Jump to ContentJump to Main Navigation
The Physical WorldAn Inspirational Tour of Fundamental Physics$
Users without a subscription are not able to see the full content.

Nicholas Manton and Nicholas Mee

Print publication date: 2017

Print ISBN-13: 9780198795933

Published to Oxford Scholarship Online: July 2017

DOI: 10.1093/oso/9780198795933.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy).date: 27 May 2018

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions

(p.231) 8 Quantum Mechanics in Three Dimensions
The Physical World

Nicholas Manton

Nicholas Mee

Oxford University Press

In this chapter, the mathematical machinery of quantum mechanics is further developed in order to address real-world 3-dimensional physics. 3-dimensional vector notation is used for quantum mechanical operators and the Schrödinger equation is presented in this notation. The density of states of a particle in a box is considered. The angular momentum operators are defined. The eigenfunctions of the Laplacian are found. The Schrödinger equation with a spherical potential is analysed and solved for a Coulomb potential. The spectroscopy of the hydrogen atom is discussed. The spin operators are introduced. The Stern–Gerlach experiment and the Zeeman effect are discussed. The quantum mechanics of identical particles is considered and fundamental particles are shown to behave as either bosons or fermions depending on their spin. The action and the Feynman path integral are shown to offer an alternative approach to quantum mechanics that elucidates the connection between quantum and classical physics.

Keywords:   Schrödinger equation, Stern–Gerlach; spin, fermion, boson, the hydrogen atom, Feynman path integral

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .