- Title Pages
- Frontispiece
- Dedication
- Epigraph
- Preface
- List of Figures
- 1 Introduction
- 2 Antecedents
- 3 Mathematics and physics preliminaries: of hills and plains and other things
- 4 The Principle of Virtual Work
- 5 D’Alembert’s Principle
- 6 Lagrangian Mechanics
- 7 Hamiltonian Mechanics
- 8 The whole of physics
- 9 Final words
- Appendix A1.1 Newton’s Laws of Motion
- Appendix A2.1 Portraits of the physicists
- Appendix A3.1 Reversible displacements
- Appendix A6.1 Worked examples in Lagrangian Mechanics
- Appendix A6.2 Proof that <i>T</i> is a function of <i>v</i><sup>2</sup>
- Appendix A6.3 Energy conservation and the homogeneity of time
- Appendix A6.4 The method of Lagrange Multipliers
- Appendix A6.5 Generalized Forces
- Appendix A7.1 Hamilton’s Transformation, examples
- Appendix A7.2 Demonstration that the pi s are independent coordinates
- Appendix A7.3 Worked examples in Hamiltonian Mechanics
- Appendix A7.4 Incompressibility of the phase fluid
- Appendix A7.5 Energy conservation in extended phase space
- Appendix A7.6 Link between the action, <i>S</i>, and the ‘circulation’
- Appendix A7.7 Transformation equations linking <i>p</i> and <i>q</i> via <i>S</i>
- Appendix A7.8 Infinitesimal canonical transformations
- Appendix A7.9 Perpendicularity of wavefronts and rays
- Appendix A7.10 Problems solved using the Hamilton-Jacobi Equation
- Appendix A7.11 Quasi refractive index in mechanics
- Appendix A7.12 Einstein’s link between Action and the de Broglie waves
- Bibliography and Further Reading
- Index

# Mathematics and physics preliminaries: of hills and plains and other things

# Mathematics and physics preliminaries: of hills and plains and other things

- Chapter:
- (p.31) 3 Mathematics and physics preliminaries: of hills and plains and other things
- Source:
- The Lazy Universe
- Author(s):
### Jennifer Coopersmith

- Publisher:
- Oxford University Press

The link between mathematics and physics is explained, and how the concepts “coordinates,” “generalized coordinates,” “time,” and “space” have evolved, starting with Galileo. It is also shown that “degrees of freedom” is a slippery but crucial idea. The important developments in “space research”, from Pythagoras to Riemann, are sketched. This is followed by the motivations for finding a flat region of “space”, and for Riemann’s invariant interval. A careful explanation of the three ways of taking an infinitesimal step (actual, virtual, and imperfect) is given. The programme of the Calculus of Variations is described and how this requires a virtual variation of a whole path, a path taken between fixed end-states. This then culminates in the Euler-Lagrange Equations or the Lagrange Equations of Motion. Along the way, the ideas virtual displacement and extremum are explained.

*Keywords:*
generalized coordinates, time, degrees of freedom, Riemann, invariant interval, Calculus of Variations, Euler-Lagrange Equations, virtual displacement, extremum, whole path

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .

- Title Pages
- Frontispiece
- Dedication
- Epigraph
- Preface
- List of Figures
- 1 Introduction
- 2 Antecedents
- 3 Mathematics and physics preliminaries: of hills and plains and other things
- 4 The Principle of Virtual Work
- 5 D’Alembert’s Principle
- 6 Lagrangian Mechanics
- 7 Hamiltonian Mechanics
- 8 The whole of physics
- 9 Final words
- Appendix A1.1 Newton’s Laws of Motion
- Appendix A2.1 Portraits of the physicists
- Appendix A3.1 Reversible displacements
- Appendix A6.1 Worked examples in Lagrangian Mechanics
- Appendix A6.2 Proof that <i>T</i> is a function of <i>v</i><sup>2</sup>
- Appendix A6.3 Energy conservation and the homogeneity of time
- Appendix A6.4 The method of Lagrange Multipliers
- Appendix A6.5 Generalized Forces
- Appendix A7.1 Hamilton’s Transformation, examples
- Appendix A7.2 Demonstration that the pi s are independent coordinates
- Appendix A7.3 Worked examples in Hamiltonian Mechanics
- Appendix A7.4 Incompressibility of the phase fluid
- Appendix A7.5 Energy conservation in extended phase space
- Appendix A7.6 Link between the action, <i>S</i>, and the ‘circulation’
- Appendix A7.7 Transformation equations linking <i>p</i> and <i>q</i> via <i>S</i>
- Appendix A7.8 Infinitesimal canonical transformations
- Appendix A7.9 Perpendicularity of wavefronts and rays
- Appendix A7.10 Problems solved using the Hamilton-Jacobi Equation
- Appendix A7.11 Quasi refractive index in mechanics
- Appendix A7.12 Einstein’s link between Action and the de Broglie waves
- Bibliography and Further Reading
- Index