J., MacDowell, L. G., and Sanz, E. (2015). Interfacial free energy of the NaCl crystal– melt interface from capillary wave fluctuations. J. Chem. Phys. 142, 134706.

Benjamin, R. and Horbach, J. (2014). Crystal–liquid interfacial free energy via thermodynamic integration. J. Chem. Phys. 141, 044715.

Benjamin, R. and Horbach, J. (2015). Crystal–liquid interfacial free energy of hard spheres via a thermodynamic integration scheme. Phys. Rev. E 91, 032410.

Bennett, C. H. (1975). Mass tensor molecular dynamics. J. Comput. Phys. 19, 267–279.

Bennett, C. H. (1976). Efficient estimation of free-energy differences from Monte-Carlo data. J. Comput. Phys. 22, 245–268.

Bennett, C. H. (1977). Molecular dynamics and transition state theory: the simulation of infrequent events. Algorithms for chemical computations. ACS Symp. Ser. 46. Chap. 4, 63–97. (New York, USA, 1976). Ed. by R. E. Christoffersen. Washington: American Chemical Society.

Benzi, R., Succi, S., and Vergassola, M. (1992). The lattice Boltzmann equation: theory and applications. Physics Reports 222, 145–197.

Berardi, R., Emerson, A. P. J., and Zannoni, C. (1993). Monte Carlo investigations of a Gay–Berne liquid crystal. J. Chem. Soc. Faraday Trans. 89, 4069–4078.

Berardi, R., Fava, C., and Zannoni, C. (1995). A generalized Gay–Berne intermolecular potential for biaxial particles. Chem. Phys. Lett. 236, 462–468.

Berardi, R., Fava, C., and Zannoni, C. (1998). A Gay–Berne potential for dissimilar biaxial particles. Chem. Phys. Lett. 297, 8–14.

Bereau, T. and Deserno, M. (2009). Generic coarse-grained model for protein folding and aggregation. J. Chem. Phys. 130, 235106.

Berendsen, H. J. C. and van Gunsteren, W. F. (1984). Molecular dynamics simulations: techniques and approaches. Molecular liquids, dynamics and interactions. NATO ASI series C. 135, 475–500. (Florence, Italy, 1983). Ed. by A. J. Barnes, W. J. Orville-Thomas, and J. Yarwood. New York: Reidel.

(p.543) Berendsen, H. J. C. and van Gunsteren, W. F. (1986). Practical algorithms for dynamic simulations. Molecular dynamics simulation of statistical mechanical systems. Proc. Int.School Phys. Enrico Fermi. 97, 43–65. (Varenna, Italy, 1985). Ed. by G. Ciccotti and W. G. Hoover. Bologna: Soc. Italiana di Fisica.

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., and Hermans, J. (1981). Interaction models for water in relation to protein hydration. Intermolecular forces. Jerusalem Symp. Qyantum Chemistry and Biochemistry. 14, 331–342. (Jerusalem, Israel, 1981). Ed. by B. Pullman. Dordrecht: Reidel.

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Dinola, A., and Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690.

Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P. (1987). The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271.

Berens, P. H. and Wilson, K. R. (1981). Molecular dynamics and spectra. 1. Diatomic rotation and vibration. J. Chem. Phys. 74, 4872–4882.

Berens, P. H., Mackay, D. H. J., White, G. M., and Wilson, K. R. (1983). Thermodynamics and quantum corrections from molecular dynamics for liquid water. J. Chem. Phys. 79, 2375–2389.

Berg, B. A., Hansmann, H. E., and Okamoto, Y. (1995). Monte Carlo simulation of a first- order transition for protein folding. J. Phys. Chem. 99, 2236–2237.

Berg, B. and Celik, T. (1992). New approach to spin-glass simulations. Phys. Rev. Lett. 69, 2292–2295.

Bergsma, J. P., Reimers, J. R., Wilson, K. R., and Hynes, J. T. (1986). Molecular dynamics of the A+BC reaction in rare gas solution. J. Chem. Phys. 85, 5625–5643.

Berman, C. L. and Greengard, L. (1994). A renormalization method for the evaluation of lattice sums. J. Math. Phys. 35, 6036–6048.

Bernal, J. D. and King, S. V. (1968). Experimental studies of a simple liquid model. Physics of Simple Liquids,231252.Ed.by H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke. Amsterdam: North Holland.

Bernard, E. P. and Krauth, W. (2011). Two-step melting in two dimensions: first-order liquid–hexatic transition. Phys. Rev. Lett. 107, 155704.

Bernardi, S., Todd, B. D., and Searles, D. J. (2010). Thermostating highly confined fluids. J. Chem. Phys. 132, 244706.

Bernaschi, M., Melchionna, S., Succi, S., Fyta, M., Kaxiras, E., and Sircar, J. (2009). MUPHY: a parallel multi physics/scale code for high performance bio-fluidic simulations. Comput. Phys. Commun. 180, 1495–1502.

Berne, B. J. (1986). Path integral Monte Carlo methods: static correlation and time correlation functions. J. Stat. Phys. 43, 911–929.

Berne, B. J. and Harp, G. D. (1970). On the calculation of time correlation functions. Adv. Chem. Phys. 17, 63– 227.

Berne, B. J. and Pechukas, P. (1972). Gaussian model potentials for molecular interactions. J. Chem. Phys. 56, 4213–4216.

Berne, B. J. and Pecora, R. (1976). Dynamic light scattering. New York: Wiley.

Berryman, J. T. and Schilling, T. (2010). Sampling rare events in nonequilibrium and nonstationary systems. J. Chem. Phys. 133, 244101.

Besold, G., Vattulainen, I., Karttunen, M., and Polson, J. M. (2000). Towards better integrators for dissipative particle dynamics simulations. Phys. Rev. E 62, 7611–7614.

(p.544) Best, R. B. and Hummer, G. (2005). Reaction coordinates and rates from transition paths. Proc. Nat. Acad. Sci. 102, 6732–6737.

Bethkenhagen, M., French, M., and Redmer, R. (2013). Equation of state and phase diagram of ammonia at high pressures from ab initio simulations. J. Chem. Phys. 138, 234504.

Bhargava, B. L. and Balasubramanian, S. (2006). Intermolecular structure and dynamics in an ionic liquid: a Car–Parrinello molecular dynamics simulation study of 1,3-dimethylimidazolium chloride. Chem. Phys. Lett. 417, 486–491.

Bhatnagar, P. L., Gross, E. P., and Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525.

Bhupathiraju, R., Cummings, P. T., and Cochran, H. D. (1996). An efficient parallel algorithm for non-equilibrium molecular dynamics simulations of very large systems in planar Couette flow. Molec. Phys. 88, 1665–1670.

Binder, K. (1982). Monte Carlo calculation of the surface tension for two- and three- dimensional lattice-gas models. Phys. Rev. A 25, 1699–1709.

Binder, K. (1984). Applications of the Monte Carlo method in statistical physics. Topics Curr.Phys. Vol. 36. Berlin: Springer.

Binder, K. (1995). Monte Carlo and molecular dynamics simulations in polymer science.New York: Oxford University Press.

Binder, K. and Landau, D. P. (1984). Finite-size scaling at first-order phase transitions. Phys. Rev. B 30, 1477–1485.

Binder, K. (2014). Simulations of interfacial phenomena in soft condensed matter and nanoscience. J. Phys. Conf. Ser. 510, 012002.

Binder, K., Sengupta, S., and Nielaba, P. (2002). The liquid–solid transition of hard discs: first–order transition or Kosterlitz–Thouless–Halperin–Nelson–Young scenario? J. Phys. Cond. Mat. 14, 2323–2333.

Binder, K., Block, B., Das, S. K., Virnau, P., and Winter, D. (2011). Monte Carlo methods for estimating interfacial free energies and line tensions. J. Stat. Phys. 144, 690–729.

Binder, K., Block, B. J., Virnau, P., and Tröster, A. (2012). Beyond the van der Waals loop: what can be learned from simulating Lennard-Jones fluids inside the region of phase coexistence. Amer. J. Phys. 80, 1099–1109.

Biscay, F., Ghoufi, A., Goujon, F., Lachet, V., and Malfreyt, P. (2009). Calculation of the surface tension from Monte Carlo simulations: does the model impact on the finite- size effects? J. Chem. Phys. 130, 184710.

Bishop, M., Ceperley, D., Frisch, H. L., and Kalos, M. H. (1980). Investigations of static properties of model bulk polymer fluids. J. Chem. Phys. 72, 3228–3235.

Bixon, M. and Lifson, S. (1967). Potential functions and conformations in cycloalkanes. Tetrahedron 23, 769–784.

Block, B. J., Das, S. K., Oettel, M., Virnau, P., and Binder, K. (2010). Curvature dependence of surface free energy of liquid drops and bubbles: a simulation study. J. Chem. Phys. 133, 154702.

Blokhuis, E. M. and Bedeaux, D. (1992). Pressure tensor of a spherical interface. J. Chem.Phys. 97, 3576–3586.

(p.545) Blokhuis, E. M., Bedaux, D., Holcomb, C. D., and Zollweg, J. A. (1995). Tail corrections to the surface tension of a Lennard-Jones liquid–vapour interface. Molec. Phys. 85, 665–669.

Blokhuis, E. M. (2009). On the spectrum of fluctuations of a liquid surface: from the molecular scale to the macroscopic scale. J. Chem. Phys. 130, 014706.

Blokhuis, E. M., Kuipers, J., and Vink, R. L. C. (2008). Description of the fluctuating colloid–polymer interface. Phys. Rev. Lett. 101, 086101.

Bocquet, L. and Barrat, J.-L. (1994). Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E 49, 3079–3092.

Bocquet, L. and Barrat, J.-L. (2013). On the Green–Kubo relationship for the liquid–solid friction coefficient. J. Chem. Phys. 139, 044704.

Boinepalli, S. and Attard, P. (2003). Grand canonical molecular dynamics. J. Chem. Phys.119, 12769–12775.

Bolhuis, P. G. and Dellago, C. (2015). Practical and conceptual path sampling issues. Euro. Phys. J. Spec. Top. 224, 2409–2427.

Bolhuis, P. G. and Kofke, D. A. (1996). Monte Carlo study of freezing of polydisperse hard spheres. Phys. Rev. E 54, 634–643.

Bolhuis, P. G., Chandler, D., Dellago, C., and Geissler, P. L. (2002). Transition path sampling: throwing ropes over rough mountain passes, in the dark. Ann. Rev. Phys. Chem. 53, 291–318.

Bolhuis, P. G. (2008). Rare events via multiple reaction channels sampled by path replica exchange. J. Chem. Phys. 129, 114108.

Bolhuis, P. G. and Dellago, C. (2010). Trajectory-based rare event simulations. Rev.Comput. Chem. 27. Chap. 3, 111–210. Ed. by K. B. Lipkowitz. Wiley.

Bond, S. D., Leimkuhler, B. J., and Laird, B. B. (1999). The Nosé–Poincaré method for constant temperature molecular dynamics. J. Comput. Phys. 151, 114–134.

Bonthuis, D. J., Horinek, D., Bocquet, L., and Netz, R. R. (2009). Electrohydraulic power conversion in planar nanochannels. Phys. Rev. Lett. 103, 144503.

Bonthuis, D. J., Rinne, K. F., Falk, K., Kaplan, C. N., Horinek, D., Berker, A. N., Bocquet, L., and Netz, R. R. (2011). Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls. J. Phys. Cond. Mat. 23, 184110.

Booth, G. H., Thom, A. J. W., and Alavi, A. (2009). Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. J. Chem. Phys. 131, 054106.

Booth, G. H., Grueneis, A., Kresse, G., and Alavi, A. (2013). Towards an exact description of electronic wavefunctions in real solids. Nature 493, 365–370.

Bordat, P. and Müller-Plathe, F. (2002). The shear viscosity of molecular fluids: a calculation by reverse nonequilibrium molecular dynamics. J. Chem. Phys. 116, 3362– 3369.

Borgs, C. and Kotecký, R. (1990). A rigorous theory of finite-size scaling at first-order phase transitions. J. Stat. Phys. 61, 79–119.

Born, M. and von Karman, T. (1912)über Schwingungen in Raumgittern. Physik. Z. 13,297–309.

(p.546) Borrero, E. E. and Dellago, C. (2010). Overcoming barriers in trajectory space: mechanism and kinetics of rare events via Wang–Landau enhanced transition path sampling. J. Chem. Phys. 133, 134112.

Borrero, E. E. and Escobedo, F. A. (2008). Optimizing the sampling and staging for simulations of rare events via forward flux sampling schemes. J. Chem. Phys. 129, 024115.

Borrero,E.E., Weinwurm,M.,and Dellago, C. (2011). Optimizing transition interface sampling simulations. J. Chem. Phys. 134, 244118.

Bottaro,S., Boomsma, W., Johansson, K. E., Andreetta, C., Hamelryck, T., and Ferkinghoff- Borg, J. (2012). Subtle Monte Carlo updates in dense molecular systems. J. Chem. Theor. Comput.8, 695–702.

Boublik, T. (1974). Statistical thermodynamics of convex molecule fluids. Molec. Phys. 27, 1415–1427.

Bowers, K. J., Dror, R. O., and Shaw, D. E. (2005). Overview of neutral territory methods for the parallel evaluation of pairwise particle interactions. J. Phys. Conf. Ser. 16, 300– 304.

Bowers, K. J., Dror, R. O., and Shaw, D. E. (2007). Zonal methods for the parallel execution of range-limited N -body simulations. J. Comput. Phys. 221, 303–329.

Box, G. E. P. and Muller, M. E. (1958). A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611.

Bradbury, T. C. (1968). Theoretical mechanics. New York: Wiley.

Braga, C. and Travis, K. P. (2005). A configurational temperature Nosé–Hoover thermostat. J. Chem. Phys. 123, 134101.

Braga, C. and Travis, K. P. (2006). Configurational constant pressure molecular dynamics. J. Chem. Phys. 124, 104102.

Brandt, E. G., Braun, A. R., Sachs, J. N., Nagle, J. F., and Edholm, O. (2011). Interpretation of fluctuation spectra in lipid bilayer simulations. Biophys. J. 100, 2104–2111.

Brender, C. and Lax, M. (1983). A Monte Carlo off-lattice method: the slithering snake in a continuum. J. Chem. Phys. 79, 2423–2425.

Brennan, J. K. and Madden, W. G. (1998). Efficient volume changes in constant-pressure Monte Carlo simulations. Molec. Simul.20, 139–157.

Brigham, E. O. (1974). The fast Fourier transform. Englewood Cliffs, NJ: Prentice-Hall.

Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., andKarplus, M. (1983). CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.

Brorsen, K. R., Willow, S. Y., Xantheas, S. S., and Gordon, M. S. (2015). The melting temperature of liquid water with the effective fragment potential. J. Phys. Chem. Lett. 6, 3555–3559.

Broughton, J. Q. and Gilmer, G. H. (1986). Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems. J. Chem. Phys. 84, 5759–5768.

Broughton, J. Q., Abraham, F., Bernstein, N., and Kaxiras, E. (1999). Concurrent coupling of length scales: methodology and application. Phys. Rev. B 60, 2391–2403.

(p.547) Brown, D. and Clarke, J. H. R. (1983). The rheological properties of model liquid normal- hexane determined by non-equilibrium molecular dynamics. Chem. Phys. Lett. 98, 579–583.

Brown,D., Clarke, J. H. R., Okuda, M., and Yamazaki, T. (1994). A domain decomposition parallel-processing algorithm for molecular dynamics simulations of polymers. Comput. Phys. Commun. 83, 1–13.

Brown,E.W., Clark, B. K., DuBois, J. L., and Ceperley, D. M. (2013). Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas. Phys. Rev. Lett. 110, 146405.

Brown, J. T., Allen, M. P., Martín del Río, E., and de Miguel, E. (1998). Effects of elongation on the phase behavior of the Gay–Berne fluid. Phys. Rev. E 57, 6685–6699.

Brown, R. G. (2015). Dieharder: a random number test suite. http://www.phy.duke.edu/~rgb/General/dieharder.php (Accessed Nov 2015).

Brown, W. M., Kohlmeyer, A., Plimpton, S. J., and Tharrington, A. N. (2012). Implementing molecular dynamics on hybrid high performance computers: particle–particle particle–mesh. Comput. Phys. Commun. 183, 449–459.

Brualla,L., Sakkos,K., Boronat, J., and Casulleras, J. (2004). Higher order and infinite Trotter-number extrapolations in path integral Monte Carlo. J. Chem. Phys. 121,636– 643.

Brumby,P.E., Haslam, A. J., de Miguel, E., and Jackson, G. (2011). Subtleties in the calculation of the pressure and pressure tensor of anisotropic particles from volume- perturbation methods and the apparent asymmetry of the compressive and expansive contributions. Molec. Phys. 109, 169–189.

Brünger, A., Brooks, C. L., and Karplus, M. (1984). Stochastic boundary conditions for molecular dynamics simulations of st2 water. Chem. Phys. Lett. 105, 495–500.

Bu, W., Kim, D., and Vaknin, D. (2014). Density profiles of liquid/vapor interfaces away from their critical points. J. Phys. Chem. C 118, 12405–12409.

Buff, F. P. (1955). Spherical interface. II. Molecular theory. J. Chem. Phys. 23, 419–427.

Buff, F. P., Lovett, R. A., and Stillinger, F. H. (1965). Interfacial density profile for fluids in the critical region. Phys. Rev. Lett. 15, 621–623.

Buff, F. P. (1952). Some considerations of surface tension. Zeit. Elecktrochem. 56, 311–313.

Buhl, M., Chaumont, A., Schurhammer, R., and Wipff, G. (2005). Ab initio molecular dynamics ofliquid 1,3-dimethylimidazolium chloride. J. Phys. Chem. B 109, 18591–18599.

Bulo, R. E., Ensing, B., Sikkema, J., and Visscher, L. (2009). Toward a practical method for adaptive QM/MM simulations. J. Chem. Theor. Comput. 5, 2212–2221.

Bunker, A. and Dünweg, B. (2001). Parallel excluded volume tempering for polymer melts. Phys. Rev. E 63, 16701–16710.

Burgos, E., Murthy, C. S., and Righini, R. (1982). Crystal structure and lattice dynamics of chlorine. The role of electrostatic and anisotropic atom–atom potentials. Molec. Phys. 47, 1391–1403.

Bussi, G. and Parrinello, M. (2007). Accurate sampling using Langevin dynamics. Phys.Rev. E 75, 056707.

Bussi, G., Donadio, D., and Parrinello, M. (2007). Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101.

(p.548) Butler, B. D., Ayton, G., Jepps, O. G., and Evans, D. J. (1998). Configurational temperature: verification of Monte Carlo simulations. J. Chem. Phys. 109, 6519–6522.

Caccamo, C., Costa, D., and Pellicane, G. (1998). A comprehensive study of the phase diagram of symmetrical hard-core Yukawa mixtures. J. Chem. Phys. 109, 4498–4507.

Cağin, T. and Pettitt, B. M. (1991a). Grand molecular dynamics: a method for opensystems. Molec. Simul. 6, 5–26.

Cağin, T. and Pettitt, B. M. (1991b). Molecular dynamics with a variable number of molecules. Molec. Phys. 72, 169–175.

Cağin, T. and Ray, J. R. (1988). Isothermal molecular-dynamics ensembles. Phys. Rev. A37, 4510–4513.

Cahn, J. W. and Hilliard, J. E. (1958). Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267.

Camley, B. A., Lerner, M. G., Pastor, R. W., and Brown, F. L. H. (2015). Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes. J. Chem. Phys. 143, 243113.

Cannon, D. A., Ashkenasy, N., and Tuttle, T. (2015). Influence of solvent in controlling peptide–surface interactions. J. Phys. Chem. Lett. 6, 3944–3949.

Cao, J. and Martyna, G. J. (1996). Adiabatic path integral molecular dynamics methods. 2.Algorithms. J. Chem. Phys. 104, 2028–2035.

Cao, J. S. and Voth, G. A. (1994). The formulation of quantum-statistical mechanics based on the Feynman path centroid density. 1. Equilibrium properties. J. Chem. Phys. 100, 5093–5105.

Car, R. and Parrinello, M. (1985). Unified approach for molecular dynamics and density- functional theory. Phys. Rev. Lett. 55, 2471–2474.

Carberry, D. M., Reid, J. C., Wang, G. M., Sevick, E. M., Searles, D. J., and Evans, D. J. (2004). Fluctuations and irreversibility: an experimental demonstration of a second-law-like theorem using a colloidal particle held in an optical trap. Phys. Rev. Lett. 92, 140601.

Care, A., Bergquist, P. L., and Sunna, A. (2015). Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotech. 33, 259–268.

Care, C. M. and Cleaver, D. J. (2005). Computer simulation of liquid crystals. Rep. Prog. Phys. 68, 2665–2700.

Carnahan, N. F. and Starling, K. E. (1969). Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635–636.

Carnie, S. L. and Torrie, G. M. (1984). The statistical mechanics of the electrical double layer. Adv. Chem. Phys. 56, 141–253.

Carrier, J., Greengard, L., and Rokhlin, V. (1988). A fast adaptive multipole algorithm for particle simulations. siam J. Sci. Stat. Comput. 9, 669–686.

Carter, E. A., Ciccotti, G., Hynes, J. T., and Kapral, R. (1989). Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett. 156, 472– 477.

Celledoni, E., Fassò, F., Säfström, N., and Zanna, A. (2008). The exact computation of the free rigid body motion and its use in splitting methods. siam J. Sci. Comput. 30, 2084– 2112.

Ceperley, D. M. and Alder, B. J. (1980). Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569.

(p.549) Ceperley, D. M., Chester, G. V., and Kalos, M. H. (1977). Monte Carlo simulation of a many-fermion study. Phys. Rev. B 16, 3081–3099.

Ceriotti, M., Tribello, G. A., and Parrinello, M. (2011). Simplifying the representation of complex free energy landscapes using sketch-map. Proc. Nat. Acad. Sci. 108, 13023.

Ceriotti, M. and Markland, T. E. (2013). Efficient methods and practical guidelines for simulating isotope effects. J. Chem. Phys. 138, 014112.

Ceriotti, M., Parrinello, M., Markland, T. E., and Manolopoulos, D. E. (2010). Efficient stochastic thermostatting of path integral molecular dynamics. J. Chem. Phys. 133, 124104.

Chacón, E. and Tarazona, P. (2003). Intrinsic profiles beyond the capillary wave theory: a Monte Carlo study. Phys. Rev. Lett. 91, 166103.

Chandler, D. (1978). Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys. 68, 2959–2970.

Chandler, D. (1982). Equilibrium theory of polyatomic fluids. The liquid state of matter: fluid simple and complex. Studies in Statistical Mechanics. 8, 275–340. Ed. byE. W. Montroll and J. L. Lebowitz. Amsterdam: North Holland.

Chandler, D. (1987). Introduction to modern statistical mechanics. New York: Oxford University Press.

Chandler, D. and Berne, B. J. (1979). Comment on the role of constraints on the structure of n-butane in liquid solvents. J. Chem. Phys. 71, 5386–5387.

Chandler, D. and Wolynes, P. G. (1981). Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids. J. Chem. Phys. 74, 4078–4095.

Chandra, R., Kohr, D., Menon, R., Dagum, L., Maydan, D., and McDonald, J. (2000). Parallel programming in OpenMP. Morgan Kaufmann.

Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Rev. Mod. Phys.15, 1–89.

Chapela, G. A., Saville, G., and Rowlinson, J. (1975). Computer simulation of the gas/liquid surface. Faraday Disc. Chem. Soc. 59, 22–28.

Chapela, G. A., Saville, G., Thompson, S. M., and Rowlinson, J. S. (1977). Computer simulation of a gas–liquid surface. 1. J. Chem. Soc. Faraday Trans. II 73, 1133–1144.

Chapela, G. A., Martinez-Casas, S. E., and Alejandre, J. (1984). Molecular dynamics for discontinuous potentials. 1. General method and simulation of hard polyatomic molecules . Molec. Phys. 53, 139–159.

Chapman, W. and Qyirke, N. (1985). Metropolis Monte Carlo simulation of fluids with multiparticle moves. Physica B 131, 34–40.

Chapman, W. G., Jackson, G., and Gubbins, K. E. (1988). Phase equilibria of associating fluids. Molec. Phys. 65, 1057–1079.

Chapman, W. G., Gubbins, K. E., Jackson, G., and Radosz, M. (1989). SAFT: equation-of- state solution model for associating fluids. Fluid Phase Equilibria 52, 31–38.

Chapman, W. G., Gubbins, K. E., Jackson, G., and Radosz, M. (1990). New reference equation of state for associating liquids. Ind. Eng. Chem. Res. 29, 1709–1721.

Chatfield, C. (1984). The analysis of time series. An introduction. 3rd ed. Chapman and Hall.

Chayes, J. T. and Chayes, L. (1984). On the validity of the inverse conjecture in classical density functional theory. J. Stat. Phys. 36, 471–488.

(p.550) Chayes, J. T., Chayes, L., and Lieb, E. H. (1984). The inverse problem in classical statistical mechanics. Commun. Math. Phys. 93, 57–121.

Chen, B. and Siepmann, J. I. (2000). A novel Monte Carlo algorithm for simulating strongly associating fluids: applications to water, hydrogen fluoride, and acetic acid. J. Phys. Chem. B 104, 8725–8734.

Chen, L. J. (1995). Area dependence of the surface tension of a Lennard-Jones fluid from molecular dynamics simulations. J. Chem. Phys. 103, 10214–10216.

Chen, S. and Doolen, G. D. (1998). Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 30, 329–364.

Chen, S., Wang, H., Qian, T., and Sheng, P. (2015). Determining hydrodynamic boundary conditions from equilibrium fluctuations. Phys. Rev. E 92, 043007.

Chen, T., Smit, B., and Bell, A. T. (2009). Are pressure fluctuation-based equilibrium methods really worse than nonequilibrium methods for calculating viscosities? J. Chem. Phys. 131, 246101.

Cheng, H., Greengard, L., and Rokhlin, V. (1999). A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498.

Chesnut, D. A. (1963). Monte Carlo calculations for the two-dimensional triangular lattice gas: supercritical region. J. Chem. Phys. 39, 2081–2084.

Cheung, P. S. Y. (1976). On efficient evaluation of torques and forces for anisotropic potentials in computer simulation of liquids composed of linear molecules. Chem. Phys. Lett. 40, 19–22.

Cheung, P. S. Y. (1977). On the calculation of specific heats, thermal pressure coefficients, and compressibilities in molecular dynamics simulations. Molec. Phys. 33, 519–526.

Cheung, P. S. Y. and Powles, J. G. (1975). The properties of liquid nitrogen. IV. A computer simulation. Molec. Phys. 30, 921–949.

Cho, K., Joannopoulos, J. D., and Kleinman, L. (1993). Constant-temperature molecular dynamics with momentum conservation. Phys. Rev. E 47, 3145–3151.

Chodera, J. D., Swope, W. C., Pitera, J. W., Seok, C., and Dill, K. A. (2007). Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations. J. Chem. Theor. Comput. 3, 26–41.

Christiansen, D., Perram, J. W., and Petersen, H. G. (1993). On the fast multipole method for computing the energy of periodic assemblies of charged and dipolar particles. J. Comput. Phys. 107, 403–405.

Chu, J.-W., Izveko, S., and Voth, G. A. (2006). The multiscale challenge for biomolecular systems: coarse-grained modeling. Molec. Simul. 32, 211–218.

Chu, J.-W., Ayton, G. S., Izvekov, S., and Voth, G. A. (2007). Emerging methods for multiscale simulation of biomolecular systems. Molec. Phys. 105, 167–175.

Chung, K. L. (1960). Markov chains with stationary state probabilities, Vol. 1. Heidelberg: Springer.

Ciccotti, G. and Jacucci, G. (1975). Direct computation of dynamical response by molecular dynamics: mobility of a charged Lennard-Jones particle. Phys. Rev. Lett. 35, 789–792.

Ciccotti, G. and Ryckaert, J. P. (1980). Computer simulation of the generalized Brownian motion. 1. The scalar case. Molec. Phys. 40, 141–159.

(p.551) Ciccotti, G. and Ryckaert, J. P. (1986). Molecular dynamics simulation of rigid molecules. Comput. Phys. Rep. 4, 345–392.

Ciccotti, G., Orban, J., and Ryckaert, J. P. (1976a). Stochastic approach to the dynamics of large molecules in a solvent. Tech. rep. cecam. Rapport d’activite´ scientifique du cecam Models for Protein Dynamics.

Ciccotti, G., Jacucci, G., and McDonald, I. R. (1976b). Transport properties of molten alkali halides. Phys. Rev. A 13, 426–436.

Ciccotti, G., Jacucci, G., and McDonald, I. R. (1978). Thermal response to a weak external field. J. Phys. C 11, 509–513.

Ciccotti, G., Jacucci, G., and McDonald, I. R. (1979). ‘Thought experiments’ by molecular dynamics. J. Stat. Phys. 21, 1–22.

Ciccotti, G., Ferrario, M., and Ryckaert, J.-P. (1982). Molecular dynamics of rigid systems in Cartesian coordinates. A general formulation. Molec. Phys. 47, 1253–1264.

Ciccotti, G. and Ferrario, M. (2004). Blue moon approach to rare events. Molec. Simul. 30, 787–793.

Cicero, G., Grossman, J. C., Schwegler, E., Gygi, F., and Galli, G. (2008). Water confined in nanotubes and between graphene sheets: a first principle study. J. Am. Chem. Soc. 130, 1871–1878.

Cieplak, P., Caldwell, J., and Kollman, P. (2001). Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases. J. Comput. Chem. 22, 1048–1057.

Clausen, J. R., Reasor Jr., D. A., and Aidun, C. K. (2010). Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture. Comput. Phys. Commun. 181, 1013–1020.

Cleaver, D. J., Care, C. M., Allen, M. P., and Neal, M. P. (1996). Extension and generalization of the Gay–Berne potential. Phys. Rev. E 54, 559–567.

Coffey, W. T. and Kalmykov, Y. P. (2012). The Langevin equation. With applications to stochastic problems in physics, chemistry and electrical engineering. 3rd ed. World Scientific Series in Contemporary Chemical Physics. Vol. 27. Singapore: World Scientific.

Coker, D. F. and Bonella, S. (2006). Linearized path integral methods for quantum time correlation functions. Computer simulations in condensed matter systems: from materials to chemical biology, vol 1. Lect. Notes Phys. 703, 553–590. (Erice, Italy, 2005). Ed. by M. Ferrario, G. Ciccotti, and K. Binder. Heidelberg: Springer.

Cole, D. J., Tirado-Rives, J., and Jorgensen, W. L. (2015). Molecular dynamics and Monte Carlo simulations for protein-ligand binding and inhibitor design. Biochim. Biophys. Acta General Subjects 1850, 966–971.

Cole, D. R., Herwig, K. W., Mamontov, E., and Larese, J. Z. (2006). Neutron scattering and diffraction studies of fluids and fluid–solid interactions. Neutron scattering in earth sciences. Rev. Mineral. Geochem. 63, 313–362. Ed. by H. R. Wenk.

Collin, D., Ritort, F., Jarzynski, C., Smith, S. B., Tinoco, I., and Bustamante, C. (2005). Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234.

(p.552) Coluzza, I. and Frenkel, D. (2005). Virtual-move parallel tempering. ChemPhysChem 6, 1779–1783.

Cooke, B. and Schmidler, S. C. (2008). Preserving the Boltzmann ensemble in replica- exchange molecular dynamics. J. Chem. Phys. 129, 164112.

Cooley, J. N. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301.

Cormier, J., Rickman, J. M., and Delph, T. J. (2001). Stress calculation in atomistic simulations of perfect and imperfect solids. J. Appl. Phys. 89, 99–104. Erratum: ibid. 89, 4198 (2001).

Corner, J. (1948). The second virial coefficient of a gas of nonspherical molecules. Proc. Roy.Soc. Lond. A 192, 275–292.

Corni, S., Hnilova, M., Tamerler, C., and Sarikaya, M. (2013). Conformational behavior of genetically-engineered dodecapeptides as a determinant of binding affinity for gold. J. Phys. Chem. C 117, 16990–17003.

Corti, D. S. and Soto-Campos, G. (1998). Deriving the isothermal–isobaric ensemble: the requirement of a ‘shell’ molecule and applicability to small systems. J. Chem. Phys. 108, 7959–7966.

Costa, D., Sergi, A., and Ferrario, M. (2013). Transient behavior of a model fluid under applied shear. J. Chem. Phys. 138, 184501.

Cotter, C. J. and Reich, S. (2006). Time stepping algorithms for classical molecular dynamics. Handbook of theoretical and computational nanotechnology. Ed. by M. Rieth and W. Schommers. American Scientific Publishers.

Couturier, R. and Chipot, C. (2000). Parallel molecular dynamics using openMP on a shared memory machine. Comput. Phys. Commun. 124, 49–59.

Cracknell, R. F., Nicholson, D., and Qyirke, N. (1993). A grand canonical Monte Carlo study of Lennard-Jones mixtures in slit shaped pores. Molec. Phys. 80, 885–897.

Craig, C. F., Duncan, W. R., and Prezhdo, O. V. (2005). Trajectory surface hopping in the time-dependent Kohn–Sham approach for electron–nuclear dynamics. Phys. Rev. Lett. 95, 163001.

Craig, I. R. and Manolopoulos, D. E. (2004). Qyantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. J. Chem. Phys. 121, 3368–3373.

Craig, I. R. and Manolopoulos, D. E. (2005a). A refined ring polymer molecular dynamics theory of chemical reaction rates. J. Chem. Phys. 123, 034102.

Craig, I. R. and Manolopoulos, D. E. (2005b). Chemical reaction rates from ring polymer molecular dynamics. J. Chem. Phys. 122, 084106.

CRC (1984). CRC handbook of chemistry and physics. Florida: Chemical Rubber Company.

Creutz, M. (1983). Microcanonical Monte Carlo simulation. Phys. Rev. Lett. 50, 1411–1414.

Crooks, G. E. (1999). Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726.

Crowell, A. D. (1958). Potential energy functions for graphite. J. Chem. Phys. 29, 446–447.

Croxton, C. A. (1980). Statistical mechanics of the liquid surface. New York: Wiley.

Cunningham, G. W. and Meijer, P. H. E. (1976). A comparison of two Monte Carlo methods for computations in statistical mechanics. J. Comput. Phys. 20, 50–63.

(p.553) Curro, J. (1974). Computer simulation of multiple chain systems: the effect of density on the average chain dimensions. J. Chem. Phys. 61, 1203–1207.

Cygan, R. T., Liang, J. J., and Kalinichev, A. G. (2004). Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 108, 1255–1266.

Dahlquist, G. and Björk, A. (1974). Numerical methods. Englewood Cliffs, NJ: Prentice- Hall.

Daivis, P. J. (2014). Personal Communication.

Daivis, P. J. and Todd, B. D. (2006). A simple, direct derivation and proof of the validity of the sllod equations of motion for generalized homogeneous flows. J. Chem. Phys. 124, 194103.

Daivis, P. J., Dalton, B. A., and Morishita, T. (2012). Effect of kinetic and configurational thermostats on calculations of the first normal stress coefficient in nonequilibrium molecular dynamics simulations. Phys. Rev. E 86, 056707.

D’Alessandro, M., Tenenbaum, A., and Amadei, A. (2002). Dynamical and statistical mechanical characterization of temperature coupling algorithms. J. Phys. Chem. B 106, 5050–5057.

Damasceno, P. F., Engel, M., and Glotzer, S. C. (2012). Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457.

Darden, T., York, D., and Pedersen, L. (1993). Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092.

Davidchack, R. L. (2010). Hard spheres revisited: accurate calculation of the solid–liquid interfacial free energy. J. Chem. Phys. 133, 234701.

Davidchack, R. L. and Laird, B. B. (2000). Direct calculation of the hard-sphere crystal / melt interfacial free energy. Phys. Rev. Lett. 85, 4751–4754.

Davidchack, R. L., Morris, J. R., and Laird, B. B. (2006). The anisotropic hard-sphere crystal–melt interfacial free energy from fluctuations. J. Chem. Phys. 125, 094710.

de Gennes, P. G. (1971). Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579.

de Leeuw, S. W., Perram, J. W., and Smith, E. R. (1980). Simulation of electrostatic systems in periodic boundary conditions. 1. Lattice sums and dielectric constants. Proc. Roy. Soc. Lond. A 373, 27–56.

de Miguel, E., Martín del Río, E., Brown, J. T., and Allen, M. P. (1996). Effect of the attractive interactions on the phase behavior of the Gay–Berne liquid crystal model. J. Chem. Phys. 105, 4234–4249.

de Miguel, E. and Jackson, G. (2006). Detailed examination of the calculation of the pressure in simulations of systems with discontinuous interactions from the mechanical and thermodynamic perspectives. Molec. Phys. 104, 3717–3734.

de Pablo, J. J., Bonnin, M., and Prausnitz, J. M. (1992). Vapor–liquid equilibria for polyatomic fluids from site–site computer simulations: pure hydrocarbons and binary mixtures containing methane. Fluid Phase Equilibria 73, 187–210.

de Pablo, J. J., Laso, M., Siepmann, J. I., and Suter, U. W. (1993). Continuum- configurational-bias Monte Carlo simulations of long-chain alkanes. Molec. Phys. 80, 55–63.

(p.554) De Raedt, B., Sprik, M., and Klein, M. L. (1984). Computer simulation of muonium in water. J. Chem. Phys. 80, 5719–5724.

Debolt, S. E. and Kollman, P. A. (1993). AMBERCUBE MD, parallelization of Amber’s molec- ular dynamics module for distributed-memory hypercube computers. J. Comput. Chem. 14, 312–329.

Deem, M. W. and Bader, J. S. (1996). A configurational bias Monte Carlo method for linear and cyclic peptides. Molec. Phys.87, 1245–1260.

Del Popolo, M. G., Lynden-Bell, R. M., and Kohanoff, J. (2005). Ab initio molecular dynamics simulation of a room temperature ionic liquid. J. Phys. Chem. B 109, 5895– 5902.

Del Popolo, M. G., Kohanoff, J., Lynden-Bell, R. M., and Pinilla, C. (2007). Clusters, liquids, and crystals of dialkyimidazolium salts. A combined perspective from ab initio and classical computer simulations. Acc. Chem. Res. 40, 1156–1164.

Delhommelle, J. and Millié, P. (2001). Inadequacy of the Lorentz–Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Molec. Phys. 99, 619–625.

Dellago, C., Bolhuis, P. G., and Geissler, P. L. (2002). Transition path sampling. Adv. Chem. Phys. 123, 1–78.

Dellago, C. and Hummer, G. (2014). Computing equilibrium free energies using non- equilibrium molecular dynamics. Entropy 16, 41–61.

den Otter, W. K. and Briels, W. J. (2003). The bending rigidity of an amphiphilic bilayer from equilibrium and nonequilibrium molecular dynamics. J. Chem. Phys. 118, 4712– 4720.

den Otter, W. K. and Clarke, J. H. R. (2001). A new algorithm for dissipative particle dynamics. Europhys. Lett. 53, 426–431.

Deng, L.-Y., Guo, R., Lin, D. K. J., and Bai, F. (2008). Improving random number generators in the Monte Carlo simulations via twisting and combining. Comput. Phys. Commun. 178, 401–408.

Denniston, C., Orlandini, E., and Yeomans, J. M. (2000). Simulations of liquid crystal hydrodynamics in the isotropic and nematic phases. Europhys. Lett. 52, 481–487.

Denniston, C., Orlandini, E., and Yeomans, J. M. (2001). Lattice Boltzmann simulations of liquid crystal hydrodynamics. Phys. Rev. E 63, 056702.

Deserno, M. and Holm, C. (1998). How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109, 7678– 7693.

Dettmann, C. P. and Morriss, G. P. (1996). Hamiltonian formulation of the Gaussian isokinetic thermostat. Phys. Rev. E 54, 2495–2500.

D’Evelyn, M. P. and Rice, S. A. (1981). Comment on the configuration space diffusion criterion for optimization of the force bias Monte Carlo method. Chem. Phys. Lett. 77, 630–633.

d’Humiéres, D., Ginzburg, I., Krafczyk, M., Lallemand, P., and Luo, L. S. (2002). Multiple- relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. Roy. Soc. A 360, 437–451.

Di Felice, R. and Corni, S. (2011). Simulation of peptide–surface recognition. J. Phys. Chem. Lett. 2, 1510–1519.

(p.555) Dijkstra, M. (1997). Confined thin films of linear and branched alkanes. J. Chem. Phys.107, 3277–3288.

Ding, W., Palaiokostas, M., Wang, W., and Orsi, M. (2015). Effects of lipid composition on bilayer membranes quantified by all-atom molecular dynamics. J. Phys. Chem. B 119, 15263–15274.

Dinur, U. and Hagler, A. T. (1991). New approaches to empirical force fields. Rev. Comput. Chem. 9. Chap. 4, 99–164. Ed. by K. B. Lipkowitz and D. B. Boyd. vch Publishers.

Dixon, M. and Hutchinson, P. (1977). Method for extrapolation of pair distribution functions. Molec. Phys. 33, 1663–1670.

Dixon, M. and Sangster, M. J. L. (1976). The structure of molten NaCl from a simulation model which allows for polarization of both ions. J. Phys. C 9, 5–9.

Do, H., Wheatley, R. J., and Hirst, J. D. (2010). Gibbs ensemble Monte Carlo simulations of binary mixtures of methane, difluoromethane, and carbon dioxide. J. Phys. Chem. B 114, 3879–3886.

Do, H. and Wheatley, R. J. (2013). Density of states partitioning method for calculating the free energy of solids. J. Chem. Theor. Comput. 9, 165–171.

Do, H., Hirst, J. D., and Wheatley, R. J. (2011). Rapid calculation of partition functions and free energies of fluids. J. Chem. Phys. 135, 174105.

Dodd, L. R., Boone, T. D., and Theodorou, D. (1993). A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses. Molec. Phys. 78, 961– 996.

Doi, M. and Edwards, S. F. (1988). The theory of polymer dynamics. International Series of Monographs on Physics. Oxford University Press.

Doll, J. D. and Dion, D. R. (1976). Generalized Langevin equation approach for atom/solid–surface scattering: numerical techniques for Gaussian generalized Langevin dynamics. J. Chem. Phys. 65, 3762–3766.

Domański, J., Stansfeld, P. J., Sansom, M. S. P., and Beckstein, O. (2010). Lipidbook: a public repository for force-field parameters used in membrane simulations. J. Membr. Biol. 236, 255–258.

Donadio, D., Cicero, G., Schwegler, E., Sharma, M., and Galli, G. (2009). Electronic effects in the IR spectrum of water under confinement. J. Phys. Chem. B 113, 4170–4175.

Dong, R.-Y. and Cao, B.-Y. (2012). Application of the uniform source-and-sink scheme to molecular dynamics calculation of the self-diffusion coefficient of fluids. Int. J. Num. Meth. Eng. 92, 229–237.

Doran, M. B. and Zucker, I. J. (1971). Higher order multipole three-body van der Waals interactions and stability of rare gas solids. J. Phys. C 4, 307–312.

Du, W. and Bolhuis, P. G. (2014). Sampling the equilibrium kinetic network of Trp-cage in explicit solvent. J. Chem. Phys. 140, 195102.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid Monte Carlo. Phys. Lett. B 195, 216–222.

Dubbeldam, D., Ford, D. C., Ellis, D. E., and Snurr, R. Q. (2009). A new perspective on the order-n algorithm for computing correlation functions. Molec. Simul. 35, 1084–1097.

Dullweber, A., Leimkuhler, B., and McLachlan, R. (1997). Symplectic splitting methods for rigid body molecular dynamics. J. Chem. Phys. 107, 5840–5851.

(p.556) Dünweg, B. and Ladd, A. J. C. (2009). Lattice Boltzmann simulations of soft matter systems. Advanced computer simulation approaches for soft matter sciences III. Adv. Polym. Sci.221, 89–166. Ed. by C. Holm and K. Kremer. Berlin, Heidelberg: Springer.

Duong-Hong, D., Phan-Thien, N., and Fan, X. (2004). An implementation of no-slip boundary conditions in dpd. Comput. Mech. 35, 24–29.

Dykstra, C. E. (1988). Efficient calculation of electrically based intermolecular potentials of weakly bonded clusters. J. Comput. Chem. 9, 476–487.

Dymond, J. H. and Smith, E. B. (1980). The virial coefficients of pure gases and mixture. A critical compilation. Oxford Science Research Paper Series. Oxford: Oxford University Press.

Dysthe, D. K., Fuchs, A. H., and Rousseau, B. (2000). Fluid transport properties by equilibrium molecular dynamics. III. Evaluation of united atom interaction potential models for pure alkanes. J. Chem. Phys. 112, 7581–7590.

E, W. and Vanden-Eijnden, E. (2010). Transition-path theory and path-finding algorithms for the study of rare events. Ann. Rev. Phys. Chem. 61, 391–420.

Earl, D. J and Deem, M. W. (2005). Parallel tempering: theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7, 3910–3916.

Earl, D. J. and Deem, M. W. (2004). Optimal allocation of replicas to processors in parallel tempering simulations. J. Phys. Chem. B 108, 6844–6849.

Eastwood, J. W., Hockney, R. W., and Lawrence, D. N. (1980). p3m3dp: the three-dimensional periodic particle–particle/particle–mesh program. Comput. Phys. Commun. 19, 215–261.

Eastwood, M. P., Stafford, K. A., Lippert, R. A., Jensen, M. Ø., Maragakis, P., Predescu, C., Dror, R. O., and Shaw, D. E. (2010). Equipartition and the calculation of temperature in biomolecular simulations. J. Chem. Theor. Comput. 6, 2045–2058.

Ebert, F., Dillmann, P., Maret, G., and Keim, P. (2009). The experimental realization of a two-dimensional colloidal model system. Rev. Sci. Instr. 80, 083902.

Economou, I. G. (2002). Statistical Associating Fluid Theory: a successful model for the calculation of thermodynamic and phase equilibrium properties of complex fluid mixtures. Ind. Eng. Chem. Res. 41, 953–962.

Edvinsson, T., Rasmark, P. J., and Elvingson, C. (1999). Cluster identification and percolation analysis using a recursive algorithm. Molec. Simul. 23, 169–190.

Edwards, B. J., Baig, C., and Keffer, D. J. (2006). A validation of the p-sllod equations of motion for homogeneous steady-state flows. J. Chem. Phys. 124, 194104.

Edwards, S. F. (1990). The flow of powders and of liquids of high viscosity. J. Phys. Cond. Mat. 2, SA63–SA68.

Edwards, S. F. and Oakeshott, R. B. S. (1989). Theory of powders. Physica A 157, 1080– 1090.

Egelstaff, P. A. (1961 ). The theory of the thermal neutron scattering law. Inelastic scattering of neutrons in solids and liquids, 25–38. Vienna: iaea.

Egorov, S. A., Rabani, E., and Berne, B. J. (1999). On the adequacy of mixed quantum– classical dynamics in condensed phase systems. J. Phys. Chem. B 103, 10978–10991.

Eike, D. M., Brennecke, J. F., and Maginn, E. J. (2005). Toward a robust and general molecular simulation method for computing solid–liquid coexistence. J. Chem. Phys. 122, 014115.

(p.557) Ekdawi-Sever, N. C., Conrad, P. B., and de Pablo, J. J. (2001). Molecular simulation of sucrose solutions near the glass transition temperature. J. Phys. Chem. A 105, 734– 742.

Elliott, W. D and Board, J. A. (1996). Fast Fourier transform accelerated fast multipole algorithm. siam J. Sci. Comput. 17, 398–415.

Engel, M., Anderson, J. A., Glotzer, S. C., Isobe, M., Bernard, E. P., and Krauth, W. (2013). Hard-disk equation of state: first-order liquid–hexatic transition in two dimensions with three simulation methods. Phys. Rev. E 87, 042134.

Engle, R. D., Skeel, R. D., and Drees, M. (2005). Monitoring energy drift with shadow Hamiltonians. J. Comput. Phys. 206, 432–452.

English, C. A. and Venables, J. A. (1974). Structure of diatomic molecular solids. Proc. Roy. Soc. Lond. A 340, 57–80.

English, N. J. (2013). Massively-parallel molecular dynamics simulation of clathrate hydrates on Blue Gene platforms. Energies 6, 3072–3081.

English, N. J. (2014). Massively parallel molecular dynamics simulation of ice crystallisation and melting: the roles of system size, ensemble, and electrostatics. J. Chem. Phys. 141, 234501.

English, N. J. and Tse, J. S. (2015). Massively parallel molecular dynamics simulation of formation of ice-crystallite precursors in supercooled water: incipient-nucleation behavior and role of system size. Phys. Rev. E 92, 032132.

English, N. J., Johnson, J. K., and Taylor, C. E. (2005). Molecular dynamics simulations of methane hydrate dissociation. J. Chem. Phys. 123, 244503.

Eppenga, R. and Frenkel, D. (1984). Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Molec. Phys. 52, 1303–1334.

Ercolessi, F. and Adams, J. B. (1994). Interatomic potentials from first-principles calculations: the force-matching method. Europhys. Lett. 26, 583–588.

Ermak, D. L. (1975). A computer simulation of charged particles in solution. 1. Technique and equilibrium properties. J. Chem. Phys. 62, 4189–4196.

Ermak, D. L. and Buckholz, H. (1980). Numerical integration of the Langevin equation: Monte Carlo simulation. J. Comput. Phys. 35, 169–182.

Ermak, D. L. and McCammon, J. A. (1978). Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69, 1352–1360.

Ermak, D. L. and Yeh, Y. (1974). Equilibrium electrostatic effects on behavior of polyions in solution: polyion–mobile ion interaction. Chem. Phys. Lett. 24, 243–248.

Erpenbeck, J. J. and Wood, W. W. (1977). Molecular dynamics techniques for hard core systems. Statistical mechanics B. Modern Theoretical Chemistry. 6, 1–40. Ed. byB. J. Berne. New York: Plenum.

Errington, J. R. (2003). Evaluating surface tension using grand-canonical transition- matrix Monte Carlo simulation and finite-size scaling. Phys. Rev. E 67, 012102.

Errington, J. R. (2004). Solid–liquid phase coexistence of the Lennard-Jones system through phase-switch Monte Carlo simulation. J. Chem. Phys. 120, 3130–3141.

Errington, J. R. and Kofke, D. A. (2007). Calculation of surface tension via area sampling. J. Chem. Phys. 127, 174709.

Escobedo, F. A. (2005). A unified methodological framework for the simulation of nonisothermal ensembles. J. Chem. Phys. 123, 044110.

(p.558) Eslami, H. and Müller-Plathe, F. (2007). Molecular dynamics simulation in the grand canonical ensemble. J. Comput. Chem. 28, 1763–1773.

Españ ol, P. and Warren, P. (1995). Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191–196.

Espinosa, J. R., Vega, C., and Sanz, E. (2014). The mold integration method for the calculation of the crystal–fluid interfacial free energy from simulations. J. Chem. Phys. 141, 134709.

Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G. (1995). A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593.

Evans, D. J. (1977). On the representation of orientation space. Molec. Phys. 34, 317–325.

Evans, D. J. (1979a). Nonlinear viscous flow in the Lennard-Jones fluid. Phys. Lett. A 74,229–232.

Evans, D. J. (1979b). Nonsymmetric pressure tensor in polyatomic fluids. J. Stat. Phys. 20, 547–555.

Evans, D. J. (1979c). The frequency dependent shear viscosity of methane. Molec. Phys.37, 1745–1754.

Evans, D. J. (1981a). Equilibrium fluctuation expressions for the wave-vector- and frequency-dependent shear viscosity. Phys. Rev. A 23, 2622–2626.

Evans, D. J. (1981b). Nonequilibrium molecular dynamics study of the rheological properties of diatomic liquids. Molec. Phys. 42, 1355–1365.

Evans, D. J. (1982). Homogeneous nemd algorithm for thermal conductivity: application of non-canonical linear response theory. Phys. Lett. A 91, 457–460.

Evans, D. J. (1983). Computer ‘experiment’ for non-linear thermodynamics of Couette flow. J. Chem. Phys. 78, 3297–3302.

Evans, D. J. and Gaylor, K. (1983). NEMD algorithm for calculating the Raman spectra of dense fluids. Molec. Phys. 49, 963–972.

Evans, D. J. and Hanley, H. J. M. (1982). Fluctuation expressions for fast thermal transport processes: vortex viscosity. Phys. Rev. A 25, 1771–1774.

Evans, D. J. and Morriss, G. P. (1983a). Isothermal–isobaric molecular dynamics. Chem. Phys. 77, 63–66.

Evans, D. J. and Morriss, G. P. (1983b). The isothermal/isobaric molecular dynamics ensemble. Phys. Lett. A 98, 433–436.

Evans, D. J. and Morriss, G. P. (1984a). Non-Newtonian molecular dynamics. Comput. Phys. Rep. 1, 297–343.

Evans, D. J. and Morriss, G. P. (1984b). Nonlinear-response theory for steady planar Couette flow. Phys. Rev. A 30, 1528–1530.

Evans, D. J. and Morriss, G. P. (1986). Shear thickening and turbulence in simple fluids. Phys. Rev. Lett. 56, 2172–2175.

Evans, D. J. and Morriss, G. P. (2008). Statistical mechanics of nonequilibrium liquids.2nd ed. Cambridge: Cambridge University Press.

Evans, D. J. and Murad, S. (1977). Singularity-free algorithm for molecular dynamics simulation of rigid polyatomics. Molec. Phys. 34, 327–331.

Evans, D. J. and Searles, D. J. (1994). Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50, 1645–1648.

Evans, D. J. and Searles, D. J. (2002). The fluctuation theorem. Adv. Phys. 51, 1529–1585.

(p.559) Evans, D. J. and Streett, W. B. (1978). Transport properties of homonuclear diatomics. 2.Dense fluids. Molec. Phys. 36, 161–176.

Evans, D. J. and Watts, R. O. (1976). Structure of liquid benzene. Molec. Phys. 32, 93–100.

Evans, D. J., Hoover, W. G., Failor, B. H., Moran, B., and Ladd, A. J. C. (1983). Non- equilibrium molecular dynamics via Gauss’ principle of least constraint. Phys. Rev. A 28, 1016–1021.

Evans, H., Tildesley, D. J., and Sluckin, T. (1984). Boundary effects in the orientational ordering of adsorbed nitrogen. J. Phys. C 17, 4907–4926.

Evans, R., Stewart, M. C., and Wilding, N. B. (2016). Critical drying of liquids. Preprint, arXiv:1607.03772 [cond-mat.stat-mech].

Evans, R. and Wilding, N. B. (2015). Qyantifying density fluctuations in water at a hydrophobic surface: evidence for critical drying. Phys. Rev. Lett. 115, 016103.

Evans, W. A. B. and Ojeda, C. J. (1992). NEMD ‘q-kick response’ method for the evaluation of the dynamic liquid structure factor. J. Molec. Liquids 54, 297–309.

Evans, W. A. B. and Powles, J. G. (1982). The computer simulation of the dielectric properties of polar liquids. The dielectric constant and relaxation of liquid hydrogen chloride. Molec. Phys. 45, 695–707.

Everaers, R. and Ejtehadi, M. R. (2003). Interaction potentials for soft and hard ellipsoids. Phys. Rev. E 67, 041710.

Ewald, P. P. (1921). Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 369, 253–287.

Eyring, H. (1932). Steric hindrance and collision diameters. J. Am. Chem. Soc. 54, 3191– 3203.

Ezra, G. S. (2006). Reversible measure-preserving integrators for non-Hamiltonian systems. J. Chem. Phys. 125, 034104.

Fahrenberger, F. and Holm, C. (2014). Computing the Coulomb interaction in inhomogeneous dielectric media via a local electrostatics lattice algorithm. Phys. Rev. E 9, 063304.

Fahrenberger, F., Xu, Z., and Holm, C. (2014). Simulation of electric double layers around charged colloids in aqueous solution of variable permittivity. J. Chem. Phys. 141, 064902.

Falcioni, M. and Deem, M. W. (1999). A biased Monte Carlo scheme for zeolite structure solution. J. Chem. Phys. 110, 1754–1766.

Faradjian, A. K. and Elber, R. (2004). Computing time scales from reaction coordinates by milestoning. J. Chem. Phys. 120, 10880–10889.

Fassò, F. (2003). Comparison of splitting algorithms for the rigid body. J. Comput. Phys.189, 527–538.

Fedosov, D. A., Pan, W., Caswell, B., Gompper, G., and Karniadakis, G. E. (2011). Predicting human blood viscosity in silico. Proc. Nat. Acad. Sci. 108, 11772–11777.

Fedosov, D. A., Caswell, B., and Karniadakis, G. E. (2010). A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98, 2215–2225.

Fedosov, D. A., Noguchi, H., and Gompper, G. (2013). Multiscale modeling of blood flow: from single cells to blood rheology. Biomech. Model. Mechanobiology 13, 239–258.

(p.560) Feig, M., Onufriev, A., Lee, M. S., Im, W., Case, D. A., and Brooks, C. L. (2004). Performance comparison of generalized Born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J. Comput. Chem. 25, 265– 284.

Felderhof, B. U. (1977). Hydrodynamic interaction between two spheres. Physica A 89, 373–384.

Felderhof, B. U. (1980). Fluctuation theorems for dielectrics with periodic boundary conditions. Physica A 101, 275–282.

Feller, W. (1957). An introduction to probability theory and its applications. 2nd ed. Vol. 1.New York: Wiley.

Feng, J., Pandey, R. B., Berry, R. J., Farmer, B. L., Naik, R. R., and Heinz, H. (2011). Adsorption mechanism of single amino acid and surfactant molecules to Au {111} surfaces in aqueous solution: design rules for metal-binding molecules. Soft Matter 7,2113–2120.

Fennell, C. J. and Gezelter, J. D. (2006). Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 124, 234104.

Ferrenberg, A. M. and Swendsen, R. H. (1989). Optimized Monte Carlo data analysis. Phys. Rev. Lett. 63, 1195–1198.

Ferrenberg, A. M., Landau, D. P., and Wong, Y. J. (1992). Monte Carlo simulations: hidden errors from ‘good’ random number generators. Phys. Rev. Lett. 69, 3382–3384.

Feynman, R. P. and Hibbs, A. R. (1965). uantum mechanics and path integrals. New York: McGraw-Hill.

Field, M. J., Bash, P. A., and Karplus, M. (1990). A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem. 11, 700–733.

Filon, L. N. G. (1928). On a quadrature formula for trigonometric integrals. Proc. Roy. Soc Edinburgh A 49, 38–49.

Fincham, D. (1981). An algorithm for the rotational motion of rigid molecules. ccp5 Quarterly 2, 6–10.

Fincham, D. (1983). RDF ON THE DAP: easier than you think. ccp5 Quarterly 8, 45–46.

Fincham, D. (1992). Leapfrog rotational algorithms. Molec. Simul. 8, 165–178.

Fincham, D. and Heyes, D. M. (1982). Integration algorithms in molecular dynamics. ccp5 Quarterly 6, 4–10.

Fincham, D., Qyirke, N., and Tildesley, D. J. (1986). Computer simulation of molecular liquid mixtures. 1. A diatomic Lennard-Jones model mixture for CO2/C2H6. J. Chem. Phys. 84, 4535–4546.

Finn, J. E. and Monson, P. A. (1989). Prewetting at a fluid–solid interface via Monte Carlo simulation. Phys. Rev. A 39, 6402–6408.

Fisher, M. E. (1964). The free energy of a macroscopic system. Arch. Rational Mech. Anal.17, 377–410.

Fixman, M. (1974). Classical statistical mechanics of constraints: a theorem and application to polymers. Proc. Nat. Acad. Sci. 71, 3050–3053.

Fixman, M. (1978a). Simulation of polymer dynamics. I. General theory. J. Chem. Phys.69, 1527–1537.

Fixman, M. (1978b). Simulation of polymer dynamics. II. Relaxation rates and dynamic viscosity. J. Chem. Phys. 69, 1538–1545.

(p.561) Fixman, M. (1986). Construction of Langevin forces in the simulation of hydrodynamic interaction. Macromolecules 19, 1204–1207.

Flinn, P. A. and McManus, G. M. (1961). Monte Carlo calculation of the order disorder transformation in the body-centred cubic lattices. Phys. Rev. 124, 54–59.

Flyvbjerg, H. and Petersen, H. G. (1989). Error estimates on averages of correlated data. J. Chem. Phys. 91, 461–466.

Focher, P., Chiarotti, G. L., Bernasconi, M., Tosatti, E., and Parrinello, M. (1994). Structural phase transformations via first-principles simulation. Europhys. Lett. 26, 345–351.

Fosdick, L. D. and Jordan, H. F. (1966). Path-integral calculation of the two-particle Slater sum for He4. Phys. Rev. 143, 58–66.

Foulkes, W. M. C., Mitas, L., Needs, R. J., and Rajagopal, G. (2001). Qyantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33–83.

Fowler, R. F. (1984). The identification of a droplet in equilibrium with its vapour. ccp5 Quarterly 13, 58–62.

Frank, F. C. (1958). On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28.

Freasier, B. C. (1980). Equation of state of fused hard spheres revisited. Molec. Phys. 39, 1273–1280.

Freasier, B. C., Jolly, D. L., Hamer, N. D., and Nordholm, S. (1979). Effective vibrational potentials of bromine in argon. Monte Carlo simulation in a mixed ensemble. Chem. Phys. 38, 293–300.

Frenkel, D. (1980). Intermolecular spectroscopy and computer simulations. Intermolecular spectroscopy and dynamical properties of dense systems. Proc. Int. School Phys. Enrico Fermi. 75, 156–201. (Varenna, Italy, 1978). Ed. by J. van Kranendonk. Bologna: Soc. Italiana di Fisica.

Frenkel, D. (1986). Free-energy computation and first-order phase transitions. Molecular dynamics simulation of statistical mechanical systems. Proc. Int. School Phys. Enrico Fermi. 97, 151–188. (Varenna, Italy, 1985). Ed. by G. Ciccotti and W. G. Hoover. Bologna: Soc. Italiana di Fisica.

Frenkel, D. and Ladd, A. J. C. (1984). New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres. J. Chem. Phys. 81, 3188–3193.

Frenkel, D. and Maguire, J. F. (1983). Molecular dynamics study of the dynamical properties of an assembly of infinitely thin hard rods. Molec. Phys. 49, 503–541.

Frenkel, D. and McTague, J. P. (1979). Evidence for an orientationally ordered two-dimensional fluid phase from molecular-dynamics calculations. Phys. Rev. Lett. 42, 1632–1635.

Frenkel, D. and Mulder, B. M. (1985). The hard ellipsoid-of-revolution fluid. 1. Monte Carlo simulations. Molec. Phys. 55, 1171–1192.

Frenkel, D. and Smit, B. (2002). Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego: Academic Press.

Frenkel, D. (2014). Why colloidal systems can be described by statistical mechanics: some not very original comments on the Gibbs paradox. Molec. Phys. 112, 2325–2329.

Friedberg, R. and Cameron, J. E. (1970). Test of the Monte Carlo method: fast simulation of a small Ising lattice. J. Chem. Phys. 52, 6049–6058.

Friedman, H. L. (1975). Image approximation to reaction field. Molec. Phys. 29, 1533–1543.

(p.562) Friedman, H. L. (1985). A course in statistical mechanics. Englewood Cliffs, NJ.: Prentice- Hall.

Frigo, M. and Johnson, S. G. (2005). The design and implementation of FFTW3. Proc. ieee93, 216–231. available from http://www.fftw.org.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O¨., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J. (2009). Gaussian 09 Revision D.01. Gaussian Inc. Wallingford CT 2009.

Fritsch, S., Poblete, S., Junghans, C., Ciccotti, G., Delle Site, L., and Kremer, K. (2012). Adaptive resolution molecular dynamics simulation through coupling to an internal particle reservoir. Phys. Rev. Lett. 108, 170602.

Fröhlich, H. (1949). Theory of dielectrics; dielectric constant and dielectric loss. Oxford: Oxford University Press.

Fukuda, I. (2013). Zero-multipole summation method for efficiently estimating electro- static interactions in molecular system. J. Chem. Phys. 139, 174107.

Fukuda, I. and Nakamura, H. (2012). Non-Ewald methods: theory and application in molecular systems. Biophys. Rev. 4, 161–170.

Fukuda, I., Yonezawa, Y., and Nakamura, H. (2011). Molecular dynamics scheme for precise estimation of electrostatic interaction via zero-dipole summation principle. J. Chem. Phys. 134, 164107.

Fukunishi, H., Watanabe, O., and Takada, S. (2002). On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J. Chem. Phys. 116, 9058–9067.

Futrelle, R. P. and McGinty, D. J. (1971). Calculation of spectra and correlation functions from molecular dynamics data using fast Fourier transform. Chem. Phys. Lett. 12, 285– 287.

Gaiduk, A. P., Zhang, C., Gygi, F., and Galli, G. (2014). Structural and electronic properties of aqueous NaCl solutions from ab initio molecular dynamics simulations with hybrid density functionals. Chem. Phys. Lett. 604, 89–96.

Galbraith, A. L. and Hall, C. K. (2007). Solid–liquid phase equilibria for mixtures containing diatomic Lennard-Jones molecules. Fluid Phase Equilibria 262, 1–13.

Galli, G. and Parrinello, M. (1991). Ab-initio molecular dynamics: principles and practical implementations. Computer simulation in materials science. NATO ASI Series E. 205, 283–304. (Aussois, France, 1991). Ed. by M. Meyer and V. Pontikis. Dordrecht: Kluwer.

(p.563) Galli, G. and Pasquarello, A. (1993). First-principles molecular dynamics. Computer simulation in chemical physics. NATO ASI Series C. 397, 261–313. (Alghero, Italy, 1992). Ed. by M. P. Allen and D. J. Tildesley. Dordrecht: Kluwer.

Gao, J., Luedtke, W. D., and Landman, U. (1997a). Layering transitions and dynamics of confined liquid films. Phys. Rev. Lett. 79, 705–708.

Gao, J., Luedtke, W. D., and Landman, U. (1997b). Structure and solvation forces in confined films: linear and branched alkanes. J. Chem. Phys. 106, 4309–4318.

Gay, J. G. and Berne, B. J. (1981). Modification of the overlap potential to mimic a linear site–site potential. J. Chem. Phys. 74, 3316–3319.

Gear, C. W. (1966). The numerical integration of ordinary differential equations of various orders. Tech. rep. 7126. Argonne National Laboratory.

Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations. Englewood Cliffs, NJ: Prentice-Hall.

Gentle, J. E. (2003). Random number generation and Monte Carlo methods. 2nd ed. New York: Springer.

Georgescu, I., Brown, S. E., and Mandelshtam, V. A. (2013). Mapping the phase diagram for neon to a quantum Lennard-Jones fluid using Gibbs ensemble simulations. J. Chem. Phys. 138, 134502.

Germano, G., Allen, M. P., and Masters, A. J. (2002). Simultaneous calculation of the helical pitch and the twist elastic constant in chiral liquid crystals from intermolecular torques. J. Chem. Phys. 116, 9422–9430.

Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. 23rd symposium on the interface between computing science and statistics, 156–163. (Seattle, USA, 1991). Ed. by E. M. Keramidas. New York: American Statistical Association.

Geyer, T. and Winter, U. (2009). An O (N 2) approximation for hydrodynamic interactions in Brownian dynamics simulations. J. Chem. Phys. 130, 114905.

Ghiringhelli, L. M. and Meijer, E. J. (2005). Phosphorus: first principle simulation of a liquid–liquid phase transition. J. Chem. Phys. 122, 184510.

Ghoufi, A. and Malfreyt, P. (2011). Mesoscale modeling of the water liquid–vapor interface: a surface tension calculation. Phys. Rev. E 83, 051601.

Ghoufi, A., Goujon, F., Lachet, V., and Malfreyt, P. (2008). Surface tension of water and acid gases from Monte Carlo simulations. J. Chem. Phys. 128, 154716.

Gibson, W. G. (1974). Qyantum corrections to the radial distribution function of a fluid. Molec. Phys. 28, 793–800.

Gibson, W. G. (1975a). Qyantum corrections to the properties of a dense fluid with nonanalytic intermolecular potential function. I. The general case. Molec. Phys. 30, 1–11.

Gibson, W. G. (1975b). Qyantum corrections to the properties of a dense fluid with nonanalytic intermolecular potential function. II. Hard spheres. Molec. Phys. 30, 13– 30.

Gilge, M. (2012). IBM system blue gene solution: Blue Gene/Q applications development. IBM Redbooks. Rochester, New York: IBM international technical support organisation.

Gillan, M. J. and Dixon, M. (1983). The calculation of thermal conductivities by perturbed molecular dynamics simulation. J. Phys. C 16, 869–878.

(p.564) Gillan, M. J. and Towler M.D. and Alfè, D. (2011). Petascale computing opens new vistas for quantum Monte Carlo. Psi-k Newsletter 103, 1–43. www.psi–k.org/newsletters.shtml.

Gingold, R. A. and Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. Roy. Astr. Soc. 181, 375–389.

Giovambattista, N., Almeida, A. B., Alencar, A. M., and Buldyrev, S. V. (2016). Validation of capillarity theory at the nanometer scale by atomistic computer simulations of water droplets and bridges in contact with hydrophobic and hydrophilic surfaces. J. Phys. Chem. C 120, 1597–1608.

Glaser, J., Nguyen, T. D., Anderson, J. A., Lui, P., Spiga, F., Millan, J. A., Morse, D. C., and Glotzer, S. C. (2015). Strong scaling of general-purpose molecular dynamics simulations on gpus. Comput. Phys. Commun. 192, 97–107.

Gloor, G. J., Jackson, G., Blas, F. J., and de Miguel, E. (2005). Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. J. Chem. Phys. 123, 134703.

Gō, N. and Scheraga, H. A. (1976). On the use of classical statistical mechanics in the treatment of polymer chain conformation. Macromolecules 9, 535–542.

Goedecker, S., Teter, M., and Hutter, J. (1996). Separable dual-space Gaussian pseudopo- tentials. Phys. Rev. B 54, 1703–1710.

Goetz, R. and Lipowsky, R. (1998). Computer simulations of bilayer membranes: self- assembly and interfacial tension. J. Chem. Phys. 108, 7397–7409.

Goetz, R., Gompper, G., and Lipowsky, R. (1999). Mobility and elasticity of self-assembled membranes. Phys. Rev. Lett. 82, 221–224.

Goldstein, H. (1980). Classical mechanics. 2nd ed. Reading, Massachusetts: Addison Wesley.

Golio, M. (2015). Fifty years of Moore’s Law. Proc. IEEE 103, 1932–1937.

Gompper, G., Ihle, T., Kroll, D. M., and Winkler, R. G. (2009). Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Advanced computer simulation approaches for soft matter sciences III. Adv. Polym. Sci. 221, 1–87. Ed. by C Holm and K Kremer. Springer.

Gonnet, P. (2007). A simple algorithm to accelerate the computation of non-bonded interactions in cell-based molecular dynamics simulations. J. Comput. Chem. 28, 570– 573.

Gonze, X., Stumpf, R., and Scheffler, M. (1991). Analysis of separable potentials. Phys. Rev. B 44, 8503–8513.

Gordon, R. (1968). Correlation functions for molecular motion. Adv. Magn. Reson. 3, 1–42.

Gosling, E. M., McDonald, I. R., and Singer, K. (1973). Calculation by molecular dynamics of shear viscosity of a simple fluid. Molec. Phys. 26, 1475–1484.

Goujon, F., Malfreyt, P., and Tildesley, D. J (2004). Dissipative particle dynamics simulations in the grand canonical ensemble: applications to polymer brushes. ChemPhysChem 5, 457–464.

Goujon, F., Malfreyt, P., and Tildesley, D. J. (2005). The compression of polymer brushes under shear: the friction coefficient as a function of compression, shear rate and the properties of the solvent. Molec. Phys. 103, 2675–2685.

(p.565) Goujon, F., Malfreyt, P., and Tildesley, D. J. (2014). The gas–liquid surface tension of argon: a reconciliation between experiment and simulation. J. Chem. Phys. 140, 244710.

Goujon, F., Ghoufi, A., Malfreyt, P., and Tildesley, D. J. (2015). Controlling the long-range corrections in atomistic Monte Carlo simulations of two-phase systems. J. Chem. Theor. Comput. 11, 4573–4585.

Graben, H. W. and Fowler, R. (1969). Triple-dipole potentials in classical nonpolar fluids. Phys. Rev. 177, 288–292.

Graben, H. W. and Ray, J. R. (1993). Eight physical systems of thermodynamics, statistical mechanics, and computer simulations. Molec. Phys. 80, 1183–1193.

Grafmüller, A., Shillcock, J., and Lipowsky, R. (2007). Pathway of membrane fusion with two tension-dependent energy barriers. Phys. Rev. Lett. 98, 218101.

Gray, C. G. and Gubbins, K. E. (1984). Theory of molecular fluids. 1. Fundamentals. Oxford: Clarendon Press.

Gray, S. K., Noid, D. W., and Sumpter, B. G. (1994). Symplectic integrators for large scale molecular dynamics simulations: a comparison of several explicit methods. J. Chem. Phys. 101, 4062–4072.

Green, H. S. (1951). The quantum mechanics of assemblies of interacting particles. J. Chem. Phys. 19, 955–962.

Greengard, L. and Gropp, W. D. (1990). A parallel version of the fast multipole method. Comput. Math. Appl. 20, 63–71.

Greengard, L. and Rokhlin, V. (1988). The rapid evaluation of potential fields in 3 dimensions. Lect. Notes Math. 1360, 121–141.

Griebel, M., Knapek, S., and Zumbusch, G. (2007). Numerical simulation in molecular dynamics: numerics, algorithms, parallelization, applications. Texts in computational science and engineering. Vol. 5. Berlin: Springer.

Grochola, G. (2004). Constrained fluid λ‎-integration: constructing a reversible thermody- namic path between the solid and liquid state. J. Chem. Phys. 120, 2122–2126.

Grochola, G. (2005). Further application of the constrained fluid λ‎-integration method. J. Chem. Phys. 122, 046101.

Groenhof, G. (2013). Introduction to qm/mm simulations. Biomolecular simulations, methods and protocols. Methods Molec. Biol. 924. Chap. 3, 43–66. Ed. by L. Monticelli and E. Salonen. New York: Humana Press.

Groot, R. D. and Rabone, K. L. (2001). Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys. J. 81, 725–736.

Groot, R. D. and Warren, P. B. (1997). Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 0, 4423–4435.

Groot, R. D., Madden, T. J., and Tildesley, D. J. (1999). On the role of hydrodynamic interactions in block copolymer microphase separation. J. Chem. Phys. 110, 9739– 9749.

Grubmüller, H., Heller, H., Windemuth, A., and Schulten, K. (1991). Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molec. Simul. 6, 121–142.

Grubmüller, H. (1995). Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys. Rev. E 52, 2893–2906.

(p.566) Grzelak, E. M. and Errington, J. R. (2010). Nanoscale limit to the applicability of Wenzel’s equation. Langmuir 26, 13297–13304.

Grzybowski, A., Gwóźdź, E., and Bródka, A. (2000). Ewald summation of electrostatic interactions in molecular dynamics of a three-dimensional system with periodicity in two directions. Phys. Rev. B 61, 6706–6712.

Guldbrand, L., Jönsson, B., Wennerström, H., and Linse, P. (1984). Electrical double layer forces. A Monte Carlo study. J. Chem. Phys. 80, 2221–2228.

Guo, M. and Lu, B. C. Y. (1997). Long range corrections to thermodynamic properties of inhomogeneous systems with planar interfaces. J. Chem. Phys. 106, 3688–3695.

Habershon, S., Fanourgakis, G. S., and Manolopoulos, D. E. (2008). Comparison of path integral molecular dynamics methods for the infrared absorption spectrum of liquid water. J. Chem. Phys. 129, 074501.

Habershon, S., Manolopoulos, D. E., Markland, T. E., and Miller, T. F. (2013). Ring- Polymer Molecular Dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. Ann. Rev. Phys. Chem. 64, 387–413.

Hadley, K. R. and McCabe, C. (2012). Coarse-grained molecular models of water: a review. Molec. Simul. 38, 671–681.

Hafskjold, B., Liew, C. C., and Shinoda, W. (2004). Can such long time steps really be used in dissipative particle dynamics simulations? Molec. Simul. 30, 879–885.

Hagler, A. T., Lifson, S., and Dauber, P. (1979). Consistent force field studies of inter- molecular forces in hydrogen-bonded crystals. 2. Benchmark for the objective comparison of alternative force fields. J. Am. Chem. Soc. 101, 5122–5130.

Haile, J. M. and Gray, C. G. (1980). Spherical harmonic expansions of the angular pair correlation function in molecular fluids. Chem. Phys. Lett. 76, 583–588.

Haile, J. M. and Gupta, S. (1983). Extensions of the molecular dynamics simulation method. 2. Isothermal systems. J. Chem. Phys. 79, 3067–3076.

Halgren, T. A. (1992). Representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J. Am. Chem. Soc. 114, 7827–7843.

Halgren, T. A. and Damm, W. (2001). Polarizable force fields. Curr. Opin. Struct. Biol. 11, 236–242.

Halperin, B. I. and Nelson, D. R. (1978). Theory of two-dimensional melting. Phys. Rev. Lett. 41, 121–124.

Halverson, J. D., Brandes, T., Lenz, O., Arnold, A., Bevc, S., Starchenko, V., Kremer, K., Stuehn, T., and Reith, D. (2013). ESPResSo++: a modern multiscale simulation package for soft matter systems. Comput. Phys. Commun. 184, 1129–1149.

Hammersley, J. M. and Handscomb, D. C. (1964). Monte Carlo methods. New York: Wiley.

Han, K.-K. and Son, H. S. (2001). On the isothermal–isobaric ensemble partition function. J. Chem. Phys. 115, 7793–7794.

Hansen, D. P. and Evans, D. J. (1994). A parallel algorithm for nonequilibrium molecular dynamics simulation of shear flow on distributed memory machines. Molec. Simul. 13, 375–393.

Hansen, J.-P. and McDonald, I. R. (2013). Theory of simple liquids with applications to soft matter. 4th ed. Amsterdam: Academic Press.

(p.567) Hansen, J.-P. and Weis, J. J. (1969). Qyantum corrections to the coexistence curve of neon near the triple point. Phys. Rev. 188, 314–318.

Hansen, J.-P., Levesque, D., and Weis, J. J. (1979). Self-diffusion in the two-dimensional, classical electron gas. Phys. Rev. Lett. 43, 979–982.

Hansen, J. S., Daivis, P. J., and Todd, B. D. (2009). Viscous properties of isotropic fluids composed of linear molecules: departure from the classical Navier–Stokes theory in nano-confined geometries. Phys. Rev. E 80, 046322.

Hansen, J. S., Bruus, H., Todd, B. D., and Daivis, P. J. (2010). Rotational and spin viscosities of water: application to nanofluidics. J. Chem. Phys. 133, 144906.

Hansen, J. S., Todd, B. D., and Daivis, P. J. (2011). Prediction of fluid velocity slip at solid surfaces. Phys. Rev. E 84, 016313.

Hansmann, U. H. E. (1997). Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett. 281, 140–150.

Harasima, A. (1958). Molecular theory of surface tension. Adv. Chem. Phys. 1, 203–237.

Hardacre, C., Holbrey, J. D., McMath, S. E. J., Bowron, D. T., and Soper, A. K. (2003). Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction. J. Chem. Phys. 118, 273–278.

Hardy, D. J., Wu, Z., Phillips, J. C., Stone, J. E., Skeel, R. D., and Schulten, K. (2015). Multilevel summation method for electrostatic force evaluation. J. Chem. Theor. Comput. 11, 766–779.

Hardy, D. J., Stone, J. E., and Schulten, K. (2009). Multilevel summation of electrostatic potentials using graphics processing units. Parallel Comput. 35, 164–177.

Harmandaris, V. A. and Deserno, M. (2006). A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers. J. Chem. Phys. 125, 204905.

Harp, G. D. and Berne, B. J. (1968). Linear and angular momentum autocorrelation functions in diatomic liquids. J. Chem. Phys. 49, 1249–1254.

Harp, G. D. and Berne, B. J. (1970). Time correlation functions, memory functions, and molecular dynamics. Phys. Rev. A 2, 975–996.

Harrison, N. M. (2003). An introduction to density functional theory. Computational materials science. NATO Science Series III. 187, 45–70. (Il Ciocco, Italy, 2001). Ed. byR. Catlow and E. Kotomin. Amsterdam: IOS Press.

Härtel, A., Oettel, M., Rozas, R. E., Egelhaaf, S. U., Horbach, J., and Löwen, H. (2012). Tension and stiffness of the hard sphere crystal–fluid interface. Phys. Rev. Lett. 108, 226101.

Hartwigsen, C., Goedecker, S., and Hutter, J. (1998). Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662.

Harvey, S. C., Tan, R. K.-Z., and Cheatham, T. E. (1998). The flying ice cube: velocity rescaling in molecular dynamics leads to violation of energy equipartition. J. Comput. Chem. 19, 726–740.

Haslam, A. J., Galindo, A., and Jackson, G. (2008). Prediction of binary intermolecular potential parameters for use in modelling fluid mixtures. Fluid Phase Equilibria 266, 105–128.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains, and their applications. Biometrika 57, 97–109.

(p.568) Hautman, J. and Klein, M. (1992). An Ewald summation method for planar surfaces and interfaces. Molec. Phys. 75, 379–395.

Hawlicka, E., Pálinkás, G., and Heinzinger, K. (1989). A molecular dynamics study of liquid methanol with a flexible six-site model. Chem. Phys. Lett. 154, 255–259.

Haye, M. J. and Bruin, C. (1994). Molecular dynamics study of the curvature correction to the surface tension. J. Chem. Phys. 100, 556–559.

Hecht, M., Harting, J., Ihle, T., and Herrmann, H. J. (2005). Simulation of claylike colloids. Phys. Rev. E 72, 011408.

Heffelfinger, G. S. and van Swol, F. (1994). Diffusion in Lennard-Jones fluids using dual control volume grand canonical molecular dynamics simulation (dcv-gcmd). J. Chem. Phys. 100, 7548–7552.

Heinz, H. and Ramezani-Dakhel, H. (2016). Simulations of inorganic–bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chem. Soc. Rev. 45, 412–448.

Heinz, H., Vaia, R. A., Farmer, B. L., and Naik, R. R. (2008). Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard- Jones potentials. J. Phys. Chem. C 112, 17281–17290.

Heinz, H., Lin, T.-J., Mishra, R. K., and Emami, F. S. (2013). Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29, 1754–1765.

Heinz, T. N. and Hünenberger, P. H. (2004). A fast pairlist-construction algorithm for molecular simulations under periodic boundary conditions. J. Comput. Chem. 25, 1474–1486.

Helfand, E. (1979). Flexible vs rigid constraints in statistical mechanics . J. Chem. Phys. 71, 5000–5007.

Helfand, E. and Rice, S. A. (1960). Principle of corresponding states for transport properties . J. Chem. Phys. 32, 1642–1644.

Helfrich, W. (1973). Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturf. C. Biosciences 28, 693–703.

Hemmer, P. C. (1968). The hard core quantum gas at high temperatures. Phys. Lett. A 27, 377–378.

Henderson, J. R. (1983). Statistical mechanics of fluids at spherical structureless walls. Molec. Phys. 50, 741–761.

Henderson, R. L. (1974). A uniqueness theorem for fluid pair correlation functions. Phys Lett. A.49, 197–198.

Henrich, O., Marenduzzo, D., Stratford, K., and Cates, M. E. (2010). Domain growth in cholesteric blue phases: hybrid lattice Boltzmann simulations. Comput. Math. Appl. 59, 2360–2369.

Herman, M. F., Bruskin, E. J., and Berne, B. J. (1982). On path integral Monte Carlo simulations. J. Chem. Phys. 76, 5150–5155.

Hernandez, R., Cao, J. S., and Voth, G. A. (1995). On the Feynman path centroid density as a phase space distribution in quantum statistical mechanics . J. Chem. Phys. 103, 5018–5026.

Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M. (1997). LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472.

(p.569) Hess, B. (2008). p-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theor. Comput. 4, 116–122.

Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008). GROMACS4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor. Comput. 4, 435–447.

Heyes, D. M. (1981). Electrostatic potentials and fields in infinite point charge lattices. J. Chem. Phys. 74, 1924–1929.

Heyes, D. M. (1983a). md incorporating Ewald summations on partial charge polyatomic systems. ccp5 Quarterly 8, 29–36.

Heyes, D. M. (1983b). Molecular dynamics at constant pressure and temperature. Chem. Phys. 82, 285–301.

Heyes, D. M. and Clarke, J. H. R. (1981). Computer simulation of molten-salt interphases.Effect of a rigid boundary and an applied electric field. J. Chem. Soc. Faraday Trans. II77, 1089–1100.

Heyes, D. M. and Singer, K. (1982). A very accurate molecular dynamics algorithm. ccp5 Quarterly 6, 11–23.

Heyes, D. M., Smith, E. R., Dini, D., and Zaki, T. A. (2011). The equivalence between volume averaging and method of planes definitions of the pressure tensor at a plane . J. Chem. Phys. 135, 024512.

Hill, T. L. (1956). Statistical mechanics. New York: McGraw-Hill.

Hinsen, K. (2000). The molecular modeling toolkit: a new approach to molecular simulations. J. Comput. Chem. 21, 79–85.

Hinsen, K. (2014). MOSAIC: a data model and file formats for molecular simulations. J. Chem. Inf. Model. 54, 131–137.

Hirschfelder, J. O. (1960). Classical and quantum mechanical hypervirial theorems. J. Chem. Phys. 33, 1462–1466.

Hirshfeld, F. L. (1977). Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 44, 129–138.

Hiyama, M., Kinjo, T., and Hyodo, S. (2008). Angular momentum form of Verlet algorithm for rigid molecules. J. Phys. Soc. Japan 77, 064001.

Hockney, R. W. (1970). The potential calculation and some applications. Methods Comput.Phys. 9, 136–211.

Hockney, R. W. and Eastwood, J. W. (1988). Computer simulation using particles. Bristol: Adam Hilger.

Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev. B 136, 864– 871.

Homman, A.-A., Bourasseau, E., Stoltz, G., Malfreyt, P., Strafella, L., and Ghoufi, A. (2014). Surface tension of spherical drops from surface of tension. J. Chem. Phys. 140, 034110.

Honeycutt, J. D. and Andersen, H. C. (1984). The effect of periodic boundary conditions on homogeneous nucleation observed in computer simulations. Chem. Phys. Lett. 108,535–538.

Hoogerbrugge, P. J. and Koelman, J. M. V. A. (1992). Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160.

(p.570) Hoover, W. G. (1983a). Atomistic nonequilibrium computer simulations. Physica A 118, 111–122.

Hoover, W. G. (1983b). Nonequilibrium molecular dynamics. Ann. Rev. Phys. Chem. 34, 103–127.

Hoover, W. G. and Ashurst, W. T. (1975). Nonequilibrium molecular dynamics. Theoretical chemistry: advances and perspectives. 1, 1–51. Ed. by H. Eyring and D. Henderson. New York: Academic Press.

Hoover, W. G. and Hoover, C. G. (2001). SPAM-based recipes for continuum simulations. Comput. Sci. Eng. 3, 78–85.

Hoover, W. G. (1985). Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A31 1695–1697.

Hoover, W. G. (1986). Constant-pressure equations of motion. Phys. Rev. A 34, 2499–2500.

Hoover, W. G. and Alder, B. J. (1967). Studies in molecular dynamics. IV. The pressure, collision rate, and their number dependence for hard disks. J. Chem. Phys. 46, 686– 691

Hoover, W. G. and Ree, F. H. (1968). Melting transition and communal entropy for hard spheres. J. Chem. Phys. 49, 3609–3617.

Hoover, W. G., Ross, M., Johnson, K. W., Henderson, D., Barker, J. A., and Brown, B. C. (1970). Soft-sphere equation of state. J. Chem. Phys. 52, 4931–4941.

Hoover, W. G., Gray, S. G., and Johnson, K. W. (1971). Thermodynamic properties of the fluid and solid phases for inverse power potentials. J. Chem. Phys. 55, 1128–1136.

Hoover, W. G., Ladd, A. J. C., Hickman, R. B., and Holian, B. L. (1980a). Bulk viscosity via nonequilibrium and equilibrium molecular dynamics. Phys. Rev. A 21, 1756–1760.

Hoover, W. G., Evans, D. J., Hickman, R. B., Ladd, A. J. C., Ashurst, W. T., and Moran,B.(1980b). Lennard-Jones triple-point bulk and shear viscosities. Green–Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics. Phys. Rev. A 22, 1690–1697.

Hoover, W. G., Ladd, A. J. C., and Moran, B. (1982). High-strain-rate plastic flow studied via nonequilibrium molecular dynamics. Phys. Rev. Lett. 48, 1818–1820.

Horowitz, A. M. (1991). A generalized guided Monte Carlo algorithm. Phys. Lett. B 268, 247–252.

Hoyt, J. J., Asta, M., and Karma, A. (2001). Method for computing the anisotropy of the solid–liquid interfacial free energy. Phys. Rev. Lett. 86, 5530–5533.

Hu, J., Ma, A., and Dinner, A. R. (2006). Monte Carlo simulations of biomolecules: the MC module in CHARMM. J. Comput. Chem. 27, 203–216.

Hu, M., Briguglio, J. J., and Deserno, M. (2012). Determining the Gaussian curvature modulus of lipid membranes in simulations. Biophys. J. 102, 1403–1410.

Hub, J. S., de Groot, B. L., Grubmüller, H., and Groenhof, G. (2014). Qyantifying artifacts in Ewald simulations of inhomogeneous systems with a net charge. J. Chem. Theor. Comput. 10, 381–390.

Huitema, H. E. A., van Hengstum, B., and van der Eerden, J. (1999). Simulation of crystal growth from Lennard-Jones solutions. J. Chem. Phys. 111, 10248–10260.

Hummer, G. and Szabo, A. (2001). Free energy reconstruction from nonequilibrium single- molecule pulling experiments. Proc. Nat. Acad. Sci. 98, 3658–3661.

(p.571) Hummer, G. and Szabo, A. (2005). Free energy surfaces from single-molecule force spectroscopy. Acc. Chem. Res. 38, 504–513.

Hummer, G. (2004). From transition paths to transition states and rate coefficients. J. Chem. Phys. 120, 516–523.

Humpert, A. and Allen, M. P. (2015a). Elastic constants and dynamics in nematic liquid crystals. Molec. Phys. 113, 2680–2692.

Humpert, A. and Allen, M. P. (2015b). Propagating director bend fluctuations in nematic liquid crystals. Phys. Rev. Lett. 114, 028301.

Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. J. Molec. Graphics 14, 33–38. http://www.ks.uiuc.edu/Research/vmd/.

Hünenberger, P. H. and van Gunsteren, W. F. (1998). Alternative schemes for the inclusion of a reaction-field correction into molecular dynamics simulations: influence on the simulated energetic, structural, and dielectric properties of liquid water. J. Chem. Phys. 108, 6117–6134.

Hünenberger, P. H. (2005). Thermostat algorithms for molecular dynamics simulations. Advanced computer simulation. Adv. Polym. Sci. 173, 105–149. Ed. by C. Holm and K. Kremer. Berlin Heidelberg: Springer.

Hunt, T. A. (2015). Periodic boundary conditions for the simulation of uniaxial extensional flow of arbitrary duration. Molec. Simul. 42, 347–352.

Hunt, T. A. and Todd, B. D. (2003). On the Arnold cat map and periodic boundary conditions for planar elongational flow. Molec. Phys. 101, 3445–3454.

Hunt, T. A., Bernardi, S., and Todd, B. D. (2010). A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow. J. Chem. Phys. 133, 154116.

Hunter, J. E. I. and Reinhardt, W. P. (1995). Finite-size scaling behavior of the free energy barrier between coexisting phases: determination of the critical temperature and interfacial tension of the Lennard-Jones fluid. J. Chem. Phys. 103, 8627–8637.

Huwald, J., Richter, S., Ibrahim, B., and Dittrich, P. (2016). Compressing molecular dynamics trajectories: breaking the one-bit-per-sample barrier. J. Comput. Chem. 37, 1897–1906.

Ihle, T. and Kroll, D. M. (2001). Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. Phys. Rev. E 63, 020201.

Ihle, T. and Kroll, D. M. (2003a). Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green–Kubo relations. Phys. Rev. E 67, 066705.

Ihle, T. and Kroll, D. M. (2003b). Stochastic rotation dynamics. II. Transport coefficients, numerics, and long-time tails. Phys. Rev. E 67, 066706.

Ikeguchi, M. (2004). Partial rigid-body dynamics in N PT, N PAT and N PγT ensembles for proteins and membranes. J. Comput. Chem. 25, 529–541.

Impey, R. W., Madden, P. A., and Tildesley, D. J. (1981). On the calculation of the orientational correlation parameter g 2. Molec. Phys. 44, 1319–1334.

Ingebrigtsen, T. and Toxvaerd, S. (2007). Contact angles of Lennard-Jones liquids and droplets on planar surfaces. J. Phys. Chem. C 111, 8518–8523.

in’t Veld, P. J., Ismail, A. E., and Grest, G. S. (2007). Application of Ewald summations to long-range dispersion forces. J. Chem. Phys. 127, 144711.

(p.572) Iori, F., Di Felice, R., Molinari, E., and Corni, S. (2009). Golp: an atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J. Comput. Chem. 30, 1465–1476.

Ippoliti, E., Dreyer, J., Carloni, P., and Röthlisberger, U. (2012). Hierarchical methods for dynamics in complex molecular systems. http://juser.fz-juelich.de/record/127337/files/IAS-Series-10.pdf (Accessed Dec 2015).

Irving, J. H. and Kirkwood, J. G. (1950). The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817–829.

Isele-Holder, R. E., Mitchell, W., and Ismail, A. E. (2012). Development and application of a particle–particle particle–mesh Ewald method for dispersion interactions. J. Chem. Phys. 137, 174107.

Isele-Holder, R. E., Mitchell, W., Hammond, J. R., Kohlmeyer, A., and Ismail, A. E. (2013). Reconsidering dispersion potentials: reduced cutoffs in mesh-based Ewald solvers can be faster than truncation. J. Chem. Theor. Comput. 9, 5412–5420.

Ishida, H. and Kidera, A. (1998). Constant temperature molecular dynamics of a protein in water by high-order decomposition of the Liouville operator. J. Chem. Phys. 109, 3276–3284.

Ishida, H., Nagai, Y., and Kidera, A. (1998). Symplectic integrator for molecular dynamics of a protein in water. Chem. Phys. Lett. 282, 115–120.

Ismail, A. E., Grest, G. S., and Stevens, M. J. (2006). Capillary waves at the liquid–vapor interface and the surface tension of water. J. Chem. Phys. 125, 014702.

Itoh, S. G., Morishita, T., and Okumura, H. (2013). Decomposition-order effects of time integrator on ensemble averages for the Nosé–Hoover thermostat. J. Chem. Phys. 139, 064103.

Izvekov, S., Swanson, J. M. J., and Voth, G. A. (2008). Coarse-graining in interaction space: a systematic approach for replacing long-range electrostatics with short-range potentials. J. Phys. Chem. B 112, 4711–4724.

Izvekov, S. and Voth, G. A. (2005a). A multiscale coarse-graining method for biomolecular systems. J. Phys. Chem. B 109, 2469–2473.

Izvekov, S. and Voth, G. A. (2005b). Multiscale coarse graining of liquid-state systems. J. Chem. Phys. 123, 134105.

Jackson, G., Chapman, W. G., and Gubbins, K. E. (1988). Phase equilibria of associating fluids. Molec. Phys. 65, 1–31.

Jackson, J. L. and Mazur, P. (1964). On the statistical mechanical derivation of the correlation formula for the viscosity. Physica 30, 2295–2304.

Jacucci, G. (1984). Path integral Monte Carlo. Monte Carlo methods in quantum problems. NATO ASI Series C. 125, 117–144. Ed. by M. H. Kalos. New York: Reidel.

Jacucci, G. and McDonald, I. R. (1975). Structure and diffusion in mixtures of rare-gas liquids. Physica A 80, 607–625.

Jacucci, G. and Omerti, E. (1983). Monte Carlo calculation of the radial distribution function of quantum hard spheres at finite temperatures using path integrals with boundary conditions. J. Chem. Phys. 79, 3051–3054.

Jacucci, G. and Qyirke, N. (1980a). Monte Carlo calculation of the free energy difference between hard and soft core diatomic liquids. Molec. Phys. 40, 1005–1009.

(p.573) Jacucci, G. and Qyirke, N. (1980b). Structural correlation functions in the coexistence region from molecular dynamics. Nuovo Cimento B 58, 317–322.

Jacucci, G. and Rahman, A. (1984). Comparing the efficiency of Metropolis Monte Carlo and molecular dynamics methods for configuration space sampling. Nuovo Cimento D 4, 341–356.

Jain, A., Sunthar, P., Dünweg, B., and Prakash, J. R. (2012). Optimization of a Brownian dynamics algorithm for semidilute polymer solutions. Phys. Rev. E 85, 066703.

Jakobsen, A. F., Mouritsen, O. G., and Besold, G. (2005). Artifacts in dynamical simulations of coarse-grained model lipid bilayers. J. Chem. Phys. 122, 204901.

Jakobsen, A. F., Besold, G., and Mouritsen, O. G. (2006). Multiple time step update schemes for dissipative particle dynamics. J. Chem. Phys. 124, 094104.

Jancovici, B. (1969). Qyantum mechanical equation of state of a hard sphere gas at high temperature. Phys. Rev. 178, 295–297.

Janeček, J. (2006). Long range corrections in inhomogeneous simulations. J. Phys. Chem. B131, 6264–6269.

Jang, S., Sinitskiy, A. V., and Voth, G. A. (2014). Can the ring polymer molecular dynamics method be interpreted as real time quantum dynamics? J. Chem. Phys. 140, 154103.

Janke, W. and Paul, W. (2016). Thermodynamics and structure of macromolecules from flat-histogram Monte Carlo simulations. Soft Matter 12, 642–657.

Jansoone, V. M. (1974). Dielectric properties of a model fluid with the Monte Carlo method. Chem. Phys. 3, 78–86.

Jarzynski, C. (1997). Nonequilibrium equality for free energy differences. Phys. Rev. Lett.78, 2690–2693.

Jepps, O. G., Ayton, G., and Evans, D. J. (2000). Microscopic expressions for the thermodynamic temperature. Phys. Rev. E 62, 4757–4763.

Jiménez-Serratos, G., Vega, C., and Gil-Villegas, A. (2012). Evaluation of the pressure tensor and surface tension for molecular fluids with discontinuous potentials using the volume perturbation method. J. Chem. Phys. 137, 204104.

Jmol (2016) Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/ (Accessed 8/2/2016).

Johner, N., Harries, D., and Khelashvili, G. (2016). Implementation of a methodology for determining elastic properties of lipid assemblies from molecular dynamics simulations. BMC Bioinformatics 17, 161. Erratum: ibid. 17, 236 (2016).

Johnson, J. K., Zollweg, J. A., and Gubbins, K. E. (1993). The Lennard-Jones equation of state revisited. Molec. Phys. 78, 591–618.

Johnson, J. K., Panagiotopoulos, A. Z., and Gubbins, K. E. (1994). Reactive canonical Monte Carlo. A new simulation technique for reacting or associating fluids. Molec. Phys. 81, 717–733.

Johnson, M. E., Head-Gordon, T., and Louis, A. A. (2007). Representability problems for coarse-grained water potentials. J. Chem. Phys. 126, 144509.

Jolly, D. L., Freasier, B. C., and Bearman, R. J. (1976). The extension of simulation radial distribution functions to an arbitrary range by Baxter’s factorisation technique. Chem. Phys. 15, 237–242.

Jones, A., Cipcigan, F., Sokhan, V. P., Crain, J., and Martyna, G. J. (2013). Electronically coarse-grained model for water. Phys. Rev. Lett. 110, 227801.

(p.574) Jones, D. (2010). Good practice in (pseudo) random number generation for bioinformatics applications. http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf (Accessed Nov 2015).

Jones, R. A. L. (2002). Soft condensed matter. Oxford Master Series in Physics. Oxford: Oxford University Press.

Jordan, H. F. and Fosdick, L. D. (1968). Three-particle effects in the pair distribution function for He4 gas. Phys. Rev. 171, 128–149

Jorgensen, W. L. and Ravimohan, C. (1985). Monte Carlo simulation of differences in free energies of hydration. J. Chem. Phys. 83, 3050–3054.

Jorgensen, W. L. and Thomas, L. L. (2008). Perspective on free-energy perturbation calculations for chemical equilibria. J. Chem. Theor. Comput. 4, 869–876.

Jorgensen, W. L. and Tirado-Rives, J. (2005). Molecular modeling of organic and biomolecular systems using boss and mcpro. J. Comput. Chem. 26, 1689–1700.

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.79, 926–935.

Jorgensen, W. L., Maxwell, D. S., and Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236.

Kaestner, J. (2011). Umbrella sampling. Comp. Mol. Sci (Wiley Interdisc. Rev.). 1, 932–942.

Kalia, R. K., de Leeuw, S., Nakano, A., and Vashishta, P. (1993). Molecular dynamics simulations of coulombic systems on distributed-memory MIMD machines. Comput. Phys. Commun. 74, 316–326.

Kalos, M. H. and Whitlock, P. A. (2008). Monte Carlo methods. 2nd ed. Weinheim, Germany: Wiley-VCH.

Kalos, M. H., Levesque, D., and Verlet, L. (1974). Helium at zero temperature with hard- sphere and other forces. Phys. Rev. A 9, 2178–2195.

Kaminski, G. and Jorgensen, W. L. (1996). Performance of the AMBER94, MMFF94, and OPLS-AA force fields for modeling organic liquids. J. Phys. Chem. 100, 18010–18013.

Kannam, S. K., Todd, B. D., Hansen, J. S., and Daivis, P. J. (2011). Slip flow in graphene nanochannels. J. Chem. Phys. 135, 144701.

Kannam, S. K., Todd, B. D., Hansen, J. S., and Daivis, P. J. (2012a). Interfacial slip friction at a fluid–solid cylindrical boundary. J. Chem. Phys. 136, 244704.

Kannam, S. K., Todd, B. D., Hansen, J. S., and Daivis, P. J. (2012b). Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. J. Chem. Phys. 136, 024705.

Kannam, S. K., Todd, B. D., Hansen, J. S., and Daivis, P. J. (2013). How fast does water flow in carbon nanotubes? J. Chem. Phys. 138, 094701.

Kapfer, S. C. and Krauth, W. (2015). Two-dimensional melting: from liquid–hexatic coexistence to continuous transitions. Phys. Rev. Lett. 114, 035702.

Kapral, R. and Ciccotti, G. (1999). Mixed quantum–classical dynamics. J. Chem. Phys. 110, 8919–8929.

Karasawa, N. and Goddard, W. A. (1989). Acceleration of convergence for lattice sums. J. Phys. Chem. 93, 7320–7327.

(p.575) Karayiannis, N. C., Mavrantzas, V. G., and Theodorou, D. N. (2002). A novel Monte Carlo scheme for the rapid equilibration of atomistic model polymer systems of precisely defined molecular architecture. Phys. Rev. Lett. 88, 105503.

Karimi-Varzaneh, H. A., Qian, H.-J., Chen, X., Carbone, P., and Müller-Plathe, F. (2011). IBISCO: a molecular dynamics simulation package for coarse-grained simulation. J. Comput. Chem. 32, 1475–1487.

Karma, A. (1993). Fluctuations in solidification. Phys. Rev. E 48, 3441–3458.

Karney, C. F. F. (2007). Qyaternions in molecular modeling. J. Molec. Graphics Model. 25, 595–604.

Kawamoto, S., Nakamura, T., Nielsen, S. O., and Shinoda, W. (2013). A guiding potential method for evaluating the bending rigidity of tensionless lipid membranes from molecular simulation. J. Chem. Phys. 139, 034108.

Kestemont, E. and Van Craen, J. (1976). On the computation of correlation functions in molecular dynamics experiments. J. Comput. Phys. 22, 451–458.

Kikuchi, N., Pooley, C. M., Ryder, J. F., and Yeomans, J. M. (2003). Transport coefficients of a mesoscopic fluid dynamics model. J. Chem. Phys. 119, 6388–6395.

Kikuchi, N., Ryder, J. F., Pooley, C. M., and Yeomans, J. M. (2005). Kinetics of the polymer collapse transition: the role of hydrodynamics. Phys. Rev. E 71, 061804.

Kim, W. K. and Falk, M. L. (2014). A practical perspective on the implementation of hyperdynamics for accelerated simulation. J. Chem. Phys. 140, 044107.

Kirk, D. B. and Hu, W. W. (2012). Programming massively parallel processors: a hands-on approach. 2nd ed. Morgan Kaufmann.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science 220, 671–680.

Kirkwood, J. G. (1933). Qyantum statistics of almost classical assemblies. Phys. Rev. 44, 31–37.

Klein, M. L. and Weis, J. J. (1977). Dynamical structure factor S (q, ω‎) of solid β-N2. J. Chem. Phys. 67, 217–224.

Kleinman, L. and Bylander, D. M. (1982). Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425–1428.

Knuth, D. (1973). The art of computer programming. 2nd ed. Reading MA: Addison-Wesley.

Knuth, D. E.(1997). The art of computer programming: seminumerical algorithms. 3rd ed. Vol. 2. Addison-Wesley.

Koehl, P. (2006). Electrostatics calculations: latest methodological advances. Curr. Opin. Struct. Biol. 16, 142–151.

Kofke, D. A. and Bolhuis, P. G. (1999). Freezing of polydisperse hard spheres. Phys. Rev. E 59, 618–622.

Kofke, D. A. and Cummings, P. T. (1998). Precision and accuracy of staged free-energy perturbation methods for computing the chemical potential by molecular simulation. Fluid Phase Equilibria 151, 41–49.

Kofke, D. A. and Glandt, E. D. (1988). Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble. Molec. Phys. 64, 1105–1131.

Kofke, D. A. (1993a). Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line. J. Chem. Phys. 98, 4149–4162.

(p.576) Kofke, D. A. (1993b). Gibbs–Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation. Molec. Phys. 78, 1331–1336.

Kofke, D. A. (2002). On the acceptance probability of replica-exchange Monte Carlo trials. J. Chem. Phys. 117, 6911–6914. Erratum: ibid. 120, 10852 (2004).

Kofke, D. A. (2004). Getting the most from molecular simulation. Molec. Phys. 102, 405– 420.

Kofke, D. A. (2005). Free energy methods in molecular simulation. Fluid Phase Equilibria 228–229, 41–48

Kofke, D. A. (2006). On the sampling requirements for exponential-work free-energy calculations. Molec. Phys. 104, 3701–3708.

Kohn, W. and Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138.

Kolafa, J. and Perram, J. W. (1992). Cutoff errors in the Ewald summation formulas for point-charge systems. Molec. Simul. 9, 351–368.

Kolafa, J., Labík, S., and Malíjevsky, A. (2002). The bridge function of hard spheres by direct inversion of computer simulation data. Molec. Phys. 100, 2629–2640.

Kone, A. and Kofke, D. A. (2005). Selection of temperature intervals for parallel-tempering simulations. J. Chem. Phys. 122, 206101.

Kong, A., McCullagh, P., Meng, X.-L., Nicolae, D., and Tan, Z. (2003). A theory of statistical models for Monte Carlo integration. J. Roy. Stat. Soc. Ser. B 65, 585–604.

Kony, D., Damm, W., Stoll, S., and van Gunsteren, W. F. (2002). An improved OPLS-AA force field for carbohydrates. J. Comput. Chem. 23, 1416–1429.

Koper, G. J. M. and Reiss, H. (1996). Length scale for the constant pressure ensemble: application to small systems and relation to Einstein fluctuation theory. J. Phys. Chem. 100, 422–432.

Kornfeld, H. (1924). Die Berechnung elektrostatischer Potentiale und der Energie von Dipol- und Quadrupolgittern. Z. Phys. 22, 27–43.

Kosterlitz, J. M. and Thouless, D. J. (1973). Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203.

Kosztin, I., Faber, B., and Schulten, K. (1996). Introduction to the diffusion Monte Carlo method. Amer. J. Phys. 64, 633–644.

Kouza, M. and Hansmann, U. H. E. (2011). Velocity scaling for optimizing replica exchange molecular dynamics. J. Chem. Phys. 134, 044124.

Kranenburg, M. and Smit, B. (2004). Simulating the effect of alcohol on the structure of a membrane. FEBS Lett. 568, 15–18.

Kranenburg, M., Venturoli, M., and Smit, B. (2003). Phase behavior and induced interdigitation in bilayers studied with dissipative particle dynamics. J. Phys. Chem. B 107, 11491–11501.

Kratky, K. W. (1980). New boundary conditions for computer experiments of thermody- namic systems. J. Comput. Phys. 37, 205–217.

Kratky, K. W. and Schreiner, W. (1982). Computational techniques for spherical boundary conditions. J. Comput. Phys. 47, 313–320.

Kratzer, K., Arnold, A., and Allen, R. J. (2013). Automatic, optimized interface placement in forward flux sampling simulations. J. Chem. Phys. 138, 164112.

(p.577) Kratzer, K., Berryman, J. T., Taudt, A., Zeman, J., and Arnold, A. (2014). The flexible rare event sampling harness system (FRESHS). Comput. Phys. Commun. 185, 1875–1885.

Krӓutler, V. and Hünenberger, P. H. (2006). A multiple time step algorithm compatible with a large number of distance classes and an arbitrary distance dependence of the time step size for the fast evaluation of nonbonded interactions in molecular simulations. J. Comput. Chem. 27, 1163–1176.

Kraynik, A. M. and Reinelt, D. A. (1992). Extensional motions of spatially periodic lattices. Int. J. Multiphase Flow 18, 1045–1059.

Kremer, K. and Grest, G. S. (1990). Dynamics of entangled linear polymer melts: a molecular dynamics simulation. J. Chem. Phys. 92, 5057–5086.

Kroese, D. P., Taimre, T., and Botev, Z. I. (2011). Handbook of Monte Carlo methods. Wiley series in probability and statistics. New York: Wiley.

Kubo, R. (1957). Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan 12, 570–586.

Kubo, R. (1966). The fluctuation–dissipation theorem. Rep. Prog. Phys. 29, 255–284.

Kuharski, R. A. and Rossky, P. J. (1984). Qyantum mechanical contributions to the structure of liquid water. Chem. Phys. Lett. 103, 357–362.

Kulik, H. J., Schwegler, E., and Galli, G. (2012). Probing the structure of salt water under confinement with first-principles molecular dynamics and theoretical x-ray absorption spectroscopy. J. Phys. Chem. Lett. 3, 2653–2658.

Kumar, S., Bouzida, D., Swendsen, R. H., Kollman, P. A., and Rosenberg, J. M. (1992). The weighted histogram analysis method for free-energy calculations on biomolecules1. The method. J. Comput. Chem. 13, 1011–1021.

Kumar, V. and Errington, J. R. (2013). Wetting behavior of water near nonpolar surfaces. J. Phys. Chem. C 117, 23017–23026.

Kunz, A.-P. E., Liu, H., and van Gunsteren, W. F. (2011). Enhanced sampling of particular degrees of freedom in molecular systems based on adiabatic decoupling and temperature or force scaling. J. Chem. Phys. 135, 104106.

Kuo, I. F. W., Mundy, C. J., McGrath, M. J., and Siepmann, J. I. (2006). Time-dependent properties of liquid water: a comparison of Car–Parrinello and Born–Oppenheimer molecular dynamics simulations. J. Chem. Theor. Comput. 2, 1274–1281.

Kurzak, J. and Pettitt, B. M. (2005). Massively parallel implementation of a fast multipole method for distributed memory machines. J. Parallel Distr. Com. 65, 870–881.

Kurzak, J. and Pettitt, B. M. (2006). Fast multipole methods for particle dynamics. Molec. Simul. 32, 775–790.

Kutzelnigg, W. (1997). The adiabatic approximation. 1. The physical background of the Born–Handy ansatz. Molec. Phys. 90, 909–916.

Laasonen, K., Sprik, M., Parrinello, M., and Car, R. (1993). Ab-initio liquid water. J. Chem. Phys. 99, 9080–9089.

Lachet, V., Boutin, A., Tavitian, B., and Fuchs, A. H. (1997). Grand canonical Monte Carlo simulations of adsorption of mixtures of xylene molecules in faujasite zeolites. Faraday Disc. Chem. Soc. 106, 307–323.

Ladd, A. J. C. and Verberg, R. (2001). Lattice-Boltzmann simulations of particle–fluid suspensions. J. Stat. Phys. 104, 1191–1251.

(p.578) Ladd, A. J. C. (1984). Equations of motion for non-equilibrium molecular dynamics simulations of viscous flow in molecular fluids. Molec. Phys. 53, 459–463.

Ladd, A. J. C. (1994a). Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309.

Ladd, A. J. C. (1994b). Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339.

Lado, F. (1971). Numerical Fourier transforms in one, two, and three dimensions for liquid state calculations. J. Comput. Phys. 8, 417–433.

Laio, A. and Parrinello, M. (2002). Escaping free-energy minima. Proc. Nat. Acad. Sci. 99, 12562–12566.

Laio, A., VandeVondele, J., and Röthlisberger, U. (2002a). A Hamiltonian electrostatic coupling scheme for hybrid Car–Parrinello molecular dynamics simulations. J. Chem. Phys. 116, 6941–6947.

Laio, A., VandeVondele, J., and Röthlisberger, U. (2002b). d-resp: Dynamically gener- ated electrostatic potential derived charges from quantum mechanics/molecular mechanics simulations. J. Phys. Chem. B 106, 7300–7307.

Laio, A., Gervasio, F. L., VandeVondele, J., Sulpizi, M., and Röthlisberger, U. (2004). A variational definition of electrostatic potential derived charges. J. Phys. Chem. B 108, 7963–7968.

Laio, A. and Gervasio, F. L. (2008). Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71, 126601.

Laird, B. B. and Davidchack, R. L. (2005). Direct calculation of the crystal–melt interfacial free energy via molecular dynamics computer simulation. J. Phys. Chem. B 109, 17802–17812.

Lal, M. and Spencer, D. (1971). Monte Carlo computer simulation of chain molecules. III. Simulation of n-alkane molecules. Molec. Phys. 22, 649–659.

Lamoureux, G. and Roux, B. (2003). Modeling induced polarization with classical Drude oscillators: theory and molecular dynamics simulation algorithm. J. Chem. Phys. 119, 3025–3039.

Landau, D. P. and Binder, K. (2009 ). A guide to Monte Carlo simulations in statistical physics.3rd ed. Cambridge: Cambridge Press.

Landau, L. D. and Lifshitz, E. M. (1958). Statistical physics. 1st ed. Course of theoretical physics. Vol. 5. Translated by E. Peierls and R. F. Peierls. London: Pergamon Press.

Landau, L. D. and Lifshitz, E. M. (1980). Statistical physics. 3rd ed. Course of theoretical physics. Vol. 5. Oxford: Pergamon Press. Revised E. M. Lifshitz and L. P. Pitaevskii.

Lane, T. J., Shukla, D., Beauchamp, K. A., and Pande, V. S. (2013). To milliseconds and beyond: challenges in the simulation of protein folding. Curr. Opin. Struct. Biol. 23, 58–65.

Larini, L., Lu, L., and Voth, G. A. (2010). The multiscale coarse-graining method. VI. Implementation of three-body coarse-grained potentials. J. Chem. Phys. 132, 164107.

Larsson, P., Hess, B., and Lindahl, E. (2011). Algorithm improvements for molecular dynamics simulations. Comp. Mol. Sci. (Wiley Interdisc. Rev.) 1, 93–108.

(p.579) Lau, G. V., Ford, I. J., Hunt, P. A., Mueller, E. A., and Jackson, G. (2015). Surface thermodynamics of planar, cylindrical, and spherical vapour–liquid interfaces of water. J. Chem. Phys. 142, 114701.

Lebowitz, J. L., Percus, J. K., and Verlet, L. (1967). Ensemble dependence of fluctuations with application to machine computations. Phys. Rev.153,250-254.

Lechner,W. and Dellago, C. (2008). Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707.

Lechner,W., Dellago, C., and Bolhuis, P. G. (2011). Reaction coordinates for the crystal nucleation of colloidal suspensions extracted from the reweighted path ensemble. J. Chem. Phys. 135, 154110.

L’Ecuyer,P.(1996). Combined multiple recursive random number generators. Operations Res. 44, 816–822.

L’Ecuyer,P. (1999). Good parameters and implementations for combined multiple recursive random number generators. Operations Res.47, 159–164.

L’Ecuyer, P. (2007). Random number generation. Handbook of simulation. Chap. 4, 93–137.Ed. by J. Banks. Wiley.

L’Ecuyer, P. and Simard, R. (2007). TestU01: a C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33, 22.

Lee,C. T., Yang, W. T., and Parr, R. G. (1988). Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37,785–789.

Lee, C. Y. and Scott, H. L. (1980). The surface tension of water: a Monte Carlo calculation using an umbrella sampling algorithm. J. Chem. Phys. 73, 4591–4596.

Lee,H. S. and Tuckerman, M. E. (2006). Ab initio molecular dynamics with discrete variable representation basis sets: techniques and application to liquid water. J. Phys. Chem. A 110,5549–5560.

Lee, H. S. and Tuckerman, M. E. (2007). Dynamical properties of liquid water from ab initio molecular dynamics performed in the complete basis set limit. J. Chem. Phys. 126, 164501.

Lee, J. (1993). New Monte Carlo algorithm: entropic sampling. Phys. Rev. Lett. 71, 211– 214.

Lee, J. K., Barker, J. A., and Pound, G. M. (1974). Surface structure and surface tension: perturbation theory and Monte Carlo calculation. J. Chem. Phys. 60, 1976–1980.

Lee, S.-H. (2012). Molecular dynamics simulation of a small drop of liquid argon. Bull. Korean Chem. Soc. 33, 3805–3809.

Lee, S.-H., Palmo, K., and Krimm, S. (2005). WIGGLE: a new constrained molecular dynamics algorithm in Cartesian coordinates. J. Comput. Phys. 210, 171–182.

Lee,W.-G., Gallardo-Macias, R., Frey, K. M., Spasov, K. A., Bollini, M., Anderson, K. S., and Jorgensen, W. L. (2013). Picomolar inhibitors of HIV reverse transcriptase featuring bicyclic replacement of a cyanovinylphenyl group. J. Am. Chem. Soc. 135, 16705– 16713.

Lees, A. W. and Edwards, S. F. (1972). The computer study of transport processes under extreme conditions. J. Phys. C 5, 1921–1929.

Legoll, F. and Monneau, R. (2002). Designing reversible measure invariant algorithms with applications to molecular dynamics. J. Chem. Phys. 117, 10452–10464.

(p.580) Leimkuhler, B. J. and Reich, S. (2004). Simulating Hamiltonian dynamics. Cambridge: Cambridge University Press.

Leimkuhler, B. J. and Skeel, R. D. (1994). Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys. 112, 117–125.

Leimkuhler, B. and Shang, X. (2015). On the numerical treatment of dissipative particle dynamics and related systems. J. Comput. Phys. 280, 72–95.

Leimkuhler, B. J. and Matthews, C. (2013a). Rational construction of stochastic numerical methods for molecular sampling. Appl. Math. Res. eXpress 2013, 34–56.

Leimkuhler, B. J. and Matthews, C. (2013b). Robust and efficient configurational molecular sampling via Langevin dynamics. J. Chem. Phys. 138, 174102.

Leimkuhler, B. J. and Sweet, C. R. (2004). The canonical ensemble via symplectic integrators using Nosé and Nosé–Poincaré chains. J. Chem. Phys. 121, 108–116.

Leimkuhler, B. J. and Sweet, C. R. (2005). A Hamiltonian formulation for recursive multiple thermostats in a common timescale. SIAM J. Appl. Dyn. Syst. 4, 187–216.

Lekkerkerker, H. N. W and Tuinier, R. (2011). Colloids and the depletion interaction. Lect. Notes Phys. Vol. 833. Berlin: Springer-Verlag.

Lekner, J. (1989). Summation of dipolar fields in simulated liquid–vapour interfaces. Physica A 157, 826–838.

Lekner, J. (1991). Summation of Coulomb fields in computer-simulated disordered systems. Physica A 176, 485–498.

Lennard-Jones, J. E. and Devonshire, A. F. (1939a). Critical and cooperative phenomena. III. A theory of melting and the structure of liquids. Proc. Roy. Soc. Lond. A 169, 317– 338.

Lennard-Jones, J. E. and Devonshire, A. F. (1939b). Critical and cooperative phenomena. IV. A theory of disorder in solids and liquids and the process of melting. Proc. Roy. Soc. Lond. A 170, 464–484.

LeSar, R. (1984). Improved electron-gas model calculations of solid N2 to 10 GPa. J. Chem. Phys. 81, 5104–5108.

LeSar, R. and Gordon, R. G. (1982). Density-functional theory for the solid alkali cyanides. J. Chem. Phys. 77, 3682–3692.

LeSar, R. and Gordon, R. G. (1983). Density-functional theory for solid nitrogen and carbon dioxide at high pressure. J. Chem. Phys. 78, 4991–4996.

Levesque, D., Verlet, L., and Kürkijarvi, J. (1973). Computer ‘experiments’ on classical fluids. IV. Transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point. Phys. Rev. A 7, 1690–1700.

Levine, Z. A., Venable, R. M., Watson, M. C., Lerner, M. G., Shea, J.-E., Pastor, R. W., and Brown, F. L. H. (2014). Determination of biomembrane bending moduli in fully atomistic simulations. J. Am. Chem. Soc. 136, 13582–13585.

Li,D., Liu, L., Yu,H., Zhai,Z., Zhang,Y., Guo, B., Yang, C., and Liu, B. (2014). A molecular simulation study of the protection of insulin bioactive structure by trehalose. J. Molec. Model. 20, 2496.

Li, J., Zhou, Z., and Sadus, R. J. (2007a). Role of nonadditive forces on the structure and properties of liquid water. J. Chem. Phys. 127, 154509.

Li, X., Latour, R. A., and Stuart, S. J. (2009). TIGER2: an improved algorithm for temperature intervals with global exchange of replicas. J. Chem. Phys.130, 174106.

(p.581) Li, X., O’Brien, C. P., Collier, G., Vellore, N. A., Wang, F., Latour, R. A., Bruce, D. A., and Stuart, S. J. (2007b). An improved replica-exchange sampling method: temperature intervals with global energy reassignment. J. Chem. Phys. 127, 164116.

Liem, S. Y., Brown, D., and Clarke, J. H. R. (1991). Molecular dynamics simulations on distributed memory machines. Comput. Phys. Commun. 67, 261–267.

Lifson, S. and Warshel, A. (1968). Consistent force field for calculations of conformations vibrational spectra and enthalpies of cycloalkane and n-alkane molecules. J. Chem. Phys. 49, 5116–5129.

Lin, I.-C. and Tuckerman, M. E. (2010). Enhanced conformational sampling of peptides via reduced side-chain and solvent masses. J. Phys. Chem. B 114, 15935–15940.

Lin, I.-C., Seitsonen, A. P., Tavernelli, I., and Röthlisberger, U. (2012). Structure and dynamics of liquid water from ab initio molecular dynamics. Comparison of BLYP, PBE, and revPBE density functionals with and without van der Waals corrections. J. Chem. Theor. Comput. 8, 3902–3910.

Lin, Y., Baumketner, A., Deng, S., Xu, Z., Jacobs, D., and Cai, W. (2009). An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions. J. Chem. Phys. 131, 154103.

Lin, Z. and van Gunsteren, W. F. (2015). On the use of a weak-coupling thermostat in replica-exchange molecular dynamics simulations. J. Chem. Phys. 143, 034110.

Lindahl, E. and Edholm, O. (2000). Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys. J. 79, 426–433.

Lindan, P. J. D. (1995). Dynamics with the shell model. Molec. Simul. 14, 303–312.

Lindbo, D. and Tornberg, A.-K. (2012). Fast and spectrally accurate Ewald summation for2-periodic electrostatic systems. J. Chem. Phys. 136, 164111

Lindorff-Larsen, K., Piana, S., Dror, R. O., and Shaw, D. E. (2011). How fast-folding proteins fold. Science 334, 517–520.

Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I., and Bustamante, C. (2002). Equilib- rium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835.

Lisal, M., Brennan, J. K., and Smith, W. R. (2006). Mesoscale simulation of polymer reac- tion equilibrium: combining dissipative particle dynamics with reaction ensemble Monte Carlo. I. Polydispersed polymer systems. J. Chem. Phys. 125, 164905.

Lisal, M., Brennan, J. K., and Avalos, J. B. (2011). Dissipative particle dynamics at isothermal, isobaric, isoenergetic, and isoenthalpic conditions using Shardlow-like splitting algorithms. J. Chem. Phys. 135, 204105.

Liu, J., Davidchack, R. L., and Dong, H. B. (2013). Molecular dynamics calculation of solid– liquid interfacial free energy and its anisotropy during iron solidification. Comput. Mater. Sci. 74, 92–100.

Liu, M. B., Liu, G. R., Zhou, L. W., and Chang, J. Z. (2014). Dissipative particle dynamics (DPD): an overview and recent developments. Arch. Comp. Meth. Eng. 22, 529–556.

Liu, P., Kim, B., Friesner, R. A., and Berne, B. J. (2005). Replica exchange with solute tempering: a method for sampling biological systems in explicit water. Proc. Nat. Acad. Sci. 102, 13749–13754.

Lo, C. M. and Palmer, B. (1995). Alternative Hamiltonian for molecular dynamics simulations in the grand canonical ensemble. J. Chem. Phys. 102, 925–931.

(p.582) Lobanova, O., Avendano, C., Lafitte, T., Müller, E. A., and Jackson, G. (2015). SAFT-γ‎ force field for the simulation of molecular fluids. 4. A single-site coarse-grained model of water applicable over a wide temperature range. Molec. Phys. 113, 1228–1249.

Lobanova, O., Mejía, A., Jackson, G., and Müller, E. A. (2016). SAFT-γ‎ force field for the simulation of molecular fluids. 6. Binary and ternary mixtures comprising water, carbon dioxide, and n-alkanes. J. Chem. Thermo. 93, 320–336.

Loeffler, T. D., Sepehri, A., and Chen, B. (2015). Improved Monte Carlo scheme for efficient particle transfer in heterogeneous systems in the grand canonical ensemble: application to vapor–liquid nucleation. J. Chem. Theor. Comput. 11, 4023–4032.

Lopes, J. N. C. and Tildesley, D. J. (1997). Multiphase equilibria using the Gibbs ensemble Monte Carlo method. Molec. Phys. 92, 187–195.

Lopes, J. N. C, Deschamps, J., and Padua, A. A. H. (2004). Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 108, 2038–2047.

López-Lemus, J. and Alejandre, J. (2002). Thermodynamic and transport properties of simple fluids using lattice sums: bulk phases and liquid–vapour interface. Molec. Phys. 100, 2983–2992.

Louis, A. A. (2002). Beware of density dependent pair potentials. J. Phys. Cond. Mat. 14, 9187–9206.

Lowden, L. J. and Chandler, D. (1974). Theory of intermolecular pair correlations for molecular liquids. Applications to liquid carbon disulfide, carbon diselenide and benzene. J. Chem. Phys. 61, 5228–5241.

Lowe, C. P. (1999). An alternative approach to dissipative particle dynamics. Europhys. Lett. 47, 145–151.

Lu, N. D. and Kofke, D. A. (2001a). Accuracy of free-energy perturbation calculations in molecular simulation. I. Modeling. J. Chem. Phys. 114, 7303–7311.

Lu, N. D. and Kofke, D. A. (2001b). Accuracy of free-energy perturbation calculations in molecular simulation. II. Heuristics. J. Chem. Phys. 115, 6866–6875.

Lu, N. D., Singh, J. K., and Kofke, D. A. (2003). Appropriate methods to combine forward and reverse free-energy perturbation averages. J. Chem. Phys. 118, 2977–2984.

Luckhurst, G. R. (2006). The Gay–Berne mesogen: a paradigm shift?. Liq. Cryst. 33, 1389– 1395.

Luckhurst, G. R. and Simpson, P. (1982). Computer simulation studies of anisotropic systems. VIII. The Lebwohl–Lasher model of nematogens revisited. Molec. Phys. 47, 251–265.

Luckhurst, G. R., Stephens, R. A., and Phippen, R. W. (1990). Computer simulation studies of anisotropic systems. 19. Mesophases formed by the Gay–Berne model mesogen. Liq. Cryst. 8, 451–464.

Luckhurst, G. R. and Satoh, K. (2010). The director and molecular dynamics of the field-induced alignment of a Gay–Berne nematic phase: an isothermal–isobaric nonequilibrium molecular dynamics simulation study. J. Chem. Phys. 132, 184903.

Lucy, L. B. (1977). Numerical approach to testing of fission hypothesis. Astron. J. 82, 1013– 1024.

Luehr, N., Markland, T. E., and Martínez, T. J. (2014). Multiple time step integrators in ab initio molecular dynamics. J. Chem. Phys. 140, 084116.

(p.583) Lundborg, M., Apostolov, R., Spångberg, D., Gӓrdenӓs, A., van der Spoel, D., and Lindahl, E. (2013). An efficient and extensible format, library, and api for binary trajectory data from molecular simulations. J. Comput. Chem. 35, 260–269.

Lustig, R. (1994a). Statistical thermodynamics in the classical molecular dynamics ensemble. 1. Fundamentals . J. Chem. Phys. 100, 3048–3059.

Lustig, R. (1994b). Statistical thermodynamics in the classical molecular dynamics ensemble. 2. Application to computer simulation. J. Chem. Phys. 100, 3060–3067.

Lustig, R. (1998). Microcanonical Monte Carlo simulation of thermodynamic properties. J. Chem. Phys. 109, 8816–8828.

Lustig, R. (2012). Statistical analogues for fundamental equation of state derivatives. Molec. Phys. 110, 3041–3052.

Luttinger, J. M. (1964). Theory of thermal transport coefficients. Phys. Rev. 135, 1505– 1514.

Lyklema, J. W. (1979a). Computer simulations of a rough sphere fluid I. Physica A 96, 573–593.

Lyklema, J. W. (1979b). Computer simulations of a rough sphere fluid II. Comparison with stochastic models. Physica A 96, 594–605.

Lynch, G. C. and Pettitt, B. M. (1997). Grand canonical ensemble molecular dynamics simulations: reformulation of extended system dynamics approaches. J. Chem. Phys. 107, 8594–8610.

Lynden-Bell, R. M. (1995). Landau free energy, Landau entropy, phase transitions and limits of metastability in an analytical model with a variable number of degrees of freedom. Molec. Phys. 86, 1353–1373.

Lynden-Bell, R. M. (2010). Towards understanding water: simulation of modified water models. J. Phys. Cond. Mat. 22, 284107.

Lyubartsev, A. P. and Laaksonen, A. (1995). Calculation of effective interaction potentials from radial distribution functions: a reverse Monte-Carlo approach. Phys. Rev. E 52, 3730–3737.

Lyubartsev, A., Mirzoev, A., Chen, L., and Laaksonen, A. (2010). Systematic coarse- graining of molecular models by the Newton inversion method. Faraday Disc. Chem. Soc. 144, 43–56.

MacDowell, L. G. and Blas, F. J. (2009). Surface tension of fully flexible Lennard-Jones chains: role of long-range corrections. J. Chem. Phys. 131, 074705.

MacDowell, L. G., Shen, V. K., and Errington, J. R. (2006). Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems. J. Chem. Phys. 125, 034705.

Mackerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz- Kuczera, J., Yin, D., and Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616.

Madden, P. A. and Kivelson, D. (1984). A consistent molecular treatment of dielectric phenomena. Adv. Chem. Phys. 56, 467–566.

(p.584) Madelung, E. (1918). Das elektrische Feld in Systemen von regelmässig angeordneten Punktladungen. Physik. Z. 19, 524–532.

Madurga, S., Rey-Castro, C., Pastor, I., Vilaseca, E., David, C., Lluis Garces, J., Puy, J., and Mas, F. (2011). A semi-grand canonical Monte Carlo simulation model for ion binding to ionizable surfaces: proton binding of carboxylated latex particles as a case study. J. Chem. Phys. 135, 184103.

Maerzke, K., Gai, L., Cummings, P. T., and McCabe, C. (2012). Incorporating configurational-bias Monte Carlo into the Wang–Landau algorithm for continuous molecular systems. J. Chem. Phys. 137, 204105.

Maggs, A. C. and Rossetto, V. (2002). Local simulation algorithms for Coulomb interactions. Phys. Rev. Lett. 88, 196402.

Mahoney, M. W. and Jorgensen, W. L. (2000). A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112, 8910–8922.

Maitland, G. C., Rigby, M., Smith, E. B., and Wakeham, W. A. (1981). Intermolecular forces: their origin and determination. Oxford: Clarendon Press.

Malani, A., Auerbach, S. M., and Monson, P. A. (2010). Probing the mechanism of silica polymerization at ambient temperatures using Monte Carlo simulations. J. Phys. Chem. Lett. 1, 3219–3224.

Malevanets, A. and Kapral, R. (1999). Mesoscopic model for solvent dynamics. J. Chem. Phys. 110, 8605–8613.

Malevanets, A. and Kapral, R. (2000). Solute molecular dynamics in a mesoscale solvent. J. Chem. Phys. 112, 7260–7269.

Malijevskỳ, A. and Jackson, G. (2012). A perspective on the interfacial properties of nanoscopic liquid drops. J. Phys. Cond. Mat. 24, 464121.

Malins, A., Williams, S. R., Eggers, J., and Royall, C. P. (2013). Identification of structure in condensed matter with the topological cluster classification. J. Chem. Phys. 139, 234506.

Mandell, M. J. (1976). Properties of a periodic fluid. J. Stat. Phys. 15, 299–305.

Marais, P., Kenwood, J., Smith, K. C., Kuttel, M. M., and Gain, J. (2012). Efficient compression of molecular dynamics trajectory files. J. Comput. Chem. 33, 21312141.

Marcelli, G. and Sadus, R. J. (2012). Molecular simulation of the phase behavior of noble gases using accurate two-body and three-body intermolecular potentials. J. Chem. Phys. 111, 1533–1540.

Marconi, U. M. B., Puglisi, A., Rondoni, L., and Vulpiani, A. (2008). Fluctuation– dissipation: response theory in statistical physics. Physics Reports 461, 111–195.

Maréchal, G. and Ryckaert, J. P. (1983). Atomic vs molecular description of transport properties in polyatomic fluids: n-butane as an example. Chem. Phys. Lett. 101, 548– 554.

Markland, T. E. and Manolopoulos, D. E. (2008a). A refined ring polymer contraction scheme for systems with electrostatic interactions. Chem. Phys. Lett. 464, 256–261.

Markland, T. E. and Manolopoulos, D. E. (2008b). An efficient ring polymer contraction scheme for imaginary time path integral simulations. J. Chem. Phys. 129, 024105.

Marques, M. A. L. and Gross, E. K. U. (2004). Time-dependent density functional theory. Ann. Rev. Phys. Chem. 55, 427–455.

(p.585) Marrink, S. J., de Vries, A. H., and Mark, A. E. (2004). Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108, 750–760.

Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., and de Vries, A. H. (2007). The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824.

Marsaglia, G. (1972). Choosing a point from the surface of a sphere. Ann. Math. Stat. 43, 645–646.

Marsaglia, G. (1995). The Marsaglia random number CDROM including the diehard battery of tests of randomness. http://stat.fsu.edu/pub/diehard/ (Accessed Nov 2015).

Marsh, C. A. and Yeomans, J. M. (1997). Dissipative particle dynamics: the equilibrium for finite time steps. Europhys. Lett. 37, 511–516.

Marsh, D. (2007). Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys. J. 93, 3884–3899.

Martin, M. G. (2013). MCCCS Towhee: a tool for Monte Carlo molecular simulation. Molec. Simul. 39, 1184–1194.

Martin, M. G. and Siepmann, J. I. (1999). Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J. Phys. Chem. B 103, 4508–4517.

Martin, R. (2008). Electronic structure. New York: Cambridge University Press.

Martínez-Ruiz, F. J., Moreno-Ventas Bravo, A. I., and Blas, F. J. (2015). Liquid–liquid interfacial properties of a symmetrical Lennard-Jones binary mixture. J. Chem. Phys. 143, 104706.

Martyna, G. J., Klein, M. L., and Tuckerman, M. E. (1992). Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643.

Martyna, G. J., Tobias, D. J., and Klein, M. L. (1994). Constant-pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189.

Martyna, G. J., Tuckerman, M. E., Tobias, D. J., and Klein, M. L. (1996). Explicit reversible integrators for extended systems dynamics. Molec. Phys. 87, 1117–1157.

Martyna, G. J., Hughes, A., and Tuckerman, M. E. (1999). Molecular dynamics algorithms for path integrals at constant pressure. J. Chem. Phys. 110, 3275–3290.

Martyna, G. J. (1994). Remarks on ‘Constant-temperature molecular dynamics with momentum conservation’. Phys. Rev. E 50, 3234–3236.

Marx, D. and Hutter, J. (2012). Ab initio molecular dynamics, basic theory and advanced methods. New York: Cambridge University Press.

Marx, D., Tuckerman, M. E., Hutter, J., and Parrinello, M. (1999). The nature of the hydrated excess proton in water. Nature 397, 601–604.

Maseras, F. and Morokuma, K. (1995). IMOMM: a new integrated ab-initio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J. Comput. Chem. 16, 1170–1179.

Massopust, P. (2010). Interpolation and approximation with splines and fractals. New York: Oxford University Press.

Matin, M. L., Daivis, P. J., and Todd, B. D. (2003). Cell neighbor list method for planar elongational flow: rheology of a diatomic fluid. Comput. Phys. Commun. 151, 35–46.

(p.586) Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comp. Simul. 8, 3–30.

Mattson, W. and Rice, B. M. (1999). Near-neighbor calculations using a modified cell- linked list method. Comput. Phys. Commun. 119, 135–148.

Matubayasi, N. and Nakahara, M. (1999). Reversible molecular dynamics for rigid bodies and hybrid Monte Carlo. J. Chem. Phys. 110, 3291–3301.

Mavrantzas, V. G., Boone, T. D., Zervopoulou, E., and Theodorou, D. N. (1999). End- bridging Monte Carlo: a fast algorithm for atomistic simulation of condensed phases of long polymer chains. Macromolecules 32, 5072–5096.

Mazars, M. (2005). Lekner summations and Ewald summations for quasi-two- dimensional systems. Molec. Phys. 103, 1241–1260.

Mazur, P. (1982). On the motion and Brownian motion of N spheres in a viscous fluid Physica A 110, 128–146.

Mazur, P. and van Saarloos, W. (1982). Many-sphere hydrodynamic interactions and mobilities in a suspension. Physica A 115, 21–57.

Mazzeo, M. D., Ricci, M., and Zannoni, C. (2010). The linked neighbour list (LNL) method for fast off-lattice Monte Carlo simulations of fluids. Comput. Phys. Commun. 181, 569–581.

McCabe, C. and Galindo, A. (2010). SAFT Associating Fluids and Fluid Mixtures. Applied Thermodynamics of Fluids. Chap. 8, 215–279. Ed. by A. R. Goodwin, J. Sengers, andC. J. Peters. Royal Society of Chemistry

McCoustra, M., Bain, C., Buch, V., Finney, J., Hansen, J.-P., Held, G., Russell, A., and Wheatley, R., eds. (2009). Water: from interfaces to the bulk. Faraday Disc. Chem. Soc. Vol. 141. Royal Society of Chemistry, 1–488.

McDaniel, J. G. and Schmidt, J. R. (2013). Physically-motivated force fields from symmetry-adapted perturbation theory. J. Phys. Chem. A 117, 2053–2066.

McDonald, I. R. (1969). Monte Carlo calculations for one- and two-component fluids in the isothermal–isobaric ensemble. Chem. Phys. Lett. 3, 241–243.

McDonald, I. R. (1972). N pT -ensemble Monte Carlo calculations for binary liquid mixtures. Molec. Phys. 23, 41–58.

McDonald, I. R. (1986). Molecular liquids: orientational order and dielectric properties. Molecular dynamics simulation of statistical mechanical systems. Proc. Int. School Phys. Enrico Fermi. 97, 341–370. (Varenna, Italy, 1985). Ed. by G. Ciccotti and W. G. Hoover. Bologna: Soc. Italiana di Fisica.

McGrath, M. J., Ghogomu, J. N., Mundy, C. J., Kuo, I.-F. W., and Siepmann, J. I. (2010). First principles Monte Carlo simulations of aggregation in the vapor phase of hydrogen fluoride. Phys. Chem. Chem. Phys. 12, 7678–7687.

McMillan, W. L. (1965). Ground state of liquid He4. Phys. Rev. 138, 442–451.

McNeil, W. J. and Madden, W. G. (1982). A new method for the molecular dynamics simulation of hard core molecules. J. Chem. Phys. 76, 6221–6226.

McNeil-Watson, G. C. and Wilding, N. B. (2006). Freezing line of the Lennard-Jones fluid: a phase switch Monte Carlo study. J. Chem. Phys. 124, 064504.

McQyarrie, D. A. (1976). Statistical mechanics. New York: Harper and Row.

(p.587) McTague, J. P., Frenkel, D., and Allen, M. P. (1980). Simulation studies of the 2D melting mechanism. Ordering in two dimensions, 147–153. Ed. by S. K. Sinha. Amsterdam: North Holland.

Mecke, K. R. and Dietrich, S. (1999). Effective Hamiltonian for liquid–vapor interfaces. Phys. Rev. E 59, 6766–6784.

Mehrotra, P. K., Mezei, M., and Beveridge, D. L. (1983). Convergence acceleration in Monte Carlo computer simulation on water and aqueous solutions. J. Chem. Phys. 78, 3156–3166.

Mehta, M. and Kofke, D. A. (1994). Coexistence diagrams of mixtures by molecular simulation. Chem. Eng. Sci. 49, 2633–2645.

Melchionna, S. (2007). Design of quasisymplectic propagators for Langevin dynamics. J. Chem. Phys. 127, 044108.

Melchionna, S., Ciccotti, G., and Holian, B. L. (1993). Hoover N PT dynamics for systems varying in shape and size. Molec. Phys. 78, 533–544.

Mentch, F. and Anderson, J. B. (1981). Qyantum chemistry by random walk: importance sampling for H3+. J. Chem. Phys. 74, 6307–6311.

Menzeleev, A. R., Ananth, N., and Miller, T. F. I. (2011). Direct simulation of electron transfer using ring polymer molecular dynamics: comparison with semiclassical instanton theory and exact quantum methods. J. Chem. Phys. 135, 074106.

Mertz, J. E., Tobias, D. J., Brooks, C. L., and Singh, U. C. (1991). Vector and parallel algorithms for the molecular dynamics simulation of macromolecules on shared- memory computers. J. Comput. Chem. 12, 1270–1277.

Mester, Z. and Panagiotopoulos, A. Z. (2015). Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations. J. Chem. Phys. 142, 044507.

Metropolis, N. and Ulam, S. (1949). The Monte Carlo method. J. Amer. Stat. Ass. 44, 335

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087– 1092.

Mezei, M. (1980). A cavity-biased (TV µ) Monte Carlo method for the computer simulation of fluids. Molec. Phys. 40, 901–906.

Mezei, M. (1983). Virial-bias Monte Carlo methods. Molec. Phys. 48, 1075–1082.

Miao, Y. L., Feixas, F., Eun, C., and McCammon, J. A. (2015). Accelerated molecular dynamics simulations of protein folding. J. Comput. Chem. 36, 1536–1549.

Michielssens, S., van Erp, T. S., Kutzner, C., Ceulemans, A., and de Groot, B. L. (2012). Molecular dynamics in principal component space. J. Phys. Chem. B 116, 8350–8354.

Míguez, J. M., González-Salgado, D., Legido, J. L., and Piñeiro, M. M. (2010). Calculation of interfacial properties using molecular simulation with the reaction field method: results for different water models. J. Chem. Phys. 132, 184102.

Míguez, J. M., Piñeiro, M. M., and Blas, F. J. (2013). Influence of the long-range corrections on the interfacial properties of molecular models using Monte Carlo simulation. J. Chem. Phys. 138, 034707.

Miller, T. F. (2008). Isomorphic classical molecular dynamics model for an excess electron in a supercritical fluid. J. Chem. Phys. 129, 194502.

(p.588) Miller, T. F. and Manolopoulos, D. E. (2005). Qyantum diffusion in liquid water from ring polymer molecular dynamics. J. Chem. Phys. 123, 154504.

Miller, T. F., Eleftheriou, M., Pattnaik, P., Ndirango, A., Newns, D., and Martyna, G. J. (2002). Symplectic quaternion scheme for biophysical molecular dynamics. J. Chem. Phys.116,8649–8659.

Minary, P., Martyna, G.J., and Tuckerman, M. E. (2003). Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics. J. Chem. Phys. 118, 2510–2526.

Mirzoev, A. and Lyubartsev, A.P. (2013). Magic: software package for multiscale modeling. J. Chem. Theor. Comput. 9, 1512–1520.

Misquitta, A. J. and Stone, A. J. (2013). CAMCASP 5.6, a user manual. http://www-stone.ch.cam.ac.uk/documentation/camcasp/users_guide.pdf.

Mitchell, P. J. and Fincham, D. (1993). Shell model simulations by adiabatic dynamics. J. Phys. Cond. Mat. 5, 1031–1038.

Miyamoto, S. and Kollman, P. A. (1992). SETTLE: an analytical version of the shake and rattle algorithm for rigid water models. J. Comput. Chem. 13, 952–962.

Miyazaki, J., Barker, J. A., and Pound, G. M. (1976). A new Monte Carlo method for calculating surface tension. J. Chem. Phys. 64, 3364–3369.

Molinero, V. and Moore, E. B. (2009). Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113, 4008–4016.

Mon, K. K. and Griffiths, R. B. (1985). Chemical potential by gradual insertion of a particle in Monte Carlo simulation. Phys. Rev. A 31, 956–959.

Monticelli, L. and Salonen, E. (2013). Biomolecular simulations, methods and protocols. Methods Molec. Biol. Vol. 924. New York: Humana Press.

Monticelli, L., Kandasamy, S. K., Periole, X., Larson, R. G., Tieleman, D. P., and Marrink, S. J. (2008). The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theor. Comput. 4, 819–834.

Moore, E. B. and Molinero, V. (2011). Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479, 506–508.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics 38, 114–117.

Moore, S. G. and Crozier, P. S. (2014). Extension and evaluation of the multilevel summation method for fast long-range electrostatics calculations. J. Chem. Phys. 140, 234112.

Mor, A., Ziv, G., and Levy, Y. (2008). Simulations of proteins with inhomogeneous degrees of freedom: the effect of thermostats. J. Comput. Chem. 29, 1992–1998.

Morales, M. A., Clay, R., Pierleoni, C., and Ceperley, D. M. (2014). First principles methods: a perspective from quantum Monte Carlo. Entropy 16, 287–321.

Morawietz, T., Singraber, A., Dellago, C., and Behler, J. (2016). How van der Waals interactions determine the unique properties of water. Proc. Nat. Acad. Sci. 113, 8368– 8373.

Mori, H. (1965a). A continued-fraction representation of the time-correlation functions. Prog. Theor. Phys. 34, 399–416.

Mori, H. (1965b). Transport, collective motion, and Brownian motion. Prog. Theor. Phys.33, 423–455.

(p.589) Mori, Y. and Okamoto, Y. (2010). Replica-exchange molecular dynamics simulations for various constant temperature algorithms. J. Phys. Soc. Japan 79, 074001.

Morishita, T. (2000). Fluctuation formulas in molecular dynamics simulations with the weak coupling heat bath. J. Chem. Phys. 113, 2976–2982.

Moroni, D., van Erp, T. S., and Bolhuis, P. G. (2004a). Investigating rare events by transition interface sampling. Physica A 340, 395–401.

Moroni, D., van Erp, T. S., and Bolhuis, P. G. (2005a). Simultaneous computation of free energies and kinetics of rare events. Phys. Rev. E 71, 056709.

Moroni, D. (2005). Efficient sampling of rare event pathways: from simple models to nucleation. PhD thesis. University of Amsterdam.

Moroni, D., Bolhuis, P. G., and van Erp, T. S. (2004b). Rate constants for diffusive processes by partial path sampling. J. Chem. Phys. 120, 4055–4065.

Moroni, D., ten Wolde, P. R., and Bolhuis, P. G. (2005b). Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703.

Morrell, W. E. and Hildebrand, J. H. (1936). The distribution of molecules in a model liquid. J. Chem. Phys. 4, 224–227.

Morris, J. R. (2002). Complete mapping of the anisotropic free energy of the crystal–melt interface in Al. Phys. Rev. B 66, 144104.

Morris, J. R. and Song, X. (2002). The melting lines of model systems calculated from coexistence simulations. J. Chem. Phys. 116, 9352–9358.

Morris, J. R. and Song, X. (2003). The anisotropic free energy of the Lennard-Jones crystal– melt interface. J. Chem. Phys. 119, 3920–3925.

Morse, M. D. and Rice, S. A. (1982). Tests of effective pair potentials for water: predicted ice structures. J. Chem. Phys. 76, 650–660.

Moucka, F., Nezbeda, I., and Smith, W. R. (2013). Molecular simulation of aqueous elec- trolytes: water chemical potential results and Gibbs–Duhem equation consistency tests. J. Chem. Phys. 139, 124505.

Mouritsen, O. G. and Berlinsky, A. J. (1982). Fluctuation-induced first-order phase transition in an anisotropic planar model of N2 on graphite. Phys. Rev. Lett. 48, 181– 184.

Mu, Y. G. and Stock, G. (2002). Conformational dynamics of trialanine in water: a molecular dynamics study. J. Phys. Chem. B 106, 5294–5301.

Mullen, R. G., Shea, J.-E., and Peters, B. (2015). Easy transition path sampling methods: flexible-length aimless shooting and permutation shooting. J. Chem. Theor. Comput. 11, 2421–2428.

Mullen-Schultz, G. L. (2005). IBM system blue gene solution: Blue Gene/L applications development. IBM Redbooks. Rochester, New York: IBM international technical support organisation.

Müller, E. A. and Jackson, G. (2014). Force-field parameters from the SAFT-γ‎ equation of state for use in coarse-grained molecular simulations. Ann. Rev. Chem. Bio. Eng. 5, 405–437. Ed. by J. M. Prausnitz, M. F. Doherty, and R. Segalman.

Müller, E. A. and Gubbins, K. E. (2001). Molecular-based equations of state for associating fluids: a review of SAFT and related approaches. Ind. Eng. Chem. Res. 40, 2193–2211.

(p.590) Müller, M. and Daoulas, K. C. (2008). Single-chain dynamics in a homogeneous melt and a lamellar microphase: a comparison between Smart Monte Carlo dynamics, slithering- snake dynamics, and slip-link dynamics. J. Chem. Phys. 129, 164906.

Müller, M. and Pastorino, C. (2008). Cyclic motion and inversion of surface flow direction in a dense polymer brush under shear. Europhys. Lett. 81, 28002.

Müller, U. and Stock, G. (1997). Surface-hopping modeling of photoinduced relaxation dynamics on coupled potential energy surfaces. J. Chem. Phys. 107, 6230–6245.

Müller-Krumbhaar, H. and Binder, K. (1973). Dynamic properties of the Monte Carlo method in statistical mechanics. J. Stat. Phys. 8, 1–24.

Müller-Plathe, F. (1999). Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys. Rev. E 59, 4894– 4898.

Müller-Plathe, F. and Reith, D. (1999). Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients. Comput. Theor. Polym. Sci. 9, 203–209.

Müller-Plathe, F. (1997). A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 6082–6085.

Mundy, C. J., Balasubramanian, S., and Klein, M. L. (1996). Hydrodynamic boundary conditions for confined fluids via a nonequilibrium molecular dynamics simulation. J. Chem. Phys. 105, 3211–3214.

Mundy, C. J., Balasubramanian, S., and Klein, M. L. (1997). Computation of the hydrodynamic boundary parameters of a confined fluid via non-equilibrium molecular dynamics. Physica A 240, 305–314.

Münster, A. (1969). Statistical thermodynamics. Berlin/New York: Springer/Academic Press.

Murad, S. (1978). LINEAR AND NONLINEAR. QCPE 12, 357. Indiana University Qyantum Chemistry Program Exchange.

Murad, S. and Gubbins, K. E. (1978). Molecular dynamics simulation of methane using a singularity free algorithm. Computer modelling of matter. ACS Symp. Ser. 86, 62–71. (Anaheim, USA, 1978). Ed. by P. Lykos. Washington: American Chemical Society.

Murthy, C. S., Singer, K., Klein, M. L., and McDonald, I. R. (1980). Pairwise additive effective potentials for nitrogen. Molec. Phys. 41, 1387–1399.

Murthy, C. S., O’Shea, S. F., and McDonald, I. R. (1983). Electrostatic interactions in molecular crystals. Lattice dynamics of solid nitrogen and carbon dioxide. Molec. Phys. 50, 531–541.

Nadler, R. and Sanz, J. F. (2012). Effect of dispersion correction on the Au(111)–H2O interface: a first-principles study. J. Chem. Phys. 137, 114709.

Naitoh, T. and Ono, S. (1976). The shear viscosity of hard-sphere fluid via non-equilibrium molecular dynamics. Phys. Lett. A 57, 448–450.

Naitoh, T. and Ono, S. (1979). The shear viscosity of a hard-sphere fluid via nonequilibrium molecular dynamics. J. Chem. Phys. 70, 4515–4523.

Nam, K. (2014). Acceleration of ab initio QM/MM calculations under periodic boundary conditions by multiscale and multiple time step approaches. J. Chem. Theor. Comput. 10, 4175–4183.

(p.591) Nangia, S. and Garrison, B. J. (2010). Theoretical advances in the dissolution studies of mineral–water interfaces. Theor. Chem. Acc. 127, 271–284.

Neale, C., Bennett, W. F. D., Tieleman, D. P., and Pomés, R. (2011). Statistical convergence of equilibrium properties in simulations of molecular solutes embedded in lipid bilayers. J. Chem. Theor. Comput. 7, 4175–4188.

Nelson, D. R. and Halperin, B. I. (1979). Dislocation-mediated melting in two dimensions. Phys. Rev. B 19, 2457–2484.

Neto, N., Righini, R., Califano, S., and Walmsley, S. H. (1978). Lattice dynamics of molecular crystals using atom–atom and multipole–multipole potentials. Chem. Phys. 29, 167–179.

Neumann, M. and Steinhauser, O. (1980). The influence of boundary conditions used in machine simulations on the structure of polar systems. Molec. Phys. 39, 437–454.

Neumann, M. and Steinhauser, O. (1983a). On the calculation of the dielectric constant using the Ewald–Kornfeld tensor. Chem. Phys. Lett. 95, 417–422.

Neumann, M. and Steinhauser, O. (1983b). On the calculation of the frequency-dependent dielectric constant in computer simulations. Chem. Phys. Lett. 102, 508–513.

Neumann, M. (1983). Dipole moment fluctuation formulas in computer simulations of polar systems. Molec. Phys. 50, 841–858.

Neumann, M., Steinhauser, O., and Pawley, G. S. (1984). Consistent calculation of the static and frequency-dependent dielectric constant in computer simulations. Molec. Phys. 52, 97–113.

Neyt, J.-C., Wender, A., Lachet, V., Ghoufi, A., and Malfreyt, P. (2014). Qyantitative predictions of the interfacial tensions of liquid–liquid interfaces through atomistic and coarse grained models. J. Chem. Theor. Comput. 10, 1887–1899.

Nezbeda, I. (1977). Statistical thermodynamics of interaction-site molecules. Molec. Phys.33, 1287–1299.

Nicholson, D. (1984). Grand ensemble Monte Carlo. ccp5 Quarterly 11, 19–24.

Nicholson, D. and Parsonage, N. (1982). Computer simulation and the statistical mechanics of adsorption. New York: Academic Press.

Nicolas, J. J., Gubbins, K. E., Streett, W. B., and Tildesley, D. J. (1979). Equation of state for the Lennard-Jones fluid. Molec. Phys. 37, 1429–1454.

Nielsen, S. O. (2013). Nested sampling in the canonical ensemble: direct calculation of the partition function from NVT trajectories. J. Chem. Phys. 139, 124104.

Niethammer, C., Becker, S., Bernreuther, M., Buchholz, M., Eckhardt, W., Heinecke, A., Werth, S., Bungartz, H.-J., Glass, C. W., Hasse, H., Vrabec, J., and Horsch, M. (2014). ls1 mardyn: the massively parallel molecular dynamics code for large systems. J. Chem. Theor. Comput. 10, 4455–4464.

Nikunen, P., Karttunen, M., and Vattulainen, I. (2003). How would you integrate the equations of motion in dissipative particle dynamics simulations? Comput. Phys. Commun. 153, 407–423.

Noguchi, H. and Gompper, G. (2005). Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Nat. Acad. Sci. 102, 14159–14164.

(p.592) Noid, W. G., Chu, J.-W., Ayton, G. S., Krishna, V., Izvekov, S., Voth, G. A., Das, A., and Andersen, H. C. (2008a). The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 128, 244114.

Noid, W. G., Liu, P., Wang, Y., Chu, J.-W., Ayton, G. S., Izvekov, S., Andersen, H. C., and Voth, G. A. (2008b). The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models. J. Chem. Phys. 128, 244115.

Nordholm, S. and Zwanzig, R. (1975). A systematic derivation of exact generalized Brownian motion theory. J. Stat. Phys. 13, 347–371.

Norman, G. E. and Filinov, V. S. (1969). Investigations of phase transitions by a Monte Carlo method. High Temp. Res. USSR 7, 216–222.

Northrup, S. H. and McCammon, J. A. (1980). Simulation methods for protein structure fluctuations. Biopolymers 19, 1001–1016.

Nosé, S. (1984). A molecular dynamics method for simulations in the canonical ensemble. Molec. Phys. 52, 255–268.

Nosé, S. (1991). Constant temperature molecular dynamics methods. Prog. Theor. Phys.Suppl. 103, 1–46.

Nosé, S. and Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molec. Phys. 50, 1055–1076.

Noya, E. G., Vega, C., and McBride, C. (2011). A quantum propagator for path-integral simulations of rigid molecules. J. Chem. Phys. 134, 054117.

Oberhofer, H., Dellago, C., and Geissler, P. L. (2005). Biased sampling of nonequilibrium trajectories: can fast switching simulations outperform conventional free energy calculation methods? J. Phys. Chem. B 109, 6902–6915.

Oberhofer, H. and Dellago, C. (2009). Efficient extraction of free energy profiles from nonequilibrium experiments. J. Comput. Chem. 30, 1726–1736.

O’Dell, J. and Berne, B. J. (1975). Molecular dynamics of the rough sphere fluid. I. Rotational relaxation. J. Chem. Phys. 63, 2376–2394.

Ohno, Y., Yokota, R., Koyama, H., Morimoto, G., Hasegawa, A., Masumoto, G., Okimoto, N., Hirano, Y., Ibeid, H., Narumi, T., and Taiji, M. (2014). Petascale molecular dynamics simulation using the fast multipole method on K computer. Comput. Phys. Commun. 185, 2575–2585.

O’Keeffe, C. J. and Orkoulas, G. (2009). Parallel canonical Monte Carlo simulations through sequential updating of particles. J. Chem. Phys. 130, 134109.

Okumura, H., Itoh, S. G., and Okamoto, Y. (2007). Explicit symplectic integrators of molecular dynamics algorithms for rigid-body molecules in the canonical, isobaric– isothermal, and related ensembles. J. Chem. Phys. 126, 084103.

Okumura, H., Itoh, S. G., Ito, A. M., Nakamura, H., and Fukushima, T. (2014). Manifold correction method for the Nosé–Hoover and Nosé–Poincaré molecular dynamics simulations. J. Phys. Soc. Japan 83, 024003.

Olafsen, J. S. and Urbach, J. S. (2005). Two-dimensional melting far from equilibrium in a granular monolayer. Phys. Rev. Lett. 95, 098002.

Ollila, O. H. S. and Vattulainen, I. (2010). Lateral pressure profiles in lipid membranes: dependence on molecular composition. Molecular simulations and biomembranes. Chap. 2, 26–55. Ed. by M. S. P. Sansom and P. C. Biggin. Royal Society of Chemistry (RSC).

Omelyan, I. P. (1998). Algorithm for numerical integration of the rigid-body equations of motion. Phys. Rev. E 58, 1169–1172.

(p.593) Omelyan, I. P. (1999). A new leapfrog integrator of rotational motion. The revised angular- momentum approach. Molec. Simul. 22, 213–236.

Onsager, L. (1936). Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486– 1493.

Oppenheim, I. and Ross, J. (1957). Temperature dependence of distribution functions in quantum statistical mechanics. Phys. Rev. 107, 28–32.

Orban, J. and Ryckaert, J. P. (1974). Methods in molecular dynamics. Tech. rep. Rapport d’activité scientifique du CECAM.

Orea, P., López-Lemus, J., and Alejandre, J. (2005). Oscillatory surface tension due to finite-size effects. J. Chem. Phys. 123, 114702.

Orkoulas, G. and Panagiotopoulos, A. Z. (1993). Chemical potentials in ionic systems from Monte Carlo simulations with distance-biased test particle insertions. Fluid Phase Equilibria 83, 223–231.

Orlandini, E., Swift, M. R., and Yeomans, J. M. (1995). A lattice Boltzmann model of binary fluid mixtures. Europhys. Lett. 32, 463–468.

Orsi, M., Haubertin, D. Y., Sanderson, W. E., and Essex, J. W. (2008). A quantitative coarse- grain model for lipid bilayers. J. Phys. Chem. B 112, 802–815.

Oseen, C. (1933). Theory of liquid crystals. Trans. Faraday Soc. 29, 883–899.

O’Shea, S. F. (1978). Monte Carlo study of the classical octopolar solid. J. Chem. Phys. 68, 5435–5441.

O’Shea, S. F. (1983). Neighbour lists again . ccp5 Quarterly 9, 41–46.

Owicki, J. C. (1978). Optimizing of sampling algorithms in Monte Carlo calculations on fluids. Computer modelling of matter ACS Symp. Ser. 86, 159–171. (Anaheim, USA, 1978). Ed. by P. Lykos. Washington: American Chemical Society.

Owicki, J. C. and Scheraga, H. A. (1977a). Monte Carlo calculations in the isothermal– isobaric ensemble. 2. Dilute aqueous solutions of methane. J. Am. Chem. Soc. 99, 7413– 7418.

Owicki, J. C. and Scheraga, H. A. (1977b). Preferential sampling near solutes in Monte Carlo calculations on dilute solutions. Chem. Phys. Lett. 47, 600–602.

Pacheco, P. (1996). Parallel programming with MPI. Morgan Kaufmann.

Padding, J. T. and Louis, A. A. (2006). Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales. Phys. Rev. E 74, 031402.

Padilla, P. and Toxvaerd, S. (1991). Self-diffusion in n-alkane fluid models. J. Chem. Phys.94, 5650–5654.

Padilla, P., Toxvaerd, S., and Stecki, J. (1995). Shear flow at liquid–liquid interfaces. J. Chem. Phys. 103, 716–724.

Pagonabarraga, I., Hagen, M. H. J., and Frenkel, D. (1998). Self-consistent dissipative particle dynamics algorithm. Europhys. Lett. 42, 377–382.

Paliwal, H. and Shirts, M. R. (2013). Using multistate reweighting to rapidly and efficiently explore molecular simulation parameters space for nonbonded interactions. J. Chem. Theor. Comput. 9, 4700–4717.

Palmer, B. J. and Lo, C. M. (1994). Molecular dynamics implementation of the Gibbs ensemble calculation. J. Chem. Phys. 101, 10899–10907.

(p.594) Pan, A. C., Weinreich, T. M., Piana, S., and Shaw, D. E. (2016). Demonstrating an order- of-magnitude sampling enhancement in molecular dynamics simulations of complex protein systems. J. Chem. Theor. Comput. 12, 1360–1367.

Pan, D., Spanu, L., Harrison, B., Sverjensky, D. A., and Galli, G. (2013). Dielectric properties of water under extreme conditions and transport of carbonates in the deep earth. Proc. Nat. Acad. Sci. 110, 6646–6650.

Pan, G., Ely, J. F., McCabe, C., and Isbister, D. J. (2005). Operator splitting algorithm for isokinetic sllod molecular dynamics. J. Chem. Phys. 122, 094114.

Panagiotopoulos, A. Z., Qyirke, N., Stapleton, M., and Tildesley, D. J. (1988). Phase equilibria by simulation in the Gibbs ensemble. Molec. Phys. 63, 527–545.

Panagiotopoulos, A. Z. (1987). Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Molec. Phys. 61, 813–826.

Pangali, C., Rao, M., and Berne, B. J. (1978). On a novel Monte Carlo scheme for simulating water and aqueous solutions. Chem. Phys. Lett. 55, 413–417.

Panneton, F., L’Ecuyer, P., and Matsumoto, M. (2006). Improved long-period generators based on linear recurrences modulo 2 . ACM Trans. Math. Softw. 32, 1–16.

Pant, P. V. K. and Theodorou, D. N. (1995). Variable connectivity method for the atomistic Monte Carlo simulation of polydisperse polymer melts. Macromolecules 28, 7224– 7234.

Papadopoulou, A., Becker, E. D., Lupkowski, M., and van Swol, F. (1993). Molecular dynamics and Monte Carlo simulations in the grand canonical ensemble: local versus global control. J. Chem. Phys. 98, 4897–4908.

Papoulis, A. (1965). Probability, random variables, and stochastic processes. New York: McGraw-Hill.

Park, K., Goetz, A. W., Walker, R. C., and Paesani, F. (2012). Application of adaptive qm/mm methods to molecular dynamics simulations of aqueous systems. J. Chem. Theor. Comput. 8, 2868–2877.

Parrinello, M. and Rahman, A. (1980). Crystal structure and pair potentials: a molecular- dynamics study. Phys. Rev. Lett. 45, 1196–1199.

Parrinello, M. and Rahman, A. (1981). Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190.

Parrinello, M. and Rahman, A. (1982). Strain fluctuations and elastic constants. J. Chem. Phys. 76, 2662–2666.

Parrinello, M. and Rahman, A. (1984). Study of an F center in molten KCl. J. Chem. Phys.80, 860–867.

Parry, A. O., Rascón, C., and Evans, R. (2015). Liquid–gas asymmetry and the wave-vector- dependent surface tension. Phys. Rev. E 91, 030401.

Pártay, L. B., Bartók, A. P., and Csányi, G. (2010). Efficient sampling of atomic configurational spaces. J. Phys. Chem. B 114, 10502–10512.

Pártay, L. B., Bartók, A. P., and Csányi, G. (2014). Nested sampling for materials: the case of hard spheres. Phys. Rev. E 89, 022302.

Pasichnyk, I. and Dünweg, B. (2004). Coulomb interactions via local dynamics: a molecular-dynamics algorithm. J. Phys. Cond. Mat. 16, S3999–S4020.

(p.595) Pastorino, C., Binder, K., Kreer, T., and Müller, M. (2006). Static and dynamic properties of the interface between a polymer brush and a melt of identical chains. J. Chem. Phys. 124, 064902.

Patey, G. N., Levesque, D., and Weis, J. J. (1982). On the theory and computer simulation of dipolar fluids. Molec. Phys. 45, 733–746.

Patkowski, K., Murdachaew, G., Fou, C. M., and Szalewicz, K. (2005). Accurate ab initio potential for argon dimer including highly repulsive region. Molec. Phys. 103, 2031– 2045.

Patkowski, K. and Szalewicz, K. (2010). Argon pair potential at basis set and excitation limits. J. Chem. Phys. 133, 094304.

Pavese, M., Jang, S., and Voth, G. A. (2000). Centroid molecular dynamics: a quantum dynamics method suitable for the parallel computer. Parallel Comput. 26, 1025–1041.

Pawley, G. S., Bowler, K. C., Kenway, R. D., and Wallace, D. J. (1985). Concurrency and parallelism in mc and md simulations in physics. Comput. Phys. Commun. 37, 251–260.

Payne, M. C., Tarnow, E., Bristowe, P. D., and Joannopoulos, J. D. (1989). Ab initio materials science and engineering using the molecular dynamics method for total energy pseudopotential calculations. Molec. Simul. 4, 79–94.

Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D. (1992). Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097.

Pear, M. R. and Weiner, J. H. (1979). Brownian dynamics study of a polymer chain of linked rigid bodies. J. Chem. Phys. 71, 212–224.

Peng, Z. W., Ewig, C. S., Hwang, M. J., Waldman, M., and Hagler, A. T. (1997). Derivation of class II force fields. 4. van der Waals parameters of alkali metal cations and halide anions. J. Phys. Chem. A 101, 7243–7252.

Perdew, J. P. and Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079.

Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687.

Perego, C., Salvalaglio, M., and Parrinello, M. (2015). Molecular dynamics simulations of solutions at constant chemical potential. J. Chem. Phys. 142, 144113.

Perez, A., Tuckerman, M. E., and Muser, M. H. (2009a). A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals. J. Chem. Phys. 130, 184105.

Perez, D., Uberuaga, B. P., Shim, Y., Amar, J. G., and Voter, A. F. (2009b). Accelerated molecular dynamics methods: introduction and recent developments. Ann. Rep. Comp. Chem. 5, 79–98. Ed. by R. A. Wheeler. Elsevier.

Peristeras, L. D., Rissanou, A. N., Economou, I. G., and Theodorou, D. N. (2007). Novel Monte Carlo molecular simulation scheme using identity-altering elementary moves for the calculation of structure and thermodynamic properties of polyolefin blends. Macromolecules 40, 2904–2914.

(p.596) Perram, J. W., Peteresen, H. G., and de Leeuw, S. W. (1988). An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles. Molec. Phys. 65, 875–893.

Pershan, P. S. (2009). X-ray scattering from liquid surfaces: effect of resolution. J. Phys. Chem. B 113, 3639–3646.

Peskun, P. H. (1973). Optimum Monte Carlo sampling using Markov chains. Biometrika60, 607–612.

Peters, B. and Trout, B. L. (2006). Obtaining reaction coordinates by likelihood maximization. J. Chem. Phys. 125, 054108.

Peters, E. A. J. F. (2004). Elimination of time step effects in DPD. Europhys. Lett. 66, 311– 317.

Petersen, H. G. (1995). Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys. 103, 3668–3679.

Petravic, J. (2007). Equivalence of nonequilibrium algorithms for simulations of planar Couette flow in confined fluids. J. Chem. Phys. 127, 204702.

Petravic, J. and Harrowell, P. (2007). On the equilibrium calculation of the friction coefficient for liquid slip against a wall. J. Chem. Phys. 127, 174706. ibid. 128, 209901 (2007).

Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., and Schulten, K. (2005). Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802.

Piana, S., Klepeis, J. L., and Shaw, D. E. (2014). Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol. 24, 98–105.

Pieprzyk, S., Heyes, D. M., Maćkowiak, S., and Brańka, A. C. (2015). Galilean-invariant Nosé–Hoover-type thermostats. Phys. Rev. E 91, 033312.

Pieranski, P., Malecki, J., Kuczynski, W., and Wojciechowski, K. (1978). A hard disc system, an experimental model. Phil. Mag. A 37, 107–115.

Pierleoni, C. and Ceperley, D. M. (2006). The coupled electron–ion Monte Carlo method. Computer simulations in condensed matter systems: from materials to chemical biology,vol 1. Lect. Notes Phys . 703, 641–683. (Erice, Italy, 2005). Ed. by M. Ferrario, G. Ciccotti, and K. Binder. Heidelberg: Springer.

Pinches, M. R. S., Tildesley, D. J., and Smith, W. (1991). Large scale molecular dynamics on parallel computers using the link-cell algorithm. Molec. Simul. 6, 51–87.

Pitzer, K. S. and Gwinn, W. D. (1942). Energy levels and thermodynamic functions for molecules with internal rotation. 1. Rigid frame with attached tops. J. Chem. Phys. 10, 428–440.

Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19. LAMMPS website http://lammps.sandia.gov.

Pluhackova, K. and Bӧckmann, R. A. (2015). Biomembranes in atomistic and coarsegrained simulations. J. Phys. Cond. Mat. 27, 323103.

Poblete, S., Praprotnik, M., Kremer, K., and Delle Site, L. (2010). Coupling different levels of resolution in molecular simulations. J. Chem. Phys. 132, 114101.

Pohorille, A., Jarzynski, C., and Chipot, C. (2010). Good practices in free-energy calculations. J. Phys. Chem. B 114, 10235–10253.

(p.597) Pollock, E. L. and Glosli, J. (1996). Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems. Comput. Phys. Commun. 95, 93–110.

Polyakov, P., Müller-Plathe, F., and Wiegand, S. (2008). Reverse nonequilibrium molecular dynamics calculation of the Soret coefficient in liquid heptane/benzene mixtures. J. Phys. Chem. B 112, 14999–15004.

Ponder, J. W. and Case, D. A. (2003). Force fields for protein simulations. Protein simulations. Adv. Protein Chem. 66, 27–85. Ed. by V. Daggett. San Diego: Academic Press.

Ponder, J. W., Wu, C., Ren, P., Pande, V. S., Chodera, J. D., Schnieders, M. J., Haque, I., Mobley, D. L., Lambrecht, D. S., DiStasio Jr., R. A., Head-Gordon, M., Clark, G. N. I., Johnson, M. E., and Head-Gordon, T. (2010). Current status of the AMOEBA polarizable force field. J. Phys. Chem. B 114, 2549–2564.

Pooley, C. M. and Yeomans, J. M. (2005). Kinetic theory derivation of the transport coefficients of stochastic rotation dynamics. J. Phys. Chem. B 109, 6505–6513.

Potestio, R., Fritsch, S., Español, P., Delgado-Buscalioni, R., Kremer, K., Everaers, R., and Donadio, D. (2013a). Hamiltonian adaptive resolution simulation for molecular liquids. Phys. Rev. Lett. 110, 108301.

Potestio, R., Español, P., Delgado-Buscalioni, R., Everaers, R., Kremer, K., and Donadio, D. (2013b). Monte Carlo adaptive resolution simulation of multicomponent molecular liquids. Phys. Rev. Lett. 111, 060601.

Potoff, J. J. and Panagiotopoulos, A. Z. (2000). Surface tension of the three-dimensional Lennard-Jones fluid from histogram reweighting Monte Carlo simulations. J. Chem. Phys. 112, 6411–6415.

Potter, D. (1972). Computational physics. New York: Wiley.

Poulsen, J. A., Nyman, G., and Rossky, P. J. (2004). Qyantum diffusion in liquid para-hydrogen: an application of the Feynman–Kleinert linearized path integral approximation. J. Phys. Chem. B 108, 19799–19808.

Powles, J. G. (1984). The liquid–vapour coexistence line for Lennard-Jones-type fluids. Physica A 126, 289–299.

Powles, J. G. and Rickayzen, G. (1979). Qyantum corrections and the computer simulation of molecular fluids. Molec. Phys. 38, 1875–1892.

Powles, J. G., Evans, W. A. B., and Qyirke, N. (1982). Non-destructive molecular dynamics simulation of the chemical potential of a fluid. Molec. Phys. 46, 1347–1370.

Powles, J. G., Fowler, R. F., and Evans, W. A. B. (1983a). A new method for computing surface tension using a drop of liquid. Chem. Phys. Lett. 96, 289–292.

Powles, J. G., Fowler, R. F., and Evans, W. A. B. (1983b). The surface thickness of simulated microscopic liquid drops. Phys. Lett. A 98, 421–425.

Powles, J. G., Mallett, M. J. D., and Evans, W. A. B. (1994). Measuring the properties of liquids by counting. Proc. Roy. Soc. Lond. A 446, 429–439.

Powles, J. G., Rickayzen, G., and Heyes, D. M. (2005). Temperatures: old, new and middle aged. Molec. Phys. 103, 1361–1373.

Prabhu, N. V., Zhu, P. J., and Sharp, K. A. (2004). Implementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth-permittivity finite difference Poisson–Boltzmann method. J. Comput. Chem. 25, 2049–2064.

(p.598) Praprotnik, M., Delle Site, L., and Kremer, K. (2005). Adaptive resolution molecular- dynamics simulation: changing the degrees of freedom on the fly. J. Chem. Phys. 123, 224106.

Praprotnik, M., Delle Site, L., and Kremer, K. (2008). Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Ann. Rev. Phys. Chem. 59, 545–571.

Pratt, L. R. and Haan, S. W. (1981). Effects of periodic boundary conditions on equilibrium properties of computer simulated fluids. I. Theory. J. Chem. Phys. 74, 1864–1872.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical recipes: the art of scientific computing. 3rd ed. New York: Cambridge University.

Preto, J. and Clementi, C. (2014). Fast recovery of free energy landscapes via diffusion map-directed molecular dynamics. Phys. Chem. Chem. Phys. 16, 19181–19191.

Price, S. L. (2008). Computational prediction of organic crystal structures and polymorphism. Int. Rev. Phys. Chem. 27, 541–568.

Price, S. L., Stone, A. J., and Alderton, M. (1984). Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry. Molec. Phys. 52, 987–1001.

Priezjev, N. V. and Troian, S. M. (2004). Molecular origin and dynamic behavior of slip in sheared polymer films. Phys. Rev. Lett. 92, 018302.

Priezjev, N. V., Darhuber, A. A., and Troian, S. M. (2005). Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. Phys. Rev. E 71, 041608.

Procacci, P. and Marchi, M. (1996). Taming the Ewald sum in molecular dynamics simulations of solvated proteins via a multiple time step algorithm. J. Chem. Phys. 104, 3003–3012.

Pusey, P. N. and van Megen, W. (1986). Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342.

Qian, Y. H., D’Humiéres, D., and Lallemand, P. (1992). Lattice BGK models for Navier– Stokes equation. Europhys. Lett. 17, 479.

Qyentrec, B. and Brot, C. (1973). New method for searching for neighbors in molecular dynamics computations. J. Comput. Phys. 13, 430–432.

Qyigley, D. and Probert, M. I. J. (2004). Langevin dynamics in constant pressure extended systems. J. Chem. Phys. 120, 11432–11441.

Qyinn, M. J. (2003). Parallel programming in C with MPI and OpenMP. McGraw-Hill Education.

Raabe, D. (2004). Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering. Model. Sim. Mat. Sci. Eng. 12, 13–46.

Rahman, A. (1964). Correlations in the motion of atoms in liquid argon. Phys. Rev. A 136, 405–411.

Rahman, A. and Stillinger, F. H. (1971). Molecular dynamics study of liquid water. J. Chem. Phys. 55, 3336–3359.

Ram´ırez, J., Sukumaran, S. K., Vorselaars, B., and Likhtman, A. E. (2010). Efficient on the fly calculation of time correlation functions in computer simulations. J. Chem. Phys. 133, 154103.

RAND (2001). A million random digits with 100,000 normal deviates. RAND.

(p.599) Rao, M. and Levesque, D. (1976). Surface structure of a liquid film. J. Chem. Phys. 65, 3233–3236.

Rao, M., Pangali, C., and Berne, B. J. (1979). On the force bias Monte Carlo simulation of water: methodology, optimization and comparison with molecular dynamics. Molec. Phys. 37, 1773–1798.

Rapaport, D. C. (1978). Molecular dynamics simulation of polymer chains with excluded volume. J. Phys. A Math. Gen. 11, 213–217.

Rapaport, D. C. (1979). Molecular dynamics study of a polymer chain in solution. J. Chem. Phys. 71, 3299–3303.

Rapaport, D. C. (1980). The event scheduling problem in molecular dynamic simulation. J. Comput. Phys. 34, 184–201.

Rapaport, D. C. (2004). The art of molecular dynamics simulation. 2nd ed. Cambridge University Press.

Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., and Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035.

Rathore, N., Chopra, M., and de Pablo, J. J. (2005). Optimal allocation of replicas in parallel tempering simulation. J. Chem. Phys. 122, 024111.

Ray, J. R. (1991). Microcanonical ensemble Monte Carlo method. Phys. Rev. A 44, 4061– 4064.

Ray, J. R. and Graben, H. W. (1981). Direct calculation of fluctuation formulae in the microcanonical ensemble. Molec. Phys. 43, 1293–1297.

Ray, J. R. and Graben, H. W. (1991). Small systems have non-Maxwellian momentum distributions in the microcanonical ensemble. Phys. Rev. A 44, 6905–6908.

Rebertus, D. W. and Sando, K. M. (1977). Molecular dynamics simulation of a fluid of hard spherocylinders. J. Chem. Phys. 67, 2585–2590.

Ree, F. H. (1970). Statistical mechanics of single-occupancy systems of spheres, disks and rods. J. Chem. Phys. 53, 920–931.

Reith, D., Putz, M., and Müller-Plathe, F. (2003). Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 24, 1624–1636.

Remler, D. K. and Madden, P. A. (1990). Molecular dynamics without effective potentials via the Car–Parrinello approach. Molec. Phys. 70, 921–966.

Reynolds, P. J., Ceperley, D. M., Alder, B. J., and Lester, W. A. (1982). Fixed-node quantum Monte Carlo for molecules. J. Chem. Phys. 77, 5593–5603.

Richardson, J. O. and Althorpe, S. C. (2009). Ring-polymer molecular dynamics rate- theory in the deep-tunneling regime: connection with semiclassical instanton theory. J. Chem. Phys. 131, 214106.

Rick, S. W., Stuart, S. J., and Berne, B. J. (1994). Dynamical fluctuating charge force fields: application to liquid water. J. Chem. Phys. 101, 6141–6156.

Rick, S. W. and Stuart, S. J. (2003). Potentials and algorithms for incorporating polarizability in computer simulations. Rev. Comput. Chem. 18, 89–146. Wiley.

Rickayzen, G. and Powles, J. G. (2001). Temperature in the classical microcanonical ensemble. J. Chem. Phys. 114, 4333–4334.

Righini, R., Maki, K., and Klein, M. L. (1981). An intermolecular potential for methane. Chem. Phys. Lett. 80, 301–305.

(p.600) Rodger, P. M., Stone, A. J., and Tildesley, D. J. (1988a). Intermolecular interactions in halogens: bromine and iodine. Chem. Phys. Lett. 145, 365–370.

Rodger, P. M., Stone, A. J., and Tildesley, D. J. (1988b). The intermolecular potential of chlorine. A three phase study. Molec. Phys. 63, 173–188.

Rodgers, J. M. and Smit, B. (2012). On the equivalence of schemes for simulating bilayers at constant surface tension. J. Chem. Theor. Comput. 8, 404–417.

Rohrdanz, M. A., Zheng, W., Maggioni, M., and Clementi, C. (2011). Determination of reaction coordinates via locally scaled diffusion map. J. Chem. Phys. 134, 124116.

Rohrdanz, M. A., Zheng, W., and Clementi, C. (2013). Discovering mountain passes via torchlight: methods for the definition of reaction coordinates and pathways in complex macromolecular reactions. Ann. Rev. Phys. Chem. 64, 295–316.

Romano, S. and Singer, K. (1979). Calculation of the entropy of liquid chlorine and bromine by computer simulation. Molec. Phys. 37, 1765–1772.

Romero-Bastida, M. and Lo´pez-Rendo´n, R. (2007). Anisotropic pressure molecular dynamics for atomic fluid systems. J. Phys. A Math. Gen. 40, 8585–8598.

Rosenbluth, M. N. and Rosenbluth, A. W. (1955). Monte-Carlo calculation of the average extension of molecular chains. J. Chem. Phys. 23, 356–359.

Rosenbluth, M. N. and Rosenbluth, A. W. (1954). Further results on Monte Carlo equations of state. J. Chem. Phys. 22, 881–884.

Rossky, P. J., Doll, J. D., and Friedman, H. L. (1978). Brownian dynamics as smart Monte Carlo simulation. J. Chem. Phys. 69, 4628–4633.

Rosta, E., Buchete, N.-V., and Hummer, G. (2009). Thermostat artifacts in replica exchange molecular dynamics simulations. J. Chem. Theor. Comput. 5, 1393–1399.

Ro¨thlisberger, U. and Carloni, P. (2006). Drug-target binding investigated by quantum mechanical/molecular mechanical (qmmm) methods. Computer simulations in condensed matter systems: from materials to chemical biology, vol 2. Lect. Notes Phys. 704, 449–479. (Erice, Italy, 2005). Ed. by M. Ferrario, G. Ciccotti, and K. Binder. Heidel- berg: Springer.

Rotne, J. and Prager, S. (1969). Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys. 50, 4831–4837.

Rottler, J. and Maggs, A. C. (2004). Local molecular dynamics with Coulombic interactions. Phys. Rev. Lett. 93, 170201.

Rowley, L. A., Nicholson, D., and Parsonage, N. G. (1975). Monte Carlo grand canonical ensemble calculation in a gas–liquid transition region of 12–6 argon. J. Comput. Phys. 17, 401–414.

Rowley, L. A., Nicholson, D., and Parsonage, N. G. (1978). Long range corrections to grand canonical ensemble Monte Carlo calculations for adsorption systems. J. Comput. Phys. 26, 66–79.

Rowlinson, J. S. (1963). The perfect gas. Oxford: Pergamon Press.

Rowlinson, J. S. (1969). Liquids and liquid mixtures. 2nd ed. London: Butterworth.

Rowlinson, J. S. and Swinton, F. L. (1982). Liquids and liquid mixtures. 3rd ed. London:Butterworth.

Rowlinson, J. S. and Widom, B. (1982). Molecular theory of capillarity. Oxford: Clarendon Press.

(p.601) Royall, C. P. and Williams, S. R. (2015). The role of local structure in dynamical arrest. Physics Reports 560, 1–75.

Rubinstein, R. Y. (1981). Simulation and Monte Carlo methods. New York: Wiley.

Rudzinski, J. F. and Noid, W. G. (2011). Coarse-graining entropy, forces, and structures. J. Chem. Phys. 135, 214101.

Rugh, H. H. (1997). Dynamical approach to temperature. Phys. Rev. Lett. 78, 772–774.

Ru¨hle, V., Junghans, C., Lukyanov, A., Kremer, K., and Andrienko, D. (2009). Versatile object-oriented toolkit for coarse-graining applications. J. Chem. Theor. Comput. 5, 3211–3223.

Rusanov, A. I. and Brodskaya, E. N. (1977). The molecular dynamics simulation of a small drop. J. Coll. Int. Sci. 62, 542–555.

Ryckaert, J.-P. (1985). Special geometrical constraints in the molecular dynamics of chain molecules. Molec. Phys. 55, 549–556.

Ryckaert, J.-P. and Bellemans, A. (1975). Molecular dynamics of liquid n-butane near its boiling point. Chem. Phys. Lett. 30, 123–125.

Ryckaert, J.-P. and Bellemans, A. (1978). Molecular dynamics of liquid alkanes. Faraday Disc. Chem. Soc. 66, 95–106.

Ryckaert, J.-P. and Ciccotti, G. (1983). Introduction of Andersen’s demon in the molecular dynamics of systems with constraints. J. Chem. Phys. 78, 7368–7374.

Ryckaert, J.-P. and Ciccotti, G. (1986). Andersen’s canonical-ensemble molecular dynamics for molecules with constraints. Molec. Phys. 58, 1125–1136.

Ryckaert, J.-P., Ciccotti, G., and Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341.

Sadus, R. J. and Prausnitz, J. M. (1996). Three-body interactions in fluids from molecular simulation: vapor–liquid phase coexistence of argon. J. Chem. Phys. 104, 4784–4787.

Saffman, P. G. (1976). Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73,593–602.

Saffman, P. G. and Delbru¨ck, M. (1975). Brownian motion in biological membranes. Proc.Nat. Acad. Sci. 72, 3111–3113.

Safran, S. A. (1994). Statistical thermodynamics of surfaces, interfaces, and membranes.Reading, Massachusetts: Addison Wesley.

Salanne, M., Rotenberg, B., Jahn, S., Vuilleumier, R., Simon, C., and Madden, P. A. (2012). Including many-body effects in models for ionic liquids. Theor. Chem. Acc. 131, 1143.

Salsburg, Z. W., Jacobson, J. D., Fickett, W., and Wood, W. W. (1959). Application of the Monte Carlo method to the lattice gas model. 1. Two dimensional triangular lattice. J. Chem. Phys. 30, 65–72.

Sansom, M. S. P. and Biggin, P. C. (2010). Molecular simulations and biomembranes: from biophysics to function. rsc Biomolecular Sciences. The Royal Society of Chemistry.

Sarman, S. and Laaksonen, A. (2009a). Evaluation of the viscosities of a liquid crystal model system by shear flow simulation. Chem. Phys. Lett. 479, 47–51.

Sarman, S. and Laaksonen, A. (2009b). Flow alignment phenomena in liquid crystals studied by molecular dynamics simulation. J. Chem. Phys. 131, 144904.

Sarman, S. and Laaksonen, A. (2011). Molecular dynamics simulation of viscous flow and heat conduction in liquid crystals. J. Comput. Theo. Nanosci 8, 1081–1100.

(p.602) Sarman, S. and Laaksonen, A. (2015). Molecular dynamics simulation of planar elongational flow in a nematic liquid crystal based on the Gay–Berne potential. Phys. Chem. Chem. Phys. 17, 3332–3342.

Saunders, M. G. and Voth, G. A. (2013). Coarse-graining methsods for computational biology. Ann. Rev. Biophys. 42, 73–93.

Schaefer, H. (1972). The electronic structure of atoms and molecules; a survey of rigorous quantum mechanical results. Reading, Mass: Addison-Wesley Pub. Co.

Scha¨fer, L. V., de Jong, D. H., Holt, A., Rzepiela, A. J., de Vries, A. H., Poolman, B., Killian, J. A., and Marrink, S. J. (2011). Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc. Nat. Acad. Sci. 108, 1343–1348.

Schlichting, H. (1979). Boundary layer theory. 7th ed. New York: McGraw-Hill.

Schmid, F. and Wilding, N. B. (1995). Errors in Monte Carlo simulations using shift register random number generators. Int. J. Mod. Phys. C 6, 781–787.

Schmidt, K. E. and Kalos, M. H. (1984). Few- and many-fermion problems. Applications of the Monte Carlo method in statistical physics. Topics Curr. Phys. 36, 125–143. Ed. byK. Binder. Berlin: Springer.

Schmidt, K. E., Niyaz, P., Vaught, A., and Lee, M. A. (2005). Green’s function Monte Carlo method with exact imaginary-time propagation. Phys. Rev. E 71, 016707.

Schmitz, F. and Virnau, P. (2015). The ensemble switch method for computing interfacial tensions. J. Chem. Phys. 142, 144108.

Schmitz, F., Virnau, P., and Binder, K. (2014). Logarithmic finite-size effects on interfacial free energies: phenomenological theory and Monte Carlo studies. Phys. Rev. E 90, 012128.

Schmitz, R. and Felderhof, B. U. (1982). Mobility matrix for two spherical particles with hydrodynamic interaction. Physica A 116, 163–177.

Schoen, M., Vogelsang, R., and Hoheisel, C. (1984). The recurrence time in molecular dynamics ensembles. ccp5 Quarterly 13, 27–37.

Schofield, P. (1960). Space time correlation function formalism for slow neutron scattering. Phys. Rev. Lett. 4, 239–240.

Schofield, P. (1973). Computer simulation studies of the liquid state. Comput. Phys.

Schofield, P. and Henderson, J. R. (1982). Statistical mechanics of inhomogeneous fluids.

Schommers, W. (1983). Pair potentials in disordered many-particle systems: a study for liquid gallium. Phys. Rev. A 28, 3599–3605.

Schrader, M., Virnau, P., Winter, D., Zykova-Timan, T., and Binder, K. (2009). Methods to extract interfacial free energies of flat and curved interfaces from computer simulations. Euro. Phys. J. Spec. Top. 177, 103–127.

Schuler, L. D., Daura, X., and van Gunsteren, W. F. (2001). An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem. 22, 1205– 1218.

Schultz, A. J. and Kofke, D. A. (2011). Algorithm for constant-pressure Monte Carlo simulation of crystalline solids. Phys. Rev. E 84, 046712.

(p.603) Schultz, A. J. and Kofke, D. A. (2015). Etomica: an object-oriented framework for molecular simulation. J. Comput. Chem. 36, 573–583.

Schweizer, K. S., Stratt, R. M., Chandler, D., and Wolynes, P. G. (1981). Convenient and accurate discretized path integral methods for equilibrium quantum mechanical calculations. J. Chem. Phys. 75, 1347–1364.

Semenov, A. N. (1993). Theory of block copolymer interfaces in the strong segregation limit. Macro. Chem. Phys. 26, 6617–6621.

Semenov, A. N. (1994). Scattering of statistical structure of polymer/polymer interfaces. Macromolecules 27, 2732–2735.

Sergi, A. and Ferrario, M. (2001). Non-Hamiltonian equations of motion with a conserved energy. Phys. Rev. E 64, 056125.

Severin, E. S. and Tildesley, D. J. (1980). A methane molecule adsorbed on a graphite surface. Molec. Phys. 41, 1401–1418.

Severin, E. S., Freasier, B. C., Hamer, N. D., Jolly, D. L., and Nordholm, S. (1978). An efficient microcanonical sampling method. Chem. Phys. Lett. 57, 117–120.

Shalf, J. M. and Leland, R. (2015). Computing beyond Moore’s Law. Computer 48, 14–23.

Shan, Y. B., Klepeis, J. L., Eastwood, M. P., Dror, R. O., and Shaw, D. E. (2005). Gaussian split Ewald: a fast Ewald mesh method for molecular simulation. J. Chem. Phys. 122,054101.

Shardlow, T. (2003). Splitting for dissipative particle dynamics. siam J. Sci. Comput. 24, 1267–1282.

Shaw, D. E., Dror, R. O., Salmon, J. K., Grossman, J. P., Mackenzie, K. M., Bank, J. A., Young, C., Deneroff, M. M., Batson, B., Bowers, K. J., Chow, E., Eastwood, M. P., Ierardi, D. J., Klepeis, J. L., Kuskin, J. S., Larson, R. H., Lindorff-Larsen, K., Maragakis, P., Moraes, M. A., Piana, S., Shan, Y., and Towles, B. (2009). Millisecond- scale molecular dynamics simulations on Anton. sc09: Proceedings of the conference on high performance computing, networking, storage and analysis. (Portland, USA, 2009). New York: ACM.

Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., Bank, J. A., Jumper, J. M., Salmon, J. K., Shan, Y., and Wriggers, W. (2010). Atomic- level characterization of the structural dynamics of proteins. Science 330, 341–346.

Shaw, D. E., Grossman, J. P., Bank, J. A., Batson, B., Butts, J. A., Chao, J. C., Deneroff, M. M., Dror, R. O., Even, A., Fenton, C. H., Forte, A., Gagliardo, J., Gill, G., Greskamp, B., Ho, C. R., Ierardi, D. J., Iserovich, L., Kuskin, J. S., Larson, R. H., Layman, T., Lee, L.-S., Lerer, A. K., Li, C., Killebrew, D., Mackenzie, K. M., Mok, S. Y.-H., Moraes, M. A., Mueller, R., Nociolo, L. J., Peticolas, J. L., Qyan, T., Ramot, D., Salmon, J. K., Scarpazza, D. P., Schafer, U. B., Siddique, N., Snyder, C. W., Spengler, J., Tang, P. T. P., Theobald, M., Toma, H., Towles, B., Vitale, B., Wang, S. C., and Young, C. (2014). Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. SC14: Proceedings of the conference on high performance computing, networking, storage and analysis. (New Orleans, USA, 2014). Piscataway: IEEE press.

Shell, M. S. (2008). The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J. Chem. Phys. 129, 144108.

(p.604) Shepherd, J. J., Booth, G., Grueneis, A., and Alavi, A. (2012). Full configuration interaction perspective on the homogeneous electron gas. Phys. Rev. B 85, 081103.

Shi, Q. and Geva, E. (2004). A derivation of the mixed quantum–classical Liouville equation from the influence functional formalism. J. Chem. Phys. 121, 3393–3404.

Shi, Q., Izvekov, S., and Voth, G. A. (2006). Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J. Phys. Chem. B 110, 15045– 15048.

Shillcock, J. C. and Lipowsky, R. (2006). The computational route from bilayer membranes to vesicle fusion. J. Phys. Cond. Mat. 18, 1191–1219.

Shing, K. S. and Chung, S. T. (1987). Computer simulation methods for the calculation of solubility in supercritical extraction systems. J. Phys. Chem. 91, 1674–1681.

Shing, K. S. and Gubbins, K. E. (1981). The chemical potential from computer simulation. Molec. Phys. 43, 717–721.

Shing, K. S. and Gubbins, K. E. (1982). The chemical potential in dense fluids and fluid mixtures via computer simulation. Molec. Phys. 46, 1109–1128.

Shirts, M. R. and Chodera, J. D. (2008). Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 129, 124105. A Python implementation of MBAR is available from https://github.com/choderalab/pymbar.

Shirts, R. B., Burt, S. R., and Johnson, A. M. (2006). Periodic boundary condition induced breakdown of the equipartition principle and other kinetic effects of finite sample size in classical hard-sphere molecular dynamics simulation. J. Chem. Phys. 125, 164102.

Shuttleworth, R. (1950). The surface tension of solids. Proc. Phys. Soc. A 63, 444–457.

Shvab, I. and Sadus, R. J. (2013). Intermolecular potentials and the accurate prediction of the thermodynamic properties of water. J. Chem. Phys. 139, 194505.

Siegbahn, P. E. M. and Himo, F. (2009). Recent developments of the quantum chemical cluster approach for modeling enzyme reactions. J. Bio. Inorg. Chem 14, 643–651.

Siepmann, J. I. and Frenkel, D. (1992). Configurational bias Monte Carlo: a new sampling scheme for flexible chains. Molec. Phys. 75, 59–70.

Sikkenk, J. H., Indekeu, J. O., van Leeuwen, J. M. J., Vossnack, E. O., and Bakker, A. F. (1988). Simulation of wetting and drying at solid–fluid interfaces on the Delft molecular dynamics processor. J. Stat. Phys. 52, 23–44.

Silva, C. C. and Martins, R. D. (2002). Polar and axial vectors versus quaternions. Amer. J. Phys. 70, 958–963.

Sindhikara, D. J., Emerson, D. J., and Roitberg, A. E. (2010). Exchange often and properly in replica exchange molecular dynamics. J. Chem. Theor. Comput. 6, 2804–2808.

Singer, J. V. L. and Singer, K. (1984). Molecular dynamics based on the first order correction in the Wigner–Kirkwood expansion. ccp5 Quarterly 14, 24–26.

Singer, K. and Smith, W. (1990). Qyantum dynamics and the Wigner–Liouville equation.

Singer, K., Taylor, A., and Singer, J. V. L. (1977). Thermodynamic and structural properties of liquids modelled by two-Lennard-Jones centres pair potentials. Molec. Phys. 33, 1757–1795.

Singh, S., Chopra, M., and de Pablo, J. J. (2012). Density of states-based molecular simulations. Ann. Rev. Chem. Bio. Eng. 3, 369–394.

(p.605) Skeel, R. D., Tezcan, I., and Hardy, D. J. (2002). Multiple grid methods for classical molecular dynamics. J. Comput. Chem. 2, 673–684.

Skilling, J. (2006). Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859.

Slater, J. C. and Kirkwood, J. G. (1931). The van der Waals forces in gases. Phys. Rev. 37, 682–697.

Slingsby, J. G., Vyas, S., and Maupin, C. M. (2015). A charge-modified general amber force field for phospholipids: improved structural properties in the tensionless ensemble. Molec. Simul. 41, 1449–1458.

Smirnova, Y. G. and Mu¨ller, M. (2015). Calculation of membrane bending rigidity using field-theoretic umbrella sampling. J. Chem. Phys. 143, 243155.

Smit, B. (1992). Phase diagrams of Lennard-Jones fluids. J. Chem. Phys. 96, 8639–8640.

Smit, B. (1995). Grand canonical Monte Carlo simulations of chain molecules: adsorption isotherms of alkanes in zeolites. Molec. Phys. 85, 153–172.

Smit, B., De Smedt, P., and Frenkel, D. (1989). Computer simulations in the Gibbs ensemble. Molec. Phys. 68, 931–950.

Smith, E. B. and Wells, B. H. (1984). Estimating errors in molecular simulation calculations. Molec. Phys. 52, 701–704.

Smith, E. R. (1981). Electrostatic energy in ionic crystals. Proc. Roy. Soc. Lond. A 375, 475– 505.

Smith, E. R. (1987). Boundary conditions on hydrodynamics in simulations of dense suspensions. Faraday Disc. Chem. Soc. 83, 193–198.

Smith, E. R., Snook, I. K., and van Megen, W. (1987). Hydrodynamic interactions in Brownian dynamics: I. Periodic boundary conditions for computer simulations. Physica A 143, 441–467.

Smith, S. and Morin, P. A. (2005). Optimal storage conditions for highly dilute DNA samples: a role for trehalose as a preserving agent. J. Forensic Sci. 50, 1101–1108.

Smith, W. (1982a). An introduction to the discrete Fourier transform. ccp5 Quarterly 5, 34–41.

Smith, W. (1982b). Correlation functions and the fast Fourier transform. ccp5 Quarterly

Smith, W. (1983). The periodic boundary condition in non-cubic md cells. Wigner–Seitz cells with reflection symmetry. ccp5 Quarterly 10, 37–42.

Smith, W. R. and Triska, B. (1994). The reaction ensemble method for the computer simulation of chemical and phase equilibria. 1. Theory and basic examples. J. Chem. Phys. 100, 3019–3027.

Smith, W. R., Henderson, D. J., Leonard, P. J., Barker, J. A., and Grundke, E. W. (2008). Fortran codes for the correlation functions of hard sphere fluids. Molec. Phys. 106, 3–7.

Snook, I. K. (2007). The Langevin and generalised Langevin approach to the dynamics of atomic, polymeric and colloidal systems. Amsterdam: Elsevier.

Sokhan, V. P., Jones, A. P., Cipcigan, F. S., Crain, J., and Martyna, G. J. (2015). Signature properties of water: their molecular electronic origins. Proc. Nat. Acad. Sci. 112, 6341– 6346.

(p.606) Sølvason, D., Kolafa, J., Petersen, H. G., and Perram, J. W. (1995). A rigorous comparison of the Ewald method and the fast multipole method in 2 dimensions. Comput. Phys. Commun. 87, 307–318.

Son, C. Y., McDaniel, J. G., Schmidt, J. R., Cui, Q., and Yethiraj, A. (2016). First-principles united atom force field for the ionic liquid BMIM+BF4-: an alternative to charge scaling. J. Phys. Chem. B 120, 3560–3568.

Soper, A. K. (1996). Empirical potential Monte Carlo simulation of fluid structure.

Sorensen, M. R. and Voter, A. F. (2000). Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 112, 9599–9606.

Souaille, M., Loirat, H., Borgis, D., and Gaigeot, M. P. (2009). mdvry: a polarizable classical molecular dynamics package for biomolecules. Comput. Phys. Commun. 180, 276–301.

Spa˚ngberg, D., Larsson, D. S. D., and van der Spoel, D. (2011). Trajectory NG: portable, compressed, general molecular dynamics trajectories. J. Molec. Model. 17, 2669–2685.

Spill, Y. G., Bouvier, G., and Nilges, M. (2013). A convective replica-exchange method for sampling new energy basins. J. Comput. Chem. 34, 132–140.

Spohr, E. (1997). Effect of electrostatic boundary conditions and system size on the interfacial properties of water and aqueous solutions. J. Chem. Phys. 107, 6342–6348.

Sprik, M. (1991). Computer simulation of the dynamics of induced polarization fluctuations in water. J. Phys. Chem. 95, 2283–2291.

Sprik, M. and Klein, M. L. (1988). A polarizable model for water using distributed charge sites. J. Chem. Phys. 89, 7556–7560.

Sprik, M., Klein, M. L., and Chandler, D. (1985). Staging: a sampling technique for the Monte Carlo evaluation of path integrals. Phys. Rev. B 31, 4234–4244.

St. Pierre, A. G. and Steele, W. A. (1969). The rotational Wigner function. Ann. Phys. 52, 251–292.

Stapleton, M. R., Tildesley, D. J., Panagiotopoulos, A. Z., and Qyirke, N. (1989). Phase equilibria of quadrupolar fluids by simulation in the Gibbs ensemble. Molec. Simul. 2, 147–162.

Stecher, T. and Althorpe, S. C. (2012). Improved free-energy interpolation schemes for obtaining gas-phase reaction rates from ring-polymer dynamics. Molec. Phys. 110, 875–883.

Steele, W. A. (1969). Time correlation functions. Transport phenomena in fluids, 209–312.Ed. by H. J. M. Hanley. New York: Dekker.

Steele, W. A. (1980). Molecular reorientation in dense systems. Intermolecular spectroscopy and dynamical properties of dense systems. Proc. Int. School Phys. Enrico Fermi. 75, 325–374. (Varenna, Italy, 1978). Ed. by J. van Kranendonk. Bologna: Soc. Italiana di Fisica.

Steinhardt, P. J., Nelson, D. R., and Ronchetti, M. (1983). Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805.

Stern, H. A. and Calkins, K. G. (2008). On mesh-based Ewald methods: optimal parameters for two differentiation schemes. J. Chem. Phys. 128, 214106.

Stillinger, F. H. and Weber, T. A. (1985). Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271. Erratum: ibid. 31, 5262 (1985).

(p.607) Stoddard, S. D. and Ford, J. (1973). Numerical experiments on the stochastic behavior of a Lennard-Jones gas system. Phys. Rev. A 8, 1504–1512.

Stoddard, S. D. (1978). Identifying clusters in computer experiments on systems of particles. J. Comput. Phys. 27, 291–293.

Stone, A. J. (1981). Distributed multipole analysis, or how to describe a molecular charge distribution. Chem. Phys. Lett. 83, 233–239.

Stone, A. J. (2013). The theory of intermolecular forces. 2nd ed. Oxford: Clarendon Press.

Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G., and Schulten, K.(2007). Accelerating molecular modeling applications with graphics processors. J. Comput. Chem. 28, 2618–2640.

Straatsma, T. P. and McCammon, J. A. (1990). Molecular dynamics simulations with interaction potentials including polarization development of a noniterative method and application to water. Molec. Simul. 5, 181–192.

Strandburg, K. J. (1988). Two-dimensional melting. Rev. Mod. Phys. 60, 161–207.

Stratford, K. and Pagonabarraga, I. (2008). Parallel simulation of particle suspensions with the lattice Boltzmann method. Comput. Math. Appl. 55, 1585–1593.

Stratt, R. M., Holmgren, S. L., and Chandler, D. (1981). Constrained impulsive molecular dynamics. Molec. Phys. 42, 1233–1143.

Streett, W. B. and Tildesley, D. J. (1976). Computer simulations of polyatomic molecules. I. Monte Carlo studies of hard diatomics. Proc. Roy. Soc. Lond. A 348, 485–510.

Streett, W. B. and Tildesley, D. J. (1977). Computer simulations of polyatomic molecules.II. Molecular dynamics studies of diatomic liquids with atom–atom and quadrupole– quadrupole potentials. Proc. Roy. Soc. Lond. A 355, 239–266.

Streett, W. B. and Tildesley, D. J. (1978). Computer simulations of polyatomic molecules.III. Monte Carlo simulation studies of heteronuclear and homonuclear hard diatomics. J. Chem. Phys. 68, 1275–1284.

Streett, W. B., Tildesley, D. J., and Saville, G. (1978). Multiple time step methods and an improved potential function for molecular dynamics simulations of molecular liquids. Computer modelling of matter. ACS Symp. Ser. 86, 144–158. (Anaheim, USA, 1978). Ed. by P. Lykos. Washington: American Chemical Society.

Sturgeon, J. B. and Laird, B. B. (2000). Symplectic algorithm for constant-pressure molecular dynamics using a Nosé–Poincaré thermostat. J. Chem. Phys. 112, 3474– 3482.

Subramanian, G. and Davis, H. T. (1975). Molecular dynamical studies of rough-sphere fluids. Phys. Rev. A 11, 1430–1439.

Subramanian, G. and Davis, H. T. (1979). Molecular dynamics of a hard sphere fluid in small pores. Molec. Phys. 38, 1061–1066.

Succi, S. (2013). The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford: Oxford University Press.

Sugita, Y. and Okamoto, Y. (1999). Replica-exchange molecular dynamics methods for protein folding. Chem. Phys. Lett. 314, 141–151.

Sun, H. (1998). COMPASS: an ab initio force-field optimized for condensed-phase applications. Overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364.

(p.608) Suzuki, K. and Nakata, Y. (1970). The three-dimensional structure of macromolecules.1. The conformation of ethylene polymers by the Monte Carlo method. Bull. Chem. Soc. Japan 43, 1006–1010.

Svoboda, M., Malijevský, A., and Líısal, M. (2015). Wetting properties of molecularly rough surfaces. J. Chem. Phys. 143, 104701.

Swendsen, R. H. and Wang, J.-S. (1986). Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57, 2607–2609.

Swendsen, R. H. (2002). Statistical mechanics of classical systems with distinguishable particles. J. Stat. Phys. 107, 1143–1166.

Swendsen, R. H. (2006). Statistical mechanics of colloids and Boltzmann’s definition of the entropy. Amer. J. Phys. 74, 187–190.

Swendsen, R. H. (2012). An introduction to statistical mechanics and thermodynamics.Oxford: Oxford University Press.

Swift, M. R., Osborn, W. R., and Yeomans, J. M. (1995). Lattice Boltzmann simulation of non-ideal fluids. Phys. Rev. Lett. 75, 830–833.

Swift, M. R., Orlandini, E., Osborn, W. R., and Yeomans, J. M. (1996). Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54, 5041–5052.

Swope, W. C. and Andersen, H. C. (1990). 106-particle molecular dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid. Phys. Rev. B 41, 7042–7054.

Swope, W. C., Andersen, H. C., Berens, P. H., and Wilson, K. R. (1982). A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76, 637–649.

Swope, W. C. and Andersen, H. C. (1984). A molecular dynamics method for calculating the solubility of gases in liquids and the hydrophobic hydration of inert-gas atoms in aqueous solution. J. Phys. Chem. 88, 6548–6556.

Szleifer, I., Kramer, D., Ben-Shaul, A., Gelbart, W. M., and Safran, S. A. (1990). Molecular theory of curvature elasticity in surfactant films. J. Chem. Phys. 92, 6800–6817.

Takahashi, K., Narumi, T., and Yasuoka, K. (2010). Cutoff radius effect of the isotropic periodic sum method in homogeneous system. II. Water. J. Chem. Phys. 133,014109.

Takahashi, M. and Imada, M. (1984). Monte Carlo calculation of quantum-systems. II.Higher order correction. J. Phys. Soc. Japan 53, 3765–3769.

Tang, Z., Palafox-Hernandez, J. P., Law, W.-C., Hughes, Z. E., Swihart, M. T., Prasad, P. N., Knecht, M. R., and Walsh, T. R. (2013). Biomolecular recognition principles for bionanocombinatorics: an integrated approach to elucidate enthalpic and entropic factors. ACS Nano 7, 9632–9646.

Tarazona, P. and Chacón, E. (2004). Monte Carlo intrinsic surfaces and density profiles for liquid surfaces. Phys. Rev. B 70, 235407.

Tarazona, P., Chacón, E., and Bresme, F. (2012). Intrinsic profiles and the structure of liquid surfaces. J. Phys. Cond. Mat. 24, 284123.

Tarmyshov, K. B. and Müller-Plathe, F. (2005). Parallelizing a molecular dynamics algorithm on a multiprocessor workstation using openmp. J. Chem. Inf. Model. 45, 1943–1952.

(p.609) ten Wolde, P. R. and Frenkel, D. (1998). Computer simulation study of gas–liquid nucleation in a Lennard-Jones system. J. Chem. Phys. 109, 9901–9918.

ten Wolde, P. R., Ruiz-Montero, M. J., and Frenkel, D. (1996). Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932–9947.

ten Wolde, P. R., Ruiz-Montero, M. J., and Frenkel, D. (1995). Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714–2717.

Tenenbaum, A., Ciccotti, G., and Gallico, R. (1982). Stationary nonequilibrium states by molecular dynamics. Fourier’s law. Phys. Rev. A 25, 2778–2787.

Tenney, C. M. and Maginn, E. J. (2010). Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics. J. Chem. Phys. 132, 014103.

Terada, T. and Kidera, A. (2002). Generalized form of the conserved quantity in constant- temperature molecular dynamics. J. Chem. Phys. 116, 33–41.

TestU01 (2009). TestU01: a C library for empirical testing of random number generators.simul.iro.umontreal.ca/testu01/tu01.html (Accessed Nov 2015).

Teter, M. P., Payne, M. C., and Allan, D. C. (1989). Solution of Schro¨dinger’s equation for large systems. Phys. Rev. B 40, 12255–12263.

Theodorou, D. N. (2010). Progress and outlook in Monte Carlo simulations. Ind. Eng.Chem. Res. 49, 3047–3058.

Thirumalai, D. and Berne, B. J. (1983). On the calculation of time correlation functions in quantum systems: path integral techniques. J. Chem. Phys. 79, 5029–5033.

Thirumalai, D. and Berne, B. J. (1984). Time correlation functions in quantum systems. J. Chem. Phys. 81, 2512–2513.

Thole, B. T. (1981). Molecular polarizabilities calculated with a modified dipole interaction. Chem. Phys. 59, 341–350.

Thomas, J. C. and Rowley, R. L. (2007). Transient molecular dynamics simulations of viscosity for simple fluids. J. Chem. Phys. 127, 174510.

Thompson, S. M. (1983). Use of neighbour lists in molecular dynamics. ccp5 Quarterly 8, 20–28.

Thompson, S. M., Gubbins, K. E., Walton, J. P. R. B., Chantry, R. A. R., and Rowlinson, J. S. (1984). A molecular dynamics study of liquid drops. J. Chem. Phys. 81, 530–542.

Thota, A., Luckow, A., and Jha, S. (2011). Efficient large-scale replica-exchange simulations on production infrastructure. Phil. Trans. Roy. Soc. 369, 3318–3335.

Tieleman, D. P. (2010). Methods and parameters for membrane simulations. Molecular simulations and biomembranes. Chap. 1, 1–25. Ed. by M. S. P. Sansom and P. C. Biggin. Royal Society of Chemistry.

Tieleman, D. P. (2012). Computer simulation of membrane dynamics. Comprehensive Biophysics. 5, 312–336. Elsevier BV.

Tildesley, D. J. and Madden, P. A. (1981). An effective pair potential for liquid carbon disulphide. Molec. Phys. 42, 1137–1156.

Tiller, W. A. (1991). The science of crystallization: microscopic interfacial phenomena.Cambridge: Cambridge University Press.

Tironi, I. G., Sperb, R., Smith, P. E., and van Gunsteren, W. F. (1995). A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 102, 5451–5459.

(p.610) Tobochnik, J. and Chester, G. V. (1980). The melting of two-dimensional solids. Ordering in two dimensions, 339–340. Ed. by S. K. Sinha. Amsterdam: North Holland.

Tobochnik, J. and Chester, G. V. (1982). Monte Carlo study of melting in two dimensions. Phys. Rev. B 25, 6778–6798.

Todd, B. D. and Daivis, P. J. (1998). Nonequilibrium molecular dynamics simulations of planar elongational flow with spatially and temporally periodic boundary conditions. Phys. Rev. Lett. 81, 1118–1121.

Todd, B. D. and Daivis, P. J. (1999). A new algorithm for unrestricted duration nonequilibrium molecular dynamics simulations of planar elongational flow. Comput. Phys. Commun. 117, 191–199.

Todd, B. D. and Daivis, P. J. (2007). Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications. Molec. Simul. 33, 189–229.

Todd, B. D., Evans, D. J., and Daivis, P. J. (1995). Pressure tensor for inhomogeneous fluids. Phys. Rev. E 52, 1627–1638.

Todorov, I. T. and Smith, W. (2011). The DLPOLY user manual version 4.02.0. available from ccp5.ac.uk/dl poly/.

Tolman, R. C. (1938). The principles of statistical mechanics. Oxford: Clarendon Press.

Torrie, G. M. and Valleau, J. P. (1974). Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 28, 578–581.

Torrie, G. M. and Valleau, J. P. (1977a). Monte Carlo study of a phase-separating liquid mixture by umbrella sampling. J. Chem. Phys. 66, 1402–1408.

Torrie, G. M. and Valleau, J. P. (1977b). Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199.

Torrie, G. M. and Valleau, J. P. (1979). A Monte Carlo study of an electrical double layer. Chem. Phys. Lett. 65, 343–346.

Toukan, K. and Rahman, A. (1985). Molecular-dynamics study of atomic motions in water. Phys. Rev. B 31, 2643–2648.

Towse, C.-L. and Daggett, V. (2015). Modeling protein folding pathways. Rev. Comput. Chem. 28, 87–135. Ed. by A. L. Parrill and K. B. Lipkowitz. Wiley-Blackwell.

Toxvaerd, S. (1972). Surface structure of simple fluids. Prog. Surf. Sci. 3, 189–220.

Toxvaerd, S. (1994). Hamiltonians for discrete dynamics. Phys. Rev. E 50, 2271–2274.

Toxvaerd, S., Heilmann, O. J., and Dyre, J. C. (2012). Energy conservation in molecular dynamics simulations of classical systems. J. Chem. Phys. 136, 224106.

Travis, K. P. and Braga, C. (2006). Configurational temperature and pressure molecular dynamics: review of current methodology and applications to the shear flow of a simple fluid. Molec. Phys. 104, 3735–3749.

Travis, K. P. and Braga, C. (2008). Configurational temperature control for atomic and molecular systems. J. Chem. Phys. 128, 014111.

Travis, K. P., Daivis, P. J., and Evans, D. J. (1995). Thermostats for molecular fluids undergoing shear flow: application to liquid chlorine. J. Chem. Phys. 103, 10638–10651. Erratum: ibid. 105, 3893–3894 (1996).

Tribello, G. A., Ceriotti, M., and Parrinello, M. (2012). Using sketch-map coordinates to analyze and bias molecular dynamics simulations. Proc. Nat. Acad. Sci. 109, 5196.

(p.611) Tribello, G. A., Ceriotti, M., and Parrinello, M. (2010). A self-learning algorithm for biased molecular dynamics. Proc. Nat. Acad. Sci. 107, 17509–17514.

Trokhymchuk, A. and Alejandre, J. (1999). Computer simulations of liquid/vapor interface in Lennard-Jones fluids: some questions and answers. J. Chem. Phys. 111, 8510–8523.

Troullier, N. and Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006.

Trudu, F., Donadio, D., and Parrinello, M. (2006). Freezing of a Lennard-Jones fluid: from nucleation to spinodal regime. Phys. Rev. Lett. 97, 105701.

Truhlar, D. G., Garrett, B. C., and Klippenstein, S. J. (1996). Current status of transition- state theory. J. Phys. Chem. 100, 12771–12800.

Tscho¨p, W., Kremer, K., Batoulis, J., Burger, T., and Hahn, O. (1998). Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates. Acta Polymerica 49, 61–74.

Tuckerman, M. E. (2010). Statistical mechanics: theory and molecular simulation. Oxford: Oxford University Press.

Tuckerman, M. E. and Parrinello, M. (1994). Integrating the Car–Parrinello equations. 1. Basic integration techniques. J. Chem. Phys. 101, 1302–1315

Tuckerman, M. E., Berne, B. J., and Martyna, G. J. (1992). Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001.

Tuckerman, M. E., Berne, B. J., Martyna, G. J., and Klein, M. L. (1993). Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals. J. Chem. Phys. 99, 2796–2808.

Tuckerman, M. E., Mundy, C. J., Balasubramanian, S., and Klein, M. L. (1997). Modified nonequilibrium molecular dynamics for fluid flows with energy conservation. J. Chem. Phys. 106, 5615–5621.

Tuckerman, M. E., Mundy, C. J., and Martyna, G. J. (1999). On the classical statistical mechanics of non-Hamiltonian systems. Europhys. Lett. 45, 149–155.

Tuckerman, M. E., Liu, Y., Ciccotti, G., and Martyna, G. J. (2001). Non-Hamiltonian molecular dynamics: generalizing Hamiltonian phase space principles to non- Hamiltonian systems. J. Chem. Phys. 115, 1678–1702.

Tuckerman, M. E., Marx, D., and Parrinello, M. (2002). The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417, 925–929.

Tuckerman, M. E., Alejandre, J., López-Rendón, R., Jochim, A. L., and Martyna, G. J. (2006). A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal–isobaric ensemble. J. Phys. A Math. Gen. 39, 5629–5651.

Tully, J. C. (1990). Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071.

Tully, J. C. (1998). Mixed quantum–classical dynamics. Faraday Disc. Chem. Soc. 110, 407–419.

Turci, F., Schilling, T., Yamani, M. H., and Oettel, M. (2014). Solid phase properties and crystallization in simple model systems. Euro. Phys. J. Spec. Top. 223, 421–438.

Turci, F. and Schilling, T. (2014). Crystal growth from a supersaturated melt: relaxation of the solid–liquid dynamic stiffness. J. Chem. Phys. 141, 054706.

(p.612) Turner, C. H., Brennan, J. K., Lisal, M., Smith, W. R., Johnson, J. K., and Gubbins, K. E. (2008). Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method: a review. Molec. Simul. 34, 119–146.

Tüzel, E., Strauss, M., Ihle, T., and Kroll, D. M. (2003). Transport coefficients for stochastic rotation dynamics in three dimensions. Phys. Rev. E 68, 036701.

Tuzun, R. E., Noid, D. W., and Sumpter, B. G. (1997). Efficient treatment of out-of-plane bend and improper torsion interactions in mm2, mm3, and mm4 molecular mechanics calculations. J. Comput. Chem. 18, 1804–1811.

Uhlherr, A., Leak, S. J., Adam, N. E., Nyberg, P. E., Doxastakis, M., Mavrantzas, V. G., and Theodorou, D. N. (2002). Large scale atomistic polymer simulations using Monte Carlo methods for parallel vector processors. Comput. Phys. Commun. 144, 1–22.

Uline, M. J., Siderius, D. W., and Corti, D. S. (2008). On the generalized equipartition theorem in molecular dynamics ensembles and the microcanonical thermodynamics of small systems. J. Chem. Phys. 128, 124301.

Ullrich, C. A. (2011). Time-dependent density-functional theory: concepts and applications. Oxford Graduate Texts. Oxford University Press.

Ulmschneider, J. P. and Jorgensen, W. L. (2003). Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and a Gaussian bias. J. Chem. Phys. 118, 4261–4271.

Ulmschneider, J. P. and Jorgensen, W. L. (2004). Monte Carlo backbone sampling for nucleic acids using concerted rotations including variable bond angles. J. Phys. Chem. B 108, 16883–16892.

Vaikuntanathan, S. and Jarzynski, C. (2011). Escorted free energy simulations. J. Chem. Phys. 134, 054107.

Valleau, J. P. (1980). The problem of Coulombic forces in computer simulation. The problem of long range forces in the computer simulation of condensed matter. nrcc Workshop Proceedings. 9, 3–8. (Menlo Park, USA, 1980). Ed. by D. Ceperley.

Valleau, J. P. and Card, D. N. (1972). Monte Carlo estimation of the free energy by multistage sampling. J. Chem. Phys. 57, 5457–5462.

Valleau, J. P. and Torrie, G. M. (1977). A guide to Monte Carlo for statistical mechanics. 2. Byways. Statistical mechanics B. Modern theoretical chemistry. 6, 169–194. Ed. byB. J. Berne. New York: Plenum.

Valleau, J. P. and Whittington, S. G. (1977a). A guide to Monte Carlo for statistical mechanics. 1. Highways. Statistical mechanics A. Modern theoretical chemistry. 5, 137–168. Ed. by B. J. Berne. New York: Plenum Press.

Valleau, J. P. and Whittington, S. G. (1977b). Monte Carlo in statistical mechanics: choosing between alternative transition matrices. J. Comput. Phys. 24, 150–157.

Valleau, J. P. (1999). Thermodynamic-scaling methods in Monte Carlo and their application to phase equilibria. Adv. Chem. Phys. 105, 369–404. Ed. by I. Prigogine and S. A. Rice. Wiley-Blackwell.

van Anders, G., Klotsa, D., Ahmed, N. K., Engel, M., and Glotzer, S. C. (2014). Understanding shape entropy through local dense packing. Proc. Nat. Acad. Sci. 111, E4812–E4821.

(p.613) van den Bogaart, G., Meyenberg, K., Risselada, H. J., Amin, H., Willig, K. I., Hubrich, B. E., Dier, M., Hell, S. W., Grubmüller, H., Diederichsen, U., and Jahn, R. (2011). Membrane protein sequestering by ionic protein–lipid interactions. Nature 479, 552–555.

van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A. (2001). Reaxff: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409.

van Erp, T. S. (2007). Reaction rate calculation by parallel path swapping. Phys. Rev. Lett. 98, 268301.

van Erp, T. S. (2012). Dynamical rare event simulation techniques for equilibrium and nonequilibrium systems. Adv. Chem. Phys. 151, 27–60.

van Erp, T. S. and Bolhuis, P. G. (2005). Elaborating transition interface sampling methods. J. Comput. Phys. 205, 157–181.

van Erp, T. S., Moroni, D., and Bolhuis, P. G. (2003). A novel path sampling method for the calculation of rate constants. J. Chem. Phys. 118, 7762–7774.

van Giessen, A. E. and Blokhuis, E. M. (2009). Direct determination of the Tolman length from the bulk pressures of liquid drops via molecular dynamics simulations. J. Chem. Phys. 131, 164705.

van Gunsteren, W. F. (1980). Constrained dynamics of flexible molecules. Molec. Phys. 40, 1015–1019.

van Gunsteren, W. F. and Berendsen, H. J. C. (1977). Algorithms for macromolecular dynamics and constraint dynamics. Molec. Phys. 34, 1311–1327.

van Gunsteren, W. F. and Berendsen, H. J. C. (1982). Algorithms for Brownian dynamics. Molec. Phys. 45, 637–647.

van Gunsteren, W. F. and Berendsen, H. J. C. (1988). A leap-frog algorithm for stochastic dynamics. Molec. Simul. 1, 173–185.

van Gunsteren, W. F. and Karplus, M. (1982). Effect of constraints on the dynamics of macromolecules. Macromolecules 15, 1528–1544.

van Saarloos, W. and Mazur, P. (1983). Many-sphere hydrodynamic interactions. II. Mobilities at finite frequencies. Physica A 120, 77–102.

van Swol, F. and Henderson, J. R. (1989). Wetting and drying transitions at a fluid–wall interface: density-functional theory versus computer simulation. Phys. Rev. A 40, 2567–2578.

van Swol, F. and Henderson, J. R. (1991). Wetting and drying transitions at a fluid–wall interface: density-functional theory versus computer simulation. II. Phys. Rev. A 43, 2932–2942.

van Zon, R. and Schofield, J. (2007a). Numerical implementation of the exact dynamics of free rigid bodies. J. Comput. Phys. 225, 145–164.

van Zon, R. and Schofield, J. (2007b). Symplectic algorithms for simulations of rigid-body systems using the exact solution of free motion. Phys. Rev. E 75, 056701.

Vanden-Eijnden, E. and Tal, F. A. (2005). Transition state theory: variational formulation, dynamical corrections, and error estimates. J. Chem. Phys. 123, 184103.

Vanderbilt, D. (1985). Optimally smooth norm-conserving pseudopotentials. Phys. Rev. B 32, 8412–8415.

VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., and Hutter, J. (2005). QYickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128.

(p.614) Varnik, F. and Binder, K. (2002). Shear viscosity of a supercooled polymer melt via nonequilibrium molecular dynamics simulations. J. Chem. Phys. 117, 6336–6349.

Vattulainen, I., Karttunen, M., Besold, G., and Polson, J. M. (2002). Integration schemes for dissipative particle dynamics simulations: from softly interacting systems towards hybrid models. J. Chem. Phys. 116, 3967–3979.

Vega, C., Sanz, E., Abascal, J. L. F., and Noya, E. G. (2008). Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins. J. Phys. Cond. Mat. 20, 153101.

Venable, R. M., Chen, L. E., and Pastor, R. W. (2009). Comparison of the extended isotropic periodic sum and particle mesh Ewald methods for simulations of lipid bilayers and monolayers. J. Phys. Chem. B 113, 5855–5862.

Venneri, G. D. and Hoover, W. G. (1987). Simple exact test for well-known molecular dynamics algorithms. J. Comput. Phys. 73, 468–475.

Venturoli, M. and Smit, B. (1999). Simulating the self-assembly of model membranes. Phys.

Venturoli, M., Smit, B., and Sperotto, M. M. (2005). Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys. J. 88, 1778–1798.

Venturoli, M., Sperotto, M. M., Kranenburg, M., and Smit, B. (2006). Mesoscopic models of biological membranes. Physics Reports 437, 1–54.

Verlet, L. (1967). Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103.

Verlet, L. (1968). Computer experiments on classical fluids. II. Equilibrium correlation functions. Phys. Rev. 165, 201–214.

Vesely, F. J. (1982). Angular Monte Carlo integration using quaternion parameters: a spherical reference potential for carbon tetrachloride. J. Comput. Phys. 47, 291–296.

Vieillard-Baron, J. (1972). Phase transitions of the classical hard-ellipse system. J. Chem. Phys. 56, 4729–4744.

Vila Verde, A., Acres, J. M., and Maranas, J. K. (2009). Investigating the specificity of peptide adsorption on gold using molecular dynamics simulations. Biomacro- molecules 10, 2118–2128.

Vila Verde, A., Beltramo, P. J., and Maranas, J. K. (2011). Adsorption of homopolypeptides on gold investigated using atomistic molecular dynamics. Langmuir 27, 5918–5926.

Villarreal, M. A. and Montich, G. G. (2005). On the Ewald artifacts in computer simulations. The test case of the octaalanine peptide with charged termini. J. Biomolec. Struc. Dynam. 23, 135–142.

Vink, R. L. C., Horbach, J., and Binder, K. (2005). Capillary waves in a colloid–polymer interface. J. Chem. Phys. 122, 134905.

Virnau, P. and Mu¨ller, M. (2004). Calculation of free energy through successive umbrella sampling. J. Chem. Phys. 120, 10925–10930.

Virnau, P., Müller, M., MacDowell, L. G., and Binder, K. (2004). Phase behavior of n-alkanes in supercritical solution: a Monte Carlo study. J. Chem. Phys. 121, 2169.

Vlugt, T. J. H. and Smit, B. (2001). On the efficient sampling of pathways in the transition path ensemble. Phys. Chem. Comm. 4, 11–17.

(p.615) von Lilienfeld, O. A., Tavernelli, I., Röthlisberger, U., and Sebastiani, D. (2005). Variational optimization of effective atom centered potentials for molecular properties. J. Chem. Phys. 122, 014113.

von Neumann, J. (1951). Various techniques used in connection with random digits. U. S. Nat. Bur. Stand. Appl. Math. Ser. 12, 36–38.

von Neumann, J. and Ulam, S. (1945). Random ergodic theorems. Bull. Amer. Math. Soc. 51(9). No. 165, 660.

Vorholz, J., Harismiadis, V. I., Panagiotopoulos, A. Z., Rumpf, B., and Maurer, G. (2004). Molecular simulation of the solubility of carbon dioxide in aqueous solutions of sodium chloride. Fluid Phase Equilibria 226, 237–250.

Voronstov-Vel’Yaminov, P. N., El’y-Ashevich, A. M., Morgenshtern, L. A., and Chakovskikh, V. P. (1970). Investigations of phase transitions in argon and Coulomb gas by the Monte Carlo method using an isothermically isobaric ensemble. High Temp. Res. USSR 8, 261–268.

Voth, G. A. (1996). Path-integral centroid methods in quantum statistical mechanics and dynamics. Adv. Chem. Phys. 93, 135–218.

Wagner, A. J. and Pagonabarraga, I. (2002). Lees–Edwards boundary conditions for lattice Boltzmann. J. Stat. Phys. 107, 521–537.

Wagner, A. J. and Yeomans, J. M. (1999). Phase separation under shear in two-dimensional binary fluids. Phys. Rev. E 59, 4366–4373.

Waheed, Q. and Edholm, O. (2011). Qyantum corrections to classical molecular dynamics simulations of water and ice. J. Chem. Theor. Comput. 7, 2903–2909.

Wales, D. (2004). Energy landscapes. Cambridge: Cambridge University Press.

Wall, F. T. and Mandel, F. (1975). Macromolecular dimensions obtained by an efficient Monte Carlo method without sample attrition. J. Chem. Phys. 63, 4592–4595.

Wall, F. T., Chin, J. C., and Mandel, F. (1977). Configurations of macromolecular chains confined to strips or tubes. J. Chem. Phys. 66, 3066–3069.

Walton, J. P. R. B., Tildesley, D. J., Rowlinson, J. S., and Henderson, J. R. (1983). The pressure tensor at the planar surface of a liquid. Molec. Phys. 48, 1357–1368. Erratum: ibid. 50, 1381 (1983).

Wang, F. G. and Landau, D. P. (2001a). Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys. Rev. E 64, 056101.

Wang, F. G. and Landau, D. P. (2001b). Efficient multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050–2053.

Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J., and Evans, D. J. (2002). Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601.

Wang, H. Y. and LeSar, R. (1996). An efficient fast-multipole algorithm based on an expansion in the solid harmonics. J. Chem. Phys. 104, 4173–4179.

Wang, H., Hartmann, C., Schütte, C., and Delle Site, L. (2013). Grand-canonical-like molecular dynamics simulations by using an adaptive-resolution technique. Phys. Rev. X 3, 011018.

Wang, J., Yoo, S., Bai, J., Morris, J. R., and Zeng, X. C. (2005). Melting temperature of ice Ih calculated from coexisting solid–liquid phases. J. Chem. Phys. 123, 036101.

(p.616) Wang, J. M., Cieplak, P., and Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074.

Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004). Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174.

Wang, L., Friesner, R. A., and Berne, B. J. (2011). Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J. Phys. Chem. B 115, 9431–9438.

Wang, S. S. and Krumhansl, J. A. (1972). Superposition assumption. 2. High-density fluid argon. J. Chem. Phys. 56, 4287–4290.

Wang, Y., Izvekov, S., Yan, T., and Voth, G. A. (2006). Multiscale coarse-graining of ionic liquids. J. Phys. Chem. B 110, 3564–3575.

Warren, P. B. (1998). Combinatorial entropy and the statistical mechanics of polydisper- sity. Phys. Rev. Lett. 80, 1369–1372. Erratum: ibid. 80, 3671 (1998).

Warshel, A. and Levitt, M. (1976). Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Molec. Biol. 103, 227–249.

Warshel, A., Kato, M., and Pisliakov, A. V. (2007). Polarizable force fields: history, test cases, and prospects. J. Chem. Theor. Comput. 3, 2034–2045.

Watanabe, H., Ito, N., and Hu, C.-K. (2012). Phase diagram and universality of the Lennard-Jones gas–liquid system. J. Chem. Phys. 136, 204102.

Watanabe, K. and Klein, M. L. (1989). Effective pair potentials and the properties of water. Chem. Phys. 131, 157–167.

Watanabe, N. and Tsukada, M. (2002). Efficient method for simulating quantum electron dynamics under the time-dependent Kohn–Sham equation. Phys. Rev. E 65, 036705.

Watson, M. C., Brandt, E. G., Welch, P. M., and Brown, F. L. H. (2012). Determining biomembrane bending rigidities from simulations of modest size. Phys. Rev. Lett. 109, 028102.

Weber, H., Marx, D., and Binder, K. (1995). Melting transition in 2 dimensions: a finite- size scaling analysis of bond-orientational order in hard disks. Phys. Rev. B 51, 14636–14651.

Weber, T. A. and Stillinger, F. H. (1981). Gaussian core model in two dimensions. II. Solid and fluid phase topological distribution functions. J. Chem. Phys. 74, 4020–4028.

Weeks, J. D., Chandler, D., and Andersen, H. C. (1971). Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237–5247.

Weerasinghe, S. and Pettitt, B. M. (1994). Ideal chemical potential contribution in molecular dynamics simulations of the grand canonical ensemble. Molec. Phys. 82, 897–912

Weinbach, Y. and Elber, R. (2005). Revisiting and parallelizing shake. J. Comput. Phys. 209, 193–206.

Welling, U. and Germano, G. (2011). Efficiency of linked cell algorithms. Comput. Phys. Commun. 182, 611–615.

Werner, A., Schmid, F., Müller, M., and Binder, K. (1999). ‘Intrinsic’ profiles and capillary waves at homopolymer interfaces: a Monte Carlo study. Phys. Rev. E 59, 728–738.

(p.617) Wertheim, M. S. (1984a). Fluids with highly directional attractive forces. I. Statistical thermodynamics. J. Stat. Phys. 35, 19–34.

Wertheim, M. S. (1984b). Fluids with highly directional attractive forces. II. Thermody- namic perturbation theory and integral equations. J. Stat. Phys. 35, 35–47.

Wertheim, M. S. (1986a). Fluids with highly directional attractive forces. III. Multiple attraction sites. J. Stat. Phys. 42, 459–476.

Wertheim, M. S. (1986b). Fluids with highly directional attractive forces. IV. Equilibrium polymerization. J. Stat. Phys. 42, 477–492.

Wheatley, R. J. (2013). Calculation of high-order virial coefficients with applications to hard and soft spheres. Phys. Rev. Lett. 110, 200601.

White, G. W. N., Goldman, S., and Gray, C. G. (2000). Test of rate theory transmission coefficient algorithms. An application to ion channels. Molec. Phys. 98, 1871–1885.

Whitehouse, J. S., Nicholson, D., and Parsonage, N. G. (1983). A grand ensemble Monte Carlo study of krypton adsorbed on graphite. Molec. Phys. 49, 829–847.

Widom, B. (1963). Some topics in the theory of fluids. J. Chem. Phys. 39, 2808–2812.

Widom, B. (1982). Potential distribution theory and the statistical mechanics of fluids. J. Phys. Chem. 86, 869–872.

Wierzchowski, S. and Kofke, D. A. (2001). A general-purpose biasing scheme for Monte Carlo simulation of associating fluids. J. Chem. Phys. 114, 8752–8762.

Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759.

Wilding, N. B. (2009). Solid–liquid coexistence of polydisperse fluids via simulation. J. Chem. Phys. 130, 104103.

Wilding, N. B. and Bruce, A. D. (2000). Freezing by Monte Carlo phase switch. Phys. Rev. Lett. 85, 5138–5141.

Wilding, N. B. and Sollich, P. (2004). Phase equilibria and fractionation in a polydisperse fluid. Europhys. Lett. 67, 219–225.

Wilding, N. B. (2016). Improved grand canonical sampling of vapour–liquid transitions. J. Phys. Cond. Mat. 28, 414016.

Willemsen, S. M., Vlugt, T. J. H., Hoefsloot, H. C. J., and Smit, B. (1998). Combining dissipative particle dynamics and Monte Carlo techniques. J. Comput. Phys. 147, 507–517.

Williams, D. E. (1971). Accelerated convergence of crystal-lattice potential sums. Acta Cryst. A 27, 452–455.

Wilson, B. A., Gelb, L. D., and Nielsen, S. O. (2015). Nested sampling of isobaric phase space for the direct evaluation of the isothermal–isobaric partition function of atomic systems. J. Chem. Phys. 143, 154108.

Wilson, M. and Madden, P. A. (1993). Polarization effects in ionic systems from 1st principles. J. Phys. Cond. Mat. 5, 2687–2706.

Wilson, M. R. (2005). Progress in computer simulations of liquid crystals. Int. Rev. Phys. Chem. 24, 421–455.

Winkler, R. G., Singh, S. P., Huang, C.-C., Fedosov, D. A., Mussawisade, K., Chatterji, A., Ripoll, M., and Gompper, G. (2013). Mesoscale hydrodynamics simulations of particle suspensions under shear flow: from hard to ultrasoft colloids. Euro. Phys. J. Spec. Top. 222, 2773–2786.

(p.618) Witt, A., Ivanov, S. D., Shiga, M., Forbert, H., and Marx, D. (2009). On the applicability of centroid and ring polymer path integral molecular dynamics for vibrational spectroscopy. J. Chem. Phys. 130, 194510.

Wojcik, M. and Gubbins, K. E. (1983). Thermodynamics of hard dumbbell mixtures. Molec.Phys.49,1401–1415.

Wolf, D., Keblinski, P., Phillpot, S. R., and Eggebrecht, J. (1999). Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r1 summation. J. Chem. Phys. 110, 8254–8282.

Wolf-Gladrow, D. A. (2000). Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Lect. Notes Math. Vol. 1725. Springer.

Wolfsheimer, S., Tanase, C., Shundyak, K., van Roij, R., and Schilling, T. (2006). Isotropic– nematic interface in suspensions of hard rods: mean-field properties and capillary waves. Phys. Rev. E 73, 061703.

Wood, W. W. (1968a). Monte Carlo calculations for hard disks in the isothermal–isobaric ensemble. J. Chem. Phys. 48, 415–434.

Wood, W. W. (1968b). Monte Carlo studies of simple liquid models. Physics of simple liquids. Chap. 5, 115–230. Ed. by H. N. V. Temperley, J. S. Rowlinson, and

Wood, W. W. (1970). N pT -ensemble Monte Carlo calculations for the hard disk fluid. J. Chem. Phys. 52, 729–741.

Wood, W. W. (1986). Early history of computer simulation in statistical mechanics. Molecular dynamics simulation of statistical mechanical systems. Proc. Int. School Phys. Enrico Fermi. 97, 2–14. (Varenna, Italy, 1985). Ed. by G. Ciccotti and W. G. Hoover. Bologna: Soc. Italiana di Fisica.

Wood, W. W. and Jacobson, J. D. (1957). Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres. J. Chem. Phys. 27, 1207–1208.

Wood, W. W. and Jacobson, J. D. (1959). Monte Carlo calculations in statistical mechanics. Proceedings of the western joint computer conference, 261–269. (San Francisco, USA, 1959).

Wood, W. W. and Parker, F. R. (1957). Monte Carlo equation of state of molecules interacting with the Lennard-Jones potential. I. A supercritical isotherm at about twice the critical temperature. J. Chem. Phys. 27, 720–733.

Woodcock, L. V. (1971). Isothermal molecular dynamics calculations for liquid salts. Chem. Phys. Lett. 10, 257–261.

Wright, L. B. and Walsh, T. R. (2013). Efficient conformational sampling of peptides adsorbed onto inorganic surfaces: insights from a quartz binding peptide. Phys. Chem. Chem. Phys. 15, 4715–4726.

Wright, L. B., Rodger, P. M., Walsh, T. R., and Corni, S. (2013a). First-principles-based force field for the interaction of proteins with Au(100)(5×1): an extension of GOLP-CHARMM. J. Phys. Chem. C 117, 24292–24306.

Wright, L. B., Rodger, P. M., Corni, S., and Walsh, T. R. (2013b). Golp–charmm: first- principles based force fields for the interaction of proteins with Au(111) and Au(100). J. Chem. Theor. Comput. 9, 1616–1630.

(p.619) Wright, L. B., Palafox-Hernandez, J. P., Rodger, P. M., Corni, S., and Walsh, T. R. (2015). Facet selectivity in gold binding peptides: exploiting interfacial water structure. Chem. Sci. 6, 5204–5214.

Wu, D. and Kofke, D. A. (2004). Asymmetric bias in free-energy perturbation measurements using two Hamiltonian-based models. Phys. Rev. E 70, 066702.

Wu, D. and Kofke, D. A. (2005). Phase-space overlap measures. I. Fail-safe bias detection in free energies calculated by molecular simulation. J. Chem. Phys. 123, 054103.

Wu, X. W. and Brooks, B. R. (2005). Isotropic periodic sum: a method for the calculation of long-range interactions. J. Chem. Phys. 122, 044107.

Wu, X. W. and Brooks, B. R. (2008). Using the isotropic periodic sum method to calculate long-range interactions of heterogeneous systems. J. Chem. Phys. 129, 154115.

Xia, J., Flynn, W. F., Gallicchio, E., Zhang, B. W., He, P., Tan, Z., and Levy, R. M. (2015). Large-scale asynchronous and distributed multidimensional replica exchange molecular simulations and efficiency analysis. J. Comput. Chem. 36, 1772–1785.

Yamakawa, H. (1970). Transport properties of polymer chains in dilute solution: hydrodynamic interaction. J. Chem. Phys. 53, 436–443.

Yan, Q. and de Pablo, J. J. (1999). Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model. J. Chem. Phys. 111, 9509–9516.

Yao, J., Greenkorn, R. A., and Chao, K. C. (1982). Monte Carlo simulation of the grand canonical ensemble. Molec. Phys. 46, 587–594.

Yao, Z. H., Wang, H. S., Liu, G. R., and Cheng, M. (2004). Improved neighbor list algorithm in molecular simulations using cell decomposition and data sorting method. Comput. Phys. Commun. 161, 27–35.

Yee, K. S. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Ant. Prop. 14, 302–307.

Yeh, I. C. and Berkowitz, M. L. (1999). Ewald summation for systems with slab geometry. J. Chem. Phys. 111, 3155–3162.

Yi, P. and Rutledge, G. C. (2012). Molecular origins of homogeneous crystal nucleation. Ann. Rev. Chem. Bio. Eng. 3, 157–182.

Yoo, S., Zeng, X. C., and Morris, J. R. (2004). The melting lines of model silicon calculated from coexisting solid–liquid phases. J. Chem. Phys. 120, 1654–1656.

Young, A. P. (1979). Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B19, 1855–1866.

Yu, H. and van Gunsteren, W. F. (2005). Accounting for polarization in molecular simulation. Comput. Phys. Commun. 172, 69–85.

Yu, T.-Q., Alejandre, J., López-Rendón, R., Martyna, G. J., and Tuckerman, M. E. (2010). Measure-preserving integrators for molecular dynamics in the isothermal–isobaric ensemble derived from the Liouville operator. Chem. Phys. 370, 294–305.

Zamuner, S., Rodriguez, A., Seno, F., and Trovato, A. (2015). An efficient algorithm to perform local concerted movements of a chain molecule. PLOS ONE 10, e0118342.

Zannoni, C. (1979). Computer simulation. The molecular physics of liquid crystals. Chap. 9,191–220. Ed. by G. R. Luckhurst and G. W. Gray. London: Academic Press.

Zannoni, C. (2001). Molecular design and computer simulations of novel mesophases. J. Mater. Chem. 11, 2637–2646.

(p.620) Zannoni, C. (1994). An introduction to the molecular dynamics method and to orientational dynamics in liquid crystals. The molecular dynamics of liquid crystals. NATO ASI Series C. 431, 139–164. (Il Ciocco, Italy, 1989). Ed. by G. R. Luckhurst and C. A. Veracini. Dordrecht: Kluwer.

Zannoni, C. (2000). Liquid crystal observables: static and dynamic properties. Advances in the computer simulations of liquid crystals. NATO Science Series C. 545, 17–50. (Erice, Italy, 1998). Ed. by P. Pasini and C. Zannoni. Dordrecht: Kluwer.

Zeidler, A., Salmon, P. S., Fischer, H. E., Neuefeind, J. C., Simonson, J. M., and Markland, T. E. (2012). Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics. J. Phys. Cond. Mat. 24, 284126.

Zhang, C., Donadio, D., and Galli, G. (2010). First-principle analysis of the ir stretching band of liquid water. J. Phys. Chem. Lett. 1, 1398–1402.

Zhang, C., Donadio, D., Gygi, F., and Galli, G. (2011a). First principles simulations of the infrared spectrum of liquid water using hybrid density functionals. J. Chem. Theor. Comput. 7, 1443–1449.

Zhang, C., Wu, J., Galli, G., and Gygi, F. (2011b). Structural and vibrational properties of liquid water from van der Waals density functionals. J. Chem. Theor. Comput. 7, 3054–3061.

Zhang, F. (1997). Operator-splitting integrators for constant-temperature molecular dynamics. J. Chem. Phys. 106, 6102–6106.

Zhang, M., Lussetti, E., de Souza, L. E. S., and Müller-Plathe, F. (2005). Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. J. Phys. Chem. B 109, 15060–15067.

Zhang, Y. H., Feller, S. E., Brooks, B. R., and Pastor, R. W. (1995). Computer simulation of liquid/liquid interfaces. 1. Theory and application to octane/water. J. Chem. Phys. 103, 10252–10266.

Zhang, Y. and Maginn, E. J. (2012). A comparison of methods for melting point calculation using molecular dynamics simulations. J. Chem. Phys. 136, 144116.

Zheng, W., Rohrdanz, M. A., Maggioni, M., and Clementi, C. (2011). Polymer reversal rate calculated via locally scaled diffusion map. J. Chem. Phys. 134, 144109.

Zillich, R. E., Mayrhofer, J. M., and Chin, S. A. (2010). Extrapolated high-order propagators for path integral Monte Carlo simulations. J. Chem. Phys. 132, 044103.

Zwanzig, R. (1960). Ensemble method in the theory of irreversibility. J. Chem. Phys. 33, 1338–1341.

Zwanzig, R. (1961a). Memory effects in irreversible thermodynamics. Phys. Rev. 124, 983–992.

Zwanzig, R. (1961b). Statistical mechanics of irreversibility. Lectures in theoretical physics. 3, 106–141. Ed. by W. E. Brittin, B. W. Downs, and J. Downs. New York: Interscience.

Zwanzig, R. (1965). Time correlation functions and transport coefficients in statistical mechanics. Ann. Rev. Phys. Chem. 16, 67–102.

Zwanzig, R. (1969). Langevin theory of polymer dynamics in dilute solution. Adv. Chem. Phys. 15, 325–331.

Zwanzig, R. and Ailawadi, N. K. (1969). Statistical error due to finite time averaging in computer experiments. Phys. Rev. 182, 280–283.

(p.621) Zykova-Timan, T., Rozas, R. E., Horbach, J., and Binder, K. (2009). Computer simulation studies of finite-size broadening of solid–liquid interfaces: from hard spheres to nickel. J. Phys. Cond. Mat. 21, 464102.

Zykova-Timan, T., Horbach, J., and Binder, K. (2010). Monte Carlo simulations of the solid–liquid transition in hard spheres and colloid–polymer mixtures. J. Chem. Phys. 133, 014705.