# Mathematics and physics preliminaries: of hills and plains and other things

# Mathematics and physics preliminaries: of hills and plains and other things

The link between mathematics and physics is explained, and how the concepts “coordinates,” “generalized coordinates,” “time,” and “space” have evolved, starting with Galileo. It is also shown that “degrees of freedom” is a slippery but crucial idea. The important developments in “space research”, from Pythagoras to Riemann, are sketched. This is followed by the motivations for finding a flat region of “space”, and for Riemann’s invariant interval. A careful explanation of the three ways of taking an infinitesimal step (actual, virtual, and imperfect) is given. The programme of the Calculus of Variations is described and how this requires a virtual variation of a whole path, a path taken between fixed end-states. This then culminates in the Euler-Lagrange Equations or the Lagrange Equations of Motion. Along the way, the ideas virtual displacement and extremum are explained.

*Keywords:*
generalized coordinates, time, degrees of freedom, Riemann, invariant interval, Calculus of Variations, Euler-Lagrange Equations, virtual displacement, extremum, whole path

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .