Jump to ContentJump to Main Navigation
Perceiving in DepthVolume 2 Stereoscopic Vision$

Ian P. Howard and Brian J. Rogers

Print publication date: 2012

Print ISBN-13: 9780199764150

Published to Oxford Scholarship Online: May 2012

DOI: 10.1093/acprof:oso/9780199764150.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 24 January 2017

(p.564) References

(p.564) References

Perceiving in Depth
Oxford University Press

Bibliography references:

Numbers in square brackets indicate the sections where the references are cited.

Abadi RV (1976) Induction masking—a study of some inhibitory interactions during dichoptic viewing Vis Res 16 299–75 [12.3.3c]

Adachi-Usami E, Lehmann D (1983) Monocular and binocular evoked average potential field topography: upper and lower hemiretinal stimuli Exp Brain Res 50 341–6 [11.5.1]

Adams DL, Zeki S (2001) Functional organization for macaque V3 for stereoscopic depth J Neurophysiol 86 2195–203 [11.5.1]

Adams WJ, Mamassian P (2002) Common mechanisms for 2D tilt and 3D slant after-effects Vis Res 42 2563–8 [21.6.1a]

Adams WJ, Frisby JP, Buckley D, et al. (1996) Pooling of vertical disparities by the human visual system Perception 25 165–76 [20.2.4c]

Addams R (1834) An account of a peculiar optical phenomenon seen after having looked at a moving body Lond Edin Philos Mag J Sci 5 373–4 [13.3.3a]

Adelson EH (1982) Some new illusions and some old ones analyzed in terms of their Fourier components Invest Ophthal Vis Sci 22 (Abs) 144 [16.4.2b]

Adelson EH (1993) Perceptual organization and the judgment of brightness Science 262 2042–44 [22.4.5]

Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion J Opt Soc Am A 2 284–99 [16.4.1, 11.10.1b]

Adelson EH, Movshon JA (1982) Phenomenal coherence of moving visual patterns Nature 300 523–5 [12.3.6b, 22.3.3]

Adelson EH, Movshon JA (1984) Binocular disparity and the computation of two–dimensional motion J Opt Soc Am A 1 1266 [22.3.3]

Adler FH (1945) Pathologic physiology of convergent strabismus: motor aspects of the nonaccommodational type Arch Ophthal 33 362–77 [14.4.1d]

Adrian ED, Matthews R (1927) The action of light on the eye. Part II J Physiol 64 279–301 [23.2.2]

Agard DA (1984) Optical sectioning microscopy: cellular architecture in three dimensions Ann Rev Biophys Bioeng 13 191–219 [24.2.3a]

Ahissar M, Hochstein S (1995) How early is early vision? Evidence from perceptual learning In Early vision and beyond (ed TV Papathomas, C Chubb, A Gorea, E Kowler) pp 199–206 MIT Press, Cambridge Mass [13.4.1]

Ahissar M, Hochstein S (1996) Learning pop-out detection: specificities to stimulus characteristics Vis Res 36 3487–500 [13.4.1]

Akase E, Inokawa H, Toyama K (1988) Neuronal responsiveness to three-dimensional motion in cat posterior late/rail suprasylvian cortex Exp Brain Res 122 214–26 [11.3.2]

Akerstrom RA, Todd JT (1988) The perception of stereoscopic transparency Percept Psychophys 44 421–32 [18.9]

Alais D, Blake R (1998) Interactions between global motion and local binocular rivalry Vis Res 38 637–44 [12.3.3b]

Alais D, Blake R (1999) Grouping visual features during binocular rivalry Vis Res 39 4341–53 [12.4.3]

Alais D, Blake R (2005) Binocular rivalry MIT Press, Cambridge MA [12.3.1a]

Alais D, Melcher D (2007) Strength and coherence of binocular rivalry depends on shared stimulus complexity Vis Res 47 269–79 [12.8.3a]

Alais D, Parker A (2006) Independent binocular rivalry processing for motion and form Neuron 52 911–20 [12.4.4a]

Alais D, van der Smagt MJ, Verstraten FAJ (1996) Monocular mechanisms determine plaid motion coherence Vis Neurosci 13 615–26 [22.3.3]

Alais D, O’Shea RP, Mesana-Alais C, Wilson IG (2000) On binocular alternation Perception 29 1437–45 [12.4.4b]

Alais D, Lorenceau J, Arrighi R, Cass J (2006) Contour interactions between pairs of Gabors engaged in binocular rivalry reveal a map of the association field Vis Res 46 1473–87 [12.4.3]

Alais D, Cass J, O’Shea RP, Blake R (2010) Visual sensitivity underlying changes in visual consciousness Curr Biol 20 1362–7 [12.10]

Albus K (1975) A quantitative study of the projection area of the central and paracentral visual field in area 17 of the cat. I. The precision of the topology Exp Brain Res 27 159–79 [11.3.1]

Alexander LT (1951) The influence of figure-ground relationships on binocular rivalry J Exp Psychol 41 376–81 [12.3.2c]

Allik J (1992) Resolving ambiguities in orientation motion and depth domains Perception 21 731–46 [17.6]

Allison RS (2007) Analysis of the influence of vertical disparities arising from in toed-in stereoscopic cameras J Im Sci Technol 51 317–27 [24.1.1]

Allison RS, Howard IP, Rogers BJ, Bridge H (1998) Temporal aspects of slant and inclination perception Perception 27 1287–304 [20.3.2c]

Allison RS, Gillam BJ, Vecellio E (2009a) Binocular depth discrimination and estimation beyond interaction space J Vis 9(1) Article 10 [20.6.3b]

Allison RS, Gillam BJ, Palmisano SA (2009b) Stereoscopic discrimination of the layout of ground surfaces J Vis 9 1–11 [20.1.1]

Allman JM, Meizin F, McGuinness EL (1985) Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT) Perception 14 105–29 [12.3.3b]

Alpern M (1952) Metacontrast: historical introduction Am J Optom Arch Am Acad Optom 29 631–46 [13.2.7]

Alpern M (1954) Relation of visual latency to intensity Arch Ophthal 51 369–74 [13.1.7, 23.2.2]

Alpern M (1968) A note on visual latency Psychol Rev 75 260–4 [23.2.2, 23.4.1, 23.4.2a]

Alpern M, Hofstetter HW (1948) The effect of prism on esotropia—a case report Am J Optom Arch Am Acad Optom 25 80–91 [14.4.1d]

Alpern M, Rushton WAH, Torii S (1970) Signals from cones J Physiol 207 463–75 [13.2.7b]

Ames A (1925) The illusion of depth from single pictures J Opt Soc Am 10 137–48 [24.1.7]

Ames A (1929) Cyclophoria Am J Physiol Opt 7 3–38 [12.1.5]

Ames A, Glidden GH, Ogle KN (1932a) Size and shape of ocular images. I. Methods of determination and physiologic significance Arch Ophthal 7 576–97 [14.6.1c]

Ames A, Ogle KN, Glidden GH (1932b) Corresponding retinal points the horopter and size and shape of ocular images J Opt Soc Am 22 538–574; 575–631 [14.6.2, 14.6.2a, 14.6.2c, 20.6.5a]

Amigo G (1963) Variation of stereoscopic acuity with observation distance J Opt Soc Am 53 630–5 [18.6.7]

Amigo G (1974) A vertical horopter Optica Acta 21 277–92 [14.7]

Andersen EE, Weymouth FW (1923) Visual perception and the retinal mosaic. I Retinal mean local sign—an explanation of the fineness of binocular perception of distance Am J Physiol 64 561–91 [18.2.1a, 18.6.5]

(p.565) Andersen GJ (1990) Focused attention in three-dimensional space Percept Psychophys 47 112–20 [22.5.1e]

Andersen GJ, Kramer AF (1993) Limits of focussed attention in three-dimensional space Percept Psychophys 53 658–67 [22.8.1]

Anderson BL (1992) Hysteresis cooperativity and depth averaging in dynamic random–dot stereograms Percept Psychophys 51 511–28 [18.8.2c]

Anderson BL (1994) The role of partial occlusion in stereopsis Nature 367 365–7 [17.3, 22.3.1]

Anderson BL (1997) A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions Perception 26 419–53 [22.4.5]

Anderson BL (1999a) Stereoscopic surface perception Neuron 24 919–28 [17.2.2]

Anderson BL (1999b) Stereoscopic occlusion and the aperture problem for motion: a new solution Vis Res 39 1273–84 [22.3.1]

Anderson BL (2003) Perceptual organization and White’s illusion Perception 32 269–84 [22.4.5]

Anderson BL, Julesz B (1995) A theoretical analysis of illusory contour formation in stereopsis Psychol Rev 102 705–43 [22.2.4a]

Anderson CH, Van Essen DC (1987) Shifter circuits: a computational strategy for dynamic aspects of visual processing Proc Natl Acad Sci 84 6297–301 [18.10.3a]

Anderson JD, Bechtoldt HP, Dunlap GL (1978) Binocular integration in line rivalry Bull Psychonom Soc 11 399–402 [12.3.5a]

Anderson PA, Movshon JA (1989) Binocular combination of contrast signals Vis Res 29 1115–32 [13.1.2b]

Andrews DP (1967) Perception of contour orientation in the central fovea Part 1: Short Lines Vis Res 7 975–97 [13.1.3a]

Andrews TJ, Blakemore C (1999) Form and motion have independent access to consciousness Nat Neurosci 2 405–6 [12.3.6b, 12.5.4b]

Andrews TJ, Blakemore C (2002) Integration of motion information during binocular rivalry Vis Res 42 301–9 [12.3.6b, 12.5.4b]

Andrews TJ, Lotto RB (2004) Fusion and rivalry are dependent on the perceptual meaning of visual stimuli Curr Biol 14 418–23 [12.3.2d]

Andrews TJ, Purves D (1997) Similarities in normal and binocularly rivalrous viewing Proc Natl Acad Sci 94 9905–8 [12.3.8a]

Andrews TJ, White LE, Binder D, Purves D (1996) Temporal events in cyclopean vision Proc Natl Acad Sci 93 3689–92 [13.1.5]

Andrews TJ, Glennerster A, Parker AJ (2001) Stereoacuity thresholds in the presence of a reference surface Vis Res 41 3051–61 [18.3.3a]

Anstis SM (1975) What does visual perception tell us about visual coding In Handbook of psychobiology (ed C Blakemore, MS Gazzaniga) pp 269–323 Academic Press, New York [21.1, 21.4.1]

Anstis SM (1980) The perception of apparent movement Philos Tr R Soc B 290 153–68 [16.5.3a]

Anstis SM (1986) Motion perception in the frontal plane In Handbook of human perception and performance (ed KR Boff, L Kaufman, JP Thomas) Vol 1 Chap 16 Wiley, New York [16.4.2a]

Anstis SM (2000) Monocular lustre from flicker Vis Res 40 2551–6 [12.3.8c]

Anstis SM, Duncan K (1983) Separate motion aftereffects from each eye and from both eyes Vis Res 23 161–9 [13.3.3d]

Anstis SM, Harris JP (1974) Movement aftereffects contingent on binocular disparity Perception 3 153–68 [22.5.4]

Anstis SA, Ho A (1998) Nonlinear combination of luminance excursions during flicker simultaneous contrast afterimages and binocular fusion Vis Res 38 523–9 [13.1.6a]

Anstis SM, Moulden BP (1970) After–effect of seen movement: evidence for peripheral and central components Quart J Exp Psychol 22 222–9 [13.3.3d, 16.4.3]

Anstis SM, Reinhardt-Rutland AH (1976) Interactions between motion aftereffects and induced movement Vis Res 16 1391–4 [21.1]

Anstis SM, Rogers BJ (1975) Illusory reversal of visual depth and movement during changes of contrast Vis Res 15 957–61 [15.3.7b]

Anstis SM, Howard IP, Rogers B (1978) A Craik–Cornsweet illusion for visual depth Vis Res 18 213–17 [21.1, 21.4.2e, 21.5.1, 21.5.2]

Anstis SM, Smith DRR, Mather G (2000) Luminance processing in apparent motion, Vernier offset and stereoscopic depth Vis Res 40 657–75 [16.4.2h]

Anzai A, Bearse MA, Freeman RD, Cai D (1995) Contrast coding by cells in the cat’s striate cortex: monocular vs binocular detection Vis Neurosci 12 77–93 [13.1.8a]

Anzai A, Ohzawa I, Freeman RD (1999a) Neural mechanisms for encoding binocular disparity: field position versus phase J Neurophysiol 82 874–90 [11.4.3a, 11.4.3c, 11.4.5b, 11.10.1b]

Anzai A, Ohzawa I, Freeman RD (1999b) Neural mechanisms for processing binocular information I. Simple cells J Neurophysiol 82 891–908 [11.10.1b]

Anzai A, Ohzawa I, Freeman RD (1999c) Neural mechanisms for processing binocular information II. Complex cells J Neurophysiol 82 909–24 [11.10.1b]

Anzai A, Ohzawa I, Freeman RD (2001) Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect Nat Neurosci 4 513–18 [11.6.5, 23.3.2]

Apkarian PA, Nakayama K, Tyler CW (1981) Binocularity in the human visual evoked potentials: facilitation summation and suppression EEG Clin Neurophysiol 51 32–48 [11.7, 12.9.2e, 13.1.8b]

Archer SM, Miller KK, Helveston EM (1987) Stereoscopic contours and optokinetic nystagmus in normal and stereoblind subjects Vis Res 27 841–4 [16.5.1]

Archie KA, Mel BW (2000) A model for intradendritic computation of binocular disparity Nat Neurosci 3 54–63 [11.10.1b]

Arditi A (1982) The dependence of the induced effect on orientation and a hypothesis concerning disparity computations in general Vis Res 22 247–56 [20.2.3a, 20.4.1d]

Arditi A, Kaufman L (1978) Singleness of vision and the initial appearance of binocular disparity Vis Res 18 117–20 [12.1.1c]

Arditi A, Anderson PA, Movshon JA (1981a) Monocular and binocular detection of moving sinusoidal gratings Vis Res 21 329–36 [13.3.3f]

Arditi A, Kaufman L, Movshon JA (1981b) A simple explanation of the induced size effect Vis Res 21 755–64 [20.2.3a]

Aristotle (1931) Parva naturalia De somni. In The works of Aristotle translated into English Vol III Oxford University Press, London [13.3.3a]

Arndt PA, Mallot HA, Bülthoff HH (1995) Human stereovision without localized image features Biol Cyber 72 279–93 [17.1.1c]

Arnold DH, Grove PM, Wallis TSA (2007) Staying focused: a functional account of perceptual suppression during binocular rivalry J Vis 7(7) Article 7 [12.3.2b, 15.4.1]

Arnold DH, Law P, Wallis TSA (2008) Binocular switch suppression: A new method for persistently rendering the visible ‘invisible’ Vis Res 48 994–1001 [12.3.5f]

Arnold DH, James B, Rosenboom W (2009) Binocular rivalry: spreading dominance through complex images J Vis 9(13) Article 4 [12.3.5e]

Arnott SR, Shedden JM (2000) Attention switching in depth using random-dot autostereograms: attention gradient asymmetries Percept Psychophys 62 1459–73 [22.8.1]

Aschenbrenner CM (1954) Problems in getting information into and out of air photographs Photogram Engin 20 398–401 [24.1.5]

Asher H (1953) Suppression theory of binocular vision Br J Ophthal 37 37–49 [12.7.2]

Assee A, Qian N. (2007) Solving da Vinci stereopsis with depth-edge-selective V2 cells Vis Res 47 2585–602 [17.3]

Atchley P, Kramer AF (2001) Object and space-based attentional selection in three-dimensional space Vis Cognit 8 1–32 [22.8.1]

Atchley P, Kramer AF, Andersen GJ, Theeuwes J (1997) Spatial cuing in a stereoscopic display: evidence for a “depth aware” attentional focus Psychonom Bull Rev 4 524–9 [22.8.1]

Atkinson J (1972) Visibility of an afterimage in the presence of a second afterimage Percept Psychophys 12 257–62 [12.3.8d]

Atkinson J, Campbell FW (1974) The effect of phase on the perception of compound gratings Vis Res 14 159–62 [12.3.8a]

(p.566) Atkinson J, Campbell FW, Fiorentini A, Maffei L (1973) The dependence of monocular rivalry on spatial frequency Perception 2 127–33 [12.3.8a]

Attneave F, Block G (1973) Apparent movement in tridimensional space Percept Psychophys 13 301–7 [22.5.3a]

Auerbach E, Peachey NS (1984) Interocular transfer and dark adaptation to long-wave test lights Vis Res 27 1043–8 [13.2.2]

Avilla CW, von Noorden GK (1981) Limitation of the TNO random dot stereo test for visual screening Am Orthopt J 31 87–90 [18.2.3b]

Azar RF (1965) Postoperative paradoxical diplopia Am Orthopt J 15 64–71 [14.4.1e]

Bach M, Schmitt C, Kromeier M, Kommerell G (2001) The Freiburg test: automatic measurement of stereo threshold Graefe’s Arch Clin Exp Ophthal 239 562–6 [18.2.2e]

Backus BT (2002) Perceptual metamers in stereoscopic vision In Advances in neural information processing systems 14 (ed G Dietterich, S Becker, Z Ghahramani) MIT Press, Cambridge, MA [20.2.3c]

Backus BT, Banks MS (1999) Estimator reliability and distance scaling in stereoscopic slant perception Perception 28 217–42 [20.2.3c]

Backus BT, Matza-Brown D (2003) The contribution of vergence change to the measurement of relative disparity J Vis 3 737–50 [18.10.2a]

Backus BT, Banks MS, van Ee R, Crowell JA (1999) Horizontal and vertical disparity, eye position, and stereoscopic slant perception Vis Res 39 1143–70 [20.2.2b, 20.2.2d]

Backus BT, Fleet DJ, Parker AJ, Heeger, DJ (2001) Human cortical activity correlates with stereoscopic depth perception J Neurophysiol 86 2054–68 [11.8.1]

Bacon BA, Villemagne J, Bergeron A, et al. (1998) Spatial disparity coding in the superior colliculus of the cat Exp Brain Res 119 333–44 [11.2.3]

Bacon BA, Lepore F, Guillemot JP (2000) Neurons in the posteromedial lateral suprasylvian area of the cat are sensitive to binocular positional depth cues Exp Brain Res 134 464–76 [11.3.2]

Bacon JH (1976) The interaction of dichoptically presented spatial gratings Vis Res 16 337–44 [13.1.6c]

Badcock DR, Derrington AM (1987) Detecting the displacements of spatial beats: a monocular capability Vis Res 27 793–7 [12.1.7]

Badcock DR, Schor CM (1985) Depth–increment detection function for individual spatial channels J Opt Soc Am A 2 1211–15 [11.4.2, 18.3.3a, 18.7.2b]

Bagby JW (1957) A cross–cultural study of perceptual predominance in binocular rivalry J Abn Soc Psychol 54 331–4 [12.8.3a]

Bagolini B (1967) Anomalous correspondence: definition and diagnostic methods Doc Ophthal 23 346–98 [14.4.1e]

Bagolini B (1976) Part I Sensorial anomalies in strabismus. Part II. Sensori-motorial anomalies in strabismus Doc Ophthal 41 1–41 [14.4.1b, 14.4.1e]

Bagolini B, Capobianco NM (1965) Subjective space in comitant squint Am J Ophthal 59 430–42 [14.4.1b]

Bailey NJ (1958) Locating the center of visual direction by binocular diplopia method Am J Optom Arch Am Acad Optom 35 484–95 [16.7.6a]

Baitch LW, Levi DM (1988) Evidence for nonlinear binocular interactions in human visual cortex Vis Res 28 1139–43 [13.1.8b]

Baker CH (1970) A study of the Sherrington effect Percept Psychophys 8 406–10 [13.1.5]

Bakin JS, Nakayama K, Gilbert CD (2000) Visual responses in monkey areas V1 and V2 to three-dimensional surface configurations J Neurosci 20 8188–98 [22.2.4c]

Balch W, Milewski A, Yonas A (1977) Mechanisms underlying the slant aftereffect Percept Psychophys 21 581–5 [21.6.1a]

Ball K, Sekuler R (1987) Direction-specific improvement in motion discrimination Vis Res 27 953–65 [13.4.1]

Bando T, Yamamoto N, Tsukahara N (1984) Cortical neurons related to lens accommodation in posterior lateral suprasylvian area in cats J Neurophysiol 52 879–91 [11.3.2]

Bando T, Hara N, Takagi M, Yamamoto K, Toda H (1996) Roles of the lateral suprasylvian cortex in convergence eye movements in cats Prog Brain Res 112 143–56 [11.3.2]

Banks MS, Backus BT (1998) Extra-retinal and perspective cues cause the small range of the induced effect Vis Res 38 187–94 [20.2.3b]

Banks MS, van Ee R, Backus BT (1997) The computation of binocular visual direction: a re–examination of Mansfield and Legge (1996) Vis Res 37 1605–10 [16.7.7]

Banks MS, Hooge ITC, Backus BT (2001) Perceiving slant about a horizontal axis from stereopsis J Vis 1 55–79 [20.3.1, 20.3.2a]

Banks MS, Backus BT, Banks RS (2002) Is vertical disparity used to determine azimuth? Vis Res 42 801–7 [19.6.4]

Banks MS, Gephstein S, Landy MS (2004a) Why is stereoresolution so low? J Neurosci 24 2077–89 [11.10.1c, 18.6.3c]

Banks S, Ghose T, Hillis M (2004b) Relative image size, not eye position, determines eye dominance switches Vis Res 44 229–34 [12.3.7]

Bannister H (1932) Retinal reaction time Physical and Optical Societies report of a joint discussion on vision pp 227–34 The Physical Society, London [23.4.1]

Banton T, Levi DM (1991) Binocular summation in vernier acuity J Opt Soc Am A 8 673–80 [13.1.3c]

Bárány EH (1946) A theory of binocular visual acuity and an analysis of the variability of visual acuity Acta Ophthal 27 63–92 [13.1.1b]

Bárány EH, Halldén U (1948) Phasic inhibition of the light reflex of the pupil during retinal rivalry J Neurophysiol 11 25–30 [12.5.1]

Barbeito R (1983) Sighting from the cyclopean eye: the cyclops effect in preschool children Percept Psychophys 33 561–4 [16.7.2c]

Barbeito R, Ono H (1979) Four methods of locating the egocentre: a comparison of their predictive validities and reliabilities Behav Res Meth Instrum 11 31–6 [16.7.6a, 16.7.6b]

Barbeito R, Simpson TL (1991) The relationship between eye position and egocentric visual direction Percept Psychophys 50 373–82 [16.7.6b]

Barbeito R, Levi D, Klein S, Loshin D, Ono H (1985) Stereo–deficients and stereoblinds cannot make utrocular discriminations Vis Res 25 1345–8 [16.8]

Barfield W, Furness TA (1995) Virtual environments and advanced interface design Oxford University Press, New York [24.2.6]

Barlow HB (1958) Temporal and spatial summation in human vision at different background intensities J Physiol 141 337–50 [13.1.6b, 18.3.5]

Barlow HB (1978) The efficiency of detecting changes of density in random dot patterns Vis Res 18 637–50 [18.3.5]

Barlow HB, Brindley GS (1963) Inter–ocular transfer of movement aftereffects during pressure blinding of the stimulated eye Nature 200 1349–50 [13.3.3b, 16.4.1]

Barlow HB, Fitzhugh R, Kuffler SW (1957) Change of organization in the receptive fields of the cat’s retina during dark adaptation J Physiol 137 338–54 [12.4.2]

Barlow HB, Blakemore C, Pettigrew JD (1967) The neural mechanism of binocular depth discrimination J Physiol 193 327–42 [11.1.2, 11.3.1, 11.4.4, 11.4.5b]

Barnard ST (1987) A stochastic approach to stereo vision In Readings in computer vision (ed MA Fischler, O Fischein) pp 21–5 Kauffman Los Altos CA [15.2.1a]

Barnes GR, Benson AJ, Prior ARJ (1978) Visual vestibular interaction in the control of eye movement Aviat Space Environ Med 49 557–64 [18.10.5]

Battersby WS, Wagman IH (1962) Neural limitations of visual excitability IV: spatial determinants of retrochiasmal interaction Am J Physiol 203 359–65 [13.2.3]

Bauer A, Kolling G, Dietz K, et al. (2000) Are squinters second-class motorists? Influence of stereoscopic disparity on driving performance Klin Monat Augenheil 217 183–9 [20.1.1]

Baumgartner G (1964) Neuronale mechanismen des Kontrast- und Bewegungssehens Ber D Ophthal Ges 66 111–25 [21.5.2]

Beard BL, Levi DM, Reich LN (1995) Perceptual learning in parafoveal vision Vis Res 35 1679–90 [13.4.1]

(p.567) Bearse MA, Freeman RD (1994) Binocular summation in orientation discrimination depends on stimulus contrast and duration Vis Res 34 19–29 [13.1.3a]

Beasley WC, Peckham RH (1936) An objective study of “cyclotorsion” Psychol Bull 33 741–2 [12.1.5]

Beck J (1965) Apparent spatial position and the perception of lightness J Exp Psychol 59 170–9 [22.4.3b]

Beck J (1967) Perceptual grouping produced by line figures Percept Psychophys 2 491–5 [22.8.2a]

Beck J (1972) Similarity grouping and peripheral discrimination under uncertainty Am J Psychol 85 1–19 [22.8.2a]

Becker S, Hinton GE (1992) Self-organizing neural network that discovers surfaces in random-dot stereograms Nature 355 161–3 [11.10.2]

Bedell HE, Klopfenstein JF, Yuan N (1989) Extraretinal information about eye position during involuntary eye movement: optokinetic afternystagmus Percept Psychophys 46 579–86 [22.7.2]

Behrens F, Grüsser OJ (1988) The effect of monocular pattern deprivation and open-loop stimulation on optokinetic nystagmus in squirrel monkeys In Post-lesion neural plasticity (ed H Flohr) pp 455–72 Springer, Berlin [22.6.1b]

Beil W, Carlsen IC (1990) A combination of topographical contrast and stereoscopy for the reconstruction of surface topographies in SEM J Micros 157 127–33 [24.2.3d]

Békésy G von (1967) Sensory inhibition Princeton University Press, Princeton N J [21.1]

Békésy G von (1970) Apparent image rotation in stereoscopic vision: the unbalance of the pupils Percept Psychophys 8 343–7 [17.9]

Belheumer PN (1996) A Bayesian approach to binocular stereopsis Int J Comp Vis 19 237–60 [11.10.1a, 11.10.1c]

Belheumer PN, Mumford D (1992). A Bayesian Treatment of the Stereo Correspondence Problem Using Half occluded Regions. Proc IEEE Conf. CVPR, 506–12, Champaign, I [11.10.1c]

Benson AJ, Barnes GR (1978) Vision during angular oscillation; the dynamic interaction of visual and vestibular mechanisms Aviat Space Environ Med 49 340–5 [18.10.5]

Berardi N, Galli L, Maffei L, Siliprandi R (1986) Binocular suppression in cortical neurons Exp Brain Res 63 581–4 [12.9.2b]

Bereby-Meyer Y, Leiser D, Meyer J (2000) Perception of artificial stereoscopic stimuli from an incorrect viewing point Percept Psychophys 61 1555–63 [24.1.1]

Berends EM, Erkelens CJ (2001a) Strength of depth effects induced by three types of vertical disparity Vis Res 41 37–45 [20.2.3b, 20.3.2a]

Berends EM, Erkelens CJ (2001b) Adaptation to disparity but not to perceived depth Vis Res 41 883–92 [21.6.2d]

Berends EM, van Ee R, Erkelens CJ (2002) Vertical disparity can alter perceived direction Perception 31 1323 33 [21.6.2d]

Berends EM, Zhang ZL, Schor CM (2003) Eye movement facilitate stereo-slant discrimination when horizontal disparity is noisy J Vis 3 780–94 [18.10.2b]

Berends EM, Liu B, Schor CM (2005) Stereo-slant adaptation is high level and does not involve disparity coding  J Vis 5 71–80 [21.6.2c]

Bergman R, Gibson JJ (1959) The negative aftereffect of the perception of a surface slanted in the third dimension Am J Psychol 72 364–74 [21.6.1b, 21.6.3a, 21.6.3b, 21.6.4]

Bergua A, Skrandies W (2000) An early antecedent to modern random dot stereograms—’the secret stereoscopic writing’ of Ramon y Cajal Int J Psychophysiol 36 69–72 [24.1.5]

Berlucchi G, Rizzolatti G (1968) Binocularly driven neurons in visual cortex of split–chiasm cats Science 159 308–10 [11.9.1]

Berman N, Blakemore C, Cynader M (1975) Binocular interaction in the cat’s superior colliculus J Physiol 276 595–615 [11.2.3]

Berry RN (1948) Quantitative relations among vernier real depth and stereoscopic depth acuities J Exp Psychol 38 708–21 [13.1.3e, 18.11]

Berry RN, Riggs LA, Duncan CP (1950) The relation of vernier and depth discriminations to field brightness J Exp Psychol 40 349–54 [18.5.1]

Bertamini M, Lawson R (2008) Rapid figure-ground responses to stereogrms reveal an advantage for a convex foreground Perception 37 483–94 [22.1.3]

Berthier A (1896) Images stéréoscopiques de grand format Cosmos 34 227–33 [24.1.3a]

Bielschowsky A (1898) über monokuläre Diplopie ohne physikalische Grundlage nebst Bemerkungen über das Sehen Schlielender Graefes Arch klin exp Ophthal 46 143–83 [12.3.8b, 14.4.1d, 14.4.2]

Bielschowsky A (1937) Application of the after-image test in the investigation of squint Arch Ophthal 17 408–19 [14.4.1b]

Birch EE, Foley JM (1979) The effects of duration and luminance on binocular depth mixture Perception 8 293–7 [18.8.2c]

Birch EE, Salomao S (1998) Infant random dot stereoacuity cards J Pediat Ophthal Strab 35 86–90 [18.2.3d]

Bishop PO (1979) Stereopsis and the random element in the organization of the striate cortex Proc R Soc B 204 415–44 [11.3.1, 11.6.2]

Bishop PO (1989) Vertical disparity egocentric distance and stereoscopic depth constancy: a new interpretation Proc R Soc B 237 445–69 [19.6.3, 20.6.5a]

Bishop PO (1994) Size constancy depth constancy and vertical disparities: a further quantitative interpretation Biol Cyber 71 37–47 [19.6.3]

Bishop PO (1996) Can random-dot stereograms serve as a model for the perception of depth in relation to real three-dimensional objects Vis Res 36 1473–7 [20.6.3d]

Bishop PO, Henry GH (1971) Spatial vision Ann Rev Psychol 22 119–60 [11.9.2, 15.3.4b]

Bishop PO, Kozak W, Vakkur GJ (1962) Some quantitative aspects of the cat’s eye: axis and plane of reference visual field coordinates and optics J Physiol 163 466–502 [11.1.2]

Bishop PO, Henry GH, Smith CJ (1971) Binocular interaction fields of single units in the cat’s striate cortex J Physiol 216 39–68 [11.4.1d]

Bishop PO, Coombs JS, Henry GH (1973) Receptive fields of simple cells in the cat striate cortex  J Physiol 231 31–60 [12.9.2b, 13.3.2b]

Bjorklund RA, Magnussen S (1981) A study of interocular transfer of spatial adaptation Perception 10 511–18 [13.2.6]

Black P, Myers RE (1964) Visual functions of the forebrain commissures in the chimpanzee Science 146 799–800 [13.4.2]

Blackwell HR (1952) Studies of psychophysical methods for measuring thresholds J Opt Soc Am 42 606–16 [18.1]

Blake A, Bülthoff H (1990) Does the brain know the physics of specular reflection? Nature 343 165–8 [17.1.6]

Blake A, Bülthoff H (1991) Shape from specularities: computation and psychophysics Philos Tr R Soc B 331 237–52 [17.1.6]

Blake R (1977) Threshold conditions for binocular rivalry J Exp Psychol HPP 3 251–7 [12.3.2b]

Blake R (1988) Dichoptic reading: the role of meaning in binocular rivalry Percept Psychophys 44 133–41 [12.8.3b]

Blake R (1989) A neural theory of binocular rivalry Psychol Rev 96 145–67 [12.10]

Blake R, Boothroyd K (1985) The precedence of binocular fusion over binocular rivalry Percept Psychophys 37 114–27 [12.7.2]

Blake R, Bravo M (1985) Binocular rivalry suppression interferes with phase adaptation Percept Psychophys 38 277–80 [12.6.2]

Blake R, Camisa J (1978) Is binocular vision always monocular? Science 200 1497–99 [12.7.2]

Blake R, Camisa J (1979) On the inhibitory nature of binocular rivalry suppression J Exp Psychol HPP 5 315–23 [12.3.2a]

Blake R, Cormack RH (1979a) On utrocular discrimination Percept Psychophys 29 53–68 [16.8]

Blake R, Cormack RH (1979b) Psychophysical evidence for a monocular visual cortex in stereoblind humans Science 203 274–5 [16.8]

Blake R, Cormack RH (1979c) Does contrast disparity alone generate stereopsis? Vis Res 19 913–15 [20.2.1]

Blake R, Fox R (1972) Interocular transfer of adaptation to spatial frequency during retinal ischaemia Nat New Biol 270 76–7 [12.6.2, 13.2.6]

(p.568) Blake R, Fox R (1973) The psychophysical inquiry into binocular summation Percept Psychophys 14 161–85 [13.1.1, 13.1.6c]

Blake R, Fox R (1974a) Binocular rivalry suppression: insensitive to spatial frequency and orientation change Vis Res 14 687–92 [12.5.3]

Blake R, Fox R (1974b) Adaptation to invisible gratings and the site of binocular rivalry suppression Nature 279 488–90 [12.6.1]

Blake R, Lehmkuhle SW (1976) On the site of strabismic suppression Invest Ophthal 15 660–3 [12.6.1]

Blake R, Lema SA (1978) Inhibitory effect of binocular rivalry suppression is independent of orientation Vis Res 18 541–4 [12.3.3c]

Blake R, Levinson E (1977) Spatial properties of binocular neurons in the human visual system Exp Brain Res 27 221–32 [13.1.2a, 13.1.2c, 13.1.6c]

Blake R, O’Shea RP (1988) “Abnormal fusion” of stereopsis and binocular rivalry Psychol Rev 95 151–4 [12.7.4]

Blake R, Overton R (1979) The site of binocular rivalry suppression Perception 8 143–52 [12.4.3, 12.6.2]

Blake R, Rush C (1980) Temporal properties of binocular mechanisms in the human visual system Exp Brain Res 38 333–40 [13.1.2c]

Blake R, Wilson HR (1991) Neural models of stereoscopic vision TINS 14 445–52 [11.4.3c]

Blake R, Fox R, McIntyre C (1971) Stochastic properties of stabilized–image binocular rivalry alternations J Exp Psychol 88 327–32 [12.3.6a]

Blake R, Fox R, Westendorf D (1974) Visual size constancy occurs after binocular rivalry Vis Res 14 585–6 [12.4.1]

Blake R, Camisa JM, Antoinetti DN (1976) Binocular depth discrimination depends on orientation Percept Psychophys 20 113–18 [18.6.5]

Blake R, Breitmeyer B, Green M (1980a) Contrast sensitivity and binocular brightness: dioptic and dichoptic luminance conditions Percept Psychophys 27 180–1 [13.2.2]

Blake R, Westendorf DH, Overton R (1980b) What is suppressed during binocular rivalry? Perception 9 223–31 [12.4.4a, 12.7.3]

Blake R, Martens W, Di Gianfilippo A (1980c) Reaction time as a measure of binocular interaction in human vision Invest Ophthal Vis Sci 19 930–41 [13.1.7]

Blake R, Sloane M, Fox R (1981a) Further developments in binocular summation Percept Psychophys 30 296–76 [13.1.1]

Blake R, Overton R, Lema–Stern S (1981b) Interocular transfer of visual aftereffects J Exp Psychol HPP 7 367–81 [13.3.1, 13.3.2a]

Blake R, Zimba L, Williams D (1985) Visual motion binocular correspondence and binocular rivalry Biol Cyber 52 391–7 [12.3.6b]

Blake R, Westendorf D, Fox R (1990) Temporal perturbations of binocular rivalry Percept Psychophys 48 593–602 [12.10]

Blake R, Yang Y, Westendorf D (1991a) Discriminating binocular fusion from false fusion Invest Ophthal Vis Sci 32 2821–25 [12.3.5a]

Blake R, Yang Y, Wilson HR (1991b) On the coexistence of stereopsis and binocular rivalry Vis Res 31 1191–203 [12.7.3]

Blake R, O’Shea RP, Mueller TJ (1992) Spatial zones of binocular rivalry in central and peripheral vision Vis Neurosci 8 469–78 [12.4.1]

Blake R, Yu K, Lokey M, Norman H (1998) Binocular rivalry and motion perception J Cog Neurosci 10 46–60 [12.3.6b, 13.3.3d]

Blake R, Sobel KV, Gilroy LA (2003) Visual motion retards alternations between conflicting perceptual interpretations Neuron 39 869–78 [12.3.6b]

Blakemore C (1970a) Binocular depth perception and the optic chiasm Vis Res 10 43–7 [11.6.1, 11.9.1, 20.2.1]

Blakemore C (1970b) The representation of three–dimensional visual space in the cats striate cortex J Physiol 209 155–78 [11.3.1, 14.6.1b, 20.2.1]

Blakemore C (1970c) The range and scope of binocular depth discrimination in man J Physiol 211 599–622 [18.1, 18.3.3a, 18.4.1a, 18.6.1a, 18.6.4, 18.7.2b]

Blakemore C (1970d) A new kind of stereoscopic vision Vis Res 10 1181–99 [20.2.1]

Blakemore C, Campbell FW (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images J Physiol 203 237–60 [13.2.6, 21.6.4]

Blakemore C, Hague B (1972) Evidence for disparity detecting neurones in the human visual system J Physiol 225 437–55 [22.5.1b]

Blakemore C, Julesz B (1971) Stereoscopic depth aftereffect produced without monocular cues Science 171 286–8 [21.6.2a]

Blakemore C, Pettigrew JD (1970) Eye dominance in the visual cortex Nature 225 429–9 [11.3.1]

Blakemore C, Sutton P (1969) Size adaptation: a new aftereffect Science 166 275–7 [13.3.4, 21.1, 21.6.4]

Blakemore C, Fiorentini A, Maffei L (1972) A second neural mechanism of binocular depth discrimination J Physiol 229 725–49 [11.6.2]

Blakemore C, Diao Y, Pu M, et al. (1983) Possible functions of the interhemispheric connections between visual cortical areas in the cat J Physiol 337 331–49 [11.9.2]

Blakeslee B, McCourt ME (1999) A multiscale filtering account of the White effect, simultaneous brightness contrast and grating induction Vis Res 39 4361–77 [22.4.5]

Blanche PA, Bablumian A, Voorakranam R, et al. (2010) Holographic three-dimensional telepresence using large-area photorefractive polymer Nature 468 80–3 [596] [24.1.4a]

Blasdel GG, Fitzpatrick D (1984) Physiological organization of layer in macaque striate cortex J Neurosci 4 880–95 [13.4.1]

Blaser E, Domini F (2002) The conjunction of feature and depth information Vis Res 42 273–79 [21.6.2f]

Blohm G, Khan AZ, Ren L, et al. (2008) Depth estimation from retinal disparity requires eye and head orientation signals J Vis 8(16) Article 3 [20.1.2]

Bloj MG, Kersten D, Hurlbert AC (1999) Perception of three-dimensional shape influences colour perception through mutual illumination Nature 402 877–79 [22.4.6]

Blomfield S (1973) Implicit features and stereoscopy Nature B275 256 [22.2.4a]

Bodé DD (1986) Chromostereopsis and chromatic dispersion Am J Optom Physiol Opt 63 859–66 [17.8]

Boeder P (1964) Anomalous retinal correspondence refuted Am J Ophthal 58 366–73 [14.4.1d]

Boeder P (1966) Single binocular vision in strabismus Am J Ophthal 61 78–86 [14.4.1d]

Bogert BP, Healy WJR, Tukey JW (1963) The frequency analysis of time series for echoes: cepstrum pseudoautocovariance cross cepstrum and saphe cracking In Proceedings of symposium on time series analysis (ed M Rosenblatt) pp 209–43 Wiley, New York [15.2.1d]

Bolanowski SJ (1987) Contourless stimuli produce binocular brightness summation Vis Res 27 1943–51 [13.1.4c]

Bolanowski SJ, Doty RW (1987) Perceptual “blankout” of monocular homogeneous fields (Ganzfelder) is prevented with binocular viewing Vis Res 27 967–82 [12.3.3a]

Boltz RL, Smith EL, Bennett MJ, Harwerth RS (1980) Vertical fusional vergence ranges of the rhesus monkey Vis Res 20 83–5 [18.4.2b]

Bonds AB (1989) Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex Vis Neurosci 2 41–55 [12.9.2b, 13.3.2b]

Bonneh YS, Sagi D (1999) Configuration saliency revealed in short duration binocular rivalry Vis Res 39 271–81 [12.3.3c]

Bonneh YS, Cooperman A, Sagi D (2001a) Motion induced blindness in normal observers Nature 411 798–801 [12.3.8a]

Bonneh YS, Sagi D, Karni A (2001b) A transition between eye and object rivalry determined by stimulus coherence Vis Res 41 981–9 [12.4.4b]

Boothroyd K, Blake R (1984) Stereopsis from disparity of complex grating patterns Vis Res 27 1205–22 [17.1.1a]

Boring EG (1942) Sensation and perception in the history of experimental psychology Appleton–Century–Crofts, New York [16.7.4b]

Bossink CJH, Stalmeier PF M, de Weert CMM (1993) A test of Levelt’s second proposition for binocular rivalry Vis Res 33 1413–9 [12.10, 12.3.2a]

Boucher JA (1967) Common visual direction horopters in exotropes with anomalous correspondence Am J Optom Arch Am Acad Optom 44 547–72 [14.4.1b]

(p.569) Bouman MA (1955) On foveal and peripheral interactions in binocular vision Optica Acta 1 177–83 [12.3.2a]

Bouman MA, van den Brink G (1952) On the integrate capacity in time and space of the human peripheral retina J Opt Soc Am 42 617–20 [13.1.6b]

Bourassa CM, Rule SJ (1994) Binocular brightness: a suppression-summation trade off Can J Exp Psychol 48 418–34 [13.1.4c, 13.2.4a]

Bourdon B (1902) La perception visuelle de l’espace Reinwald, Paris [18.2.1a]

Bourdy C (1978) Horopter-vernier et couleur Vis Res 18 445–51 [14.6.2b]

Bowd C, Rose D, Phinney R, Denny M, Patterson R (1996) Enduring stereoscopic motion aftereffects induced by prolonged adaptation Vis Res 36 3655–60 [16.5.3a]

Bowd C, Donnelly M, Shorter S, Patterson R (2000) Cross-domain adaptation reveals that a common mechanism computes stereoscopic (cyclopean) and luminance plaid motion Vis Res 40 331–9 [16.5.3a]

Bowen RW, Wilson HR (1994) A two process analysis of pattern masking Vis Res 34 645–57 [13.2.4a]

Bower TGR (1966) A local sign for depth Nature 210 1081–2 [18.5.4a, 23.3.1]

Bower TGR, Goldsmith WM, Hochberg J (1964) Stereodepth from afterimages Percept Mot Skills 19 510 [18.10.1a]

Boyaci H, Maloney LT, Hersh S (2003) The effect of perceived surface orientation on perceived surface albedo in binocularly viewed scenes J Vis 3 541–3 [22.4.3b]

Boyde A (1973) Quantitative photogrammetric analysis and qualitative stereoscopic analysis of SEM images J Micros 98 452–71 [24.2.3d]

Boyde A, Jones SJ, Taylor ML, Wolfe LA (1990) Fluorescence in the tandem scanning microscope J Micros 157 39–49 [24.2.3b]

Boynton RM (1979) Human color vision Holt Rinehart and Winston, New York [12.2.1]

Boynton RM, Wisowaty JJ (1984) Selective color effects in dichoptic masking Vis Res 27 667–75 [13.2.3]

Braccini C, Gambardella G, Suetta G (1980) A noise masking experiment in grating perception at threshold: the implications for binocular summation Vis Res 20 373–6 [13.1.1e, 13.1.2b]

Braddick OJ (1974) A short–range process in apparent movement Vis Res 14 519–27 [16.4.2a, 16.4.2c]

Braddick OJ (1979) Binocular single vision and perceptual processing Proc R Soc B 204 503–12 [12.1.3a, 20.3.1c]

Braddick OJ, Adlard A (1978) Apparent motion and the motion detector In Visual psychophysics and physiology (ed JC Armington, J Krauskopf, BR Wooten) pp 417–29 Academic Press, New York [16.4.2a]

Bradley DC, Andersen RA (1998) Center-surround antagonism based on disparity in primate area MT J Neurosci 18 7552–65 [11.5.2a, 22.3.2]

Bradley DC, Qian N, Andersen RA (1995) Integration of motion and stereopsis in middle temporal cortical area of macaques Nature 373 609–11 [11.5.2a, 22.3.2]

Bradley DC, Chang GC, Andersen RA (1998) Encoding of three-dimensional structure-from-motion by primate MT neurons Nature 392 714–17 [11.5.2a]

Bradley DR (1982) Binocular rivalry of real vs subjective contours Percept Psychophys 32 85–7 [12.3.3d]

Bradshaw JL (1969) Brightness of the dominant field, and pupillary reflexes in retinal rivalry Br J Psychol 60 351– 6 [12.5.1]

Bradshaw MF, Cumming BG (1997) The direction of retinal motion facilitates binocular stereopsis Proc R Soc B 294 1421–7 [15.3.9]

Bradshaw MF, Glennerster A (2006) Stereoscopic acuity and observation distance Spat Vis 19 21–36 [18.6.7]

Bradshaw MF, Rogers BJ (1999) Sensitivity to horizontal and vertical corrugations defined by binocular disparity frequency Vis Res 39, 3049–56 [18.6.3b, 20.4.2, 21.4.2e]

Bradshaw MF, Frisby J, Mayhew JEW (1987) The recovery of structure from motion: no evidence for a special link with the convergent disparity mechanism Perception 16 351–7 [22.3.4]

Bradshaw MF, Rogers BJ, De Bruyn B (1995) Perceptual latency and complex random-dot stereograms Perception 27 749–59 [18.14.2c, 18.14.2f]

Bradshaw MF, Glennerster A, Rogers BJ (1996) The effect of display size on disparity scaling from differential perspective and vergence cues Vis Res 36 1255–64 [20.6.3c]

Bradshaw MF, Parton AD, Eagle RA (1998) The interaction of binocular disparity and motion parallax in determining perceived depth and perceived size Perception 27 1317–31 [20.6.2b]

Bradshaw MF, Parton AD, Glennerster A (2000) The task-dependent use of binocular disparity and motion parallax information Vis Res 40 3725–34 [20.6.3b]

Bradshaw MF, Hibbard PB, van der Willigen R, et al. (2002a) The stereoscopic anisotropy affects manual pointing Spat Vis 15 443–58 [20.4.1c]

Bradshaw MF, Hibbard PB, Gillam B (2002b) Perceptual latencies to discriminate surface orientation in stereopsis Percept Psychophys 64 32–40 [20.4.1b]

Bradshaw MF, Hibbard PB, Parton AD, et al. (2006) Surface orientation, modulation frequency and the detection and perception of depth defined by binocular disparity and motion parallax Vis Res 46 2636–44 [20.4.2]

Brakenhoff GJ, van der Voort HTM, van Spronsen EA, Nanninga N (1986) Three-dimensional imaging by confocal scanning fluorescence microscopy Ann N Y Acad Sci 483 405–15 [24.2.3b]

Brandt T, Dichgans J, Koenig E (1973) Differential effects of central versus peripheral vision on egocentric motion perception Exp Brain Res 16 476–91 [22.7.3]

Brandt T, Wist ER, Dichgans J (1975) Foreground and background in dynamic spatial orientation Percept Psychophys 17 497–503 [22.7.3]

Brascamp JW, van Ee R, Pestman WR, van den Berg AV (2005) Distributions of alternation rates in various form of bistable perception J Vis 5 287–98 [12.10]

Brascamp JW, Knapen THJ, Kanai R, et al. (2007) Flash suppression and flash facilitation in binocular rivalry J Vis 7(12) Article 12 [12.3.5f]

Brauner JD, Lit A (1976) The Pulfrich effect simple reaction time and intensity discrimination Am J Psychol 89 105–14 [23.2.2]

Braunstein ML (1976) Depth perception through motion Academic Press, New York [24.1.7]

Bredfeldt CE, Cumming BG (2006) A simple account of cyclopean edge responses in macaque V2 J Neurosci 26 7581–96 [11.5.1]

Bredfeldt CE, Ringach DL (2002) Dynamics of spatial frequency tuning in macaque V1 J Neurosci 22 1976–84 [11.4.8b]

Breese BB (1899) On inhibition Psychol Rev Monogr Supp 3 (whole number 11) [12.3.6b, 12.3.8a, 12.8.1]

Breese BB (1909) Binocular rivalry Psychol Rev 16 410–15 [12.3.2c]

Breitmeyer B, Battaglia F, Bridge J (1977) Existence and implication of a tilted binocular disparity space Perception 6 161–4 [18.6.1b]

Brenner E, van Damme WJM (1998) Judging distance from ocular convergence Vis Res 38 493–8 [18.10.2a]

Brenner E, Smeets JBJ, Landy MS (2001) How vertical disparities assist judgements of distance Vis Res 41 3455–65 [20.6.5f]

Brewster D (1830) Optics. In the Edinburgh Encyclopedia Vol. 15 Blackwoods, Edinburgh pp 460–662 [16.7.7]

Brewster D (1844a) On the knowledge of distance given by binocular vision Trans Roy Soc Edinb 15 663–74 [24.1.6]

Brewster D (1844b) On the law of visible position in single and binocular vision and on the representation of solid figures by the union of dissimilar plane pictures on the retina Trans Roy Soc Edinb 15 349–68 [16.7.2b, 16.7.7, 24.1.6]

Brewster D (1851) Notice of a chromatic stereoscope Philosophical Magazine 4th series 3 31 [17.8]

Bridge H, Cumming BG (2001) Responses of macaque V1 neurones to binocular orientation differences J Neurosci 21 7293–302 [11.6.2]

(p.570) Bridge H, Parker AJ (2007) Topographical representation of binocular depth in the human visual cortex using fMRI J Vis 7(14) Article 15 [11.4.1f]

Bridge H, Cumming BG, Parker AJ (2001) Modeling V1 neuronal responses to orientation disparity Vis Neurosci 18 879–91 [11.6.2]

Bridgman CS, Smith KU (1945) Bilateral neural integration in visual perception after section of the corpus callosum J Comp Neurol 83 57–68 [11.9.2]

Briggs W (1676) Ophthalmographia London 2nd edition 1685 [16.7.2d]

Brill MH (1978) A device performing illuminant-invariant assessment of chromatic relations J Theor Biol 71 473–8 [22.4.6]

Broadbent H, Westall C (1990) An evaluation of techniques for measuring stereopsis in infants and young children Ophthal Physiol Opt 10 3–7 [18.2.3b, 18.2.4]

Brock FW, Givner I (1952) Fixation anomalies in amblyopia Arch Ophthal 47 775–86 [14.4.1b]

Brookes A, Stevens KA (1989a) Binocular depth from surfaces versus volumes J Exp Psychol HPP 15 479–84 [21.4.2e]

Brookes A, Stevens KA (1989b) The analogy between stereo depth and brightness Perception 18 601–14 [21.4.1, 21.4.2c, 21.5.1, 21.5.3, 24.1.5]

Brooks KR, Gillam BJ (2006a) Quantitative perceived depth from sequential monocular decamouflage Vis Res 46 605–13 [17.3]

Brooks KR, Gillam BJ (2006b) The swinging doors of perception: stereomotion without binocular matching J Vis 6 685–95 [17.3]

Brooks KR, Gillam BJ (2007) Stereomotion perception for a monocularly camouflaged stimulus J Vis 7 (13) Article 13 [17.3]

Brown JP, Ogle KN, Reiher L (1965) Stereoscopic acuity and observation distance Invest Ophthal 4 894–900 [18.6.7]

Brown KT (1953) Factors affecting differences in apparent size between opposite halves of a visual meridian J Opt Soc Am 43 464–72 [14.6.2a]

Brown KT (1955) An experiment demonstrating instability of retinal directional values J Opt Soc Am 45 301–7 [14.6.2a]

Brown RJ, Norcia AM (1997) A method for investigating binocular rivalry in real-time with the steady-state VEP Vis Res 37 2701–8 [12.9.2e]

Bryngdahl O (1976) Characteristics of superposed patterns in optics J Opt Soc Am 66 87–94 [12.1.7]

Büchert M, Greenlee MW, Rutschmann RM, et al. (2002) Functional magnetic resonance imaging evidence for binocular interactions in human visual cortex Exp Brain Res 145 334–9 [13.1.8b]

Buck SL, Pulos E (1987) Rod-cone interaction in monocular but not binocular pathways Vis Res 27 479–82 [13.2.3]

Buckley D, Frisby JP, Mayhew JEW (1989) Integration of stereo and texture cues in the formation of discontinuities during three–dimensional surface interpolation Perception 18 563–88 [22.2.2]

Buckley D, Frisby JP, Freeman J (1994) Lightness perception can be affected by surface curvature from stereopsis Perception 23 869–81 [22.4.4]

Buckthought A, Wilson HR (2007) Interaction between binocular rivalry and depth in plaid patterns Vis Res 47 2543–56 [12.7.3]

Buckthought A, Kim J, Wilson HR (2008) Hysteresis effects in stereopsis and binocular rivalry Vis Res 48 819–30 [12.7.3]

Bülthoff HH, Fahle M, Wegmann M (1991) Perceived depth scales with disparity gradient Perception 20 145–53 [21.2]

Burbeck CA (1987) Locus of spatial-frequency discrimination J Opt Soc Am A 4 1807–13 [22.5.1d]

Burdea G, Coiffet P (1994) Virtual reality technology Wiley, New York [24.2.6]

Burian HM (1943) Influence of prolonged wearing of meridional size lenses on spatial localization Arch Ophthal 30 645–68 [14.4.2]

Burian HM (1951) Anomalous retinal correspondence Am J Ophthal 34 237–53 [14.4.1e]

Burian HM (1958) Normal and anomalous correspondence In Strabismus (ed JH Allen) pp 184–200 Mosby, St Louis MO [14.4.1e]

Burian HM, Capobianco NM (1952) Monocular diplopia (binocular triplopia) in concomitant strabismus Arch Ophthal 47 23–30 [14.4.2]

Burke D, Wenderoth P (1989) Cyclopean tilt aftereffects can be induced monocularly: is there a purely binocular process? Perception 18 471–82 [13.3.2a]

Burke D, Alais D, Wenderoth P (1999) Determinants of fusion of dichoptically presented orthogonal gratings Perception 28 73–88 [12.3.2c]

Burkhalter A, Van Essen DC (1986) Processing of color form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey J Neurosci 6 2327–51 [11.5.1]

Burns BD, Prichard R (1968) Cortical conditions for fused binocular vision J Physiol 197 149–71 [12.9.2b]

Burr DC (1979) Acuity for apparent vernier offset Vis Res 19 835–37 [23.3.6]

Burr DC, Ross J (1979) How does binocular delay give information about depth? Vis Res 19 523–32 [23.3.1, 23.3.6, 23.6.4]

Burr DC, Ross J (1982) Contrast sensitivity at high velocities Vis Res 22 479–82 [18.10.1b]

Burr DC, Ross J, Morrone MC (1986) A spatial illusion from motion rivalry Perception 15 59–66 [12.3.8c]

Burrows AA, Hamilton VE (1974) Stereopsis using a large aspheric field lens App Optics 13 739–40 [24.1.2b]

Burt P, Julesz B (1980) Modifications of the classical notion of Panum’s fusional area Perception 9 671–82 [12.1.3a, 19.4]

Burt P, Sperling G (1981) Time distance and feature trade–offs in visual apparent motion Psychol Rev 88 171–95 [22.5.3a]

Busettini C, Masson GS, Miles FA (1996) A role for stereoscopic depth cues in the rapid visual stabilization of the eyes Nature 380 342–5 [22.6.1e]

Butler TW, Westheimer G (1978) Interference with stereoscopic acuity: spatial temporal and disparity tuning Vis Res 18 1387–92 [18.6.2a]

Buttner-Ennever JA, Cohen B, Horn AK, Reisine H (1996) Efferent pathways from the nucleus of the optic tract in monkey and their role in eye movements J Comp Neurol 373 90–107 [22.6.1a]

Cagenello R, Rogers BJ (1989) Binocular discrimination of line orientation and the stereoscopic discrimination of surface slant and curvature Invest Ophthal Vis Sci 30 (Abs) 252 [20.3.1c]

Cagenello R, Rogers BJ (1990) Orientation disparity cyclotorsion and the perception of surface slant Invest Ophthal Vis Sci 31 (Abs) 97 [20.3.2a]

Cagenello R, Rogers BR (1993) Anisotropies in the perception of stereoscopic surfaces: the role of orientation disparity Vis Res 33 2189–201 [20.3.1b, 20.3.1c, 20.4.1a, 20.4.1d]

Cagenello R, Arditi A, Halpern DL (1993) Binocular enhancement of visual acuity J Opt Soc Am A 10 1841–8 [13.1.3e]

Campbell A (1971) Interocular transfer of mirror-images by goldfish Brain Res 33 486–90 [13.4.2]

Campbell FW, Green DG (1965) Monocular versus binocular visual acuity Nature 208 191–2 [13.1.1d, 13.1.2a]

Campbell FW, Howell ER (1972) Monocular alternation: a method for the investigation of pattern vision J Physiol 225 19–21P [12.3.8a]

Campbell FW, Maffei L (1971) The tilt aftereffect: a fresh look Vis Res 11 833–40 [13.3.2a]

Campbell FW, Robson JG (1968) Application of Fourier analysis to the visibility of gratings J Physiol 197 551–66 [18.6.3c]

Campbell FW, Gilinsky AS, Howell ER, et al. (1973) The dependence of monocular rivalry on orientation Perception 2 123–5 [12.3.8a. 12.3.8d]

Campos EC (1978) On the reliability of some tests of binocular sensorial status in strabismic patients J Ped Ophthal Strab 15 8–14 [14.4.1b]

Campos EC (1982) Binocularity in comitant strabismus: binocular visual fields studies Doc Ophthal 53 279–81 [14.4.1a]

Campos EC, Enoch JM (1980) Amount of aniseikonia compatible with fine binocular vision: some old and new concepts J Ped Ophthal Strab 17 44–7 [18.3.4]

(p.571) Carkeet, A, Wildsoet CF, Wood JM (1997) Inter-ocular temporal asynchrony (IOTA): psychophysical measurement of inter-ocular asymmetry of visual latency Ophthal Physiol Opt 17 255–62 [23.7]

Carlson TA, He S (2000) Visible binocular beats from invisible monocular stimuli during binocular rivalry Curr Biol 10, 1055–8 [12.5.5]

Carlson WA, Eriksen CW (1966) Dichoptic summation of information in the recognition of briefly presented forms Percept Psychophys 5 67–8 [13.1.3e]

Carman GJ, Welch L (1992) Three–dimensional illusory contours and surfaces Nature 360 585–7 [22.2.4a]

Carney T (1997) Evidence for an early motion system which integrates information from the two eyes Vis Res 37 2361–8 [16.4.2d]

Carney T, Shadlen MN (1992) Binocularity of early motion mechanisms: comments on Georgeson and Shackleton Vis Res 32 187–91 [16.4.2b]

Carney T, Shadlen MN (1993) Dichoptic activation of the early motion system Vis Res 33 1977–95 [16.4.2c, 16.4.3]

Carney T, Shadlen MN, Switkes E (1987) Parallel processing of motion and colour information Nature 328 647–9 [12.5.4a]

Carney T, Paradiso MA, Freeman RD (1989) A physiological correlate of the Pulfrich effect in cortical neurons of the cat Vis Res 29 155–65 [23.3.2]

Carpenter RHS (1988) Movements of the eyes Pion, London [16.7.7]

Carr HC (1935) An introduction to space perception Longmans-Green, New York [24.1.7]

Carter DB (1958) Studies of fixation disparity. II. Apparatus, procedure and the problem of constant error Am J Optom Arch Am Acad Optom 35 590–8 [14.6.1c]

Carter OL, Pettigrew JD (2003) A common oscillator for perceptual rivalries? Perception 32 295–305 [12.3.8a]

Casanova C, Freeman RD, Nordmann JP (1989) Monocular and binocular response properties of cells in the striate-recipient zone of the cat’s lateral posterior-pulvinar complex J Neurophysiol 62 544–57 [11.2.1, 11.6.4]

Cass EE (1941) Monocular diplopia occurring in cases of squint Br J Ophthal 25 565–77 [14.4.2]

Castelo-Branco M, Formisano E, Backes W, et al. (2002) Activity patterns in human motion-sensitive areas depend on the interpretation of global motion Proc Natl Acad Sci 99 13914–19 [22.3.3]

Catania AC (1965) Interocular transfer of discriminations in the pigeon J Exp Anal Behav 8 145–55 [13.4.2]

Cavanagh P, Mather G (1989) Motion: the long and short of it Spat Vis 4 103–29 [16.4.2a, 18.7.2d]

Cavanagh P, Arguin M, Treisman A (1990) Effect of surface medium on visual search for orientation and size features J Exp Psychol HPP 16 479–91 [22.8.2a]

Cavonius CR (1979) Binocular interactions in flicker Quart J Exp Psychol 31 273–80 [13.1.5]

Chan ACW, Chung SCS, Yim APC, et al. (1997) Comparison of two-dimensional vs three-dimensional camera systems in laparoscopic surgery Surgical Endoscopy 11 438–40 [24.2.4]

Chang JJ (1990) New phenomena linking depth and luminance in stereoscopic motion Vis Res 30 137–47 [16.5.1]

Chang JJ, Julesz B (1983) Displacement limits direction anisotropy and direction versus form discrimination in random–dot cinematograms Vis Res 23 639–46 [16.4.2c]

Chapanis A, McCleary RA (1953) Interposition as a cue for the perception of relative distance J Gen Psychol 48 113–32 [22.1.1]

Charnwood JRB (1949) Observations on ocular dominance The Optician 116 85–8 [16.7.3b, 16.7.6b]

Chen CN (1998) Generation of depth-perception information in stereoscopic nuclear magnetic resonance imaging by non-linear magnetic field gradients Magnetic Resonance Imaging 16 405–12 [24.2.4]

Chen G, Lu, HD, Roe AW (2008) A map for horizontal disparity in monkey V2 Neuron 58 442–50 [11.5.1]

Chen VJ, Cicerone CM (2002) Depth from subjective color and apparent motion Vis Res 42 2131–5 [15.3.8a]

Chen X, He S (2003) Temporal characteristics of binocular rivalry: visual field asymmetries Vis Res 43 2207–12 [12.3.4]

Chen Y, Wang Y, Qian N (2001) Modeling V1 disparity tuning to time-varying stimuli J Neurophysiol 86 143–55 [11.10.1b]

Cherry EC (1953) Some experiments on the recognition of speech with one and two ears J Acoust Soc Am 25 975–9 [12.8.3b]

Chevreul ME (1839) The principles of harmony and contrast of colors Based on the English translation of 1854. Reinhold, New York [22.4.1]

Chiang C (1967) Stereoscopic Moiré patterns J Opt Soc Am 57 1088–90 [24.1.3a]

Chong SC, Blake R (2006) Exogenous attention and endogenous attention influence initial dominance in binocular rivalry Vis Res 46 1794–803 [12.8.2]

Chong SC, Tadin D, Blake R (2005) Endogenous attention prolongs dominance durations in binocular rivalry J Vis 5 1004–12 [12.8.2]

Chowdhury SA, DeAngelis GC (2008) Fine discrimination training alters the causal contribution of macaque area MT to depth perception Neuron 60 367–77 [11.5.2a]

Christianson S, Hofstetter HW (1972) Some historical notes on Carl Pulfrich Am J Optom Arch Am Acad Optom 49 944–7 [23.1.1]

Christophers RA, Rogers BJ (1994) The effect of viewing distance on the perception of random dot stereograms Invest Ophthal Vis Sci 35 (Abs) 1627 [18.14.2c]

Christophers RA, Rogers BJ, Bradshaw MF (1993) Perceptual latencies vergence eye movements and random-dot stereograms Invest Ophthal Vis Sci 34 (Abs) 1438 [18.14.2c, 18.14.2f]

Chung CS, Berbaum K (1984) Form and depth in global stereopsis J Exp Psychol HPP 10 258–75 [18.14.2c]

Church J (1966) Language and the discovery of reality Vintage Press, New York [16.7.2c]

Cibis PA, Haber H (1951) Anisopia and perception of space J Opt Soc Am 41 676–83 [17.9]

Cigánek L (1970) Binocular addition of the visually evoked response with different stimulus intensities in man Vis Res 10 479–87 [13.1.8b]

Cisne JI (2009) Stereoscopic comparison as the long-lost secret to microscopically detailed illumination like the Book of Kells’ Perception 38 1087–103 [24.2.1]

Ciuffreda KJ, Hokoda SC (1985) Subjective vergence error at near during active head rotation Ophthal Physiol Opt 5 411–15 [18.10.5]

Claudet A (1856) On various phenomena of refraction through semi-lenses or prisms producing anomalies in the illusion of stereoscopic images Proc R Soc 8 104–111 [24.1.2b]

Claudet A (1858a) On the stereomonoscope: a new instrument by which an apparently single picture produces the stereoscopic illusion Proc Roy Soc 10 194–6 [24.1.2f]

Claudet A (1858b) Binocular vision The Edinburgh Review 107 223–41 [24.2.3a]

Clement RA (1985) The geometry of specific horopters Ophthal Physiol Opt 5 397–401 [14.5.3]

Clement RA (1987) Line correspondence in binocular vision Perception 16 193–9 [14.5.3]

Clement RA (1992) Gaze angle explanations of the induced effect Perception 21 355–7 [19.6.5]

Cobb WA, Morton HB, Ettlinger G (1967) Cerebral potentials evoked by pattern reversal and their suppression in visual rivalry Nature 216 1123–5 [12.9.2e]

Cobo-Lewis AB (1996) Monocular dot-density cues in random-dot stereograms Vis Res 36 345–50 [24.1.5]

Cobo–Lewis AB, Yeh YY (1994) Selectivity of cyclopean masking for the spatial frequency of binocular disparity modulation Vis Res 34 607–20 [18.6.3e]

Cobo-Lewis AB, Gilroy LA, Smallwood TB (2000) Dichoptic plaids may rival, but their motions can integrate Spat Vis 13 415–29 [12.3.6b]

Coe B (1981) The history of movie photography Eastview Editions Westfield NJ [24.1.7]

(p.572) Cogan AI (1978) Fusion at the site of the “ghosts” Vis Res 18 657–64 [15.4.6]

Cogan AI (1987) Human binocular interaction: towards a neural model Vis Res 27 2125–39 [13.1.4b, 13.3.1]

Cogan AI, Silverman G, Sekuler R (1982) Binocular summation in detection of contrast flashes Percept Psychophys 31 330–8 [13.1.6b]

Cogan AI, Clarke M, Chan H, Rossi A (1990) Two–pulse monocular and binocular interactions at the differential luminance threshold Vis Res 30 1617–30 [13.1.6c]

Cogan AI, Lomakin AJ, Rossi AF (1993) Depth in anticorrelated stereograms: effects of spatial density and interocular delay Vis Res 33 1959–75 [15.3.7d]

Cogan AI, Kontsevich LL, Lomakin AJ, et al. (1995) Binocular disparity processing with opposite-contrast stimuli Perception 27 33–47 [15.3.7b]

Cohn TE, Leong H, Lasley DJ (1981) Binocular luminance detection: availability of more than one central interaction Vis Res 21 1017–23 [13.1.4b]

Cole RG, Boisvert RP (1974) Effect of fixation disparity on stereo-acuity Am J Optom Physiol Opt 51 206–13 [18.10.3b]

Collett TS (1985) Extrapolating and interpolating surfaces in depth Proc R Soc B 227 43–56 [22.2.2]

Collett TS, Schwarz U, Sobel EC (1991) The interaction of oculomotor cues and stimulus size in stereoscopic depth constancy Perception 20 733–54 [20.6.3a]

Collewijn H (1975) Direction–selective units in the rabbit’s nucleus of the optic tract Brain Res 100 489–508 [22.6.1a, 22.6.1e]

Collewijn H, Steinman RM, Erkelens CJ, Regan D (1991) Binocular fusion stereopsis and stereoacuity with a moving head In Vision and visual dysfunction Vol 9 Binocular vision (ed D Regan) pp 121–36 MacMillan, London [18.10.5]

Collins MJ, Goode A (1994) Interocular blur suppression and monovision Acta Ophthal 72 376–80 [12.3.7]

Collyer SC, Bevan W (1970) Objective measurement of dominance control in binocular rivalry Percept Psychophys 8 437–9 [12.8.1]

Coltheart M (1971) Visual feature-analyzers and after-effects of tilt and curvature Psychol Rev 78 114–21 [21.6.3a]

Coltheart M (1973) Colour–specificity and monocularity in the visual cortex Vis Res 13 2595–8 [13.3.2a]

Comerford JP (1974) Stereopsis with chromatic contours Vis Res 14 975–82 [17.1.4a]

Cook M, Gillam B (2004) Depth of monocular elements in a binocular scene: the conditions for da Vinci stereopsis J Exp Psychol HPP 30 92–103 [17.3]

Cooper J, Feldman J (1979) Assessing the Frisby stereo test under monocular viewing conditions J Am Optom Assoc 50 807–9 [18.2.1e]

Cooper J, Warshowsky J (1977) Lateral displacement as a response cue in the Titmus stereo Test Am J Physiol Opt 54 537–41 [18.2.2b]

Cooper ML, Pettigrew JD (1979) A neurophysiological determination of the vertical horopter in the cat and owl J Comp Neurol 184 1–29 [14.7]

Corballis MC, Beale IL (1970) Monocular discrimination of mirror-image obliques by pigeons: evidence for lateralized stimulus control Anim Behav 18 563–6 [13.4.2]

Corbin HH (1942) The perception of grouping and apparent movement in visual depth Arch Psychol 273 1–50 [22.5.3a]

Coren S, Kaplan CP (1973) Patterns of ocular dominance Am J Optom Arch Am Acad Optom 50 283–92 [12.3.7]

Coren S, Porac C (1983) Subjective contours and apparent depth: a direct test Percept Psychophys 33 197–200 [22.2.4a]

Cormack LK, Riddle RB (1996) Binocular correlation detection with oriented dynamic random-line stereograms Vis Res 36 2303–10 [15.2.2c]

Cormack LK, Stevenson SB, Schor CM (1991) Interocular correlation luminance contrast and cyclopean processing Vis Res 31 2195–207 [15.2.2b, 18.5.1, 18.5.2]

Cormack LK, Stevenson SB, Schor CM (1993) Disparity-tuned channels of the human visual system Vis Neurosci 10 585–96 [11.4.2]

Cormack LK, Stevenson SB, Schor CM (1994) An upper limit to the binocular combination of stimuli Vis Res 34 2599–608 [15.2.2b]

Cormack LK, Stevenson SB, Landers DD (1997a) Interactions of spatial frequency and unequal monocular contrasts in stereopsis Perception 29 1121–1136 [18.5.4a]

Cormack LK, Landers DD, Ramakrishnan S (1997b) Element density and the efficiency of binocular matching  J Opt Soc Am A 14 723–30 [15.2.2b]

Cormack R (1984) Stereoscopic depth perception at far viewing distances Percept Psychophys 35 423–28 [20.6.3b]

Cormack R, Fox R (1985a) The computation of retinal disparity Percept Psychophys 37 176–8 [14.2.3]

Cormack R, Fox R (1985b) The computation of disparity and depth in stereograms Percept Psychophys 38 375–80 [14.2.3]

Cornforth LL, Johnson BL, Kohl P, Roth N (1987) Chromatic imbalance due to commonly used red-green filters reduces accuracy of stereoscopic depth perception Am J Optom Physiol Opt 64 842–5 [18.2.3b]

Cornsweet TN (1970) Visual perception Academic Press, New York [21.4.1, 21.4.2e, 22.4.1]

Cosmelli D, David O, Lachaux JP, et al. (2004) Waves of consciousness: ongoing cortical patterns during binocular rivalry Neuroimage 23 128–140 [12.9.2e]

Cottereau BR, McKee SP, Ales JM, Norcia AM (2011) Disparity-tuned population responses from human visual cortex J Neurosci 31 954–65 [11.8.2]

Coutant BE, Westheimer G (1993) Population distribution of stereoscopic ability Ophthal Physiol Opt 13 3–7 [18.3.1]

Cowey A (1985) Disturbances of stereopsis by brain damage In Brain mechanisms and spatial vision (ed DJ Ingle, M Jeannerod, N Lee) pp 259–78 Nijhoff Dordrecht [11.9.2]

Cowey A, Perry VH (1980) The projection of the fovea to the superior colliculus in rhesus monkeys Neuroscience 5 53–61 [11.2.3]

Cowey A, Wilkinson F (1991) The role of the corpus callosum and extrastriate visual areas in stereoacuity in macaque monkeys Neuropsychologia 29 465–79 [11.5.1]

Cozzi A, Crespi, B, Valentinotti F, Wörgötter F (1997) Performance of phase-based algorithms for disparity estimation Mach Vis Appl 9 334–40 [11.10.1a, 11.10.1b]

Crabus H, Stadler M (1973) Untersuchungen zur Localisierung von Wahrnehmungsprozessen: figurale Nachwirkungen bei binocularen Wettstreit-Bedingungen Perception 2, 67–77 [12.6.2]

Craik KJW (1966) The nature of psychology Cambridge University Press, Cambridge [21.4.2e]

Crassini B, Broerse J (1982) Monocular rivalry occurs without eye movements Vis Res 22 203–4 [12.3.8d]

Crawford BH (1938) Some observations on the rotating pendulum Nature 141 792–3 [23.4.2a]

Crawford BH (1940a) Ocular interaction in its relation to measurements of brightness threshold Proc R Soc B 128 552–9 [13.1.2a, 13.2.2]

Crawford BH (1940b) The effect of field size and pattern on the change of visual sensitivity with time Proc R Soc B 129 94–106 [13.2.3]

Crawford MLJ, Cool SJ (1970) Binocular stimulation and response variability of striate cortex units in the cat Vis Res 10 1145–53 [11.3.1, 13.1.8a]

Creed RS (1935) Observations on binocular fusion and rivalry J Physiol 84 381–92 [12.3.2f]

Crick F (1996) Visual perception: rivalry and consciousness Nature 379 485–6 [12.9.2a]

Crone RA, Leuridan OMA (1973) Tolerance for aniseikonia. I. Diplopia thresholds in the vertical and horizontal meridians of the visual field Graefes Arch klin exp Ophthal 188 1–16 [12.1.1d, 12.1.5]

Crovitz HF, Lipscomb DB (1963a) Binasal hemianopia as an early stage in binocular color rivalry Science 139 596–7 [12.3.4]

Crovitz HF, Lipscomb DB (1963b) Dominance of the temporal visual fields at a short duration of stimulation Am J Psychol 76 631–7 [12.3.4]

(p.573) Crovitz HF, Lockhead GR (1967) Possible monocular predictors of binocular rivalry of contours Percept Psychophys 2 83–5 [12.3.1a]

Crozier WJ, Wolf E (1941) Theory and measurement of visual mechanisms: IV Critical intensities for visual flicker monocular and binocular J Gen Physiol 27 505–34 [13.1.5]

Cumming BG (2002) An unexpected specialization for horizontal disparity in primate primary visual cortex Nature 418 633–6 [11.4.4]

Cumming BG, DeAngelis GC (2001) The physiology of stereopsis Ann Rev Neurosci 24 303–38 [11.9.2]

Cumming BG, Parker AJ (1997) Responses of primary visual cortical neurons to binocular disparity without depth perception Nature 389 280–3 [11.10.1a, 11.4.1f, 15.3.7b, 15.3.7d]

Cumming BG, Parker AJ (1999) Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity J Neurosci 19 5602–18 [11.4.1g, 11.4.6a]

Cumming BG, Parker AJ (2000) Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the macaque J Neurosci 20 4758–67 [11.4.1g]

Cumming BG, Johnston EB, Parker AJ (1991) Vertical disparities and the perception of three–dimensional shape Nature 349 411–13 [20.6.3c]

Cumming BG, Shapiro SE, Parker AJ (1998) Disparity detection in anticorrelated stereograms Perception 27 1367–77 [11.4.1f, 15.3.7d, 21.6.2e]

Cüppers C (1956) Moderne Schielbehandlung Klin Monat Augenheilk 129–579 [14.4.1d]

Curran W, Johnston A (1996) Three-dimensional curvature contrast-geometric or brightness illusion Vis Res 36 3641–53 [21.4.2f]

Curtis DW, Rule SJ (1978) Binocular processing of brightness information: a vector–sum model  J Exp Psychol: HPP 4 132–43 [13.1.4b]

Curtis DW, Rule SJ (1980) Fechner’s paradox reflects a nonmonotone relation between binocular brightness and luminance Percept Psychophys 27 293–6 [13.2.4a]

Cynader M, Gardner J, Douglas R (1978) Neural mechanisms underlying stereoscopic depth perception in cat visual cortex In Frontiers in visual science (ed SJ Cool, EL Smith) pp 373–86 Springer, Berlin [23.3.2]

Cynader M, Gardner JC, Mustari M (1984) Effects of neonatally induced strabismus on binocular responses in cat area 18 Exp Brain Res 53 384–99 [14.4.1c]

Cynader M, Gardner JC, Dobbins A, et al. (1986) Interhemispheric communication and binocular vision: functional and developmental aspects In Two hemispheres – one brain: functions of the corpus callosum (ed F Lepore, M Ptito, HH Jasper) pp 198–209 Liss, New York [11.9.1]

Cynader M, Giaschi DE, Douglas RM (1993) Interocular transfer of direction–specific adaptation to motion in cat striate cortex Invest Ophthal Vis Sci 34 (Abs) 1188 [13.3.3f]

d’Almeida MJC (1858) Nouvel appareil stéréoscopique Comp Rendu Acad Sci 47 61–3 Also, On a new stereoscopic apparatus Photographic Journal 5 2 [24.1.2c, 24.1.2e]

D’Zmura M, Iverson G (1993) Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces J Opt Soc Am A 3 1662–72 [22.4.6]

Dalby TA, Saillant ML, Wooten BR (1995) The relation of lightness and stereoscopic depth in a simple viewing situation Percept Psychophys 57 318–32 [22.4.2]

Danuser G (1999) Photogrammetric calibration of a stereo light microscope J Micros 193 62–83 [24.2.3a]

Daum KM (1982) Covariation in anomalous correspondence with accommodative vergence Am J Optom Physiol Opt 59 146–51 [14.4.1d]

Davis ET, King RA, Anoskey A (1992) Oblique effect in stereopsis SPIE 166 Human vision, visual processing, and digital display III 465–75 [18.6.5]

Davis G, Driver J (1998) Kanizsa subjective figures can act as occluding surfaces at parallel stages of visual search J Exp Psychol HPP 27 169–84 [22.1.2]

Dawson S (1913) Binocular and uniocular discrimination of brightness Br J Psychol 6 78–108 [12.3.5a]

Dawson S (1917) The experimental study of binocular colour mixture I Br J Psychol 8 510–51 [12.2.2, 12.3.2f]

Day RH (1958) On interocular transfer and the central origin of visual after–effects Am J Psychol 71 784–9 [13.3.1]

Day RH (1961) On the stereoscopic observation of geometrical illusions Percept Mot Skills 13 277–58 [16.3.1]

Day RH, Wade NJ (1988) Binocular interaction in induced rotary motion Aust J Psychol 40 159–64 [13.3.3e]

Dayan P (1998) A hierarchical model of binocular rivalry Neural Comput 10 1119–35 [12.10]

De Bruyn B, Rogers BR, Howard IP, Bradshaw MF (1992) Role of positional and orientational disparities in controlling cyclovergent eye movements Invest Ophthal Vis Sci 33 (Abs) 1149 [19.6.1]

De Lange H (1954) Relationship between critical flicker frequency and a set of low–frequency characteristics of the eye J Opt Soc Am 44 380–9 [13.1.5]

De Marco A, Penengo P, Trabucco A, et al. (1977) Stochastic models and fluctuations in reversal time of ambiguous figures Perception 6 645–56 [12.10]

De Silva HR, Bartley SH (1930) Summation and subtraction of brightness in binocular perception Br J Psychol 20 271–50 [13.1.4]

de Vries SC, Kappers AM, Koenderink JJ (1993) Shape from stereo: a systematic approach using quadratic surfaces Percept Psychophys 53 71–80 [20.5.3]

De Vries SC, Kappers AML, Koenderink JJ (1994) Influence of surface attitude and curvature scaling on discrimination of binocularly presented surfaces Vis Res 34 2709–23 [20.5.3, 24.1.5]

De Weert CMM (1979) Colour contours and stereopsis Vis Res 19 555–64 [17.1.4a]

De Weert CMM, Levelt WJM (1974) Binocular brightness combinations: additive and nonadditive aspects Percept Psychophys 15 551–62 [13.1.4a]

De Weert CMM, Levelt WJM (1976a) Comparison of normal and dichoptic color mixing Vis Res 16 59–70 [12.2.3, 12.3.2f]

De Weert CMM, Levelt WJM (1976b) Dichoptic brightness combination for unequal coloured lights Vis Res 16 1077–86 [13.1.4a]

De Weert CMM, Sadza KJ (1983) New data concerning the contribution of colour differences to stereopsis In Colour vision (ed JD Mollon, LT Sharpe) pp 553–62 Academic Press, New York [17.1.4a]

De Weert CMM, Wade NJ (1988) Compound binocular rivalry Vis Res 28 1031–40 [12.2.2, 12.4.1]

De Weert CMM, Snoeren PR, Koning A (2005) Interactions between binocular rivalry and Gestalt formation Vis Res 45 2571–2579 [12.4.4b]

Dean P, Redgrave P, Westby GWM (1989) Event or emergency? Two response systems in the mammalian superior colliculus TINS 12 137–47 [11.6.4]

DeAngelis GC, Newsome WT (1999) Organization of disparity-selective neurons in macaque area MT J Neurosci 19 1398–415 [11.5.2a]

DeAngelis GC, Uka T (3003) Coding of horizontal disparity and velocity by MT neurons in the alert monkey J Neurophysiol 89 1094–111 [11.5.2a]

DeAngelis GC, Ohzawa I, Freeman RD (1991) Depth is encoded in the visual cortex by a specialized receptive field structure Nature 352 156–9 [11.4.3a,]

DeAngelis GC, Robson JG, Ohzawa I, Freeman RD (1992) Organization of suppression in receptive fields of neurons in cat cortex J Neurophysiol 68 144–163 [12.3.8d, 12.9.2b]

DeAngelis GC, Ohzawa I, Freeman RD (1993) Spatiotemporal organization of simple–cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation J Neurophysiol 69 1118–35 [23.3.2]

DeAngelis GC, Freeman RD, Ohzawa I (1994) Length and width tuning of neurones in the cat’s primary visual cortex J Neurophysiol 71 347–74 [11.6.3, 11.7, 13.3.2b]

(p.574) DeAngelis GC, Cumming BG, Newsome WT (1998) Cortical area MT and the perception of stereoscopic depth Nature 394 677–80 [11.5.2a]

DeAngelis GC, Cumming BG, Newsome WT (2000) A new role for cortical area MT: the perception of stereoscopic depth In The new cognitive neurosciences (ed MS Gazzaniga) pp 305–313 MIT Press, Cambridge MA [11.5.2a]

Delicato LS, Qian N (2005) Is depth perception of stereo plaids predicted by intersection of constraints, vector average or second-order feature? Vis Res 45 75–89 [22.1.4]

den Ouden HEM, van Ee R, de Haan EHE (2005) Colour helps to solve the binocular matching problem J Physiol 567 665–71 [15.3.8a]

Dengis CA, Steinbach MJ, Goltz HC, Stager C (1993a) Visual alignment from the midline: a declining developmental trend in normal strabismic and monocularly enucleated children J Ped Ophthal Strab 30 323–6 [16.7.2c]

Dengis CA, Steinbach MJ, Ono H, et al. (1993b) Egocenter location in children with strabismus: in the median plane and unchanged by surgery Invest Ophthal Vis Sci 34 2990–5 [16.7.5]

Dengis CA, Steinbach MJ, Ono H, et al. (1996) Learning to look with one eye: the use of head turn by normals and strabismics Vis Res 36 3237–42 [16.7.2c]

Dengis CA, Steinbach MJ, Ono H, Gunther LN (1997) Learning to wink voluntarily and to master monocular tasks: a comparison of normal versus strabismic children Binoc Vis 12 113–18 [16.7.2c]

Dengis CA, Simpson TL, Steinbach MJ, Ono H (1998) The cyclops effect in adults: sighting without visual feedback Vis Res 38 327–31 Dengis et a. 1998 [16.7.2c]

Dengler M, Nitschke W (1993) Color stereopsis: a model for depth reversals based on border contrast Percept Psychophys 53 150–6 [17.8]

Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy Science 278 73–6 [24.2.3c]

Denny N, Frumkes TE, Barris MC, Eysteinsson T (1991) Tonic interocular suppression and binocular summation in human vision J Physiol 437 449–60 [13.2.2]

Derrington AM, Cox M (1998) Temporal resolution of dichoptic and second-order motion mechanisms Vis Res 38 3531–9 [16.4.2a]

Desaguliers JT (1716) A plain and easy experiment to confirm Sir Isaac Newton’s doctrine of the different refrangibility of the rays of light Philos Tr R Soc 29 448–52 [12.2.1]

Dev P (1975) Perception of depth surfaces in random-dot stereograms: A neural model Int J Man-Mach Stud 7 511–28 [15.4.5]

DeValois KK, von der Heydt R, Adorjani CS, DeValois RL (1975) A tilt aftereffect in depth Invest Ophthal Vis Sci 15(ARVO Abs) 90 [20.3.1d]

DeValois RL, Walraven J (1967) Monocular and binocular aftereffects of chromatic adaptation Science 155 463–5 [12.2.1, 13.2.8]

DeValois RL, Yund EW, Hepler N (1982a) The orientation and direction selectivity of cells in macaque visual cortex Vis Res 22 531–44 [11.6.2]

DeValois RL, Albrecht DG, Thorell LG (1982b) Spatial frequency selectivity of cells in macaque visual cortex Vis Res 22 545–559 [20.2.1]

Di Stefano L, Marchionni M, Mattoccia S (2004) A fast area-based stereo matching algorithm Image Vis Comp 22 983–1005 [15.4.6]

Di Stefano M, Lepore F, Ptito M, et al. (1991) Binocular interactions in the lateral suprasylvian visual area of strabismic cats following section of the corpus callosum Eur J Neurosci 3 1016–24 [14.4.1c]

Diamond AL (1958) Simultaneous brightness contrast and the Pulfrich phenomenon J Opt Soc Am 48 887–90 [23.4.2a]

Dias EC, Rocha–Miranda CE, Bernardes RF, Schmidt SL (1991) Disparity selective units in superior colliculus of the opossum Exp Brain Res 87 546–52 [11.2.3]

Diaspro A (ed) (2002) Confocal and two photon microscopy Wiley, New York [24.2.3b]

Diaz-Caneja E (1928) Sur l’alternance binoculaire Annales d’Oculistique 165 721–31 [12.4.4b]

Dichgans J, Brandt T (1978) Visual–vestibular interaction: effects on self motion perception and postural control In Handbook of sensory physiology (ed R Held, W Leibowitz, HL Teuber) Vol VII pp 755–804 Springer, New York [22.7.3]

Diener HC, Wist ER, Dichgans J, Brandt T (1976) The spatial–frequency effect on perceived velocity Vis Res 16 169–76 [23.3.6]

Diner DB, Fender DH (1987) Hysteresis in human binocular fusion: temporalward and nasalward ranges J Opt Soc Am A 4 1814–19 [12.1.6]

Diner DB, Fender DH (1988) Dependence of Panum’s fusional area on local retinal stimulation J Opt Soc Am A 5 1163–9 [12.1.6]

Diner DB, Fender DH (1993) Human engineering in stereoscopic viewing devices Plenum, New York [24.2.4]

Ding J, Sperling G (2006) A gain-control theory of binocular combination Proc Natl Acad Sci 103 1141–6 [12.3.1b, 13.1.3b]

Distler C, Mustari MJ, Hoffmann KP (2002) Cortical projections to the nucleus of the optic tract and dorsal terminal nucleus and to the dorsolateral pontine nucleus in macaques: a dual retrograde tracing study J Comp Neurol 444 144–58 [22.6.1b]

Dixon HH (1938) A binocular illusion Nature 141 792 [14.2.2]

Dobbins AC, Jeo RM, Fiser J, Allman JM (1998) Distance modulation of neural activity in the visual cortex Science 281 552–5 [11.5.3a]

Dodd JV, Krug K, Cumming BG, Parker AJ (2001) Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT J Neurosci 21 4809–21 [11.5.2a]

Dodd MD, McAuley T, Pratt J (2000) An illusion of 3-D motion with the Ternus display Vis Res 45 969–73 [16.4.2e]

Dodge R (1900) Visual perception during eye movements Psychol Rev 7 454–65 [23.2.4]

Dodwell PC, Harker GS, Behar I (1968) Pulfrich effect with minimal differential adaptation of the eyes Vis Res 8 1431–43 [23.4.3]

Domini F, Braunstein M (2001) Influence of a stereo surface on the perceived tilt of a monocular line Percept Psychophys 63 607–24 [14.6.1c, 16.7.4a, 21.6.2c]

Domini F, Blaser E, Cicerone CM (2000) Color-specific depth mechanisms revealed by a color-contingent depth aftereffect Vis Res 40 359–64 [15.3.8b]

Domini F, Adams W, Banks MS (2001) 3D after-effects are due to shape and not disparity adaptation Vis Res 41 2733–9 [21.6.2c]

Donnelly M, Miller RJ (1995) Ingested ethanol and binocular rivalry Invest Ophthal Vis Sci 36 1548–54 [12.3.2c]

Donnelly M, Bowd C, Patterson R (1997) Direction discrimination of cyclopean (stereoscopic) and luminance motion Vis Res 37 2041–6 [16.5.1]

Donzis PB, Rappazzo A, Burde RM, Gordon M (1983) Effect of binocular variations of Snellen’s visual acuity on Titmus stereoacuity Arch Ophthal 101 930–2 [18.5.4b]

Douthwaite WA, Morrison LC (1975) Critical flicker frequency and the Pulfrich phenomenon Am J Optom Physiol Opt 52 745–49 [23.4.2b]

Dove HW (1841) Uber die Combination der Eindrücke beider Ohren und beider Augen zu einem Eindruck Monat Ber Akad 251–2 [18.10.3a, 18.12.1a]

Downing CJ, Pinker S (1985) The spatial structure of visual attention In Attention and performance (ed MI Posner, OS Marin) Vol XI pp 171–87 Erlbaum, Hillsdale NJ [22.8.1]

Downing E, Hesselink L, Ralston J, Macfarlane R (1996) A three-color solid-state three-dimensional display Science 273 1185–8 [24.1.4a]

Dresp B, Bonnet C (1995) Subthreshold summation with illusory contours Vis Res 35 1071–8 [12.3.3d]

Drobe B, Monot A (1997) Partition of perceived space within the fusional area on apparent fronto-parallel plane criterion Ophthal Physiol Opt 17 340–7 [14.6.2]

Drobnis BJ, Lawson RB (1976) The Poggendorff illusion in stereoscopic space Percept Mot Skills 42 15–18 [16.7.4b]

Dudley LP (1951) Stereoptics: an introduction MacDonald, London [24.1.3c]

(p.575) Dudley LP (1965) Stereoscopy In Applied optics and optical engineering (ed R Kingslake) pp 77–117 Academic Press, New York [24.1.1]

Duffy CJ, Wurtz RH (1993) An illusory transformation of optic flow fields Vis Res 33 1481–90 [22.7.4]

Duke PA, Howard IP (2005) Vertical-disparity gradients are processed independently in different depth planes Vis Res 45 2025–35 [20.2.4c]

Duke PA, Wilcox LM (2003) Adaptation to vertical disparity induced-depth: implications for disparity processing Vis Res 43 135–47 [21.6.2d]

Duke PA, Oruc I, Haijiang Q, Backus BT (2006) Depth aftereffects mediated by vertical disparities: evidence for vertical disparity driven calibration of extraretinal signals during stereopsis Vis Res 46 228–41 [21.7.1]

Duke–Elder S (1962) System of ophthalmology Vol. VII The foundations of ophthalmology Kimpton, London [24.2.4]

Duke–Elder S (1968) System of ophthalmology Vol IV The physiology of the eye and of vision Kimpton, London [12.7.2]

Duncan J (1984) Selective attention and the organization of visual information J Exp Psychol Gen 113 501–17 [22.5.1e]

Duncan J, Martens S, Ward R (1997) Restricted attentional capacity within but not between sensory modalities Nature 387 808–10 [22.8.2a]

Duncan RO, Albright TD, Stoner GR (2000) Occlusion and the interpretation of visual motion: perceptual and neuronal effects of context J Neurosci 20 5885–97 [22.3.1]

Duncker K (1929) Über induzierte Bewegung Psychol Forsch 22 180–259 [21.1, 22.7]

Dunlap K (1944) Alleged binocular mixing Am J Psychol 57 559–63 [12.2.1]

Durand JB, Zhu S, Celebrini S, Trotter Y (2002) Neurons in parafoveal areas V1 and V2 encode vertical and horizontal disparities J Neurophysiol 88 2874–9 [11.4.4]

Durand JB, Celebrini S, Trotter Y (2007a) Neural basis of stereopsis across visual field of the alert monkey Cereb Cortex 17 1260–73 [11.4.4]

Durand JB, Nelissen K, Joly O, et al. (2007b) Anterior regions of monkey parietal cortex process visual 3D shape Neuron 55 493–505 [11.5.2b, 11.8.1]

Durgin FH (2001) Texture contrast aftereffects are monocular; texture density aftereffects are binocular Vis Res 41 2619–30 [13.2.6, 13.3.4]

Durgin FH, Huk AC (1997) Texture density aftereffects in the perception of artificial and natural textures Vis Res 23 3273–82 [13.3.4]

Durgin FH, Proffitt DR, Olson TJ, Reinke KS (1995) Comparing depth from motion with depth from binocular disparity J Exp Psychol HPP 21 679–99 [20.6.4]

Durrani AF, Preminger GM (1995) Three-dimensional video imaging for endoscopic surgery Comput Biol Med 25 237–47 [24.2.4]

Dürsteler MR, Wurtz RH (1988) Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST J Neurophysiol 60 940–65 [22.6.1b]

Dutour EF (1760) Discussion d’un question d’optique L’Académie des Sciences. Mémoires de Mathématique et de physique présentés par Divers Savantes 3 514–30. An English translation by O’Shea RP (1999) of both Dutour papers is available at http://psy.otago.ac.nz:800/r-oshea.dutour63.html. [12.2.1, 12.7.2]

Dutour EF (1763) Addition au Mémoire intitulé, Discussion d’un question d’optique L’Académie des Sciences. Mémoires de Mathématique et de physique présentés par Divers Savantes 4 499–511 [12.7.2, 13.1.1b]

Duwaer AL (1982) Assessment of retinal image displacement during head movement using an afterimage method Vis Res 22 1379–88 [14.6.2a, 18.10.5]

Duwaer AL (1983) Patent stereopsis with diplopia in random–dot stereograms Percept Psychophys 33 443–54 [14.6.2a, 18.4.1b]

Duwaer AL, van den Brink G (1982a) The effect of presentation time on detection and diplopia thresholds for vertical disparities Vis Res 22 183–9 [12.1.4]

Duwaer AL, van den Brink G (1982b) Detection of vertical disparities Vis Res 22 467–78 [18.3.3b]

Dvorak JA, Nagao E (1998) Optimization and utilization of the atomic force microscope for living systems Scanning 20 138–9 [24.2.3f]

Dvorák V (1870) Versuche über Nachbilder von Reizveränderungen Sitzungsbericht der Kaiserlichen Akademie der Wissenschaften: Mathematisch-Naturwissenschaftliche Klasse, II Abteilung (Wein) 61 257–62. Translation in Broerse et al. (1994) [13.3.3a]

Dwyer WO, Lit A (1970) Effect of luminance-matched wavelength on depth discrimination at scotopic and photopic levels of target illumination J Opt Soc Am 60 127–31 [18.5.5]

Earle DC (1985) Perception of Glass pattern structure with stereopsis Perception 14 545–52 [16.6.2]

Earnshaw RA, Gigante MA, Jones H (1993) Virtual reality systems Academic Press, London [24.2.6]

Earnshaw RA, Vince JA, Jones H (1995) Virtual reality applications Academic Press, London [24.2.6]

Ebenholtz SM (1970) On the relation between interocular transfer of adaptation and Hering’s law of equal innervation Psychol Rev 77 343–7 [13.4.3, 19.6.4]

Ebenholtz SM, Paap KR (1973) The constancy of object orientation: compensation for ocular rotation Percept Psychophys 14 458–70 [20.2.2b]

Ebenholtz SM, Walchli RM (1965) Stereoscopic thresholds as a function of head– and object–orientation Vis Res 5 455–61 [18.6.5]

Eby DW, Braunstein ML (1995) The perceptual flattening of three-dimensional scenes enclosed by a frame Perception 27 981–93 [24.1.7]

Edwards M Schor CM (1999) Depth aliasing by the transient-stereopsis system Vis Res 39 4333–40 [15.3.2]

Edwards M, Pope DR, Schor CM (1999) Orientation tuning of the transient-stereopsis system Vis Res 39 2717–27 [18.12.3]

Edwards M, Pope DR, Schor CM (2000) First- and second-order in transient stereopsis Vis Res 40 2645–51 [18.12.3]

Efron R (1957) Stereoscopic vision. I. Effects of binocular temporal summation Br J Ophthal 41 709–30 [18.12.2a]

Egnal G, Wildes R (2002) Detecting binocular half-occlusions: empirical comparisons of five approaches IEEE Tr Patt Anal Mach Intel 24 1127–33 [11.10.1c]

Egner A, Hell SW (2005) Fluorescence microscopy with super-resolved optical sections Trends in Cell Biol 15 207–15 [24.2.3b]

Ehrenstein W (1925) Versuche über beziehungen zwischen Bewegungs- und Gestaltwahrnehmung. Erste Abhandlung Z Psychol 96 305–52 [13.3.3a]

Ehrenstein W (1941) Uber Abwandlungen der L Hermannschen Helligkeitserscheinung Z Psychol 150 83–91 [22.2.4a]

Ehrenstein WH, Gillam BJ (1999) Early demonstrations of subjective contours, amodal completion, and depth from half-occlusions: “Stereoscopic experiments with silhouettes” by Adolf von Szily (1921) Perception 27 1407–16 [22.2.4a]

Ehrenstein WH, Arnold-Schulz-Gahman BE, Jaschinski W (2005) Eye preference within the context of binocular functions Graefe’s Arch Clin Exp Ophthal 243 926–32 [16.7.3b]

Eifuku S, Wurtz RH (1999) Response to motion in extrastriate area MSTl: disparity sensitivity J Neurophysiol 82 2762–75 [11.5.2a, 22.3.2]

Einthoven W (1885) Stereoscopie durch Farbendifferenz Graefe’s Arch Klin Exp Ophthal 31 211–38 [17.8]

Elberger AJ (1979) The role of the corpus callosum in the development of interocular eye alignment and the organization of the visual field in the cat Exp Brain Res 36 71–85 [11.9.2]

Elberger AJ (1980) The effect of neonatal section of the corpus callosum on the development of depth perception in young cats Vis Res 20 177–87 [11.9.2]

(p.576) Elberger AJ (1989) Binocularity and single cell acuity are related in striate cortex of corpus callosum sectioned and normal cats Exp Brain Res 77 213–16 [11.9.2]

Elberger AJ (1990) Spatial frequency thresholds of single striate cortical cells in neonatal corpus callosum sectioned cats Exp Brain Res 82 617–27 [11.9.2]

Elberger AJ, Smith EL (1983) Binocular properties of lateral suprasylvian cortex are not affected by neonatal corpus callosum section Brain Res 278 259–98 [11.9.2]

Elberger AJ, Smith EL (1985) The critical period for corpus callosum section to affect cortical binocularity Exp Brain Res 57 213–23 [11.9.2]

Ell JJ, Gresty MA (1982) Uniocular Pulfrich phenomenon: an abnormality of visual perception Brit J Ophthal 66 610–13 [23.7]

Ellenberger C, Duane MD, Shuttlesworth E (1978) Electrical correlates of normal binocular vision Arch Neurol 35 834–7 [13.1.8b]

Ellerbrock VJ (1954) Inducement of cyclofusional movements Am J Optom Arch Am Acad Optom 31 553–66 [12.1.1b]

Emerson PL, Pesta BJ (1992) A generalized visual latency explanation of the Pulfrich phenomenon Percept Psychophys 51 319–27 [23.2.1]

Emoto M, Mitsuhashi T (1998) Interocular suppression of a half-occluded region of stereoscopic images J Opt Soc Am A 15 2257–62 [17.2.3]

Engel E (1956) The role of content in binocular resolution Am J Psychol 69 87–91 [12.8.3a]

Engel GR (1967) The visual processes underlying binocular brightness summation Vis Res 7 753–67 [13.1.4b]

Engel GR (1969) The autocorrelation function and binocular brightness mixing Vis Res 9 1111–30 [13.1.4b]

Engel GR (1970a) Tests of a model of binocular brightness Can J Psychol 27 335–52 [13.1.4b]

Engel GR (1970b) An investigation of visual responses to brief stereoscopic stimuli Quart J Exp Psychol 22 148–66 [18.12.2a]

Engelking E, Poos F (1927) Uber die Bedeutung des Stereophaenomens für die isochrome und heterochrome Helligkeitsvergleichung Graefe’s Arch Klin Exp Ophthal 114 340–79 [23.4.1, 23.4.2a]

Enns JT, Rensink RA (1990) Influence of scene-based properties on visual search Science 247 721–3 [22.8.2c]

Enns JT, Rensink RA (1991) Preattentive recovery of three-dimensional orientation from line drawings Psychol Rev 98 335–51 [22.8.2c]

Enoch JM, Goldmann H, Sunga R (1969) The ability to distinguish which eye was stimulated by light Invest Ophthal Vis Sci 8 317–31 [16.8]

Enoksson P (1963) Binocular rivalry and monocular dominance studied with optokinetic nystagmus Acta Ophthal 41 544–63 [12.3.1a]

Enright JT (1970) Distortions of apparent velocity: a new optical illusion Science 168 464–7 [23.2.1]

Enright JT (1985) On Pulfrich–illusion eye movements and accommodation vergence during visual pursuit Vis Res 25 1613–22 [23.5]

Enright JT (1988) The cyclopean eye and its implications: vergence state and visual direction Vis Res 28 925–30 [16.7.7]

Enright JT (1990) Stereopsis cyclotorsional “noise” and the apparent vertical Vis Res 30 1487–97 [21.3.2]

Enright JT (1991a) Exploring the third dimension with eye movements: better than stereopsis Vis Res 31 1549–62 [18.10.2a]

Enright JT (1991b) Stereo–thresholds: simultaneity target proximity and eye movements Vis Res 31 2093–100 [18.10.2a, 18.12.2b, 18.6.2a]

Enright JT (1996) Sequential stereopsis: a simple demonstration Vis Res 36 307–12 [18.10.2a]

Epelbaum M, Teller DY (1995) Infant eye movement asymmetries: temporal-nasal asymmetry is reversed at isoluminance in 2-month-olds Vis Res 35 1889–95 [22.6.1b, 22.6.1e]

Epstein LI (1952) Space perception and vertical disparity J Opt Soc Am 42 145–6 [20.6.5a]

Epstein W (1961) Phenomenal orientation and perceived achromatic color J Psychol 52 51–3 [22.4.3a]

Epstein W, Morgan-Paap CL (1974a) Aftereffect of inspection of a perspectival stimulus for slant depth: a new normalization effect Percept Psychophys 16 299–302 [21.6.3c]

Epstein W, Morgan-Paap CL (1974b) The effect of depth processing and degree of information discrepancy on adaptation to uniocular image magnification J Exp Psychol 102 585–94 [21.6.3c]

Erens RGF, Kappers AML, Koenderink JJ (1991) Limits on the perception of local shape from shading In Studies in perception and action (ed PJ Beek, RJ Bootsma, PCW van Wieringen) pp 72–5 Rodopi, Amsterdam [20.5.1]

Eriksen BA, Eriksen CW (1974) Effects of noise-letters on identification of a target letter in a nonsearch task Percept Psychophys 16 143–9 [13.2.5]

Eriksen CW (1966) Independence of successive inputs and uncorrelated error in visual form perception J Exp Psychol 72 29–35 [13.1.1b]

Eriksen CW, Greenspon TS (1968) Binocular summation over time in the perception of form at brief durations J Exp Psychol 76 331–6 [13.1.3e]

Eriksen CW, Greenspon TS, Lappin J, Carlson WA (1966) Binocular summation in the perception of form at brief durations Percept Psychophys 1 415–9 [13.1.1b, 13.1.3e]

Erkelens CJ (1988) Fusional limits for a large random–dot stereogram Vis Res 28 345–53 [18.4.1b]

Erkelens CJ (2000) Perceived direction during monocular viewing is based on signals of the viewing eye only Vis Res 40 2411–19 [16.7.7]

Erkelens CJ, Collewijn H (1985) Motion perception during dichoptic viewing of moving random–dot stereograms Vis Res 25 583–8 [18.3.2a]

Erkelens CJ, van de Grind WA (1994) Binocular visual direction Vis Res 34 2963–9 [16.7.3b, 16.7.7]

Erkelens CJ, van Ee R (1997a) Capture of visual direction: an unexpected phenomenon in binocular vision Vis Res 37 1193–6 [16.7.3a]

Erkelens CJ, van Ee R (1997b) Capture of the visual direction of monocular objects by adjacent binocular objects Vis Res 37 1735–45 [16.7.3a, 16.7.4a]

Erkelens CJ, van Ee R (1998) A computation model of depth perception based on headcentric disparity Vis Res 38 2999–18 [14.3.1c]

Erkelens CJ, Van Ee R (2002a) Multi-coloured stereograms unveil two binocular colour mechanisms in human vision Vis Res 42 1103–12 [12.2.2]

Erkelens CJ, van Ee R (2002b) The role of the cyclopean eye in vision: sometimes inappropriate, always irrelevant Vis Res 42 1157–63 [16.7.7]

Erkelens CJ, Muijs AJM, van Ee, R (1996) Binocular alignment in different depth planes Vis Res 36 2141–7 [16.7.7]

Erwin E, Miller, KD (1999) The subregion correspondence model of binocular simple cells J Neurosci 19 7212–29 [11.4.3c]

Evans CR, Clegg JM (1967) Binocular depth perception of “Julesz patterns” viewed as perfectly stabilized retinal images Nature 215 893–5 [18.10.1a]

Exner S (1868) über die zu einer Gesichtswahrnemung Nöthige Zeit Sitzungsbericht der Akademie Wissenschaft Wien 58 601–32 [13.2.7]

Eyre MB, Schmeeckle MM (1933) A study of handedness eyedness and footedness Child Devel 4 73–8 [12.3.7]

Eysteinsson T, Barris MC, Denny N, Frumkes TE (1993) Tonic interocular suppression binocular summation and the evoked potential Invest Ophthal Vis Sci 34 2743–8 [13.2.2]

Fagin RR, Griffin JR (1982) Stereoacuity test: comparison of mathematical equivalents Am J Optom Physiol Opt 59 427–35 [18.2.4]

Fahle M (1982a) Cooperation between different spatial frequencies in binocular rivalry Biol Cyber 44 27–9 [12.3.2b]

Fahle M (1982b) Binocular rivalry: suppression depends on orientation and spatial frequency Vis Res 22 787–800 [12.3.2b, 12.3.4]

Fahle M (1987) Naso-temporal asymmetry of binocular inhibition Invest Ophthal Vis Sci 28 1016–17 [12.3.4]

(p.577) Fahle M (1991) Psychophysical measurement of eye drifts and tremor by dichoptic or monocular vernier acuity Vis Res 31 209–222 [18.10.3a, 18.11]

Fahle M (1993) Visual learning in the hyperacuity range in adults Ger J Ophthal 2 83–6 [18.14.1]

Fahle M (1994) Human pattern recognition: parallel processing and perceptual learning Perception 23 411–27 [13.4.1]

Fahle M (1995) Perception of oppositely moving verniers and spatio-temporal interpolation Vis Res 35 925–37 [18.10.3a]

Fahle M (2004) Perceptual learning: a case of early selection J Vis 4 879–90 [13.4.1]

Fahle M, Palm G (1991) Perceptual rivalry between illusory and real contours Biol Cyber 66 1–8 [12.3.3d]

Fahle M, Westheimer G (1988) Local and global factors in disparity detection of rows of points Vis Res 28 171–8 [18.6.2b]

Fahle M, Westheimer G (1995) On the time-course of inhibition in the stereoscopic perception of rows of dots Vis Res 35 1393–9 [18.6.2b]

Fahle M, Fahle SH, Harris J (1994) Definition of thresholds for stereoscopic depth Br J Ophthal 78 572–6 [18.2.4]

Falk DS, Williams R (1980) Dynamic visual noise and the stereophenomenon: interocular time delays depth and coherent velocities Percept Psychophys 28 19–27 [23.6.1, 23.6.3, 23.6.4]

Fan WCS Brown B, Yap MKH (1996) A new stereotest: the double two rod test Ophthal Physiol Opt 16 196–202 [18.2.1a]

Fang F, He S (2005) Cortical responses to invisible objects in the human dorsal and ventral pathways Nat Neurosci 8 1380–5 [12.9.2f]

Fantoni C (2008) 3D surface orientation based on a novel representation of the orientation disparity field Vis Res 48 2509–22 [19.3.1b]

Farell B (1998) Two-dimensional matches from one-dimensional stimulus components in human stereopsis Nature 395 689–93 [22.1.4]

Farell B (2003) Detecting disparity in two-dimensional patterns Vis Res 43 1009–26 [22.1.4]

Farell B (2006) Orientation–specific computation in stereoscopic vision J Vis 26 9098–106 [18.6.5]

Farell B, Li S (2004) Seeing depth coherence and transparency J Vis 4 209–23 [22.1.4]

Farell B, Li S, McKee SP (2004a) Disparity increment thresholds for gratings J Vis 4 156–68 [18.3.3b]

Farell B, Li S, McKee SP (2004b) Coarse scales, fine scales, and their interactions in stereo vision J Vis 4 488–99 [18.7.2e]

Faubert J (1994) Seeing depth in colour: more than just what meets the eye Vis Res 34 1165–86 [17.8]

Faugeras O (1995) Stratification of three-dimensional vision: projective, affine, and metric representations J Opt Soc Am 12 465–84 [14.2.3]

Favreau OE (1978) Interocular transfer of color–contingent motion aftereffects; positive aftereffects Vis Res 18 841–4 [13.3.5]

Favreau OE, Cavanagh P (1983) Interocular transfer of a chromatic frequency shift Vis Res 23 951–7 [13.3.4]

Favreau OE, Cavanagh P (1984) Interocular transfer of a chromatic frequency shift: temporal constraints Vis Res 27 1799–804 [13.3.4]

Fawcett SL, Birch EE (2003) Validity of the Titmus and Randot circles tasks in children with known binocular disorders J AAPOS 7 333–8 [18.2.4]

Fechner GT (1860) Uber einige Verhältnisse des binokularen Sehens Berichte Sächs gesamte Wissenschaft 7 337–564 [12.3.1a]

Feinsod M, Bentin S, Hoyt WF (1979) Pseudostereoscopic illusion caused by interhemispheric temporal disparity Arch Neurol 36 666–8 [23.7]

Felleman DJ, Van Essen DC (1987) Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex J Neurophysiol 57 889–920 [11.5.1]

Felton TB, Richards W, Smith RA (1972) Disparity processing of spatial frequencies in man J Physiol 225 349–62 [11.4.2, 18.7.1, 22.5.1b]

Fender D, Julesz B (1967) Extension of Panum’s fusional area in binocularly stabilized vision J Opt Soc Am 57 819–30 [12.1.6, 18.10.3a, 18.4.1b]

Fendick M, Westheimer G (1983) Effects of practice and the separation of test targets on foveal and peripheral stereoacuity Vis Res 23 145–50 [18.14.1, 18.6.1a]

Fenelon B, Neill RA, White CT (1986) Evoked potentials to dynamic random dot stereograms in upper centre and lower fields Doc Ophthal 63 151–6 [11.7]

Fernandez JM (1997) Cellular and molecular mechanics by atomic force microscopy: capturing the exocytotic fusion pore in vivo? Proc Natl Acad Sci 94 9–10 [24.2.3f]

Fernández JM, Watson B, Qian N (2002) Computing relief structure from motion with a distributed velocity and disparity representation Vis Res 42 883–98 [11.5.2a, 11.6.4]

Ferraina S, Paré M, Wurtz RH (2000) Disparity sensitivity of frontal eye field neurons J Neurophysiol 83 625–9 [11.5.3b]

Ferree CE, Rand G (1934) Perception of depth in the after-image Am J Psychol 46 329–32 [18.10.1a]

Ferris SH, Pastore N (1971) Interocular apparent movement in depth: a motion preference effect Science 174 305–7 [16.4.2f]

Ferster D (1981) A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex J Physiol 311 623–55 [11.3.1, 11.4.1d, 11.4.1e, 11.4.3b, 12.9.2b]

Ferster D (1987) Origin of orientation selective EPSP’s in simple cells of cat visual cortex J Neurosci 7 1780–91 [12.9.2b]

Filippini HR, Banks MS (2009) Limits of stereopsis is explained by local cross-correlation J Vis 9(1) Article 8 [11.10.1c, 18.6.3c]

Fincham EF (1963) Monocular diplopia Brit J Ophthal 47 705–12 [14.4.2]

Finlay DC, Manning ML, Dunlop DP, Dewis SAM (1989) Difficulties in the definition of ‘stereoscotoma’ using temporal detection of thresholds of dynamic random dot stereograms Doc Ophthal 72 161–73 [18.6.4]

Fiorentini A, Berardi N (1981) Learning in grating waveform discrimination: specificity for orientation and spatial frequency Vis Res 21 1149–58 [13.4.1]

Fiorentini A, Maffei L (1971) Binocular depth perception without geometrical cues Vis Res 11 1299–305 [20.2.1]

Fiorentini A, Bayly EJ, Madei L (1972) Peripheral and central contributions to psychophysical spatial interactions Vis Res 12 253–9 [13.2.3]

Fiorentini A, Sireteanu R, Spinelli D (1976) Lines and gratings: different interocular after-effects Vis Res 16 1303–9 [13.2.6]

Fischer B, Krüger J (1979) Disparity tuning and binocularity of single neurons in cat visual cortex Exp Brain Res 35 1–8 [11.3.1]

Fischer FP (1927) Experimentelle Beitrage zum Begriff der Schrichtungsgemeinschaft der Netzhäute auf Grund der binocularen Noniusmethode Pflügers Arch ges Physiol 204 233–290 [14.6.1c]

Fischer FP, Wagenaar JW (1954) Binocular vision and fusion movements Doc Ophthal 7 359–91 [14.1]

Flandrin JM, Jeannerod M (1977) Developmental constraints of motion detection mechanisms in the kitten Perception 6 513–27 [11.2.3]

Fleet DJ, Jepson AD, Jenkin M (1991) Phase-based disparity measurement Comput Vis Gr Im Proc 53 198–210 [11.10.1a, 11.10.1b]

Fleet DJ, Wagner H, Heeger DJ (1996a) Neural encoding of binocular disparity: energy models position shifts and phase shifts Vis Res 36 1839–57 [11.10.1b, 11.4.3c, 15.2.1c, 18.8.1]

Fleet DJ, Wagner H, Heeger DJ (1996b) Modelling binocular neurons in the primary visual cortex In Computational and biological mechanisms of visual coding (ed M Jenkin, L Harris) Cambridge University Press, London [11.4.1d, 11.10.1a, 11.10.1b]

Fletcher JL, Ross S (1953) Tests of stereoscopic vision: a review Int Rec Med Quart Rev Ophthal 166 551–62 [18.2.2a]

Flipse JP, van der Wildt GJ, Rodenburg M, et al. (1988) Contrast sensitivity for oscillating sine wave gratings during ocular fixation and pursuit Vis Res 28 819–26 [18.10.1b]

Flitcroft DI, Morley JW (1997) Accommodation in binocular contour rivalry Vis Res 37 121–5 [12.5.1]

(p.578) Flitcroft DI, Judge SJ, Morley JW (1992) Binocular interactions in accommodation control: effects of anisometropic stimuli J Neurosci 12 188–203 [12.5.1]

Flock HR, Freedberg E (1970) Perceived angle of incidence and achromatic surface color Percept Psychophys 8 251–6 [22.4.3a]

Flom MC (1980) Corresponding and disparate retinal points in normal and anomalous correspondence Am J Optom Physiol Opt 57 656–65 [14.4.1b]

Flom MC, Eskridge JB (1968) Change in retinal correspondence with viewing distance J Am Optom Assoc 39 1094–7 [14.6.2a]

Flom MC, Kerr KE (1967) Determination of retinal correspondence Multiple-testing results and the depth of anomaly concept Arch Ophthal 77 200–13 [14.4.1a, 14.4.1b]

Flom MC, Weymouth FW (1961a) Centricity of Maxwell’s spot in strabismus and amblyopia Arch Ophthal 66 290–8 [14.4.1b]

Flom MC, Weymouth FW (1961b) Retinal correspondence and the horopter in anomalous correspondence Nature 189 34–6 [14.6.1d]

Flom MC, Heath GG, Takahashi E (1963) Contour interaction and visual resolution: contralateral effects Science 142 979–89 [13.2.5]

Flom MC, Kirschen DG, Williams AT (1978) Changes in retinal correspondence following surgery for intermittent exotropia Am J Optom Physiol Opt 55 456–62 [14.4.1a]

Foley JE (1974) Factors governing interocular transfer of prism adaptation Psychol Rev 81 183–6 [13.4.3]

Foley JE, Miyanshi K (1969) Interocular effects in prism adaptation Science 165 311–12 [13.4.3]

Foley JM (1966) Locus of perceived equidistance as a function of viewing distance J Opt Soc Am 56 822–7 [14.6.1e]

Foley JM (1970) Loci of perceived equi– half– and double–distance in stereoscopic vision Vis Res 10 1201–9 [14.6.1e]

Foley JM (1976a) Binocular depth mixture Vis Res 16 1293–7 [18.8.2c]

Foley JM (1976b) Successive stereo and vernier position discrimination as a function of dark interval duration Vis Res 16 1299–73 [18.12.2b]

Foley JM (1980) Binocular distance perception Psychol Rev 87 411–34 [20.6.3d, 20.6.5a]

Foley JM, Richards W (1974) Improvement in stereoanomaly with practice Am J Optom Physiol Opt 51 935–8 [18.14.1]

Foley JM, Richards W (1978) Binocular depth mixture with non–symmetric disparities Vis Res 18 251–6 [18.8.2c]

Foley JM, Tyler CW (1976) Effect of stimulus duration on stereo and vernier displacement thresholds Percept Psychophys 20 125–8 [18.12.1a]

Foley JM, Applebaum TH, Richards WA (1975) Stereopsis with large disparities: discrimination and depth magnitude Vis Res 15 417–21 [18.4.1a]

Formankiewicz MA, Mollon JD (2009) The psychophysics of detecting binocular discrepancies of luminance Vis Res 49 1929–38 [13.1.3d]

Forte J, Peirce JW, Lennie P (2002) Binocular integration of partially occluded surfaces Vis Res 42 1225–35 [22.1.2]

Fortin A, Ptito A, Faubert J, Ptito M (2002) Cortical areas mediating stereopsis in the human brain: a PET study Neuroreport 13 895–7 [11.8.1]

Foster DH, Mason, RJ (1977) Interaction between rod and cone systems in dichoptic masking Neurosci Lett 4 39–42 [13.2.7b]

Fox R (1991) Binocular rivalry In Vision and visual dysfunction Vol 9 Binocular vision (ed D Regan) pp 93–110 MacMillan, London [12.3.1a]

Fox R, Check R (1966a) Binocular fusion: a test of the suppression theory Percept Psychophys 1 331–4 [12.7.2, 12.5]

Fox R, Check R (1966b) Forced–choice form recognition during binocular rivalry Psychonom Sci 6 471–2 [12.7.2, 12.8.1]

Fox R, Check R (1968) Detection of motion during binocular rivalry suppression J Exp Psychol 78 388–95 [12.6.4]

Fox R, Check R (1972) Independence between binocular rivalry suppression duration and magnitude of suppression J Exp Psychol 93 283–9 [12.10]

Fox R, Herrmann J (1967) Stochastic properties of binocular rivalry alternations Percept Psychophys 2 432–6 [12.10]

Fox R, Patterson R (1981) Depth separation and lateral interference Percept Psychophys 30 513–20 [13.2.4b, 22.5.1c]

Fox R, Rasche F (1969) Binocular rivalry and reciprocal inhibition Percept Psychophys 5 215–17 [12.10, 12.3.2a]

Fox R, Todd S, Bettinger LA (1975) Optokinetic nystagmus as an objective indicator of binocular rivalry Vis Res 15 849–53 [12.3.1a]

Fox R, Lehmkuhle SW, Leguire LE (1978) Stereoscopic contours induce optokinetic nystagmus Vis Res 18 1189–92 [16.5.1]

Fox R, Patterson R, Lehmkuhle S (1982) Effect of depth position on the motion aftereffect Invest Ophthal Vis Sci 22 (Abs) 144 [16.5.3a, 22.5.4]

France TD Ver Hoeve JN (1994) VECP evidence for binocular function in infantile esotropia J Ped Ophthal Strab 31 225–31 [13.1.8b]

Frank H (1923) Über die Beeinflussung von Nachbildern durch die gestalteigenschaften der projektionsflaeche Psychol Forsch 3 33–7 [22.5.1a]

Frank M (1905) Beobachtungen betreffs der Ubereinstimmung der Hering-Hillebrand’schen Horopterabweichung und des Kundt’schen Teilungsversuches Pflügers Arch ges Physiol 109 63–72 [14.6.2a]

Freeman AW (2005) Multistage model for binocular rivalry J Neurophysiol 94 4412–20 [12.10]

Freeman AW, Nguyen VA (2001) Controlling binocular rivalry Vis Res 41 2943–50 [12.5.3]

Freeman RB (1967) Contrast interpretations of brightness constancy Psychol Bull 67 165–87 [22.4.2]

Freeman RD, Ohzawa I (1990) On the neurophysiological organization of binocular vision Vis Res 30 1661–76 [11.4.1f, 11.4.3a]

Freeman RD, Robson JG (1982) A new approach to the study of binocular interactions in visual cortex: normal and binocularly deprived cats Exp Brain Res 48 296–300 {5} [11.3.1]

Freeman TCB, Durand S, Kiper DC, Carandini M (2002) Suppression without inhibition in visual cortex Neuron 35 759–71 [12.9.2b]

French JW (1923) Stereoscopy re-stated Trans Opt Soc 24 226–56 [15.4.6]

Freud SL (1964) The physiological locus of the spiral aftereffect Am J Psychol 77 422–8 [13.3.3a]

Fricke T, Siderov J (1997) Non-stereoscopic cues in the Random-Dot E stereotest: results for adult observers Ophthal Physiol Opt 17 122–7 [18.2.3c]

Friedman JR, Kosmorsky GS, Burde RM (1985) Stereoacuity in patients with optic nerve disease Arch Ophthal 103 37–8 [18.11]

Friedman RB, Kaye MG, Richards W (1978) Effect of vertical disparity upon stereoscopic depth Vis Res 18 351–2 [18.6.5]

Fries P, Roelfsema PR, Engel AK, et al. (1997) Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry Proc Natl Acad Sci 94 12999–704 [12.9.2b]

Fries P, Schröder JH, Roelfsema PR, Singer W, Engel AK (2002) Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection J Neurosci 22 3739–54 [12.9.2e]

Frisby JP (1979) Seeing Houghton Mifflin, London [21.1]

Frisby JP (1984) An old illusion and a new theory of stereoscopic depth perception Nature 307 592–3 [20.2.3b, 20.2.3c, 20.2.4]

Frisby JP, Clatworthy JL (1975) Learning to see complex random–dot stereograms Perception 4 173–8 [18.14.2a, 18.14.2b, 18.14.2f]

Frisby JP, Julesz B (1975a) Depth reduction effects in random–line stereograms Perception 4 151–8 [15.3.5]

Frisby JP, Julesz B (1975b) The effect of orientation difference on stereopsis as a function of line length Perception 4 179–86 [15.3.5]

Frisby JP, Julesz B (1976) The effect of length differences between corresponding lines on stereopsis from single and multi–line stimuli Vis Res 16 83–7 [15.3.5]

Frisby JP, Mayhew JEW (1978a) Contrast sensitivity function for stereopsis Perception 7 423–9 [18.5.2, 18.7.2a]

Frisby JP, Mayhew JEW (1978b) The relationship between apparent depth and disparity in rivalrous texture stereograms Perception 7 661–78 [17.1.3, 17.5]

(p.579) Frisby JP, Mayhew JEW (1979a) Does visual texture discrimination precede binocular fusion Perception 8 153–6 [16.6.2]

Frisby JP, Mayhew JEW (1979b) Depth inversion in random-dot stereograms Perception 8 397–99 [21.6.2g]

Frisby JP, Mayhew JEW (1980) Spatial frequency tuned channels: implications for structure and function from psychophysical and computational studies of stereopsis Philos Tr R Soc 290 95–116 [18.7.1]

Frisby JP, Pollard SB (1991) Computational issues in solving the stereo correspondence problem In Computational models of visual processing (ed MS Landy, JA Movshon) pp 331–57 MIT Press, Cambridge MA [17.1.2b]

Frisby JP, Roth B (1971) Orientation of stimuli and binocular disparity coding Quart J Exp Psychol 23 367–72 [15.3.5]

Frisby JP, Mein J, Saye A, Stanworth A (1975) Use of random-dot stereograms in the clinical assessment of strabismic patients Br J Ophthal 59 545–52 [18.2.4]

Frisby JP, Catherall C, Porrill J, Buckley D (1997) Sequential stereopsis using high-pass spatial frequency filtered textures Vis Res 37 3109–16 [18.10.2a]

Frisby JP, Buckley D, Grant H, et al. (1999) An orientation anisotropy in the effects of scaling vertical disparities Vis Res 39 481–92 [20.6.5e]

Frisén L, Lindblom B (1988) Binocular summation in humans: evidence for a hierarchical model J Physiol 402 773–82 [13.1.3e]

Frisén L, Hoyt WF, Bird AC, Weale RA (1973) Diagnostic uses of the Pulfrich phenomenon Lancet 2 385–6 [23.7]

Frohn JT, Knapp HF, Stemmer A (2000) True optical resolution beyond the Rayleigh limit achieved by standing wave illumination Proc Natl Acad Sci 97 7232–6 [24.2.3b]

Fry GA (1936) The relationship of accommodation to suppression of vision in one eye Am J Ophthal 19 135–8 [12.8.1, 12.9.1]

Fry GA (1950) Visual perception of space Am J Optom Arch Am Acad Optom 27 531–53 [16.7.6b]

Fry GA, Bartley SH (1933) The brilliance of an object seen binocularly Am J Ophthal 16 687–93 [13.1.4a]

Fry GA, Kent PR (1944) The effects of base-in and base-out prisms on stereo-acuity Am J Optom Arch Am Acad Optom 21 492–507 [18.6.7]

Fry GA, Bridgman CS, Ellerbrock VJ (1949) The effect of atmospheric scattering on binocular depth Am J Optom Arch Am Acad Optom 29 9–15 [18.7.3b]

Fukuda H, Blake R (1992) Spatial interactions in binocular rivalry J Exp Psychol HPP 18 362–70 [12.4.3]

Fukuda K, Kaneko H, Matsumiya K (2006) Vertical-size disparities are temporally integrated for slant perception Vis Res 46 2749–56 [20.3.2c]

Fukuda K, Wilcox LM, Allison RS, Howard IP (2009) A reevaluation of the tolerance to vertical misalignment in stereopsis I Vis 9(2) Article 1 [18.4.2a]

Funaishi S (1926) Weiteres über das Zentrum des Sehrichtungen Graefe’s Arch Klin Exp Ophthal 117 296–303 [16.7.6a]

Funaishi S (1927) über die falsche Lichtlokalisation bei geschlossenen Lidern sowie über das subjektive Zyklopenauge Graefe’s Arch Klin Exp Ophthal 119 227–34 [16.7.6b]

Funt B, Drew M, Ho J (1991) Color constancy from mutual reflection Int J Comp Vis 6 5–24 [22.4.6]

Furchner CS, Ginsburg AP (1978) “Monocular rivalry” of a complex waveform Vis Res 18 1641–8 [12.3.8d]

Gabor D (1949) Microscopy by reconstructed wavefronts Proc Roy Soc A 179 454–87 [24.1.4a]

Gantz L, Patel SS, Chung STL, Harwerth RS (2007) Mechanisms of perceptual learning of depth discrimination in random-dot stereograms Vis Res 47 2170–8 [18.14.1]

Gantz L, Bedell HE (2010) Transfer of perceptual learning of depth discrimination between local and global stereograms Vis Res 50 1891–9 [18.14.1]

Gårding J, Porrill J, Mayhew JEW, Frisby JP (1995) Stereopsis, vertical disparity and relief transformations Vis Res 35 703–22 [20.2.4b, 20.6.5e]

Gardner JC, Cynader MS (1987) Mechanisms for binocular depth sensitivity along the vertical meridian of the visual field Brain Res 413 60–74 [11.9.2]

Gardner JC, Raiten EJ (1986) Ocular dominance and disparity–sensitivity: why there are cells in the visual cortex driven unequally by the two eyes Exp Brain Res 64 505–14 [11.3.1]

Gardner JC, Douglas RM, Cynader MS (1985) A time–based stereoscopic depth mechanism in the visual cortex Brain Res 328 154–57 [23.3.2]

Gassendi P (1658) Gassendi; opera omnia Vol 2 p 395 Lyon [12.7.2]

Gaunt WA, Gaunt PN (1978) Three dimensional reconstruction in Biology University Park Press, Baltimore MD [24.2.3d, 24.2.5]

Gawryszewski L de G, Riggio L, Rizzolatti G, Umiltá C (1987) Movements of attention in the three spatial dimensions and the meaning of “neutral cues” Neuropsychologia 25 19–29 [22.8.1]

Genovesio A, Ferraina S (2004) Integration of retinal disparity and fixation-distance related signals toward an egocentric coding of distance in the posterior parietal cortex of primates J Neurophysiol 91 2670–84 [11.4.6a]

Georgeson MA (1984) Eye movements, afterimages and monocular rivalry Vis Res 27 1311–19 [12.3.8d]

Georgeson MA (1988) Spatial phase dependence and the role of motion detection in monocular and dichoptic forward masking Vis Res 28 1193–1205 [13.1.6c]

Georgeson MA, Harris MG (1984) Spatial selectivity of contrast adaptation: models and data Vis Res 27 729–41 [20.2.1]

Georgeson MA, Phillips R (1980) Angular selectivity of monocular rivalry: experiment and computer simulation Vis Res 20 1007–13 [12.3.8d]

Georgeson MA, Shackleton TM (1989) Monocular motion sensing, binocular motion perception Vis Res 29 1511–23 [16.4.2a, 16.4.2c]

Georgeson MA, Shackleton TM (1992) No evidence for dichoptic motion sensing: a reply to Carney and Shadlen Vis Res 32 193–8 [16.4.2b]

Georgeson MA, Sullivan GD (1975) Contrast constancy: deblurring in human vision by spatial frequency J Physiol 252 627–56 [18.6.3d]

Georgeson MA, Turner RSE (1985) Afterimages of sinusoidal square-wave and compound gratings Vis Res 25 1709–20 [21.6.2b]

Georgeson MA, Yates TA, Schofield AJ (2008) Discriminating depth in corrugated stereo surfaces: Facilitation by a pedestal is explained by removal of uncertainty Vis Res 48 2321–8 [18.3.3b]

Georgieva S, Peeters R, Kolster H, et al. (2009) The processing of three-dimensional shape from disparity in the human brain J Neurosci 29 727–42 [11.8.1]

Gepshtein S, Cooperman A (1998) Stereoscopic transparency: a test for binocular vision’s disambiguating power Vis Res 38 2913–32 [18.9]

Gerbino W (1984) Low–level and high–level processes in the perceptual organization of three–dimensional apparent motion Perception 13 417–28 [22.5.3d]

Gernsheim H (1969) History of photography McGraw-Hill, New York [24.1.2d]

Gerstmann J, Kestenbaum A (1930) Monokuläres Doppeltsehen bei cerebralen Erkrankungen Z Neurol Psychiat 128 42–56 [14.4.2]

Gestrin PJ, Teller DY (1969) Interocular hue shifts and pressure blindness Vis Res 9 1297–71 [12.2.1]

Gettys CF, Harker GS (1967) Some observations and measurements of the Panum phenomenon Percept Psychophys 2 387–95 [17.6.3]

Gibbs T, Lawson RB (1974) Simultaneous brightness contrast in stereoscopic space Vis Res 14 983–7 [22.4.2]

Gibson JJ (1933) Adaptation after–effect and contrast in the perception of curved lines J Exp Psychol 16 1–31 [13.3.2a, 13.3.5, 21.1, 21.6.1a]

Gibson JJ (1937) Adaptation aftereffect and contrast in the perception of tilted lines. II. Simultaneous contrast and the areal restriction of the aftereffect J Exp Psychol 20 553–69 [13.3.2a, 21.1, 21.6.1a]

Gibson JJ (1961) Ecological optics Vis Res 1 253–62 [14.1]

Gibson JJ (1966) The senses considered as perceptual systems Houghton-Mifflin, Boston, MA [14.1]

(p.580) Gibson JJ, Radner M (1937) Adaptation aftereffect and contrast in the perception of tilted lines. I. Quantitative studies J Exp Psychol 20 453–67 [21.1]

Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the silicon (111)-(7x7) surface observed by atomic force microscopy Science 289 422–5 [24.2.3f]

Gilbert CD, Ts’o DY, Wiesel TN (1991) Lateral interactions in visual cortex In From pigments to perception (ed A Valberg, BB Lee) pp 239–47 Plenum, New York [12.9.2c]

Gilbert DS, Fender DH (1969) Contrast thresholds measured with stabilized and non–stabilized sine–wave gratings Optica Acta 16 191–204 [18.10.1a]

Gilchrist AL (1977) Perceived lightness depends on perceived spatial arrangement Science 195 185–7 [22.4.3b]

Gilchrist AL (1980) When does perceived lightness depend on perceived spatial arrangement? Percept Psychophys 28 527–38 [22.4.3b]

Gilchrist AL (2006) Seeing black and white Oxford University Press, New York [22.4.3b]

Gilchrist AL, Kossyfidis C, Bonato F, et al. (1999) An anchoring theory of lightness perception Psychol Rev 106 795–834 [22.4.3b]

Gilchrist J, Pardhan S (1987) Binocular contrast detection with unequal monocular illuminance Ophthal Physiol Opt 7 373–7 [13.1.2b]

Gilinsky AS, Doherty RS (1969) Interocular transfer of orientational effects Science 164 454–5 [13.2.4a]

Gill AT (1969) Early stereoscopes Photograph J 109 546–59, 606–14, 641–51 [24.1.2f]

Gillam B (1967) Changes in the direction of induced aniseikonic slant as a function of distance Vis Res 7 777–83 [18.1]

Gillam B (1968) Perception of slant when perspective and stereopsis conflict: experiments with aniseikonic lenses J Exp Psychol 78 299–305 [20.4.1d]

Gillam B (1993) Stereoscopic slant reversals: a new kind of ‘induced’ effect Perception 22 1025–36 [18.1]

Gillam B (1995) Matching needed for stereopsis Nature 37 202–4 [17.3]

Gillam B, Blackburn SG (1998) Surface separation decreases stereoscopic slant but a monocular aperture increases it Perception 27 1297–86 [21.4.2d]

Gillam B, Borsting E (1988) The role of monocular regions in stereoscopic displays Perception 17 603–8 [17.2.2]

Gillam B, Lawergren B (1983) The induced effect vertical disparity and stereoscopic theory Percept Psychophys 34 121–30 [19.6.3, 19.6.6, 20.2.3a]

Gillam B, Nakayama K (1999) Quantitative depth for a phantom surface can be based on cyclopean occlusion cues alone Vis Res 39 109–12 [17.3]

Gillam B, Pianta MJ (2005) The effect of surface placement and surface overlap on stereo slant contrast and enhancement Vis Res 45 3083–95 [21.4.2d]

Gillam B, Rogers B (1991) Orientation disparity deformation and stereoscopic slant perception Perception 20 441–8 [20.3.2b]

Gillam B, Flagg T, Finley D (1984) Evidence for disparity change as the primary stimulus for stereoscopic processing Percept Psychophys 36 559–64 [21.4.2b]

Gillam B, Chambers D, Lawergren B (1988a) The role of vertical disparity in the scaling of stereoscopic depth perception: an empirical and theoretical study Percept Psychophys 44 473–83 [20.2.3b, 20.2.4b, 21.3.1]

Gillam B, Chambers D, Russo T (1988b) Postfusional latency in slant perception and the primitives of stereopsis J Exp Psychol: HPP 14 163–75 [18.12.1b, 20.4.1a, 21.4.2b, 21.5.2]

Gillam B, Blackburn S, Cook M (1995) Panum’s limiting case: double fusion convergence error or ‘da Vinci stereopsis’ Perception 27 333–46 [17.6.3]

Gillam B, Blackburn S, Nakayama K (1999) Stereopsis based on monocular gaps: metrical encoding of depth and slant without matching contours Vis Res 39 493–502 [17.3]

Gillam B, Cook M, Blackburn S (2003) Monocular discs in the occlusion zones of binocular surfaces do not have quantitative depth—a comparison with Panum’s limiting case Perception 32 1009–19 [17.6.4]

Gillam B, Blackburn S, Brooks K (2007) Hinge versus twist: The effects of ‘reference surfaces’ and discontinuities on stereoscopic slant perception Perception 36 596–616 [21.4.2d]

Gilroy LA, Blake R (2005) The interaction between binocular rivalry and negative afterimages Curr Biol 15 1740–4 [12.3.3a]

Glass L, Perez R (1973) Perception of random–dot interference patterns Nature 276 360–2 [16.6.2]

Glennerster A (1996) The time course of 2-D shape discrimination in random dot stereograms Vis Res 36 1955–68 [15.4.3]

Glennerster A (1998) dmax for stereopsis and motion in random dot displays Vis Res 38 925–34 [18.4.1e]

Glennerster A, McKee SP (1999) Bias and sensitivity of stereo judgements in the presence of a slanted reference plane Vis Res 39 3057–69 [18.3.2a, 18.3.2b, 21.4.2d]

Glennerster A, McKee SP (2004) Sensitivity to depth relief on slanted surfaces J Vis 4 378–87 [18.3.2b]

Glennerster A, Parker AJ (1997) Computing stereo channels from masking data Vis Res 37 2143–52 [18.7.4]

Glennerster A, Rogers BJ (1993) New depth to the Müller–Lyer illusion Perception 22 691–704 [17.7]

Glennerster A, Rogers BJ, Bradshaw MF (1996) Stereoscopic depth constancy depends on the subject’s task Vis Res 36 3441–56 [20.6.2c]

Glennerster A, Rogers BJ, Bradshaw MF (1998) Cues to viewing distance for stereoscopic depth constancy Perception 27 1357–66 [20.6.3a, 20.6.5c]

Glickstein M, Miller J, Smith OA (1964) Lateral geniculate nucleus and cerebral cortex: evidence for a crossed pathway Science 145 159–61 [11.9.2]

Gnadt JW, Mays LE (1995) Neurons in monkey parietal area LIP are tuned for eye-movement parameters in three-dimensional space J Neurophysiol 73 280–97 [11.5.2b]

Goethe JW von (1810) Zur Fabenlehre Tübingen. English translation in Matthaei R (1971) Goethe’s color theory. Van Nostrand Reinhold, New York [14.2.2, 17.8]

Gogel WC (1956) The tendency to see objects as equidistant and its inverse relation to lateral separation Psychol Monogr 70 (Whole No 411) [20.1.1, 21.3.2, 22.5]

Gogel WC (1960) The perception of a depth interval with binocular disparity cues J Psychol 50 257–69 [20.6.2c]

Gogel WC (1963) The visual perception of size and distance Vis Res 3 101–20 [21.3.1]

Gogel WC (1965) Equidistance tendency and its consequences Psychol Bull 64 153–63 [21.3.2]

Gogel WC (1975) Depth adjacency and the Ponzo illusion Percept Psychophys 17 125–32 [22.5.2]

Gogel WC (1977) An indirect measure of perceived distance from oculomotor cues Percept Psychophys 21 3–11 [20.6.5c]

Gogel WC, MacCracken PJ (1979) Depth adjacency and induced motion Percept Mot Skills 48 343–50 [22.7.2]

Gogel WC, Mershon DH (1969) Depth adjacency in simultaneous contrast Percept Psychophys 5 13–17 [22.4.2]

Gogel WC, Mershon DH (1977) Local autonomy in visual space Scand J Psychol 18 237–50 [21.3.1]

Gogel WC, Newton RE (1975) Depth adjacency and the rod– and– frame illusion Percept Psychophys 18 163–71 [22.5.2]

Goldstein AG (1967) Retinal rivalry and Troxler’s effect Psychonom Sci 7 427–8 [12.3.3a]

Goldstein SR, Hubin T, Rosenthall S, Washburn C (1990) A confocal video-rate laser-beam scanning reflected-light microscope with no moving parts J Micros 157 29–38 [24.2.3b]

González EG, Steinbach MJ, Gallie, BL, Ono H (1999) Egocentric localization: visually directed alignment to projected head landmarks in binocular and monocular observers Binoc Vis Strab Quart 14 127–36 [16.7.2c]

(p.581) González EG, Ono H, Lam L, Steinbach MJ (2005) Kanizsa’s shrinkage illusion produced by a misapplied 3D corrective mechanism Perception 34 1181–92 [16.7.4b]

González EG, Weinstock M, Steinbach MJ (2007) Peripheral fading with monocular and binocular viewing Vis Res 47 136–44 [12.3.1a, 12.3.3a]

Gonzalez F, Krause F (1994) Generation of dynamic random-element stereograms in real time with a system based on a personal computer Med Biol Engin Comput 32 373–76 [24.1.5]

Gonzalez F, Perez R (1998a) Modulation of cell responses to horizontal disparities by ocular vergence in the visual cortex of the awake macaca mulatta monkey Neurosci Lett 275 101–4 [11.4.6a]

Gonzalez F, Perez R (1998b) Neural mechanisms underlying stereoscopic vision Prog Neurobiol 55 191–227 [11.9.2]

Gonzalez F, Krause F, Perez R, et al. (1993a) Binocular matching in monkey visual cortex: single cell responses to correlated and uncorrelated dynamic random dot stereograms Neurosci 52 933–9 [11.4.1a]

Gonzalez F, Revola JL, Perez R, et al. (1993b) Cell responses to vertical and horizontal retinal disparities in the monkey visual cortex Neurosci Lett 160 167–70 [11.4.4]

Goodwin RT, Romano PE (1985) Stereoacuity degradation by experimental and real monocular and binocular amblyopia Invest Ophthal Vis Sci 29 917–23 [18.5.4b]

Gorea A, Conway TE, Blake R (2001) Interocular interactions reveal the opponent structure of motion mechanisms Vis Res 41 441–8 [22.3.2]

Goryo K, Kikuchi T (1971) Disparity and training in stereopsis Jap Psychol Res 13 148–52 [18.14.2c]

Gosser HM (1977) Selected attempts at stereoscopic moving pictures and their relationship to the development of motion picture technology 1852–1903 Arno Press, New York [24.1.2c]

Gouras P, Link K (1966) Rod and cone interaction in dark adapted monkey ganglion cells J Physiol 184 499–510 [13.2.3]

Goutcher R, Hibbard PB (2010) Evidence for relative disparity matching in the perception of an ambiguous stereogram J Vis 10(12) [15.3.2]

Goutcher R, Mamassian P (2005) Selective biasing of stereo correspondence in an ambiguous stereogram Vis Res 45 469–83 [15.3.2]

Grabowska A (1983) Lateral differences in the detection of stereoscopic depth Neuropsychologia 21 279–57 [18.6.4]

Graf EW, Adams WJ, Lages M (2004) Prior depth information can bias motion perception J Vis 4 427–33 [22.3.1]

Graham ME (1983) Motion parallax and the perception of three-dimensional surfaces Ph.D. Thesis University of St Andrews [21.6.2b]

Graham ME, Rogers BJ (1982) Simultaneous and successive contrast effects in the perception of depth from motion–parallax and stereoscopic information Perception 11 277–62 [21.4.1, 21.4.2c, 21.5.2, 21.6.2b, 21.6.4]

Graham ME, Rogers BJ (1983) Phase-dependent and phase-independent depth aftereffects Perception 12 (Abs) A16 [21.6.4]

Grant S, Berman NEJ (1991) Mechanisms of anomalous retinal correspondence: maintenance of binocularity with alteration of receptive–field position in the lateral suprasylvian (LS) visual area of strabismic cats Vis Neurosci 7 259–81 [14.4.1c]

Grasse KL (1991) Pharmacological isolation of visual cortical input to the cat accessory optic system: effects of intravitreal tetrodotoxin on DTN unit responses Vis Neurosci 6 175–183 [22.6.1b]

Grasse KL (1994) Positional disparity sensitivity of neurons in the cat accessory optic system Vis Res 13 1673–89 [11.2.2, 11.6.4, 22.6.1e]

Grasse KL, Cynader MS (1986) Response properties of single units in the accessory optic system of the dark-reared cat Devel Brain Res 27 199–210 [11.2.2]

Grasse KL, Cynader MS (1987) The accessory optic system of the monocularly deprived cat Devel Brain Res 31 229–41 [11.2.2, 22.6.1b]

Grasse KL, Cynader MS (1990) The accessory optic system in frontal–eyed animals In Vision and visual disfunction (ed AL Leventhal) Vol IV pp 111–39 MacMillan, London [22.6.1a]

Gray, MS, Pouget A, Zemel RS, et al. (1998) Reliable disparity estimation through selective integration Vis Neurosci 15 511–28 [11.10.2]

Graybiel AM (1976) Evidence for banding of the cat’s ipsilateral retinotectal connections Exp Brain Res 114 318–27 [11.2.3]

Green DM, Swets JA (1966) Signal detection theory and psychophysics Wiley, New York [13.1.1e]

Green J (1889) On certain stereoscopical illusions evoked by prismatic and cylindrical spectacle–glasses Tr Am Ophthal Soc 449–56 [20.2.3a]

Green M (1986) What determines correspondence strength in apparent motion Vis Res 29 599–607 [22.5.3a]

Green M (1989) Color correspondence in apparent motion Percept Psychophys 45 15–20 [22.5.3a]

Green M (1992) Temporal sampling requirements for stereoscopic displays In Stereoscopic displays and applications III Proc Int Soc Opt Engin 1669 101–11 [16.4.2g]

Green M, Blake R (1981) Phase effects in monoptic and dichoptic temporal integration: flicker and motion detection Vis Res 21 365–72 [16.4.2a, 16.4.2c]

Green M, Odom JV (1986) Correspondence matching in apparent motion: evidence for three–dimensional spatial representation Science 233 1427–29 [22.5.3b]

Green M, Odom JV (1984) Comparison of monoptic and dichoptic masking by light Percept Psychophys 35 265–8 [13.2.3]

Greene RT, Lawson RB, Godek CL (1972) The Ponzo illusion in stereoscopic space J Exp Psychol 95 358–64 [22.5.2]

Greenlee MW (1992) Spatial frequency discrimination of band–limited periodic targets: effects of stimulus contrast bandwidth and retinal eccentricity Vis Res 32 275–83 [20.2.1]

Greenspon TS, Eriksen CW (1968) Interocular nonindependence Percept Psychophys 3 93–6 [13.1.3e]

Gregory RL (1961) The solid-image microscope Res Devel 1 101–3 [24.1.4b]

Gregory RL (1966) Eye and brain World University Library, London [23.2.1, 23.4.2a, 23.7]

Gregory RL (1970) Distortion of visual space as inappropriate constancy scaling Nature 199 678–80 [16.7.4b]

Gregory RL (1972) Cognitive contours Nature 238 51–2 [22.2.4a]

Gregory RL (1973) Fusion and rivalry of illusory contours Perception 2 235–42 [22.2.4a]

Gregory RL (1979) Stereo vision and isoluminance Proc R Soc B 204 467–76 [17.1.4a]

Gregory RL, Harris JP (1974) Illusory contours and stereo depth Percept Psychophys 15 411–16 [22.2.4a]

Griffin JR, Grisham JD (1995) Binocular anomalies Diagnosis and vision therapy Butterworth-Heinemann, Boston [14.4.1b]

Griffin WP (1995) Three-dimensional imaging in endoscopic surgery Biomed Instrum Technol 29 183–9 [24.2.4]

Grigo A, Lappe M (1998) Interaction of stereo vision and optic flow processing revealed by an illusory stimulus Vis Res 38 281–90 [22.7.4]

Grimsley G (1943) A study of individual differences in binocular color fusion J Exp Psychol 32 82–7 [12.2.2]

Grimson WEL (1981) A computer implementation of a theory of human stereo vision Philos Tr R Soc B 292 217–53 [15.3.1, 17.1.1a]

Grinberg DL, Williams DR (1985) Stereopsis with chromatic signals from the blue–sensitive mechanism Vis Res 25 531–7 [17.1.4c]

Grindley GC, Townsend V (1965) Binocular masking induced by a moving object Quart J Exp Psychol 17 97–109 [12.3.6b]

Gronwall DMA, Sampson H (1971) Ocular dominance: a test of two hypotheses Br J Psychol 62 175–85 [12.3.7]

Grossberg S, Howe DL (2003) A laminar cortical model of stereopsis and three-dimensional surface perception Vis Res 43 801–29 [11.10.1b]

Grossberg S, Kelly F (1999) Neural dynamics of binocular brightness perception Vis Res 39 3796–816 [13.1.4c]

(p.582) Grossberg S, Marshall JA (1989) Stereo boundary fusion by cortical complex cells: a system of maps, filters, and feedback networks for multiplexing distributed data Neural Networks 2 29–51 [11.10.1b]

Grossberg S, McLoughlin NP (1997) Cortical dynamics of three-dimensional surface perception: binocular and half-occluded scenic images Neural Networks, 10, 1583–605 [11.10.1b]

Grosslight JH, Fletcher HJ, Masterton RB, Hagen R (1978) Monocular vision and landing performance in general aviation pilots: cyclops revisited Hum Factors 20 27–33 [20.1.1]

Grove PM, Ono H (1999) Ecological invalid monocular texture leads to longer perceptual latencies in random-dot stereograms Perception 28 627–39 [17.2.2]

Grove PM, Regan D (2002) Spatial frequency discrimination in cyclopean vision Vis Res 42 1837–46 [18.6.3f]

Grove PM, Kaneko H, Ono H (2001) The backward inclination of a surface defined by empirical corresponding points Perception 30 411–29 [14.7]

Grove PM, Gillam B, Ono H (2002) Content and context of monocular regions determine perceived depth in random dot, unpaired background and phantom stereograms Vis Res 42 1859–70 [17.2.2, 17.3]

Grove PM, Brooks KR, Anderson BL, Gillam BJ (2006) Monocular transparency and unpaired stereopsis Vis Res 46 1695–705 [17.4]

Grove PM, Ashida H, Kaneko H, Ono H (2008) Interocular transfer of a rotational motion aftereffect as a function of eccentricity Perception 37 1152–9 [13.3.3a]

Grunewald A, Mingolla E (1998) Motion after-effect due to binocular sum of adaptation to linear motion Vis Res 38 2963–71 [13.3.3d]

Grüsser OJ, Grüsser–Cornehls U (1965) Neurophysiological Grundlagen des Binocularsehens Arch Psychiat Z ges Neurol 207 296–317 [13.1.1d]

Guillemot JP, Paradis MC, Samson A, et al. (1993) Binocular interaction and disparity coding in area 19 of visual cortex in normal and split–chiasm cats Exp Brain Res 94 405–17 [11.3.2, 11.9.1]

Gulick WL, Lawson RB (1976) Human stereopsis Oxford University Press, New York [11.1.1, 14.5.2a, 17.2.4]

Gulyás B, Roland PE (1994) Binocular disparity discrimination in human cerebral cortex: functional anatomy by positron emission tomography Proc Natl Acad Sci 91 1239–43 [11.8.1]

Gunter R (1951) Binocular fusion of colours Br J Psychol 42 363–72 [12.2.2, 2]

Gur M (1991) Perceptual fade–out occurs in the binocularly viewed Ganzfeld Perception 20 645–54 [12.3.3a]

Gur M, Akri V (1992) Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing Vis Res 32 1253–62 [17.1.4e]

Gur M, Snodderly DM (1987) Studying striate cortex neurons in behaving monkeys: benefits of image stabilization Vis Res 27 2081–7 [18.10.3a]

Gur M, Snodderly DM (1997) Visual receptive fields of neurons in primary visual cortex (V1) move in space with the eye movements of fixation Vis Res 37 257–65 [18.10.3a]

Gur M, Beylin A, Snodderly DM (1997) Response variability of neurons in primary visual cortex (V1) of alert monkeys J Neurosci 17 2914–20 [11.4.8a]

Guth SL (1971) On probability summation Vis Res 11 747–50 [13.1.1e]

Gyoba J (1978) The Poggendorff illusion under stereopsis Tohoku Psychol Folia, 37, 94–101 [16.7.4b]

Hadani I, Vardi N (1987) Stereopsis impairment in apparently moving random dot patterns Percept Psychophys 42 158–65 [18.10.1b]

Hadani I, Meiri AZ, Guri M (1984) The effects of exposure duration and luminance on the 3-dot hyperacuity task Vis Res 24 871–4 [18.12.1a]

Haefner RM, Cumming BG (2008) Adaptation to natural binocular disparities in primate V1 explained by a generalized energy model Neuron 57 147–158 [11.10.1b, 13.1.8a]

Hagen MA, Jones RK, Reed ES (1978) On a neglected variable in theories of pictorial perception: truncation of the visual field Percept Psychophys 23 329–30 [24.1.7]

Haines RF (1977) Visual response time to colored stimuli in peripheral retina: evidence for binocular summation Am J Optom Physiol Opt 54 387–98 [13.1.7]

Hajos A (1962) Farbunterscheidung ohne “Farbigsehen” Naturwissen schaften 49 93–7 [17.8]

Hajos A (1968) Sensumotorische Koordinationsprozesse bei Richtungslokalisation Z Exp Angew Psychol 15 435–61 [13.4.3]

Hajos A, Ritter M (1965) Experiments to the problem of interocular transfer Acta Psychol 27 81–90 [13.3.2a, 13.3.5, 13.4.3]

Häkkinen J, Nyman G (1996) Depth asymmetry in da Vinci stereopsis Vis Res 36 3815–19 [17.6.2]

Häkkinen J, Nyman G (2001) Phantom surface captures stereopsis Vis Res 41 187–99 [17.3]

Häkkinen J, Liinasuo M, Kojo I, Nyman G (1998) Three-dimensionally slanted illusory contours capture stereopsis Vis Res 38 3109–15 [22.2.4b]

Haldat C (1806) Expériences sur la double vision J de Physique 63 387–401 [12.2.1]

Hall C (1982) The relationship between clinical stereotests Ophthal Physiol Opt 2 135–43 [18.2.4]

Halldén U (1952) Fusional phenomena in anomalous correspondence Acta Ophthal Supp 32 1–93 [14.4.1a, 14.4.1b, 14.4.1e]

Halldén U (1956) An optical explanation of the Hering–Hillebrand horopter deviation Arch Ophthal 55 830–5 [14.6.2b]

Hallert B (1970) X-ray photogrammetry—basic geometry and quality Elsevier, New York [24.2.3e]

Halpern DL (1991) Stereopsis from motion–defined contours Vis Res 31 1611–17 [17.1.5]

Halpern DL, Blake R (1988) How contrast affects stereoacuity Perception 17 483–95 [18.5.2, 18.5.3, 18.5.4a]

Halpern DL, Patterson R, Blake R (1987a) Are stereoacuity and binocular rivalry related? Am J Optom Physiol Opt 64 41–4 [12.3.2c]

Halpern DL, Patterson R, Blake R (1987b) What causes stereoscopic tilt from spatial frequency disparity Vis Res 27 1619–29 [20.2.1]

Halpern DL, Wilson HR, Blake R (1996) Stereopsis from interocular spatial frequency differences is not robust Vis Res 36 2293–70 [20.2.1]

Hamilton CR, Tieman SB, Winter HL (1973) Optic chiasm section affects discriminability of asymmetric patterns by monkeys Brain Res 49 427–31 [13.4.2]

Hammond P (1991) Binocular phase specificity of striate corticotectal neurones Exp Brain Res 87 615–23 [11.4.1d]

Hammond P, Mouat GSV (1988) Neural correlates of motion after–effects in cat striate cortical neurones: interocular transfer Exp Brain Res 72 21–8 [13.3.3f]

Hammond P, Pomfrett CJD (1991) Interocular mismatch in spatial frequency and directionality characteristics of striate cortical neurones Exp Brain Res 85 631–40 [11.6.1]

Hammond P, Mouat GSV, Smith AT (1988) Neural correlates of motion after–effects in cat striate cortical neurones: monocular adaptation Exp Brain Res 72 1–20 [13.3.3f]

Hammond RS, Schmidt PP (1986) A random dot E stereogram for the vision screening of children Arch Ophthal 104 54–60 [18.2.3c]

Hampton DR, Kertesz AE (1983) The extent of Panum’s area and the human cortical magnification factor Perception 12 161–65 [12.1.1d]

Hamstra SJ, Regan D (1995) Orientation discrimination in cyclopean vision Vis Res 35 365–74 [16.2.2b]

Hancock S, Whitney D, Andrews TJ (2008) The initial interactions underlying binocular rivalry require visual awareness J Vis 8 1–9 [12.3.5f]

Handa T, Mukuno K, Uozato H, et al. (2004) Effects of dominant and nondominant eyes in binocular rivalry Optom Vis Sci 81 377–82 [12.3.7]

(p.583) Hanna GB, Cuschieri A (2000) Influence of two-dimensional and three-dimensional imaging on endoscopic bowel suturing World Journal of Surgery 27 444–8 [24.2.4]

Hänny P, von der Heydt R, Poggio GF (1980) Binocular neuron responses to tilt in the monkey visual cortex Evidence for orientation disparity processing Exp Brain Res 41 A29 [11.6.2, 20.3.1a]

Hansell R (1991) Stereopsis and ARC Am Orthopt J 41 122–7 [14.4.1e]

Hardy JE, Dodds SR, Roberts AD (1996) An objective evaluation of the effectiveness of different methods of displaying three-dimensional information with medical x-ray images Invest Radiol 31 433–45 [24.2.3e]

Hariharan-Vilupuru S, Bedell HE (2009) The perceived visual direction of monocular objects in random-dot stereograms is influenced by depth and allelotropia Vis Res 49 190–201 [16.7.4a]

Harker GS (1962) Apparent frontoparallel plane stereoscopic correspondence and induced cyclorotation of the eyes Percept Mot Skills 14 75–87 [21.3.2]

Harker GS (1967) A saccadic suppression explanation of the Pulfrich phenomenon Percept Psychophys 2 423–6 [23.2.4, 23.3.3]

Harker GS, Jones PD (1985) Interocular intermittence, retinal illuminance, and apparent depth displacement of a moving object Percept Psychophys 37 50–8 [23.3.3]

Harker GS, O’Neal OL (1967) Some observations and measurements of the Pulfrich phenomenon Percept Psychophys 2 438–40 [23.2.1]

Harper B, Latto R (2001) Cyclopean vision, size estimation, and presence in orthostereoscopic images Presence 10, 312–29 [20.6.3d]

Harrad RA, McKee SP, Blake R, Yang Y (1994) Binocular rivalry disrupts stereopsis Perception 23 15–28 [12.7.3]

Harris (2004) Binocular vision: moving closer to reality Trans Roy Soc A 362 2721–39 [20.6.3a]

Harris JM, Morgan MJ (1993) Stereo and motion disparities interfere with positioning averaging Vis Res 33 309–12 [22.5.2]

Harris JM, Parker AJ (1992) Efficiency of stereopsis in random–dot stereograms J Opt Soc Am A 9 1–12 [18.3.5]

Harris JM, Parker AJ (1994a) Constraints on human stereo dot matching Vis Res 34 2761–72 [18.3.5]

Harris JM, Parker AJ (1994b) Objective evaluation of human and computational stereoscopic visual systems Vis Res 34 2773–85 [18.3.5]

Harris JM, Parker AJ (1995) Independent neural mechanisms for bright and dark information in binocular stereopsis Nature 374 808–11 [17.1.1b]

Harris JM, Watamaniuk SNJ (1996) Poor speed discrimination suggests that there is no specialized speed mechanism for cyclopean motion Vis Res 36 2149–57 [16.5.2]

Harris JM, Willis A (2001) A binocular site for contrast-modulated masking Vis Res 41 873–81 [13.2.4a]

Harris JM, McKee SP, Smallman HS (1997) Fine-scale processing in human binocular stereopsis J Opt Soc Am 14 1673–83 [15.2.2d]

Harris JP, Gregory RL (1973) Fusion and rivalry of illusory contours Perception 2 235–47 [22.2.4a]

Harris L (1988) Varifocal mirror display integrated into a high speed image processor Proc Soc Photo Opt Instrum Engin 902 2–9 [24.1.4]

Harris LR, Cynader M (1981) The eye movements of the dark-reared cat Exp Brain Res 44 41–56 [22.6.1b]

Harris LR, Jenkin M (1993) Spatial vision in humans and robots Cambridge University Press, Cambridge [24.2.6]

Harris VA, Hayes W, Gleason JM (1974) The horizontal–vertical illusion: binocular and dichoptic investigations of bisection and verticality components Vis Res 14 1323–6 [16.3.1]

Harter MR, Seiple WH, Salmon L (1973) Binocular summation of visually evoked responses to pattern stimuli in humans Vis Res 13 1433–46 [13.1.8b]

Harter MR, Seiple WH, Musso M (1974) Binocular summation and suppression: visually evoked cortical responses to dichoptically presented patterns of different spatial frequency Vis Res 14 1169–80 [13.1.4c]

Harter MR, Towle VL, Zakrzewski M, Moyer SM (1977) An objective indicant of binocular vision in humans: size-specific interocular suppression of visual evoked potentials EEG Clin Neurophysiol 43 825–36 [13.2.4a]

Hartridge H (1918) Chromatic aberration and resolving power of the eye J Physiol 52 175–276 [17.8]

Harwerth RS, Boltz RL (1979a) Stereopsis in monkeys using random dot stereograms: the effect of viewing duration Vis Res 19 985–91 [18.12.1a, 18.5.4a]

Harwerth RS, Boltz RL (1979b) Behavioral measures of stereopsis in monkeys using random dot stereograms Physiol Behav 22 229–234 [18.3.1]

Harwerth RS, Rawlings SC (1977) Viewing time and stereoscopic threshold with random–dot stereograms Am J Optom Physiol Opt 54 452–7 [18.12.1a, 18.2.4]

Harwerth RS, Smith EL (1985) Binocular summation in man and monkey Am J Optom Physiol Opt 62 439–46 [13.1.2c]

Harwerth RS, Smith EL, Levi DM (1980) Suprathreshold binocular interactions for grating patterns Percept Psychophys 27 43–50 [13.1.2d, 13.1.7]

Harwerth RS, Smith EL, Siderov J (1995) Behavioral studies of local stereopsis and disparity vergence in monkeys Vis Res 35 1755–70 [18.3.1]

Harwerth RS, Fredenburg PM, Smith EL (2003) Temporal integration for stereoscopic vision Vis Res 43 505–17 [18.12.1a]

Hasebe H, Oyamada H, Ukal K, et al. (1996) Changes in oculomotor functions before and after loading of a 3-D visually-guided task by using a head-mounted display Ergonomics 39 1330–43 [24.2.6]

Hastorf AH, Myro G (1959) The effect of meaning on binocular rivalry Am J Psychol 72 393–400 [12.8.3a]

Hatta S, Kumagami T, Qian J, et al. (1998) Nasotemporal directional bias of V1 neurons in young infant monkeys Invest Ophthal Vis Sci 39 2259–67 [22.6.1b]

Hay JC, Pick HL, Rosser E (1963) Adaptation to chromatic aberration by the human visual system Science 141 167–9 [13.3.5]

Hayashi R, Miyawaki Y, Maeda T, Tachi S (2003) Unconscious adaptation: a new illusion of depth induced by stimulus features without depth Vis Res 43 2773–82 [21.6.2e]

Hayashi R, Maeda T, Shimojo S, Tachi S (2004) An integrative model of binocular vision: a stereo model utilizing interocularly unpaired points produces both depth and binocular rivalry Vis Res 44 2367–80 [11.10.1c, 17.30]

Hayashi R, Nishida S, Tolias A, Logothetis NK (2007) A method for generating a “purely first-order” dichoptic motion stimulus J Vis 7 1–10 [16.4.2c]

Hayes RM (1989) 3-D movies A history and filmography of stereoscopic cinema McFarland, London [24.1.1]

Hayhoe M, Gillam B, Chajka K, Vecellio E (2009) The role of binocular vision in walking Vis Neurosci 26 73–80 [20.1.1]

Haynes JD, Deichmann R, Rees G (2005) Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus Nature 438 496–499 [12.9.1]

He S, Davis WL (2001) Filling-in at the natural blind spot contributes to binocular rivalry Vis Res 41 835–40 [12.3.4]

He ZJ, Nakayama K (1994a) Perceiving textures: beyond filtering Vis Res 34 151–62 [22.1.2]

He ZJ, Nakayama K (1994b) Apparent motion determined by surface layout not by disparity or 3–dimensional distance Nature 367 173–4 [22.5.3c]

He ZJ, Nakayama K (1994c) Perceived surface shape not features determines correspondence strength in apparent motion Vis Res 34 2125–35 [22.5.3d]

He ZJ, Nakayama K (1995) Visual attention to surfaces in three-dimensional space Proc Natl Acad Sci 92 11155–9 [22.8.1]

He ZJ, Ooi TL (1999) Perceptual organization of apparent motion in the Ternus display Perception 28 887–92 [16.4.2e, 22.5.3b]

He ZJ, Ooi TL (2000) Perceiving binocular depth with reference to a common surface Perception 29 1313–34 [21.4.3]

(p.584) Heard PF, Papakostopoulos D (1993) Long term adaptation of the Pulfrich illusion Invest Ophthal Vis Sci 34 (Abs) 1053 [23.4.2b]

Hecht S (1928) On the binocular fusion of colors and its relation to theories of color vision Proc Natl Acad Sci 14 237–41 [12.2.1]

Heckmann T, Howard IP (1991) Induced motion: isolation and dissociation of egocentric and vection–entrained components Perception 20 285–305 [22.7.2]

Heckmann T, Post RB (1988) Induced motion and optokinetic afternystagmus; parallel response dynamics with prolonged stimulation Vis Res 28 681–94 [22.7.2]

Heckmann T, Schor CM (1989a) Panum’s fusional area estimated with a criterion–free technique Percept Psychophys 45 297–306 [12.1.1c, 12.1.2]

Heckmann T, Schor CM (1989b) Is edge information for stereoacuity spatially channelled Vis Res 29 593–607 [18.5.2]

Heeley DW, Scott-Brown KC, Reid G, Maitland F (2003) Interocular orientation disparity and the stereoscopic perception of slanted surfaces Spat Vis 16 183–207 [11.6.2]

Hegdé J, Van Essen DC (2005a) Stimulus dependence of disparity coding in primate visual area V4 J Neurophysiol 93 620–6 [11.5.3a]

Hegdé J, Van Essen DC (2005b) Role of primate visual area V4 in the processing of 3-D shape characteristics defined by disparity J Neurophysiol 94 2856–2866 [11.5.3a]

Heider B, Spillmann L, Peterhans E (2002) Stereoscopic illusory contours—cortical neuron responses and human perception J Cog Neurosci 14 1018–29 [22.2.4c]

Heine L (1900) Sehschärfe und Tiefenwahrnehmung Pflügers Arch ges Physiol 51 146 [18.2.1a]

Heinrich SP, Kromeier M, Bach M, Kommerell G (2005) Vernier acuity for stereodisparate objects and ocular prevalence Vis Res 45 1321–8 [18.11]

Held RT, Banks MS (2008) Misperceptions in stereoscopic dispkays: a vision science perspective ACM Trans, APGV08, 23–31 [24.1.1]

Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated–emission-depletion fluorescence microscopy Optics Letters 19 780–2 [24.2.3c]

Hell SW, Bahlmann K, Schrader M, et al. (1996) Three-photon excitation in fluorescence microscopy J Biomed Opt 1 71–4 [24.2.3c]

Hell SW, Schrader M, van der Voort HTM (1997) Far-field fluorescence microscopy with three-dimensional resolution in the 100-nm range J Microsc 187 1–7 [24.2.3b]

Helmholtz H von (1893) Popular lectures on scientific subjects (Translated by E Atkinson) Longmans Green, London [12.7.1]

Helmholtz H von (1909) Helmholtz’s treatise on physiological optics Dover, New York 1962 (Translation by JPC Southall from the 3rd German edition of Handbuch der Physiologischen Optik) Vos Hamburg [12.1.3a, 12.2.1, 14.6.1b, 14.5.2g, 15.3.7b, 16.8, 17.8, 20.6.5a]

Helson H (1963) Studies of anomalous contrast and assimilation J Opt Soc Am 53 179–84 [22.4.5]

Hendricks JM, Holliday IE, Ruddock KH (1981) A new class of visual defect: spreading inhibition elicited by chromatic light stimuli Brain 104 813–40 [17.1.4e]

Henning GB, Hertz BG (1973) Binocular masking level differences in sinusoidal grating detection Vis Res 13 2755–63 [13.2.4b]

Henning GB, Hertz BG (1977) The influence of bandwidth and temporal properties of spatial noise on binocular masking–level differences Vis Res 17 399–402 [13.2.4b]

Hepler N (1968) Color: a motion–contingent aftereffect Science 162 376–7 [13.3.5]

Herbomel P, Ninio J (1993) Processing of linear elements in stereopsis: effects of positional and orientational distinctiveness Vis Res 33 1813–25 [15.3.11]

Hering E (1861) Beitrage zur Physiologie Vol 5. Engelmann, Leipzig [12.2.2, 12.3.1a, 21.1]

Hering E (1865) Die Gesetze der binocularen Tiefenwahrnehmung Arch für Anat Physiol Wissen Med 152–165 [15.3.1, 16.7.3a, 18.2.1d]

Hering E (1868) The theory of binocular vision (Translated by B Bridgeman) B Bridgeman & L Stark Eds, Plenum, New York 1977 [16.7.2b]

Hering E (1874) Outlines of a theory of the light sense (Translated by L Hurvich, D Jameson) Harvard University Press, Cambridge MA 1964 [12.3.5a, 22.4.1]

Hering E (1879) Spatial sense and movements of the eye (Translated by CA Radde) Am Acad Optom, Baltimore 1942 [12.2.1, 14.4.1b, 14.6.2a, 16.7.2b, 16.7.2c, 17.6.3]

Herman JH, Tauber ES, Roffwarg HP (1974) Monocular occlusion impairs stereoscopic acuity but total visual deprivation does not Percept Psychophys 16 225–8 [18.14.1]

Heron G, Dholakia S, Collins DE, McLaughlan H (1985) Stereoscopic threshold in children and adults Am J Optom Physiol Opt 62 505–15 [18.2.1e, 18.2.3b]

Heron G, McQuaid M, Morrice E (1995) The Pulfrich effect in optometric practice Ophthal Physiol Opt 15 425–9 [23.7]

Herpers MJ, Caberg HB, Mol JMF (1981) Human cerebral potentials evoked by moving dynamic random dot stereograms EEG Clin Neurophysiol 52 50–6 [11.7]

Herring RD, Bechtoldt HP (1981) Categorical perception of stereoscopic stimuli Percept Psychophys 29 129–37 [18.6.4]

Hertel K, Monjé M (1947) über den Einfluss des Zeitfactors auf das räumliche Sehen Pflügers Arch ges Physiol 279 295–306 [18.12.1a]

Herzau V (1976) Stereosehen bei alternierender Bildarbietung Graefe’s Arch Klin Exp Ophthal 200 85–91 [18.12.2a]

Herzau W, Ogle KN (1937) Über den Grösenunterschied der Bilder beider Augen bei asymmetrischer Konvergenz und seine Bedeutung für das Zweiäugige Sehen Graefe’s Arch Klin Exp Ophthal 137 327–63 [14.6.2a, 20.2.2c]

Hess C (1904) Untersuchungen über den Erregungsvorgang im Sehorgan bei kurz– und bei längerdauernder Reizung Pflügers Arch ges Physiol 101 229–62 [23.2.3]

Hess RF (1978) Interocular transfer in individuals with strabismic amblyopia: a cautionary note Perception 7 201–5 [13.2.6]

Hess RF, Holliday I (1992) The coding of spatial position by the human visual system Vis Res 32 1085–97 [18.7.2d]

Hess RF, Wilcox LM (1994) Linear and non-linear filtering in stereopsis Vis Res 34 2731–8 [15.3.6, 18.7.2d]

Hess RF, Wilcox LM (2006) Stereo dynamics are not scale-dependent Vis Res 46 1911–23 [18.12.1c, 18.7.2a]

Hess RF, Wilcox LM (2008) The transient nature of 2nd-order stereopsis Vis Res 48 1327–34 [18.7.2d]

Hess RF, Demanins R, Bex PJ (1997) A reduced motion aftereffect in strabismic amblyopia Vis Res 37 1303–11 [13.3.3b]

Hess RF, Kingdom FAA, Ziegler LR (1999) On the relationship between the spatial channels for luminance and disparity processing Vis Res 39 559–68 [18.7.2c]

Hess RF, Liu CH, Wang YZ (2002) Luminance spatial scale and local stereo-sensitivity Vis Res 42 331–42 [15.3.6, 18.5.2]

Hess RF, Liu CH, Wang YZ (2003) Differential binocular input and local stereopsis Vis Res 43 2303–13 [18.5.4a, 18.5.4b]

Hess RF, Hutchinson CV, Ledgeway T, Mansouri B (2007) Binocular influences on global motion processing in the human visual system Vis Res 47 1682–92 [13.1.6d]

Hess RF, Huang PC, Maehara G (2009) Spatial distortions produced by purely dichoptic-based visual motion Perception 38 1012–18 [16.4.2a]

Hess WR (1914) Direct wirkende Stereoskopbilder Z Wissen Photog Photophy Photochem 14 34–8 [24.1.3b]

Hetherington PA, Swindale NV (1999) Receptive field and orientation scatter studied by tetrode recordings in cat area 17 Vis Neurosci 16 637–52 [11.3.1, 11.6.2]

Heuser JE, Reese TS, Dennis MJ, et al. (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release J Cell Biol 81 275–300 [24.2.3d]

Hibbard PB (2005) The orientation bandwidth of cyclopean channels Vis Res 45 2780–2785 [18.6.3e]

(p.585) Hibbard PB (2007) A statistical model of binocular disparity Vis Cogn 15 149–65 [11.10.1a]

Hibbard PB (2008) Binocular energy responses to natural images Vis Res 48 1427–39 [11.10.1a, 11.10.1c]

Hibbard PB, Bouzit S (2005) Stereoscopic correspondence for ambiguous targets is affected by elevation and fixation distance Spat Vis 18 399–411 [15.3.12]

Hibbard PB, Bradshaw MF (1999) Does binocular disparity facilitate the detection of transparent motion? Perception 28 183–91 [22.3.5]

Hibbard PB, Langley K (1998) Plaid slant and inclination thresholds can be predicted from components Vis Res 38 1073–84 [20.4.1d]

Hibbard PB, Bradshaw MF, De Bruyn B (1999) Global motion processing is not tuned for binocular disparity Vis Res 39 961–74 [22.3.5]

Hibbard PB, Bradshaw MF, Langley K, Rogers BJ (2002) The stereoscopic anisotropy: individual differences and underlying mechanisms J Exp Psychol: HPP 28 469–76 [20.4.1a]

Highman VN (1977) Stereopsis and aniseikonia in uniocular aphakia Br J Ophthal 61 30–3 [18.3.4]

Higuchi H, Hamasaki J (1978) Real-time transmission of 3-D images formed by parallax panoramagrams App Optics 17 3895–902 [24.1.3b]

Hill AJ (1953) A mathematical and experimental foundation for stereophotography J Soc Motion Pict Televis Engin 61 461–87 [24.1.1]

Hillebrand F (1893) Die Stabilatät der Raumwerte auf der Netzhaut Z Psychol Physiol Sinnesorg 5 1–60 [14.6.2a, 14.6.2b]

Hillebrand F (1929) Lehre von den Gesichtsempfindungen auf Grund hinterlassener Springer, Vienna [14.6.2a]

Hillis JM, Banks MS (2001) Are corresponding points fixed? Vis Res 41 2457–73 [14.6.2a]

Hine T (1985) The binocular contribution to monocular optokinetic nystagmus and after nystagmus asymmetries in humans Vis Res 25 589–98 [22.6.1e]

Hinkle DA, Connor CE (2002) Three-dimensional orientation tuning in macaque area V4 Nat Neurosci 5 665–70 [11.5.3a, 11.6.2]

Hinkle DA, Connor CE (2005) Quantitative characterization of disparity tuning in ventral pathway area V4 J Neurophysiol 94 2726–37 [11.5.3a]

Hinton GE (1989) Connectionist learning procedures Artificial Intelligence 40 185–234 [11.10.2]

Hiris E, Blake R (1996) Direction repulsion in motion transparency Vis Neurosci 13 187–97 [22.7.4]

Hirsch MJ (1947) The stereoscope as a means of measuring distance discrimination Am J Optom Arch Am Acad Optom 27 442–6 [18.2.4]

Hirsch MJ, Weymouth FW (1948a) Distance discrimination. I. Theoretical consideration Arch Ophthal 39 210–23 [18.10.2a, 18.6.2a]

Hirsch MJ, Weymouth FW (1948b) Distance discrimination. II. Effect on threshold of lateral separation of the test objects Arch Ophthal 39 227–31 [18.10.2a, 18.6.2a]

Ho WA, Berkley MA (1991) Interactions between channels as revealed by ambiguous motion stimuli Invest Ophthal Vis Sci 32 (Abs) 829 [22.3.1]

Hochberg JE, Beck J (1954) Apparent spatial arrangement and perceived brightness J Exp Psychol 47 293–6 [22.4.3b]

Hodges LF (1992) Time-multiplexed stereoscopic computer graphics IEEE Tr Comput Graph App 14 20–30 [24.1.1]

Hofeldt AJ, Leavitt J, Behrens MM (1985) Pulfrich stereo-illusion phenomenon in serous sensory retinal detachment of the macula Am J Ophthal 100 576–80 [23.7]

Hoffman CS (1962) Comparison of monocular and binocular color matching J Opt Soc Am 52 75–80 [12.2.3]

Hoffmann KP (1979) Optokinetic nystagmus and single-cell responses in the nucleus tractus opticus after early monocular deprivation in the cat In Developmental neurobiology of vision (ed RD Freeman) pp 63–72 Plenum, New York [22.6.1b]

Hoffmann KP (1982) Cortical versus subcortical contributions to the optokinetic reflex in the cat In Functional basis of ocular motility disorders (ed G Lennerstrand, DS Zee, EL Keller) pp 303–11 Pergamon, New York [22.6.1b, 22.6.1e]

Hoffmann KP, Distler C (1986) The role of direction selective cells the nucleus of the optic tract of cat and monkey during optokinetic nystagmus In Adaptive processes in vision and oculomotor systems (ed EL Keller, DS Zee) pp 291–7 Pergamon, New York [22.6.1b]

Hoffmann KP, Distler C (1989) A quantitative analysis of visual receptive fields of neurons in nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in macaque monkey J Neurophysiol 62 416–28 [22.6.1b]

Hoffmann KP, Stone J (1985) Retinal input to the nucleus of the optic tract of the cat assessed by antidromic activation of ganglion cells Exp Brain Res 59 395–403 [22.6.1b]

Hoffmann KP, Bremmer F, Thiele A, (2002) Directional asymmetry of neurons in cortical areas MT and MST projecting to the NOT-DTN in macaques J Neurophysiol 87 2113–23 [22.6.1b]

Holland HC (1965) The spiral after–effect Pergamon, Oxford [13.3.3a]

Holliday IE, Braddick OJ (1991) Pre-attentive detection of a target defined by stereoscopic slant Perception 20 355–62 [22.8.2a]

Hollins M (1980) The effect of contrast on the completeness of binocular rivalry suppression Percept Psychophys 27 550–6 [12.4.1]

Hollins M, Bailey GW (1981) Rivalry target luminance does not affect suppression depth Percept Psychophys 30 201–3 [12.3.2a]

Hollins M, Leung EHL (1978) The influence of color on binocular rivalry In Visual psychophysics and physiology (ed JC Armington, J Krausfopf, BR Wooten) pp 181–90 Academic Press, New York [12.3.2e]

Holopigian K (1989) Clinical suppression and binocular rivalry suppression: the effects of stimulus strength on the depth of suppression Vis Res 29 1325–33 [12.3.2a]

Home R (1984) Binocular summation: a study of contrast sensitivity visual acuity and recognition Vis Res 18 579–85 [13.1.3c]

Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities Proc Natl Acad Sci 79 2554–8 [15.2.1b]

Horowitz MW (1949) An analysis of the superiority of binocular over monocular visual acuity J Exp Psychol 39 581–96 [13.1.1a]

Householder AS (1943) A theory of the induced size effect Bull Math Biophys 5 155–9 [20.2.3a]

Hovis JK (1989) Review of dichoptic color mixing Optom Vis Sci 66 181–90 [12.2.4]

Hovis JK, Guth SL (1989a) Dichoptic opponent hue cancellations Optom Vis Sci 66 304–19 [12.2.3]

Hovis JK, Guth SL (1989b) Changes in luminance affect dichoptic unique yellow J Opt Soc Am A 6 1297–301 [12.2.3]

Howard HJ (1919) A test for the judgment of distance Am J Ophthal 2 656–75 [18.2.1a]

Howard IP (1959) Some new subjective phenomena apparently due to interocular transfer Nature 184 1516–17 [12.3.3a]

Howard IP (1960) Attneave’s interocular color–effect Am J Psychol 73 151–2 [13.3.5]

Howard IP (1961) An investigation of a satiation process in the reversible perspective of a revolving skeletal cube Quart J Exp Psychol 13 19–33 [21.6.2g]

Howard IP (1970) Vergence, eye signature, and stereopsis Psychonom Monogr Supp 3 201–4 [16.8, 19.6.3, 19.6.4]

Howard IP (1982) Human visual orientation Wiley, Chichester [13.3.2a, 13.4.3, 16.2.1, 16.2.2b, 18.6.5, 22.7.3]

Howard IP (1993) The optokinetic system In The vestibulo–ocular reflex nystagmus and vertigo (ed JA Sharpe, HO Barber) pp 163–84 Raven Press, New York [22.6.1a]

Howard IP (1995) Depth from binocular rivalry without spatial disparity Perception 27 67–74 [16.1.2c, 17.5]

Howard IP (1996) Alhazen’s neglected discoveries of visual phenomena Perception 25 1203–17 [16.7.2b]

Howard IP, Duke PA (2003) Monocular transparency generates quantitative depth Vis Res 43 2615–21 [17.4]

(p.586) Howard IP, Gonzalez EG (1987) Optokinetic nystagmus in response to moving binocularly disparate stimuli Vis Res 27 1807–17 [22.6.1e]

Howard IP, Heckmann T (1989) Circular vection as a function of the relative sizes distances and positions of two competing visual displays Perception 18 657–67 [22.7.3]

Howard IP, Howard A (1994) Vection; the contribution of absolute and relative visual motion Perception 23 745–51 [22.7.3]

Howard IP, and Hu G (2001) Visually induced reorientation illusions Perception 30 583–600 [21.1]

Howard IP, Kaneko H (1994) Relative shear disparities and the perception of surface inclination Vis Res 34 2505–17 [20.3.2a, 21.7.2]

Howard IP, Marton C (1992) Visual pursuit over textured backgrounds in different depth planes Exp Brain Res 90 625–9 [22.6.2]

Howard IP, Ohmi M (1984) The efficiency of the central and peripheral retina in driving human optokinetic nystagmus Vis Res 27 969–76 [22.6.1e]

Howard IP, Ohmi M (1992) A new interpretation of the role of dichoptic occlusion in stereopsis Invest Ophthal Vis Sci 33 (Abs) 1370 [17.6.2]

Howard IP, Pierce BJ (1998) Types of shear disparity and the perception of surface inclination Perception 27 129–45 [21.7.2]

Howard IP, Simpson WS (1989) Human optokinetic nystagmus is linked to the stereoscopic system Exp Brain Res 78 309–14 [22.6.1e]

Howard IP, Templeton WB (1964) The effect of steady fixation on the judgment of relative depth Quart J Exp Psychol 16 193–203 [21.6.1a]

Howard IP, Templeton WB (1966) Human spatial orientation Wiley, London [16.7.6a]

Howard IP, Wade NJ (1996) Ptolemy’s contributions to the geometry of binocular vision Perception 25 1189–1201 [16.7.2b]

Howard IP, Zacher JE (1991) Human cyclovergence as a function of stimulus frequency and amplitude Exp Brain Res 85 445–50 [19.6.1, 21.7.2]

Howard IP, Giaschi D, Murasugi CM (1989) Suppression of OKN and VOR by afterimages and imaginary objects Exp Brain Res 75 139–45 [22.7.2]

Howard IP, Ohmi M, Sun L (1993) Cyclovergence: a comparison of objective and psychophysical measurements Exp Brain Res 97 349–55 [21.3.3]

Howarth E (1951) The role of depth of focus in depth perception Brit J Psychol (Genera) 42 11–20 [18.5.1]

Howarth PA, Bradley A (1986) The longitudinal chromatic aberration of the human eye and its correction Vis Res 29 361–6 [17.8]

Howe PDL, Livingstone MS (2006) V1 partially solves the stereo aperture problem Cereb Cortex 16 1332–7 [11.4.5a]

Howe PDL, Watanabe T (2003) Measuring the depth induced by an opposite-luminance (but not anticorrelated) stereogram Perception 32 415–421 [15.3.7b]

Hubel DH, Livingstone MS (1987) Segregation of form color and stereopsis in primate area 18 J Neurosci 7 3378–415 [11.4.1a, 11.5]

Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s visual cortex J Physiol 148 574–91 [11.1.2]

Hubel DH, Wiesel TN (1962) Receptive fields binocular interaction and functional architecture in the cat’s visual cortex J Physiol 160 106–54 -215, 235, 255 [11.1.2, 11.6.1]

Hubel DH, Wiesel TN (1970) Stereoscopic vision in macaque monkey Nature 225 41–2 [11.1.2, 11.4.1a]

Hubel DH, Wiesel TN (1973) A re-examination of stereoscopic mechanisms in area 17 of the cat J Physiol 232 29–30P [11.6.2]

Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organization In Handbook of sensory physiology Vol VII/5 (ed F Crescitelli) pp 615–756 Springer, New York [14.1]

Humphriss D (1982) The psychological septum An investigation into its function Am J Optom Physiol Opt 59 639–41 [12.3.2b]

Hurvich LM, Jameson D (1951) The binocular fusion of yellow in relation to color theories Science 114 199–202 [12.2.1]

Hyson MT, Julesz B, Fender DH (1983) Eye movements and neural remapping during fusion of misaligned random–dot stereograms J Opt Soc Am 73 1665–73 [18.4.1b]

Iavecchia HP, Folk CL (1994) Shifting visual attention in stereographic displays: a time course analysis Hum Factors 36 606–18 [22.8.1]

Ibbotson MR, Marotte LR, Mark RF (2002) Investigations into the source of binocular input to the nucleus of the optic tract in an Australian marsupial, the Wallaby Macropus eugenii Exp Brain Res 147 80–88 [22.6.1a]

Ichihara S, Goryo K (1978) The effects of relative orientation of surrounding gratings on binocular rivalry and apparent brightness of central gratings Jap Psychol Res 20 159–66 [12.3.3b]

Ichikawa M, Egusa H (1993) How is depth perception affected by long–term wearing of left–right reversing spectacles Perception 22 971–84 [21.6.2g]

Idesawa M, Uchida M, Watanabe T (2005) 3-D illusory objects viewed with integrated prism glasses Perception 34 (Suppl) 186 [17.8]

Ikeda M (1965) Temporal summation of positive and negative flashes in the visual system J Opt Soc Am 55 1527–34 [13.1.6c]

Ikeda M, Nakashima Y (1980) Wavelength difference limit for binocular color fusion Vis Res 20 693–7 [12.2.2]

Ikeda M, Sagawa K (1979) Binocular color fusion limit J Opt Soc Am 69 316–20 [12.2.2]

Indebetouw G, Zhong W (2006) Scanning holographic microscopy of three-dimensional fluorescent specimens J Opt Soc Am 23 1699–707 [24.2.3b]

Ingling CR (1991) Psychophysical correlates of parvo channel function In From pigments to perception (ed A Valberg, BB Lee) pp 413–27 Plenum, New York [11.5.4]

Ingling CR, Grigsby SS (1990) Perceptual correlates of magnocellular and parvocellular channels: seeing form and depth in afterimages Vis Res 30 823–8 [11.5.4]

Ingling CR, Martinez–Uriegas E (1985) The spatiotemporal properties of the r–g X–cell channel Vis Res 25 33–8 [11.5.4]

Inoué S, Inoué TD (1986) Computer-aided stereoscopic video reconstruction and serial display from high-resolution light-microscope optical sections Ann N Y Acad Sci 483 392–404 [24.2.3a]

Ioannou GL, Rogers BJ, Bradshaw MF, Glennerster A (1993) Threshold and supra-threshold sensitivity functions for stereoscopic surfaces Invest Ophthal Vis Sci 34 (Abs) 1186 [18.6.3d]

Ireland FH (1950) A comparison of critical flicker frequencies under conditions of monocular and binocular stimulation J Exp Psychol 40 282–6 [13.1.5]

Ishii M (2009) Effect of a disparity pattern on the perception of direction: Non-retinal information masks retinal information Vis Res 49 1563–8 [19.6.4]

Ishikawa H, Geiger D (2006) Illusory volumes in human stereo perception Vis Res 46 171–8 [22.2.1]

Ito H (1997) The interaction between stereoscopic and luminance motion Vis Res 37 2553–59 [16.5.1]

Ito H (2003) The aperture problems in the Pulfrich effect Perception 32 367–75 [23.1.2]

Ito H (2005) Illusory depth perception of oblique lines produced by overlaid vertical disparity Vis Res 45 931–42 [15.3.13]

Ives HE (1931) Optical properties of a Lippmann lenticulated sheet J Opt Soc Am 21 171–6 [24.1.3c]

Ives HE (1933) An experimental apparatus for the projection of motion pictures in relief J Soc Motion Pict Engin 21 106–15 [24.1.3c]

Iwabuchi A, Shimuzu H (1997) Antiphase flicker induces depth segregation Percept Psychophys 59 1312–29 [22.1.1]

Iwami T, Nishida Y, et al. (2002) Common neural processing regions for dynamic and static stereopsis in human parieto-occipital cortices Neurosci Lett 327 29–32 [11.8.1]

Jaensch ER (1911) über die Wahrnehmung des Raumes Eine experimentell–psychologische Untersuchung nebst Anwendung auf ästhetik und Erkenntnislehre Z Psychol Physiol Sinnesorg 6 (Supp) 1–448 [17.6.2]

(p.587) Jampolsky A, Flom BC, Freid AN (1957) Fixation disparity in relation to heterophoria Am J Ophthal 43 97–106 [18.10.3b]

Janssen P, Vogels R, Orban GA (2000a) Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex Science 288 2054–6 [11.5.3b]

Janssen P, Vogels R, Orban GA (2000b) Three-dimensional shape coding in inferior temporal cortex Neuron 27 385–97 [11.5.3b]

Janssen P, Vogels R, Liu Y, Orban GA (2001) Macaque inferior temporal neurons are selective for three-dimensional boundaries and surfaces J Neurosci 21 9419–29 [11.5.3b]

Janssen P, Vogels R, Liu Y, Orban GA (2003) At least at the level of inferior temporal cortex, the stereo correspondence problem is solved Neuron 37 693–701 [11.5.3b]

Jaschinski W, Bröde P, Griefahn B (1999) Fixation disparity and nonius bias Vis Res 39 669–77 [14.6.1c]

Jaschinski W, Jainta S, Schürer M (2006) Capture of visual direction in dynamic vergence is reduced with flashed monocular lines Vis Res 46 2608–14 [16.7.4a]

Javal E (1865) De la neutralisation dans l’acte de la vision Annals d’ Oculistique Paris 54 5–16 [14.4.2]

Jeeves MA (1991) Stereo perception in callosal agenesis and partial callosotomy Neuropsychologia 29 19–34 [11.9.2]

Jenkin MR, Jepson AD (1988) The measurement of binocular disparity In Computational processes in human vision (ed ZW Pylyshyn) pp 69–98 Ablex Publishing, Norwood NJ [11.4.3a]

Jenkin MR, Jepson AD (1994) Recovering local surface structure through local phase difference measurements Comp Vis Gr Im Proc: Im Underst 59 72–93 [15.2.1d]

Jenkin MR, Jepson AD, Tsotsos JK (1991) Techniques for disparity measurement Comp Vis Im Proc: Im Underst 53 14–30 [11.10.1a, 11.4.3a]

Jenkins TCA, Pickwell LD, Abd-Manan F (1992) Effect of induced fixation on binocular visual acuity Ophthal Physiol Opt 12 299–301 [13.1.1a]

Jenkins TCA, Abd-Manan F, Pardhan S, Murgatroyd RN (1994) Effect of fixation disparity on distance binocular visual acuity Ophthal Physiol Opt 14 129–31 [13.1.1a]

Jennings JAM (1985) Anomalous retinal correspondence: a review Ophthal Physiol Opt 5 357–68 [14.4.1e]

Jensen JR (1980) Stereoscopic statistical maps The American Cartographer 7 25–37 [24.2.1]

Jiao SL, Han C, Jing QC, Over R (1984) Monocular–contingent and binocular–contingent aftereffects Percept Psychophys 35 105–10 [13.3.3d]

Jiménez JR, Rubino M, Hita E, Jiménez del Barco L (1997) Influence of the luminance and opponent chromatic channels on stereopsis with random-dot stereograms Vis Res 37 591–6 [17.1.4a]

Jiménez JR, Rubino M, Díaz JA, et al. (2000) Changes in stereoscopic depth perception caused by decentration of spectacle lenses Optom Vis Sci 77 421–7 [18.6.7]

Jiménez JR, Medina JM, Jiménez DD, Diaz JA (2002a) Binocular summation of chromatic changes as measured by visual reaction time Percept Psychophys 64 140–7 [13.1.2g]

Jiménez JR, Ponce A, Del Barco J, et al. (2002b) Impact of induced aniseikonia on stereopsis with random-dot stereogram Optom Vis Sci 79 121–5 [18.3.4]

Jiménez JR, Castro JJ, Jiménez R, Hita E (2008) Interocular differences in higher-order aberrations on binocular visual performance Optom Vis Sci 85 174–9 [18.5.4b]

Johannsen DE (1930) A quantitative study of binocular color vision J Gen Psychol 4 282–308 [12.2.1, 12.2.2]

Johansson G (1964) Perception of motion and changing form Scand J Psychol 5 181–208 [22.1.1]

Johnston A, Curran W (1996) Investigating shape-from-shading illusions using solid objects Vis Res 36 2827–35 [21.4.2f]

Johnston AW (1971) Clinical horopter determination and the mechanism of binocular vision in anomalous correspondence Ophthalmologica 163 102–119 [14.4.1b]

Johnston EB (1991) Systematic distortions of shape from stereopsis Vis Res 31 1351–60 [20.6.3d]

Jolicoeur P, Cavanagh P (1992) Mental rotation physical rotation and surface media J Exp Psychol HPP 18 371–84 [16.2.2b]

Jones DG, Malik J (1992) Computational framework for determining stereo correspondence from a set of linear spatial filters Image Vis Comp 10 699–708 [15.2.1c]

Jones HE, Grieve KL, Wang W, Sillito AM (2001) Surround suppression in primate V1 J Neurophysiol 86 2011–28 [12.3.3b]

Jones PF, Aitken GJM (1994) Comparison of three-dimensional imaging systems J Opt Soc Am A 11 2913–21 [24.1.4a]

Jones RK, Lee DN (1981) Why two eyes are better than one: the two views of binocular vision J Exp Psychol HPP 7 30–40 [20.1.1]

Jones RM, Tulunay-Keesey U (1980) Phase selectivity of spatial frequency channels J Opt Soc Am 70 66–70 [21.6.4]

Jordan JR, Geisler WS, Bovik AC (1990) Color as a source of information in the stereo correspondence process Vis Res 30 1955–70 [17.1.4b]

Joseph JS, Chun MM, Nakayama K (1997) Attentional requirements in a ‘preattentive’ feature search task Nature 387 805–7 [22.8.2a]

Joshua DE, Bishop PO (1970) Binocular single vision and depth discrimination Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex Exp Brain Res 10 389–416 [11.3.1, 11.4.3c, 11.4.4, 11.4.5b]

Jourdan IC, Dutson E, et al. (2004) Stereoscopic vision provides a significant advantage for precision robotic laparoscopy Brit J Surg 91 879–85 [24.2.4]

Julesz B (1960) Binocular depth perception of computer generated patterns Bell System Technical Journal 39 1125–62 [15.4.4, 17.1, 17.5, 18.3.4, 18.14.2a, 24.1.5]

Julesz B (1963) Stereopsis and binocular rivalry of contours J Opt Soc Am 53 994–9 [18.3.3a, 18.10.1a]

Julesz B (1964) Binocular depth perception without familiarity cues Science 145 356–62 [17.2.3, 18.12.1b, 21.7.2]

Julesz B (1966) Binocular disappearance of monocular symmetry Science 153 657–9 [16.6.2]

Julesz B (1971) Foundations of cyclopean perception University of Chicago Press, Chicago [15.3.7d, 16.1.1, 16.3.2, 16.6.2, 18.14.2a, 18.14.2c, 18.14.2f, 20.5.1, 21.4.1]

Julesz B, Bergen JR (1983) Textons the fundamental elements on preattentive vision and perception of texture Bell System Technical Journal 62 1619–45 [22.8.2a]

Julesz B, Chang JJ (1976) Interaction between pools of binocular disparity detectors tuned to different disparities Biol Cyber 22 107–19 [15.4.5, 18.13]

Julesz B, Johnson SC (1968) Stereograms portraying ambiguous perceivable surfaces Proc Natl Acad Sci 61 437–41 [18.8.2a]

Julesz B, Miller JE (1975) Independent spatial frequency tuned channels in binocular fusion and rivalry Perception 4 125–43 [12.7.3, 13.1.2c, 18.7.4]

Julesz B, Oswald HP (1978) Binocular utilization of monocular cues that are undetectable monocularly Perception 7 315–22 [18.14.2c]

Julesz B, Payne RA (1968) Differences between monocular and binocular stroboscopic movement perception Vis Res 8 433–44 [16.4.1, 16.5.1]

Julesz B, Tyler CW (1976) Neurontropy an entropy–like measure of neural correlation in binocular fusion and rivalry Biol Cyber 22 107–19 [11.7, 15.2.2a]

Julesz B, White B (1969) Short term visual memory and the Pulfrich phenomenon Nature 222 639–41 [23.3.1, 23.6.1]

Julesz B, Kropfl W, Petrig B (1980) Large evoked potentials to dynamic random–dot correlograms permit quick determination of stereopsis Proc Natl Acad Sci 77 2348–51 [11.7]

Julesz B, Breitmeyer B, Kropfl W (1976) Binocular disparity–dependent upper–lower hemifield anisotropy and left–right hemifield isotropy as revealed by dynamic random–dot stereograms Perception 5 129–41 [18.6.1b]

(p.588) Justo MS, Bermudez MA, Perez R, Gonzalez F (2004) Binocular interaction and performance of visual tasks Ophthal Physiol Opt 24 82–90 [13.1.7]

Kaernbach C, Schröger E, Jacobsen T, Roeber U (1999) Effects of consciousness on human brain waves following binocular rivalry Neuroreport 10 713–6 [12.9.2e]

Kahn RH (1931) Über den Stereoeffekt von Pulfrich Pflügers Arch ges Physiol 227 213–27 [23.5]

Kahneman D (1968) Methods findings and theory in studies of visual masking Psychol Bull 70 693–7 [13.2.7b]

Kaiser P (1971) Minimally distinct border as a preferred psychophysical criterion in visual heterochromatic photometry J Opt Soc Am 61 966–71 [17.1.4a]

Kaiser P, Boynton RM (1985) Role of the blue mechanism in wavelength discrimination Vis Res 25 523–9 [12.3.2e]

Kalarickal GJ, Marshall JA (2000) Neural model of temporal and stochastic properties of binocular rivalry Neurocomputing 32–33 843–53 [12.10]

Kalberlah C, Distler C, Hoffmann KP (2009) Sensitivity to relative disparity in early visual cortex of pigmented and albino ferrets Exp Brain Res 192 379–89 [11.3.1]

Kamphuisen A, Bauer M, van Ee R (2008) No evidence for widespread synchronized networks in binocular rivalry: MEG frequency tagging entrains primarily early visual cortex J Vis 8(5) Article 4 [12.9.2e]

Kanai R, Verstraten FA (2005) Perceptual manifestations of fast neural plasticity: motion priming, rapid motion aftereffect and perceptual sensitization Vis Res 4 3109–16 [12.3.5f]

Kaneko H, Howard IP (1996) Relative size disparities and the perception of surface slant Vis Res 36 1919–30 [20.2.4b]

Kaneko H, Howard IP (1997a) Spatial properties of shear disparity processing Vis Res 37 315–23 [20.3.2a, 20.3.2b]

Kaneko H, Howard IP (1997b) Spatial limitation of vertical-size disparity processing Vis Res 37 2871–78 [20.2.4a]

Kang MS (2009) Size matters: a study of binocular rivalry dynamics J Vis 9(1) Article 17 [12.3.2a]

Kanizsa G (1979) Organization in vision: Essays on Gestalt perception Praeger, New York [22.2.4a]

Kaplan IT, Metlay W (1964) Light intensity and binocular rivalry J Exp Psychol 67 22–6 [12.3.2c]

Kasai T, Morotomi T (2001) Event-related potentials during selective attention to depth and form in global stereopsis Vis Res 41 1379–88 [11.7]

Katsumi O, Tsuyoshi T, Hirose T (1986) Effect of aniseikonia on binocular function Invest Ophthal Vis Sci 27 601–4 [13.1.8b, 18.3.4]

Katz MS, Schwartz I (1955) New observation of the Pulfrich effect J Opt Soc Am 45 523–27 [23.2.1]

Kaufman L (1963) On the spread of suppression and binocular rivalry Vis Res 3 401–15 [12.3.5a, 12.3.6a, 12.4.2]

Kaufman L (1964) Suppression and fusion in viewing complex stereograms Am J Psychol 77 193–205 [12.7.2, 12.7.3]

Kaufman L (1965) Some new stereoscopic phenomena and their implications for theories of stereopsis Am J Psychol 78 1–20 [17.2.4]

Kaufman L (1974) Sight and mind An introduction to visual perception Oxford University Press, London [12.1.7, 17.1.2a]

Kaufman L (1976) On stereopsis with double images Psychologia 19 227–33 [17.6.2]

Kaufman L, Arditi A (1976) The fusion illusion Vis Res 16 353–43 [12.1.1c]

Kaufman L, Pitblado C (1965) Further observations on the nature of effective binocular disparities Am J Psychol 78 379–91 [15.3.7b]

Kaufman L, Pitblado CB (1969) Stereopsis with opposite contrast conditions Percept Psychophys 6 10–12 [15.3.7b]

Kaufman L, Bacon J, Barroso F (1973) Stereopsis without image segregation Vis Res 13 137–47 [18.8.2b]

Kavadellas A, Held R (1977) Monocularity of color–contingent tilt aftereffects Percept Psychophys 21 12–14 [13.3.5]

Kawano K, Sasaki M, Yamashita M (1984) Response properties of neurons in posterior parietal cortex of monkey during visual–vestibular stimulation. I. Visual tracking neurons J Neurophysiol 51 340–51 [22.6.1d]

Kawano K, Inoue Y, Takemura A, Miles FA (1994) Effect of disparity in the peripheral field on short-latency ocular following responses Vis Neurosci 11 833–7 [22.6.2]

Kaye M (1978) Stereopsis without binocular correlation Vis Res 18 1013–22 [17.6.5]

Kaye SB, Siddiqui A, Ward A, et al. (1999) Monocular and binocular depth discrimination thresholds Optom Vis Sci 76 770–82 [18.2.1a]

Keesey UT (1960) Effects of involuntary eye movements on visual acuity J Opt Soc Am 50 769–74 [18.10.1a]

Kellman PJ, Garrigan P, Shipley TF, et al. (2005) 3-D Interpolation in object perception: Evidence from an objective performance paradigm J Exp Pychol HPP 31 558–83 [22.2.1]

Kennedy H, Courjon JH, Flandrin JM (1982) Vestibulo-ocular reflex and optokinetic nystagmus in adult cats reared in stroboscopic illumination Exp Brain Res 48 279–87 [22.6.1b]

Kepler J (1604) Ad Vitellionem Paralipomena Marinium and Aubrii, Frankfurt (Translated in Donahue 2000) [16.7.7]

Kerr KE (1980) Accommodative and fusional vergence in anomalous correspondence Am J Optom Physiol Opt 57 676–80 [14.4.1d]

Kerr KE (1998) Anomalous correspondence—the cause or consequence of strabismus Optom Vis Sci 75 17–22 [14.4.1d]

Kertesz AE (1973) Disparity detection within Panum’s fusional areas Vis Res 13 1537–43 [12.1.5]

Kertesz AE (1980) Human fusional vergence Proceedings of the eye movement conference (OMS 80) California Institute of Technology, Pasadena [16.7.3a]

Kertesz AE (1981) Effect of stimulus size on fusion and vergence J Opt Soc Am 71 289–93 [12.1.5]

Kertesz AE, Jones R (1970) Human cyclofusional response Vis Res 10 891–6 [12.1.1b]

Kham K (2004) An opaque surface influences the depth from the Pulfrich phenomenon Perception 33 1201–13 [23.1.3]

Kham K, Blake R (2000) Depth capture by kinetic depth and by stereopsis Perception 29 211–20 [22.2.4b]

Khan AZ, Crawford JD (2001) Ocular dominance reverses as a function of horizontal gaze angle Vis Res 41 1743–8 [12.3.7, 16.7.7]

Khan AZ, Crawford JD (2003) Coordinating one hand with two eyes: Optimizing for field of view in a pointing task. Vis Res 43 409–17 [16.7.3b]

Khokhotva M, Ono, H, Mapp AP (2005) The cyclopean eye is relevant for predicting visual direction Vis Res 45 2339–45 [16.7.7]

Khuu SK, Hayes A (2005) Glass-pattern detection is tuned for stereo-depth Vis Res 45 2461–9 [16.2.2]

Khuu SK, Li WO, Hayes A (2006) Global speed averaging is tuned for binocular disparity Vis Res 46 407–16 [22.3.5]

Kidd AL, Frisby JP, Mayhew JEW (1979) Texture contours can facilitate stereopsis by initiating vergence eye movements Nature 280 829–32 [18.14.2c]

Kienker PK, Sejnowski TJ, Hinton GE, Schumacher LE (1986) Separating figure from ground with a parallel network Perception 15 197–216 [15.2.1b]

Kim WS, Ellis SR, Tyler ME, et al. (1987) Quantitative evaluation of perspective and stereoscopic displays in three-axis manual tracking tasks IEEE Tr Sys Sci Cybern 17 61–72 [24.2.6]

Kim YJ, Grabowecky M, Suzuki S (2006) Stochastic resonance in binocular rivalry Vis Res 46 392–406 [12.3.5c]

Kimmig HG, Miles FA, Schwarz U (1992) Effects of stationary textured backgrounds on the initiation of pursuit eye movements in monkeys J Neurophysiol 68 2147–64 [22.6.2]

King SM, Cowey A (1992) Defensive responses to looming visual stimuli in monkeys with unilateral striate cortex ablation Neuropsychologia 30 1017–27 [11.6.4]

Kingdom FAA (1999) Old wine in new bottles? Some thoughts on Logvinenko’s “Lightness induction revisited” Perception 28 929–34 [22.4.5]

(p.589) Kingdom FAA, Simmons DR (1996) Stereoacuity and colour contrast Vis Res 36 1311–19 [17.1.4a]

Kingdom FAA, Blakeslee B, McCourt ME (1997) Brightness with and without perceived transparency: when does it make a difference? Perception 26 493–506 [22.4.5]

Kingdom FAA, Simmons DR, Rainville S (1999) On the apparent collapse of stereopsis in random-dot-stereograms at isoluminance Vis Res 39 2127–41 [17.1.4a]

Kingdom FAA, Li HCO, MacAulay EJ (2001) The role of chromatic contrast and luminance polarity in stereoscopic segmentation Vis Res 41 375–83 [15.3.8a]

Kiorpes L, Walton PJ, O’Toole LP, et al. (1996) Effects of early-onset strabismus on pursuit eye movements and on neuronal responses in area MT of macaque monkeys J Neurosci 16 6537–53 [22.6.1e]

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing Science 220 671–80 [15.2.1a]

Kirkwood B, Ellis A, Nicol B (1969) Eye movement and the Pulfrich effect Percept Psychophys 8 206–8 [23.2.4, 23.5]

Kishto BN (1965) The colour stereoscopic effect Vis Res 5 313–30 [17.8]

Kitazaki M. Shimojo S (1996) The ‘Generic View Principle’ for Three-dimensional motion perception: Optics and inverse optics of a single straight bar Perception 25 797–814 [22.1.2]

Kitterle FL, Thomas J (1980) The effects of spatial frequency orientation and color upon binocular rivalry and monocular pattern alternation Bull Psychonom Soc 16 405–7 [12.3.8a]

Kitterle FL, Kaye RS, Nixon H (1974) Pattern alternation: effects of spatial frequency and orientation Percept Psychophys 16 543–6 [12.3.8a]

Klein R, Stein R (1934) über einem Tumor des Kleinhirns mit anfallsweise auftretendem Tonusverlust und monokulärer Diplopie bzw binokulärer Triplopie Arch Psychiat Nervenkrank 102 478–92 [14.4.2]

Klein RM (1977) Attention and visual dominance: a chronometric analysis J Exp Psychol HPP 3 365–78 [20.1.1]

Knapen T, Paffen C, Kanai R, van Ee R (2007) Stimulus flicker alters interocular grouping during binocular rivalry Vis Res 47 1–7 [12.4.4a]

Knill DC, Kersten D (1991) Apparent surface curvature affects lightness perception Nature 351 228–30 [22.4.4]

Koenderink JJ (1985) Space form and optical deformations In Brain mechanisms and spatial vision (ed D Ingle, M Jeannerod and D Lee) pp 31–58 Martinus Nijhoff, The Hague [19.3.2]

Koenderink JJ (1986) Optic flow Vis Res 29 161–80 [19.3.2]

Koenderink JJ (1990) Solid shape MIT Press, Cambridge Mass [20.5.1]

Koenderink JJ, van Doorn AJ (1976) Geometry of binocular vision and a model for stereopsis Biol Cyber 21 29–35 [19.3.3, 20.2.4, 20.6.5e]

Koenderink JJ, van Doorn AJ (1980) Photometric invariants related to solid shape Optica Acta 27 981–96 [17.1.6]

Koenderink JJ, van Doorn AJ (1991) Affine structure from motion J Opt Soc Am A 8 377–85 [20.6.5e]

Koenderink JJ, van Doorn AJ, Kappers AML (1994) On so-called paradoxical monocular stereoscopy Perception 23 583–94 [24.1.7]

Koenderink JJ, van Doorn AJ, Kappers AML (1995) Depth relief Perception 27 115–29 [24.1.7]

Koffka K (1935) Principles of Gestalt psychology Harcourt Brace, New York [22.1.1, 21.4.2c]

Köhler W, Emery DA (1947) Figural aftereffects in the third dimension of visual space Am J Psychol 60 159–201 [21.6.1a, 21.6.3a]

Köhler W, Wallach H (1944) Figural aftereffects: an investigation of visual processes Proc Am Philos Soc 88 299–357 [21.1, 21.6.1a, 21.6.3a]

Kohly RP, Regan D (1999) Evidence for a mechanism sensitive to the speed of cyclopean form Vis Res 39 1011–27 [16.5.2]

Kohly RP, Regan D (2001) Long-distance interactions in cyclopean vision Proc Roy Soc B 268 213–19 [16.2.2b]

Kohn H (1960) Some personality variables associated with binocular rivalry Psychol Rec 10 9–13 [12.8.3a]

Kolb FC, Braun J (1995) Blindsight in normal observers Nature 377 336–8 [12.5.6]

Kolehmainen K, Keskinen E (1974) Evidence for the latency–time explanation of the Pulfrich phenomenon Scand J Psychol 15 320–21 [23.1.2]

Kolers PA, Rosner BS (1960) On visual masking (metacontrast): dichoptic observation Am J Psychol 73 2–21 [13.2.7b]

Köllner H (1914) Das funktionelle überwiegen der nasalen Netzhauthälften im gemeinschaftlichen Sehfeld Arch Augenheilk 76 153–64 [12.3.4]

Komatsu H, Wurtz RH (1988) Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons J Neurophysiol 60 580–603 [22.6.1d]

Komatsu H, Roy JP, Wurtz RH (1988) Binocular disparity sensitivity of cells in area MST of the monkey Soc Neurosci Abstr 14 202 [11.5.2a, 11.6.4]

Kommerell G, Schmidt C, Kromeier M, Bach M (2003) Ocular prevalence versus ocular dominance Vis Res 43 1397–403 [16.7.3b]

Kontsevich LL (1986) An ambiguous random-dot stereogram which permits continuous change of interpretation Vis Res 29 517–19 [15.4.5]

Kontsevich LL, Tyler CW (1994) Analysis of stereothresholds for stimuli below 2.5 c/deg Vis Res 34, 2317–29 [15.3.6]

Kontsevich LL, Tyler CW (2000) Relative contributions of sustained and transient pathways to human stereoprocessing Vis Res 40 3245–55 [11.5.4]

Kooi FL, Toet A, Tripathy SP, Levi DM (1994) The effect of similarity and duration on spatial interaction in peripheral vision Spat Vis 8 255–79 [13.2.5]

Kovács I, Julesz B (1992) Depth motion and static-flow perception at metaisoluminant color contrast Proc Natl Acad Sci 89 10390–4 [17.1.4a]

Kovács I, Papathomas TV, Yang M, Fehér A (1996) When the brain changes its mind: interocular grouping during binocular rivalry Proc Natl Acad Sci 93 15508–11 [12.4.4b]

Krauskopf J, Forte JD (2002) Influence of chromaticity on vernier and stereo acuity J Vis 2 645–52 [17.1.4b, 18.11]

Krekling S (1973) Some aspects of the Pulfrich effect Scand J Psychol 14 87–90 [23.1.2]

Krekling S (1974) Stereoscopic threshold within the stereoscopic range in central vision Am J Physiol Opt 51 629–34 [18.3.3a, 18.6.1a]

Krekling S, Blika S (1983a) Meridional anisotropia in cyclofusion Percept Psychophys 34 299–300 [12.1.5]

Krekling S, Blika S (1983b) Development of the tilted vertical horopter Percept Psychophys 34 491–3 [14.7]

Krol JD, van de Grind WA (1980) The double–nail illusion: experiments on binocular vision with nails needles and pins Perception 9 651–69 [15.4.6, 17.6.3]

Krol JD, van de Grind WA (1983) Depth from dichoptic edges depends on vergence tuning Perception 12 425–38 [15.3.7b]

Krol JD, van de Grind WA (1986) Binocular depth mixture: an artifact of eye vergence? Vis Res 29 1289–93 [18.8.2c]

Kromeier M, Heinrich SP, Bach M, Kommerell (2006) Ocular prevalence and stereoacuity Ophthal Physiol Opt 26 50–6 [18.11]

Kröncke K (1921) Zur Phänomenologie der Kernfläche des Sehraums Z Psychol Physiol Sinnesorg 52 217–28 [14.6.2]

Krug K, Cumming BG, Parker AJ (2004) Comparing perceptual signals of single V5/MT neurons in two binocular depth tasks J Neurophysiol 92 1586–96 [11.5.2a]

Kruse P, Carmesin HO, Pahlke L et al. (1996) Continuous phase transitions in the perception of multistable visual patterns Biol Cyber 75 321–30 [15.2.1b]

Kubie LS, Beckmann JW (1929) Diplopia without extra-ocular palsies caused by heteronymous defects in the visual fields associated with defective macular vision Brain 52 317–33 [14.4.2]

Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina J Neurophysiol 16 37–68 [22.4.1]

(p.590) Kulikowski JJ (1978) Limit of single vision in stereopsis depends on contour sharpness Nature 275 129–7 [12.1.2]

Kulikowski JJ (1992) Binocular chromatic rivalry and single vision Ophthal Physiol Opt 12 168–70 [12.4.3]

Kumano H, Tanabe S, Fujita I (2008) Spatial frequency integration for binocular correspondence in macaque area V4 J Neurophysiol 99 402–8 [11.10.1c]

Kumar T (1996) Multiple matching of features in simple stereograms Vis Res 36 675–98 [17.6.3]

Kumar T, Glaser DA (1991) Influence of remote objects on local depth perception Vis Res 31 1687–99 [21.3.1]

Kumar T, Glaser DA (1992) Depth discrimination of a line is improved by adding other nearby lines Vis Res 32 1667–76 [18.6.2a]

Kumar T, Glaser DA (1993a) Initial performance learning and observer variability for hyperacuity tasks Vis Res 33 2287–300 [18.14.1]

Kumar T, Glaser DA (1993b) Temporal aspects of depth contrast Vis Res 33 947–57 [21.3.4]

Kumar T, Glaser DA (1994) Some temporal aspects of stereoacuity Vis Res 34 913–25 [18.12.2b, 18.14.1]

Kumar T, Glaser DA (1995) Depth discrimination of a crowded line is better when it is more luminant than the lines crowding it Vis Res 35 657–66 [18.6.2a]

Kundt A (1863) Untersuchungen über Augenmaass und optische Täuschungen Poggendorff’s Ann Physik Chem 196 118–158 [14.6.2a]

Kuroki D, Nakamizo S (2006) Depth scaling in phantom and monocular gap stereograms using absolute distance information Vis Res 46 4206–16 [17.3]

Kurtz HF (1937) Orthostereoscopy J Opt Soc Am 27 323–39 [24.1.1]

Kuu SK, Hayes A (2005) Glass-pattern detection is tuned for stereo-depth Vis Res 45 2451–9 [16.6.2]

Kwee IL, Fujii Y, Matsuzawa H, Nakada T (1999) Perceptual processing of stereopsis in humans: high-field (3.0-tesla) functional MRI study Neurology 53 1599–601 [11.8.1]

Lack LC (1969) The effect of practice on binocular rivalry control Percept Psychophys 6 397–400 [12.8.1]

Lack LC (1971) The role of accommodation in the control of rivalry Percept Psychophys 10 38–42 [12.8.1]

Lack LC (1974) Selective attention and the control of binocular rivalry Percept Psychophys 15 193–200 [12.6.4]

Laing CR, Chow CC (2002) A spiking neuron model for binocular rivalry J Comput Neurosci 12 39–53 [12.10]

Lam AKC, Chau ASY, Lam WY, et al. (1996) Effects of naturally occurring visual acuity differences between two eyes in stereoacuity Ophthal Physiol Opt 16 189–95 [18.5.4b]

Lam AKC, Tse P, Choy E, Chung M (2002) Crossed and uncrossed stereoacuity at distance and the effect from heterophoria Ophthal Physiol Opt 22 189–93 [18.10.3b]

Lamme VAF (1995) The neurophysiology of figure-ground segregation in primary visual cortex J Neurosci 15 1605–15 [22.5.1a]

Land EH (1986) Recent advances in retinex theory Vis Res 26 7–21 [22.4.6]

Landers DD, Cormack LK (1997) Asymmetries and errors in perception of depth from disparity suggest a multicomponent model of disparity processing Percept Psychophys 59 219–31 [18.6.4]

Landrigan DT, Bader IA (1981) The Pulfrich effect: filtering portions of both eyes J Psychol 109 165–72 [23.2.1]

Lang J (1983) A new stereotest J Ped Ophthal Strab 20 72–4 [18.2.3e]

Lang J, Lang TJ (1988) Eye screening with the Lang stereotest Am Orthopt J 38 48–50 [18.2.3e]

Lang J, Rechichi C, Stürmer J (1991) Natural versus haploscopic stereopsis Graefe’s Arch Klin Exp Ophthal 229 115–18 [18.2.4]

Lange–Malecki B, Creutzfeldt OD, Hinse P (1985) Haploscopic colour mixture with and without contours in subjects with normal and disturbed binocular vision Perception 14 587–600 [12.2.3]

Langer T, Fuchs AF, Chubb MC, et al. (1985) Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase J Comp Neurol 235 29–37 [22.6.1d]

Langlands NMS (1926) Experiments on binocular vision Medical Research Council Special Report Series No 133 His Majesty’s Stationary Office, London [18.12.1a]

Langlands NMS (1929) Experiments on binocular vision Tr Opt Soc Lon 28 45–82 [18.12.1a]

Langley K, Fleet DJ, Hibbard PB (1999) Stereopsis from contrast envelopes Vis Res 39 2313–27 [18.7.2d]

Lankheet MJM, Lennie P (1996) Spatio-temporal requirements for binocular correlation in stereopsis Vis Res 36 527–38 [18.6.3d]

Lankheet MJM, Palmen M (1998) Stereoscopic segregation of transparent surfaces and the effect of motion contrast Vis Res 38 659–68 [15.3.9]

Lansford TG, Baker HD (1969) Dark adaptation: an interocular light–adaptation effect Science 164 1307–9 [13.2.2]

Lansing RW (1964) Electroencephalographic correlates of binocular rivalry in man Science 146 1325–7 [12.9.2e]

Lappe M (1996) Functional consequences of an integration of motion and stereopsis in area MT of monkey extrastriate visual cortex Neural Comput 8 1449–61 [22.3.2]

Lappin JS, Craft WD (1997) Definition and detection of binocular disparity Vis Res 37 2953–74 [21.4.2a]

Larson WL (1988) Effect of TNO red-green glasses on local stereoacuity Am J Optom Physiol Opt 65 946–50 [18.2.3b]

Larson WL (1990) An investigation of the difference in stereoacuity between crossed and uncrossed disparities using Frisby and TNO tests Optom Vis Sci 67 157–61 [18.6.4]

Larson WL, Giroux R (1982) A precision instrument for the clinical measurement of stereoscopic acuity Can J Optom 44 100–4 [18.2.1a]

Lasley DJ, Kivlin J, Rich L, Flynn JT (1984) Stereo–discrimination between diplopic images in clinically normal observers Invest Ophthal Vis Sci 25 1316–20 [18.6.4]

Lau E (1922) Versuche über das stereoskopische Sehen Psychol Forsch 2 1–4 [17.7]

Lau E (1925) Uber das stereoskopische Sehen Psychol Forsch 6 121–6 [17.6.2, 17.7]

Lavin E, Costall A (1978) Detection thresholds of the Hermann grid illusion Vis Res 18 1061–2 [16.3.2]

Lawrence CM, Rodwell VW, Stauffacher CV (1995) Crystal structure of Pseudomonas mevalonii HMG-CoA reductase at 3.0 angstom resolution Science 298 1760–1763 [24.2.1]

Lawson RB, Gulick WL (1967) Stereopsis and anomalous contour Vis Res 7 271–97 [17.2.4]

Lawson RB, Mount DC (1967) Minimum conditions for stereopsis and anomalous contour Science 158 804–6 [17.2.4]

Lawson RB, Cowen E, Gibbs TD, Whitmore CG (1974) Stereoscopic enhancement and erazure of subjective contours J Exp Psychol 103 1142–6 [22.2.4a]

Lawwill T, Biersdorf WR (1968) Binocular rivalry and visual evoked responses Invest Ophthal 7 378–85 [12.9.2e]

LeConte J (1871) On some phenomena of binocular vision; The mode of representing the position of double images Am J Sci 1 33–44 [16.7.2b]

LeConte J (1881) Sight: An exposition of the principles of monocular and binocular vision Appleton, New York 2nd edition 1879 [16.7.2b]

Ledgeway T, Rogers BJ (1999) The effects of eccentricity and vergence angle upon the relative tilt of corresponding vertical and horizontal meridia revealed using the minimum motion paradigm Perception 28 143–53 [14.7]

Ledgeway T, Smith AT (1994) Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision Vis Res 34 2727–40 [18.12.3]

LeDoux JE, Deutsch G, Wilson DH, Gazzaniga MS (1977) Binocular stereopsis and the anterior commissure in man The Physiologist 20 55 [11.9.2]

Lee B (1994) Aftereffects and the representation of stereoscopic surfaces D Phil Thesis Oxford University [21.6.2b]

(p.591) Lee B (1999) Aftereffects and the representation of stereoscopic surfaces Perception 28 1155–69 [21.6.2c]

Lee B, Rogers BJ (1992) Aftereffects of stereoscopic surfaces are selectively tuned to the plane of the adapting surface Invest Ophthal Vis Sci 33 (Abs) 1372 [20.3.1d, 21.6.3b]

Lee B, Rogers BJ (1997) Disparity modulation sensitivity for narrow-band-filtered stereograms Vis Res 37 1769–77 [18.7.2c]

Lee DN (1970a) A stroboscopic stereophenomenon Vis Res 10 587–93 [23.3.3, 23.3.6]

Lee DN (1970b) Spatio–temporal integration in binocular–kinetic space perception Vis Res 10 65–78 [23.3.4, 23.3.6]

Lee DN (1970c) Binocular stereopsis without spatial disparity Percept Psychophys 9 216–8 [17.1.5]

Lee S, Shioiri S, Yaguchi H (2007) Stereo channels with different temporal frequency tunings Vis Res 47 289–97 [18.7.2b]

Lee SH, Blake R (1999) Rival ideas about rivalry Vis Res 39 1447—54 [12.4.4a]

Lee SH, Blake R (2002) V1 activity is reduced during binocular rivalry J Vis 2 618–26 [12.9.2f]

Lee SH, Blake R (2004) A fresh look at interocular grouping during binocular rivalry Vis Res 44 983–91 [12.4.4b]

Lee SH, Blake R, Heeger DJ (2005) Traveling waves of activity in primary visual cortex during binocular rivalry Nat Neurosci 8 22–3 [12.3.5e, 12.9.2f]

Lee SH, Blake R, Heeger DJ (2007) Hierarchy of cortical responses underlying binocular rivalry Nat Neurosci 10 1048–54 [12.9.2f]

Legge GE (1979) Spatial frequency masking in human vision: binocular interactions J Opt Soc Am 69 838–47 [13.2.4a]

Legge GE (1984a) Binocular contrast summation. I. Detection and discrimination Vis Res 27 373–83 [12.9.2b, 13.1.2a, 13.1.3a]

Legge GE (1984b) Binocular contrast summation. II. Quadratic summation Vis Res 27 385–94 [13.1.2b]

Legge GE, Gu Y (1989) Stereopsis and contrast Vis Res 29 989–1004 [18.5.1, 18.5.2, 18.5.4a]

Legge GE, Rubin GS (1981) Binocular interactions in suprathreshold contrast perception Percept Psychophys 30 49–61 [13.1.4b]

Leguire LE, Blake R, Sloane M (1982) The square–wave illusion and phase anisotropy of the human visual system Perception 11 547–56 [12.6.2]

Lehky SR (1983) A model of binocular brightness and binaural loudness perception in humans with general applications to nonlinear summation of sensory inputs Biol Cyber 49 89–97 [13.1.4b]

Lehky SR (1988) An astable multivibrator model of binocular rivalry Perception 17 215–28 [12.10]

Lehky SR (1995) Binocular rivalry is not chaotic Proc R Soc B 259 71–6 [12.10]

Lehky SR, Blake R (1991) Organization of binocular pathways: modeling and data related to rivalry Neural Comput 3 44–53 [12.9.1]

Lehky SR, Maunsell JHR (1996) No binocular rivalry in the LGN of alert macaque monkeys Vis Res 36 1225–34 [12.9.1]

Lehky SR, Sejnowski TJ (1990) Neural model of stereoacuity and depth interpolation based on a distributed representation of stereo disparity J Neurosci 10 2281–99 [11.4.1a, 21.2]

Lehky SR, Sejnowski TJ (1999) Seeing white: qualia in the context of decoding population codes Neural Comput 11 1261–80 [11.10.1c]

Lehman RAW, Spencer DD (1973) Mirror-image shape discrimination: interocular reversal of responses in the optic chiasm sectioned monkey Brain Res 52 23–41 [13.4.2]

Lehmann D, Fender DH (1967) Monocularly evoked electroencephalogram potentials: influence of target structure presented to the other eye Nature 215 204–5 [12.9.2e]

Lehmann D, Fender DH (1968) Component analysis of human averaged evoked potentials: dichoptic stimuli using different target structure EEG Clin Neurophysiol 27 542–53 [12.9.2e]

Lehmann D, Fender DH (1969) Averaged visual evoked potenials in humans: mechanism of dichoptic interaction studied in a subject with a split chiasma EEG Clin Neurophysiol 27 142–45 [12.9.2e]

Lehmann D, Julesz B (1977) Human average evoked potentials elicited by dynamic random-dot stereograms EEG Clin Neurophysiol 43 469 [11.7]

Lehmann D, Julesz B (1978) Lateralized cortical potentials evoked in humans by dynamic random–dot stereograms Vis Res 18 1295–71 [11.7]

Lehmkuhle SW, Fox R (1975) Effect of binocular rivalry suppression on the motion aftereffect Vis Res 15 855–9 [12.6.4]

Lehmkuhle SW, Fox R (1976) On measuring interocular transfer Vis Res 16 428–30 [13.3.3a]

Lehmkuhle SW, Fox R (1980) Effect of depth separation on metacontrast masking  J Exp Psychol HPP 6 605–21 [13.2.7a, 22.5.1c]

Lehnert K (1941) Uber wahre und Scheinhoropteren Pflügers Arch ges Physiol 275 112–20 [14.6.2a]

Leibowitz H, Walker L (1956) Effect of field size and luminance on the binocular summation of suprathreshold stimuli J Opt Soc Am 46 171–2 [13.1.4c]

Leonards U, Sireteanu R (1993) Interocular suppression in normal and amblyopic subjects: the effect of unilateral attenuation with neutral density filters Percept Psychophys 54 65–74 [12.3.5a]

Leopold DA, Logothetis NK (1996) Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry Nature 379 549–53 [12.9.2a]

Leopold DA, Wilke M, Maier A, Logothetis NK (2002) Stable perception of visually ambiguous patterns Nat Neurosci 5 605–9 [12.3.5g]

Lepore F, Guillemot JP (1982) Visual receptive field properties of cells innervated through the corpus callosum in the cat Exp Brain Res 46 413–27 [11.9.1]

Lepore F, Samson A, Molotchnikoff S (1983) Effects on binocular activation of cells in visual cortex of the cat following the transection of the optic tract Exp Brain Res 50 392–6 [11.9.2]

Lepore F, Ptito M, Lassonde M (1986) Stereoperception in cats following section of the corpus callosum and/or the optic chiasma Exp Brain Res 61 258–64 [11.9.1, 11.9.2]

Lepore F, Samson A, Paradis MC, Ptito M (1992) Binocular interaction and disparity coding at the 17–18 border: contribution of the corpus callosum Exp Brain Res 90 129–40 [11.9.1]

LeVay S, Voigt T (1988) Ocular dominance and disparity coding in cat visual cortex Vis Neurosci 1 395–414 [11.1.2, 11.3.1, 11.4.5b]

LeVay S, Connolly M, Houde J, Van Essen DC (1985) The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey  J Neurosci 5 486–501 [13.2.5]

Levelt WJM (1965a) Binocular brightness averaging and contour information Br J Psychol 56 1–13 [13.1.4a]

Levelt WJM (1965b) On binocular rivalry Institute for Perception, Soesterberg, The Netherlands [12.3.2a]

Levelt WJM (1966) The alternation process in binocular rivalry Br J Psychol 57 225–38 [12.10, 12.3.2a]

Levelt WJM (1967) Note on the distribution of dominance times in binocular rivalry Br J Psychol 58 143–5 [12.3.6a]

Levi DM, Klein S (1990) The role of separation and eccentricity in encoding position Vis Res 30 557–85 [12.1.1d]

Levi DM, Schor CM (1984) Spatial and velocity tuning of processes underlying induced motion Vis Res 24 1189–96 [13.3.3e]

Levi DM, Pass AF, Manny RE (1982) Binocular interactions in normal and anomalous binocular vision: effects of flicker Br J Ophthal 66 57–63 [13.1.5]

Levi DM, Klein S, Aitsebaomo AP (1985) Vernier acuity crowding and cortical magnification Vis Res 25 963–77 [13.2.5, 18.6.1a, 18.7.1]

Levick WR, Thibos LN (1982) Analysis of orientation bias in the cat retina J Physiol 329 243–61 [13.1.2e]

Levick WR, Cleland BG, Coombs JS (1972) On the apparent orbit of the Pulfrich pendulum Vis Res 12 1381–8 [23.2.1]

Levinson E, Blake R (1979) Stereopsis by harmonic analysis Vis Res 19 73–8 [20.2.1]

Levinson E, Sekuler R (1975) The independence of channels in human vision selective for direction of movement J Physiol 250 347–66 [13.3.3a, 22.3.2]

(p.592) Levitt JB, Yoshioka T, Lund JS (1995) Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey Exp Brain Res 104 419–30 [11.2.1]

Levy MM, Lawson RB (1978) Stereopsis and binocular rivalry from dichoptic stereograms Vis Res 18 239–46 [15.3.7b]

Levy NS, Glick EB (1974) Stereoscopic perception and Snellen visual acuity Am J Ophthal 78 722–4 [18.5.4b]

Lewis CE, Blakeley WR, Swaroop R, et al (1973) Landing performance by low-time private pilots after the sudden loss of binocular vision: cyclops II Aviat Space Environ Med 44 1271–45 [20.1.1]

Lewis JL (1970) Semantic processing of unattended messages using dichotic listening J Exp Psychol 85 225–8 [12.8.3b]

Lewis P (1944) Bilateral monocular diplopia with amblyopia Am J Ophthal 27 1029–7 [14.4.2]

Li B, Peterson MR, Thomson JK, Duong T, et al. (2005) Cross-orientation suppression: monoptic and dichoptic mechanisms are different J Neurophysiol 94 2645–50 [12.9.2b]

Lidén L, Mingolla E (1998) Monocular occlusion cues alter the influence of terminator motion in the barber pole phenomenon Vis Res 38 3883–98 [22.3.1]

Lie I (1969) Psychophysical invariants of achromatic colour vision: IV Depth adjacency and simultaneous contrast Scand J Psychol 10 282–6 [22.4.2]

Liebermann P von (1910) Beitrag zur Lehre von der binocularlen Tiefenlokalization Z Psychol Physiol Sinnesorg 44 428–43 [14.6.2]

Likova LT, Tyler CW (2007) Stereomotion processing in the human occipital cortex. Neuroimage 38 293–305 [11.8.2]

Lindblom B, Westheimer G (1989) Binocular summation of hyperacuity tasks J Opt Soc Am A 6 585–9 [13.1.3c]

Lindblom B, Westheimer G (1992) Spatial uncertainty in stereoacuity tests: implications for clinical vision test design Acta Ophthal 70 60–65 [18.12.1b]

Lindsey DT, Teller DY (1990) Motion at isoluminance: Discrimination/detection ratios for moving isoluminant gratings Vis Res 30 2727–40 [16.4.1]

Ling S, Hubert-Wallander B, Blake R (2010) Detecting contrast changes in invisible patterns during binocular rivalry Vis Res 50 2421–9 [12.10]

Linksz A (1952) Physiology of the eye Vol II Vision Grune and Stratton, New York [14.6.2a]

Linksz A (1971) Comments on the papers by C Blakemore (1969 1970) and DE Mitchell and C Blakemore (1970) Survey Ophthal 15 348–53 [15.3.4b]

Lippert J, Fleet DJ, Wagner H (2000) Disparity tuning as simulated by a neural net Biol Cybern 83 61–72 [11.10.2]

Lippincott JA (1889) On the binocular metamorphopsia produced by correcting glasses Arch Ophthal 18 18–30 [20.2.3a]

Lipton L (1982) Foundations of the stereoscopic cinema Van Nostrand Reinhold, New York [24.1.1, 24.1.2d]

Lit A (1949) The magnitude of the Pulfrich stereophenomenon as a function of binocular differences in intensity at various levels of illumination Am J Psychol 62 159–81 [23.2.1, 23.2.2, 23.4.1]

Lit A (1959a) Depth–discrimination thresholds as a function of binocular differences of retinal illumination at scotopic and photopic levels J Opt Soc Am 49 746–52 [18.5.4a]

Lit A (1959b) The effect of fixation conditions on depth discrimination thresholds at scotopic and photopic illuminance levels J Exp Psychol 58 476–81 [18.10.4]

Lit A (1960a) Effect of target velocity in a frontal plane on binocular spatial localization at photopic retinal illuminance levels J Opt Soc Am 50 970–3 [18.10.1b, 23.2.1]

Lit A (1960b) The magnitude of the Pulfrich stereo-phenomenon as a function of target velocity J Exp Psychol 59 165–75 [23.1.2, 23.2.1]

Lit A (1964) Equidistance settings at photopic retinal-illuminance levels as a function of target velocity in a frontal plane J Opt Soc Am 54 83–8 [18.10.1b]

Lit A (1968) Illumination effects on depth discrimination Optometric Weekly 59 42–54 [23.2.1]

Lit A, Finn JP (1976) Variability of depth–discrimination thresholds as a function of observation distance J Opt Soc Am 66 740–2 [18.6.7]

Lit A, Hamm HD (1966) Depth–discrimination for stationary and oscillating targets at various levels of illuminance J Opt Soc Am 56 510–16 [18.5.1, 18.10.1b]

Lit A, Hyman A (1951) The magnitude of the Pulfrich stereophenomenon as a function of distance of observation Am J Optom Arch Am Acad Optom 28 564–80 [23.2.1]

Lit A, Vicars WM (1966) The effect of practice on the speed and accuracy of equidistance–settings Am J Psychol 72 464–9 [18.14.1]

Lit A, Vicars WM (1970) Stereoacuity for oscillating targets exposed through apertures of various horizontal extents Percept Psychophys 8 348–52 [18.10.1b]

Lit A, Finn JP, Vicars WM (1972) Effect of target-background luminance contrast on binocular depth discrimination at photopic levels of illumination Vis Res 12 1271–51 [18.5.1]

Liu CH, Kennedy JM (1995) Misalignment effects in 3-D versions of Poggendorff displays Percept Psychophys 57 409–15 [16.7.4b]

Liu L, Schor CM (1994) The spatial properties of binocular suppression zone Vis Res 34 937–47 [12.4.2]

Liu L, Schor CM (1995) Binocular combination of contrast signals from orthogonal orientation channels Vis Res 35 2559–67 [13.1.4d]

Liu L, Schor CM (1998) Functional division of the retina and binocular correspondence J Opt Soc Am A 15 1740–55 [14.3.1c]

Liu L, Tyler CW, Schor CM (1992a) Failure of rivalry at low contrast: evidence of a suprathreshold binocular summation process Vis Res 32 1471–9 [12.3.2c, 17.5]

Liu L Tyler CW, Schor CM, Ramachandran VS (1992b) Position disparity is more efficient in coding depth than phase disparity Invest Ophthal Vis Sci 33 (Abs) 1373 [11.4.3c]

Liu L, Stevenson SB, Schor CM (1994a) A polar coordinate system for describing disparity Vis Res 34 1205–22 [19.3.4]

Liu L, Stevenson SB, Schor CM (1994b) Quantitative stereoscopic depth without binocular correspondence Nature 367 66–9 [17.3]

Liu L, Stevenson SB, Schor CM (1997) Binocular matching of dissimilar features in phantom stereopsis Vis Res 37 633–44 [17.3]

Liu L, Stevenson SB, Schor CM (1998) Vergence eye movements elicited by stimuli without corresponding features Perception 27 7–20 [17.3]

Liu Y, Vogels R, Orban GA (2004) Convergence of depth from texture and depth from disparity in macaque inferior temporal cortex J Neurosci 24 3795–800 [11.5.3b]

Liu Y, Bovik AC, Cormack LK (2008) Disparity statistics in natural scenes J Vis 8 (11) Article 19 [11.10.1a]

Livingstone MS (1996) Differences between stereopsis interocular correlation and binocularity Vis Res 36 1127–40 [12.9.2e, 17.1.4a]

Livingstone MS, Hubel DH (1988) Segregation of form, color movement and depth: anatomy physiology and perception Science 270 740–9 [11.5.4]

Livingstone MS, Hubel DH (1994) Stereopsis and positional acuity under dark adaptation Vis Res 34 799–802 [18.5.1]

Livingstone MS, Tsao DY (1999) Receptive fields of disparity selective neurons in macaque striate cortex Nat Neurosci 2 825–32 [11.10.1b]

Locke J (1849) On single and double vision produced by viewing objects with both eyes: and on an optical illusion with regard to the distance of objects Am J Sci Arts 7 68–74 [14.2.2, 24.1.6]

Lockett A (1913) The evolution of the modern stereoscope Sci Am Supplement Number 76 276–9 [24.1.2a]

Logan GD (1994) Spatial attention and the apprehension of spatial relations J Exp Psychol: HPP 20 1015–34 [22.8.2c]

Logothetis NK (1998) Single units and conscious vision Philos Tr R Soc 353 1801–18 [12.9.2b]

Logothetis NK, Schall JD (1989) Neuronal correlates of subjective visual perception Science 275 761–3 [12.9.2a]

Logothetis NK, Schall JD (1990) Binocular motion rivalry in macaque monkeys: eye dominance and tracking eye movements Vis Res 30 1409–19 [12.3.1a]

(p.593) Logothetis NK, Schiller PH, Charles ER, Hurl Bert AC (1990) Perceptual deficits and the activity of the color–opponent and broadband pathways at isoluminance Science 277 214–17 [17.1.4a]

Logothetis NK, Leopold DA, Sheinberg DL (1996) What is rivalling during binocular rivalry Nature 380 621–4 [12.10, 12.4.4a]

Logvinenko AD (1999) Lightness induction revisited Perception 28 803–16 [22.4.5]

Logvinenko AD, Menshikova G (1994) Trade-off between achromatic colour and perceived illumination as revealed by the use of pseudoscopic inversion of apparent depth Perception 23 1007–23 [22.4.4]

Long GM (1979) The dichoptic viewing paradigm: do the eyes have it Psychol Bull 86 391–403 [13.3.1]

Long NR (1982) Transfer of learning in transformed random–dot stereostimuli Perception 11 409–14 [18.14.2d]

Long NR, Over R (1973) Stereoscopic depth aftereffects with randomdot patterns Vis Res 13 1283–7 [21.6.2a, 21.6.3a]

Long NR, Over R (1974a) Stereospatial masking and aftereffect with normal and transformed random–dot patterns Percept Psychophys 15 273–8 [22.5.1b]

Long NR, Over R (1974b) Disparity masking with ambiguous randomdot stereograms Vis Res 14 31–4 [21.6.2a]

Longuet–Higgins HC (1982) The role of the vertical dimension in stereoscopic vision Perception 11 371–6 [19.6.5]

Lorber M, Zuber BL, Stark L (1965) Suppression of the pupillary light reflex in binocular rivalry and saccadic suppression Nature 208 558–60 [12.5.1]

Lotto RB, Purves D (1999) The effects of color on brightness Nat Neurosci 2 1010–14 [22.4.4]

Lou L (2008) Troxler effect with dichoptic stimulus presentations: Evidence for binocular inhibitory summation and interocular suppression Vis Res 48 1514–21 [12.3.3a]

Lovasik JV, Szymkiw M (1985) Effects of aniseikonia, anisometropia, accommodation, retinal illuminance, and pupil size on stereopsis Invest Ophthal Vis Sci 29 741–50 [18.3.4, 18.5.1, 18.5.4a, 18.5.4b]

Lowe KN, Ogle KN (1966) Dynamics of the pupil during binocular rivalry Arch Ophthal 75 395–403 [12.5.1]

Lu C, Fender DH (1972) The interaction of color and luminance in stereoscopic vision Invest Ophthal 11 482–90 [11.5.4, 17.1.4a]

Lu ZL, Sperling G (1995) The functional architecture of human visual motion perception Vis Res 35 2997–722 [16.4.1, 16.4.2d, 18.7.2d]

Ludwig I, Pieper W, Lachnit H (2007) Temporal integration of monocular images separated in time: stereopsis, stereoacuity, and binocular luster Percept Psychophys 69 92–102 [18.12.2a]

Lumer ED, Rees G (1999) Covariation of activity in visual prefrontal cortex associated with subjective visual perception Proc Natl Acad Sci 96 1669–73 [12.9.2f]

Lumer ED, Friston KK, Rees G (1998) Neural correlates of perceptual rivalry in the human brain Science 280 1930–4 [12.9.2f]

Lunghi C, Binda P, Morrone MC (2010) Touch disambiguates rivalrous perception at early stages of visual analysis Cur Biol 20 R 143–4 [12.8.4]

Lunn PD, Morgan MJ (1995) The analogy between stereo depth and brightness: a reexamination Perception 27 901–4 [21.4.1]

Lunn PD, Morgan M (1997) Discrimination of the spatial derivatives of horizontal binocular disparity J Opt Soc Am A 14 360–71 [18.6.6, 20.5.2]

Lyle TK, Wybar KC (1967) Lyle and Jackson’s practical orthoptics in the treatment of squint and other anomalies of binocular vision Charles C Thomas, New York [14.4,1b]

Lythgoe RJ (1938) Some observations on the rotating pendulum Nature 141 474 [23.4.1, 23.4.2a]

Lythgoe RJ, Phillips LR (1938) Binocular summation during dark adaptation J Physiol 91 427–36 [13.1.2a]

MacCracken PJ, Hayes WN (1976) Experience and latency to achieve stereopsis Percept Mot Skills 43 1227–31 [18.14.2a, 18.14.2f]

MacCracken PJ Bourne JA, Hayes WN (1977) Experience and latency to achieve stereopsis: a replication Percept Mot Skills 45 291–292 [18.14.2a]

MacDonald RI (1977) Temporal stereopsis and dynamic visual noise (Letter to the editor) Vis Res 17 1127–8 [23.6.3]

Mach E (1866) Über die physiologische Wirkung räumlich vertheilter Lichtreize (Dritte Abhandlung) Sitzungsbericht der Ostereichischen Akademie der Wissenschaft 54 393–408 (Translation in F Ratcliff Mach bands pp 285–98) Holden–Day, San Francisco 1965 [17.1.1c]

Mach E (1886) The analysis of sensations and the relation of the physical to the psychical English translation. Dover, New York, 1959 [22.4.1]

Mach E, Dvorak V (1872) Über Analoga der persönlichen Differenz zwischen bedizen Augen und den Netzhautstellen desselben Auges Sitzungsbericht der königlichen böhmischen Gesellschaft der Wissenschaft Prague 65–74 [23.1.1, 23.3.6]

Mack A, Chitayat D (1970) Eye–dependent and disparity adaptation to opposite visual–field rotation Am J Psychol 83 352–69 [21.6.1a]

MacKay DM (1968) Evoked potentials reflecting interocular and monocular suppression Nature 217 81–3 [12.9.2e]

MacKay DM (1973) Lateral interaction between neural channels sensitive to texture density Nature 275 159–61 [21.1]

MacKay DM, MacKay V (1975) Dichoptic induction of McColloughtype effects Quart J Exp Psychol 27 225–33 [13.3.5]

Mackensen G (1953) Untersuchungen zur Physiologie des optokinetischen Nystagmus Klin Monat Augenheilk 123 133–43 [22.6.1e]

Macknik SL, Haglund MM (1999) Optical images of visible and invisible percepts in the primary visual cortex of primates Proc Natl Acad Sci 96 15208–10 [13.2.7]

Macknik SL, Martinez-Conde S (2004) Dichoptic visual masking reveals that early binocular neurons exhibit weak interocular suppression: implications for binocular vision and visual awareness J Cog Neurosci 16 1049–59 [13.2.4a]

MacLeod DIA (1972) The Schrödinger equation in binocular brightness combination Perception 1 321–4 [13.1.4b]

Maffei L, Berardi N, Bisti S (1986) Interocular transfer of adaptation after effect in neurons of area 17 and 18 of split chiasm cats J Neurophysiol 55 966–76 [13.2.6]

Maier A, Wilke M, Aura C, et al. (2008) Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey Nat Neurosci 11 1193–200 [12.9.2f]

Makous N, Boothe R (1974) Cones block signals from rods Vis Res 14 285–94 [13.2.3]

Makous W, Sanders RK (1978) Suppressive interactions between fused patterns In Visual psychophysics and physiology (ed JC Armington, J Krausfopf, BR Wooten) pp 167–79 Academic Press, New York [12.3.2a, 12.7.2]

Makous W, Teller D, Boothe R (1976) Binocular interaction in the dark Vis Res 16 473–6 [13.2.2]

Malach R, Strong NP, van Sluyters RC (1981) Analysis of monocular optokinetic nystagmus in normal and visually deprived kittens Brain Res 201 367–72 [22.6.1b]

Malik J, Anderson BL, Charowhas CE (1999) Stereoscopic occlusion junctions Nat Neurosci 2 840–3 [17.3]

Mallett RFJ (1973) Anomalous retinal correspondence Br J Physiol Opt 28 1–10 [14.4.1b]

Mallot HP (1997) Spatial scale in stereo and shape from shading: image input mechanisms and tasks Perception 29 1137–46 [17.1.1c]

Mallot HA, Bideau H (1990) Binocular convergence influences the assignment of stereo correspondences Vis Res 30 1521–3 [15.4.6]

Mallot HA, Gillner S, Arndt PA (1996a) Is correspondence search in human stereo vision a coarse-to-fine process? Biol Cyber 74 95–106 [15.4.2]

Mallot HA, Arndt PA, Bülthoff HH (1996b) A psychophysical and computational analysis of intensity-based stereo Biol Cyber 75 187–98 [17.1.1c]

Mann VA, Hein A, Diamond R (1979a) Localization of targets by strabismic subjects: contrasting patterns in constant and alternating suppressors Percept Psychophys 25 29–34 [13.4.3]

Mann VA, Hein A, Diamond R (1979b) Patterns of interocular transfer of visuomotor coordination reveal differences in the representation of visual space Percept Psychophys 25 35–41 [13.4.3, 16.7.5]

(p.594) Manning ML, Finlay DC, Neill RA, Frost BG (1987) Detection threshold differences to crossed and uncrossed disparities Vis Res 27 1683–6 [18.6.1b, 18.6.4]

Manning ML, Finlay DC, Dewis SAM, Dunlop DB (1992) Detection duration thresholds and evoked potential measures of stereosensitivity Doc Ophthal 79 161–75 [11.7, 18.6.1b]

Manny RE, Martinez AT, Fern KD (1991) Testing stereopsis in the preschool child: is it clinically useful? J Ped Ophthal Strab 28 223–31 [18.2.1e]

Mansfield JS, Legge GE (1996) The binocular computation of visual direction Vis Res 36 27–41 [16.7.3b, 16.7.7]

Mansfield JS, Legge G (1997) Binocular visual direction, the cyclopean eye, and vergence: Reply to Banks, van E and Backus (1997) Vis Res 37 1610–13 [16.7.7]

Mansfield JS, Parker AJ (1993) An orientation–tuned component in the contrast masking of stereopsis Vis Res 33 1535–44 [17.1.2b]

Mansfield JS, Simmons DR (1989) Contrast thresholds for the identification of depth in bandpass stereograms Invest Ophthal Vis Sci 30 (Abs) 251 [18.5.3]

Mapp AP, Ono H (1986) The rhino–optical phenomenon: ocular parallax and the visible field beyond the nose Vis Res 29 1163–5 [16.7.2b]

Mapp AP, Ono H (1999) Wondering about the wandering cyclopean eye Vis Res 39, 2381–6 [16.7.7]

Mapp AP, Ono H, Barbeito R (2003) What does the dominant eye dominate? A brief and somewhat contentious review Percept Psychophys 65 310–17 [12.3.7, 16.7.6b]

Mapp AP, Ono H, Khokhotva M (2007) Hitting the target: Relatively easy, yet absolutely impossible? Perception 36 1139–51 [16.7.5]

Mapperson B, Lovegrove W (1991) Orientation and spatial-frequency-specific surround effects on binocular rivalry Bull Psychonom Soc 29 95–7 [12.3.3b]

Mapperson B, Bowling A, Lovegrove W (1982) Problems for an after-image explanation of monocular rivalry Vis Res 22 1233–4 [12.3.8d]

Marc RE, Sperling HG (1977) Chromatic organization of primate cones Science 196 454–6 [17.1.4c]

Markoff JI, Sturr JF (1971) Spatial and luminance determinants of the increment threshold under monoptic and dichoptic viewing J Opt Soc Am 61 1530–7 [13.2.3]

Marr D (1982) Vision Freeman San Francisco [19.1.1]

Marr D, Poggio T (1976) Cooperative computation of stereo disparity Science 194 283–7 [15.4.5]

Marr D, Poggio T (1979) A computational theory of human stereo vision Proc R Soc B 204 301–28 [15.4.2, 17.1.1a, 18.7.1, 18.7.2e, 18.10.4]

Marr D, Palm G, Poggio T (1978) Analysis of a cooperative stereo algorithm Biol Cyber 28 223–39 [15.4.5]

Marrara MT, Moore, CM (2000) Role of perceptual organization while attending in depth Percept Psychophys 62 786–99 [22.8.1]

Marrocco RT, Carpenter MA, Wright SE (1985) Spatial contrast sensitivity: effects of peripheral field stimulation during monocular and dichoptic viewing Vis Res 25 917–27 [13.2.4a]

Marsh WR, Rawlings SC, Mumma JV (1980) Evaluation of clinical stereoacuity tests Ophthalmology 87 1295–72 [18.2.4]

Marshak W, Sekuler R (1979) Mutual repulsion between moving visual targets Science 205 1399–401 [16.5.3b, 22.7.4]

Martens W, Blake R, Sloane M, Cormack RH (1981) What masks utrocular discrimination Percept Psychophys 30 521–32 [16.8]

Martin JI (1970) Effects of binocular fusion and binocular rivalry on cortically evoked potentials EEG Clin Neurophysiol 28 190–201 [12.9.2e]

Martin LC, Wilkins TR (1937) An examination of the principles of orthostereoscopic photomicrography and some applications J Opt Soc Am 27 340–9 [24.2.1]

Maruya K, Blake R (2009) Spatial spread of interocular suppression is guided by stimulus configuration Perception 38 215–31 [12.4.2]

Maruyama M, Kobayashi T, Katsura T, Kuriki S (2003) Early behavior of optokinetic responses elicited by transparent motion stimuli during depth-based attention Exp Brain Res 151 411–19 [22.6.1f]

Marzi CA, Antonini A, Di Stefano M, Legg CR (1982) The contribution of the corpus callosum to receptive fields in the lateral suprasylvian visual areas of the cat Behav Brain Res 4 155–76 [11.9.2]

Marzi CA, Antonucci G, Pizzamiglio L, Santillo C (1986) Simultaneous binocular integration of the visual tilt effect in normal and stereoblind observers Vis Res 29 477–83 [13.3.2a]

Maske R, Yamane S, Bishop PO (1984) Binocular simple cells for local stereopsis: a comparison of receptive field organizations for the two eyes Vis Res 27 1921–9 [11.6.1]

Maske R, Yamane S, Bishop PO (1986a) End–stopped and binocular depth discrimination in the striate cortex of cats Proc R Soc B 229 257–76 [11.1.2, 11.3.1, 11.4.5a, 11.4.5b]

Maske R, Yamane S, Bishop PO (1986b) Stereoscopic mechanisms: binocular responses of the striate cells of cats to moving light and dark bars Proc R Soc B 229 227–56 [11.3.1]

Masson GS, Busettini CM, Yang DS, Miles FA (2001) Short-latency ocular following in humans: sensitivity to binocular disparity Vis Res 41 3371–87 [22.6.1e]

Mather G (1989) The role of subjective contours in capture of stereopsis Vis Res 29 143–6 [22.2.4b]

Mather G, Verstraten F, Anstis S (1998) The motion aftereffect MIT Press Cambridge, MA [13.3.3a]

Matin L (1962) Binocular summation at the absolute threshold for peripheral vision J Opt Soc Am 52 1276–86 [13.1.1c, 13.1.6c]

Matsumiya K, Howard IP, Kaneko H (2007) Perceived depth in the ‘sieve effect’ and exclusive binocular rivalry Perception 36 990–1002 [17.5]

Matsuoka K (1984) The dynamic model of binocular rivalry Biol Cyber 49 201–8 [12.10]

Matthews N, Geesaman BJ, Qian N (2000) The dependence of motion repulsion and rivalry on the distance between moving elements Vis Res 40 2025–36 [12.3.6c, 22.7.4]

Matthews N, Meng X, Xu P, Qian N (2003) A physiological theory of depth perception from vertical disparity Vis Res 43 85–99 [11.4.4, 20.2.5]

Maunsbach AB, Afzelius BA (1999) Biomedical electron microscopy Academic Press, New York [24.2.3d]

Maunsell JHR, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity J Neurophysiol 49 1148–67 [11.5.2a, 11.6.4]

Mayhew JEW (1982) The interpretation of stereo–disparity information: the computation of surface orientation and depth Perception 11 387–404 [19.6.5, 20.2.3a, 20.2.4]

Mayhew JEW, Anstis SM (1972) Movement aftereffects contingent on color intensity and pattern Percept Psychophys 12 77–85 [13.3.5]

Mayhew JEW, Frisby JP (1976) Rivalrous texture stereograms Nature 294 53–6 [17.1.3]

Mayhew JEW, Frisby JP (1978) Stereopsis masking in humans is not orientationally tuned Perception 7 431–6 [17.1.2b]

Mayhew JEW, Frisby JP (1979a) Convergent disparity discriminations in narrow–band–filtered random–dot stereograms Vis Res 19 63–71 [18.7.3a, 18.10.1a]

Mayhew JEW, Frisby JP (1979b) Surfaces with steep variations in depth pose difficulties for orientationally tuned disparity filters Perception 8 691–8 [17.1.2b]

Mayhew JEW, Frisby JP (1980) The computation of binocular edges Perception 9 69–86 [15.4.3, 15.4.4]

Mayhew JEW, Frisby JP (1981) Psychophysical and computational studies towards a theory of human stereopsis Artificial Intelligence 17 349–85 [15.4.3, 17.1.1a]

Mayhew JEW, Frisby JP (1982) The induced effect: arguments against the theory of Arditi, Kaufman and Movshon Vis Res 22 1225–8 [20.2.3a]

Mayhew JEW, Longuet–Higgins HC (1982) A computational model of binocular depth perception Nature 297 376–8 [14.2.3, 19.6.5, 20.2.3a, 20.2.3b, 20.2.4]

(p.595) Mayhew JEW, Frisby JP, Gale P (1977) Computation of stereodisparity from rivalrous texture stereograms Perception 6 207–8 [17.1.3]

Mays LE, Sparks DL (1980) Dissociation of visual and saccade-related responses in superior colliculus neurones J Neurophysiol 43 207–32 [11.2.3]

Mazyn LIN, Lenoir M, Montagne G, Savelsbergh GJP (2004) The contribution of stereo vision to one-handed catching Exp Brain Res 157 383–90 [20.1.1]

Mazyn LIN, Lenoir M, Montagne G, et al. (2007) Stereo vision enhances the learning of a catching skil Exp Brain Res 179 723–6 [20.1.1]

McAllister DF (1993) Stereo computer graphics and other true 3D technologies Princeton University Press, Princeton NJ [24.1.4a]

McAllister DF, Robbins WE (1987) Three-dimensional imaging techniques and display technologies Proc Int Soc Opt Engin 761 35–43 [24.1.3c]

McCarthy JE (1993) Directional adaptation effects with contrast modulated stimuli Vis Res 33 2653–62 [13.3.3b]

McCollough C (1965) Colour adaptation of edge–detectors in the human visual system Science 149 1115–16 [13.3.5]

McConkie AB, Faber JM (1979) Relation between perceived depth and perceived motion in uniform flow fields J Exp Psychol: HPP 5 501–508 [22.7.3]

McCormack G (1990) Normal retinotopic mapping in human strabismus with anomalous retinal correspondence Invest Ophthal Vis Sci 31 559–68 [14.4c]

McKee SP (1983) The spatial requirements for fine stereoacuity Vis Res 23 191–8 [18.6.1a, 21.4.3]

McKee SP, Levi DM (1987) Dichoptic hyperacuity: the precision of nonius alignment J Opt Soc Am A 4 1104–8 [14.6.1c, 18.11]

McKee SP, Mitchison GJ (1988) The role of retinal correspondence in stereoscopic matching Vis Res 28 1001–12 [11.10.1b, 22.2.3b]

McKee SP and Verghese P (2002) Stereo transparency and the disparity gradient limit Vis Res 42 1963–77 [12.1.3a]

McKee SP, Westheimer G (1970) Specificity of cone mechanisms in lateral interaction J Physiol 206 117–28 [13.2.7b]

McKee SP, Welch L, Taylor DG, Bowne SF (1990a) Finding the common bond: stereoacuity and the other hyperacuities Vis Res 30 879–91 [18.3.3a, 18.7.2b, 18.11]

McKee SP, Levi DM, Bowne SF (1990b) The imprecision of stereopsis Vis Res 30 1763–79 [18.11]

McKee SP, Bravo MJ, Taylor DG, Legge GE (1994) Stereo matching precedes dichoptic masking Vis Res 34 1047–60 [13.2.4b]

McKee SP, Bravo MJ, Smallman HS, Legge GE (1995) The “uniqueness constraint” and binocular masking Perception 24 49–65 [15.3.1]

McKee SP, Watamaniuk SNJ, Harris JM, et al. (1997) Is stereopsis effective in breaking camouflage for moving objects Vis Res 37 2047–55 [22.3.5]

McKee SP, Verghese P, Farell B (2005) Stereo sensitivity depends on stereo matching J Vis 5 783–92 [18.3.3a]

McKenna M, Zeltzer D (1992) Three dimensional visual display systems for virtual environments Presence 1 421–58 [24.1.3b]

McLaughlin NP, Grossberg S (1998) Cortical computation of stereo disparity Vis Res 38 91–9 [11.10.1b]

Meacham GBK (1986) Autostereoscopic displays—past and future Proc Soc Photo Opt Instru Engin 627 90–101 [24.1.3c]

Meadows JC (1973) Observations on a case of monocular diplopia of cerebral origin J Neurol Sci 18 279–53 [14.4.2]

Meegan DV, Stelmach LB, Tam WJ (2001) Unequal weighting of monocular inputs in binocular combination: implications for the compression of stereoscopic imagery J Exp Psychol: App 7 143–53 [24.2.6]

Meenes M (1930) A phenomenological description of retinal rivalry Am J Psychol 42 290–9 [12.3.1a]

Meese TS, Smith V, Harris MG (1995) Induced motion may account for the illusory transformation of optic flow fields found by Duffy and Wurtz Vis Res 35 981–4 [22.7.4]

Meese TS, Georgeson MA, Baker DH (2006) Binocular contrast vision at and above threshold J Vis 6 1224–43 [13.1.3a]

Mehdorn E (1982) Nasal–temporal asymmetry of the optokinetic nystagmus after bilateral occipital infarction in man In Functional basis of ocular motility disorders (ed G Lennerstrand, DS Zee, EL Keller) pp 321–4 Pergamon, New York [22.6.1b]

Meissner G (1854) Beiträge zur Physiologie des Sehorganes Engleman, Leipzig [14.6.1a]

Mello NK (1966) Concerning inter-hemispheric transfer of mirror-image patterns in pigeon Physiol Behav 1 293–300 [13.4.2]

Meng M, Tong F (2004) Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures J Vis 4 539–51 [12.8.1]

Meng X, Chen Y, Qian N (2004) Both monocular and binocular signals contribute to motion rivalry Vis Res 44 45–55 [12.3.6c]

Menz MD, Freeman RD (2003) Stereoscopic depth processing in the visual cortex: a coarse-to-fine mechanism Nat Neurosci 6 59–65 [11.4.8b]

Menz MD, Freeman RD (2004a) Functional connectivity of disparity-tuned neurons in the visual cortex J Neurophysiol 91 1794–807 [11.4.1d, 11.4.5b]

Menz MD, Freeman RD (2004b) Temporal dynamics of binocular disparity processing in the central visual pathway J Neurophysiol 91 1782–93 [11.4.8b, 18.12.1c]

Meredith GM, Meredith CGW (1962) Effect of instructional conditions on rate of binocular rivalry Percept Mot Skills 15 655–64 [12.8.1]

Merritt JO, Fisher SS (1992) Stereoscopic displays and applications III. Proc Soc Photo Opt Instru Engin Vol 1669 [24.1.1, 24.2.6]

Merritt JO, Fisher SS (1993) Stereoscopic displays and applications IV. Proc Soc Photo Opt Instru Engin Vol 1915 [24.1.1, 24.2.6]

Mershon DH (1972) Relative contributions of depth and direction adjacency to simultaneous whiteness contrast Vis Res 12 969–79 [22.4.2]

Mershon DH, Gogel WC (1970) Effect of stereoscopic cues on perceived brightness Am J Psychol 83 55–67 [22.4.2]

Mestel R (1994) Night of the strangest comet New Scientist 143 (no 1933) 23–25 [24.2.2]

Mestre DR, Masson GS (1997) Ocular responses to motion parallax stimuli: the role of perceptual and attentional factors Vis Res 37 1627–41 [22.6.1f]

Metropolis N, Rosenbluth A, Rosenbluth M, et al. (1953) Equations of state calculations by fast computing machines J Chem Physics 21 1087–92 [15.2.1b]

Metzger W (1975) Gesetze des Sehens Woldemar Kramer Verlag, Frankfurt [22.1.3]

Meyer GE (1974) Pressure blindness and the interocular transfer of size aftereffects Percept Psychophys 16 222–4 [13.3.4]

Meyer (1842) Uber einige Tåuschungen in der Entfernung and Gröse der Gesichtsobjekte Arch Physiol Heil 1 316–26 [14.2.2]

Meyer H (1852) Uber die Schätzung der Grösse und Entfernung Poggendorff’s Ann Physik Chem 25 198–207 [14.2.2]

Mezrich JJ, Rose A (1977) Coherent motion and stereopsis in dynamic visual noise Vis Res 17 903–10 [23.6.4]

Michaels CF (1986) An ecological analysis of binocular vision Psychol Res 48 1–22 [20.6.3c]

Michaels CF, Carello C, Shapiro B, Steitz C (1977) An onset to onset rule for binocular integration in the Mach-Dvorak illusion Vis Res 17 1107–13 [23.3.3]

Miezin FM, Myerson J, Julesz B, Allman JM (1981) Evoked potentials to dynamic random–dot correlograms in monkey and man: a test for cyclopean perception Vis Res 21 177–9 [11.7]

Mikaelian HH (1975) Interocular generalization of orientation specific color aftereffects Vis Res 15 661–3 [13.3.5]

Mikaelian S, Qian N (2000) A physiologically-based explanation of disparity attraction and repulsion Vis Res 40 2999–3116 [21.2]

Miles PW (1953) Anomalous binocular depth perception due to unequal image brightness Arch Ophthal 50 475–8 [17.9]

Miles WR (1930) Ocular dominance in human adults J Gen Psychol 3 412–30 [12.3.7]

(p.596) Milewski A, Yonas A (1977) Texture size specificity in the slant aftereffect Percept Psychophys 21 47–9 [21.6.1a]

Milios E, Jenkin M, Tsotsos J (1993) Design and performance of TRISH, a binocular robot head with torsional eye movements Int J Patt Recog Artif Intell 7 51–68 [24.2.6]

Millard AC, Wiseman PW, Fittinghoff DN, et al. (1999) Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source App Optics 38 7393–7 [24.2.3c]

Miller SM, Liu BB, Ngo TT, et al. (2000) Interhemispheric switching mediates perceptual rivalry Curr Biol 10 383–92 [12.9.2d]

Miller TJ, Ogle KN (1964) Stereoscopic localization of afterimages with eyes in asymmetric convergence Invest Ophthal Vis Sci 3 339–53 [20.2.2c]

Miller WT, Sutton RS, Werbos PJ (1991) Neural networks for control MIT Press, Cambridge MA [11.10.2]

Milleret C, Houzel JC (2001) Visual interhemispheric transfer to areas 17 and 18 in cats with convergent strabismus Eur J Neurosci 13 137–52 [11.9.1]

Mimeault D, Lepore F, Guillemot JP (2002) Phase- and position-disparity coding in the posteromedial lateral suprasylvian area of the cat Neurosci 110 59–72 [11.3.2]

Mimeault D, Paquet V, et al. (2004) Disparity sensitivity in the superior colliculus of the cat Brain Res 1010 87–94 [11.2.3]

Minciacchi D, Antonini A (1984) Binocularity in the visual cortex of the adult cat does not depend on the integrity of the corpus callosum Behav Brain Res 13 183–92 [11.9.2]

Minnich B, Leeb H, Bernroider EWN, Lametschwandtner A (1999) Three-dimensional morphometry in scanning electron microscopy: a technique for accurate dimensional and angular measurements of microstructures using stereopaired digitized images and digital image analysis J Micros 195 23–33 [24.2.3d]

Minsky M (1988) Memoirs on inventing the confocal scanning microscope Scanning 10 128–38 [24.2.3b]

Minucci PK, Connors MM (1964) Reaction time under three viewing conditions: binocular dominant eye and nondominant eye J Exp Psychol 67 298–75 [13.1.7]

Mitchell DE (1966a) Retinal disparity and diplopia Vis Res 6 441–51 [12.1.2]

Mitchell DE (1966b) A review of the concept of “Panum’s fusional areas” Am J Optom Arch Am Acad Optom 43 387–401 [12.1.1a, 12.1.1d]

Mitchell DE (1969) Qualitative depth localization with diplopic images of dissimilar shape Vis Res 9 991–4 [15.3.5]

Mitchell DE (1970) Properties of stimuli eliciting vergence eye movements and stereopsis Vis Res 10 145–62 [18.4.2a]

Mitchell DE, Baker AG (1973) Stereoscopic aftereffects: evidence for disparity–specific neurones in the human visual system Vis Res 13 2273–88 [21.6.1a, 21.6.2b]

Mitchell DE, Blakemore C (1970) Binocular depth perception and the corpus callosum Vis Res 10 49–54 [11.9.2]

Mitchell DE, O’Hagan S (1972) Accuracy of stereoscopic localization of small line segments that differ in size or orientation for the two eyes Vis Res 12 437–54 [15.3.5, 17.1.2a]

Mitchell JF, Stoner GR, Reynolds JH (2004) Object-based attention determines dominance in binocular rivalry Nature 429 410–13 [12.8.2]

Mitchell RT, Liaudansky LH (1955) Effect of differential adaptation of the eyes upon threshold sensitivity J Opt Soc Am 45 831–4 [13.2.2]

Mitchison GJ (1988) Planarity and segmentation in stereoscopic matching Perception 17 753–82 [22.2.3b]

Mitchison GJ (1993) The neural representation of stereoscopic depth contrast Perception 22 1415–29 [21.5.1, 21.5.2]

Mitchison GJ, McKee SP (1987a) The resolution of ambiguous stereoscopic matches by interpolation Vis Res 27 285–94 [22.2.3b]

Mitchison GJ, McKee SP (1987b) Interpolation and the detection of fine structure in stereoscopic matching Vis Res 27 295–302 [22.2.3b]

Mitchison GJ, McKee SP (1990) Mechanisms underlying the anisotropy of stereoscopic tilt perception Vis Res 30 1781–91 [20.4.1a]

Mitchison GJ, Westheimer G (1984) The perception of depth in simple figures Vis Res 24 1063–73 [21.3.1]

Mitchison GJ, Westheimer G (1990) Viewing geometry and gradients of horizontal disparity In Vision: coding and efficiency (ed C Blakemore) pp 302–9 Cambridge University Press, Cambridge [21.5.3]

Mitson L, Ono H, Barbeito R (1976) Three methods of measuring the location of the egocentre: their reliability comparative locations and intercorrelations Can J Psychol 30 1–8 [16.7.6a]

Mitsudo H (2007) Illusory depth induced by binocular torsional misalignment Vis Res 47 1303–14 [14.5.2f, 20.3.2a]

Mitsudo H, Nakamizo S, Ono H (2005) Greater depth seen with phantom stereopsis is coded at the early stages of visual processing Vis Res 45 1365–74 [17.3]

Mitsudo H, Nakamizo S, Ono H (2006) A long-distance detector for partially occluding surfaces Vis Res 46 11806 [17.3]

Mitsudo H, Kaneko H, Nishida S (2009) Perceived depth of curved lines in the presence of cyclovergence Vis Res 49 348–61 [20.3.2a]

Moidell B, Steinbach MJ, Ono H (1988) Egocenter location in children enucleated at an early age Invest Ophthal Vis Sci 29 1348–51 [16.7.5]

Mojon DS, Rösler KM, Oetliker H (1998) A bedside test to determine motion stereopsis using the Pulfrich phenomenon Ophthalmology 105 1337–44 [23.7]

Mollon J (1974) Aftereffects and the brain New Scientist 61 479–82 [21.1]

Mon-Williams M, Wann JP, Rushton S (1993) Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display Ophthal Physiol Opt 13 387–91 [24.2.6]

Mon-Williams M, Tresilian JR, Roberts A (2000) Vergence provides veridical depth perception from horizontal retinal image disparities Exp Brain Res 133 407–13 [20.6.3a]

Moore CM, Elsinger CL, Lleras A (2001) Visual attention and the apprehension of spatial relations: the case of depth Percept Psychophys 63 595–606 [22.8.2c]

Moore RJ, Spear PD, Kim CBY, Xue JT (1992) Binocular processing in the cat’s dorsal lateral geniculate nucleus. III. Spatial frequency orientation and direction sensitivity of nondominant–eye influences Exp Brain Res 89 588–98 [12.9.1]

Moradi F, Heeger DJ (2009) Inter-ocular contrast normalization in human visual cortex J Vis 9(3) Article 13 [12.3.1b, 13.1.3b]

Moraglia G, Schneider B (1990) Effects of direction and magnitude of horizontal disparities on binocular unmasking Perception 19 581–93 [13.2.4b]

Moraglia G, Schneider B (1991) Binocular unmasking with vertical disparity Can J Psychol 45 353–66 [13.2.4b]

Morgan H, Symmes D (1982) Amazing 3-D Little Brown Co, Boston [24.1.2c]

Morgan MJ (1975) Stereoillusion based on visual persistence Nature 256 639–40 [23.3.4]

Morgan MJ (1976) Pulfrich effect and the filling in of apparent motion Perception 5 187–95 [23.3.6]

Morgan MJ (1977) Differential visual persistence between the two eyes: a model for the Fertsch–Pulfrich effect J Exp Psychol HPP 3 484–95 [23.3.6]

Morgan MJ (1979) Perception of continuity in stroboscopic motion: a temporal frequency analysis Vis Res 19 491–500 [23.3.6, 23.6.4]

Morgan MJ (1980) Spatiotemporal filtering and the interpolation effect in apparent motion Perception 9 161–74 [23.3.6]

Morgan MJ (1981) Vernier acuity and stereopsis with discontinuously moving stimuli Acta Psychol 48 57–67 [23.3.6]

Morgan MJ (1986) Positional acuity without monocular cues Perception 15 157–62 [16.2.1]

Morgan MJ, Castet E (1995) Stereoscopic depth perception at high velocities Nature 378 380–3 [18.10.1b]

Morgan MJ, Castet E (1997) The aperture problem in stereopsis Vis Res 37 2737–44 [18.6.5]

Morgan MJ, Fahle M (2000) Motion-stereo mechanisms sensitive to inter-ocular phase Vis Res 40 1667–75 [23.3.2]

(p.597) Morgan MJ, Thompson P (1975) Apparent motion and the Pulfrich effect Perception 4 3–18 [23.1.1, 23.3.2, 23.3.4, 23.3.6]

Morgan MJ, Tyler CW (1995) Mechanisms for dynamic stereomotion respond selectively to horizontal velocity components Proc Roy Soc B 262 371–6 [23.6.4]

Morgan MJ, Ward R (1980) Interocular delay produces depth in subjectively moving noise patterns Quart J Exp Psychol 32 387–95 [23.6.4]

Morgan MJ, Mason AJS, Solomon JA (1997) Blindsight in normal subjects Nature 385 401–2 [12.5.6]

Morgan MW (1955) A unique case of double monocular diplopia Am J Optom Arch Am Acad Optom 32 70–87 [14.4.2]

Morgan MW (1961) Anomalous correspondence interpreted as a motor phenomenon Am J Optom Arch Am Acad Optom 38 131–48 [14.4.1d]

Morris JS, Friston KJ, Dolan RJ (1997) Neural responses to salient visual stimuli Proc R Soc 294 769–75 [11.2.1]

Morrison LC (1977) Stereoscopic localization with the eyes asymmetrically converged Am J Optom Physiol Opt 54 556–66 [14.6.2]

Morrone MC, Burr DC, Maffei L (1982) Functional implications of cross–orientation inhibition of cortical visual cells. I. Neurophysiological evidence Proc R Soc B 216 335–54 [12.9.2b]

Morrone MC, Burr DC, Speed HD (1987) Cross-orientation inhibition in cats is GABA mediated Exp Brain Res 67 635–44 [12.9.2b]

Moseley ME, White DL, Wang, SC, et al. (1989) Stereoscopic MR imaging J Comput Assist Tomog 13 167–73 [24.2.4]

Motter BC, Poggio GF (1984) Binocular fixation in the rhesus monkey: spatial and temporal characteristics Exp Brain Res 54 304–14 [18.10.3a]

Motter BC, Poggio GF (1990) Dynamic stabilization of receptive fields of cortical neurons during fixation of gaze in the macaque Exp Brain Res 83 37–43 [18.10.3a]

Moulden BP (1980) After–effects and the integration of patterns of neural activity within a channel Philos Tr R Soc B 290 39–55 [13.3.1, 13.3.2a]

Mousavi MS, Schalkoff RJ (1994) ANN implementation of stereo vision using a multi-layer feedback architecture IEEE Tr Man Mach Cybern 24 1220–38 [15.2.1c]

Moutoussis K, Zeki S (2002) The relationship between cortical activation and perception investigated with invisible stimuli Proc Natl Acad Sci 99 9527–32 [12.5.6]

Movshon JA, Lennie P (1979) Pattern–selective adaptation in visual cortical neurones Nat New Biol 278 850–2 [12.6.2]

Movshon JA, Thompson ID, Tolhurst DJ (1978) Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex J Physiol 283 101–120 [11.4.1e, 20.2.1]

Movshon JA, Adelson EH, Gizzi MS, Newsome WT (1985) The analysis of moving visual patterns In Pattern recognition mechanisms (ed C Chigas, R Gattas, C Gross) pp 117–51 Springer, New York [22.3.3]

Mowatt MH (1940) Configurational properties considered ‘good’ by naïve subjects Am J Psychol 53 46–69 [22.1.1]

Mueller CG, Lloyd VV (1948) Stereoscopic acuity for various levels of illumination Proc Natl Acad Sci Washington 34 223–7 [18.5.1]

Mueller TJ (1990) A physiological model of binocular rivalry Vis Neurosci 4 63–73 [12.10]

Mueller TJ, Blake R (1989) A fresh look at the temporal dynamics of binocular rivalry Biol Cyber 61 223–32 [12.10, 12.3.2a]

Muller C, Lankheet MJM, van de Grind WA (2004) Binocular correlation does not improve coherence detection for fronto-parallel motion Vis Res 44 1961–69 [22.3.5]

Müller M, Squier J, Wilson KR, Brakenhoff GJ (1998) 3D microscopy of transparent objects using third-harmonic generation J Micros 191 296–74 [24.2.3c]

Münster C (1941) über den Einfluss von Helligkeitsunterscheiden in beiden Augen auf die stereoscopische Wahrnehmung Z Sinnesphysiol 69 275–60 [17.9]

Münsterberg H (1894) A stereoscope without mirrors or prisms Psychol Rev 1 56–60 [24.1.2e]

Muntz WRA (1961) Interocular transfer in Octopus vulgaris J Comp Physiol Psychol 54 49–55 [13.4.2]

Murakami I (1999) Motion-transparent inducers have different effects on induced motion and motion capture Vis Res 39 1671–81 [22.7.2]

Murakami I, Cavanagh P (1998) A jitter after-effect reveals motion-based stabilization of vision Nature 395 798–801 [18.10.3a]

Murasugi CM, Salzman CD, Newsome WT (1993) Microstimulation in visual area MT: effects of varying pulse amplitude and frequency J Neurosci 13 1719–29 [13.3.3b]

Murch GM (1972) Binocular relationships in a size and color orientation specific aftereffect J Exp Psychol 93 30–4 [13.3.4]

Murch GM (1974) Color contingent motion aftereffects: single or multiple levels of processing Vis Res 14 1181–4 [13.3.5]

Murdoch JR, McGhee CNJ, Glover V (1991) The relationship between stereopsis and fine manual dexterity: pilot study of a new instrument Eye 5 642–43 [20.1.1]

Murray E (1939) Binocular fusion and the locus of ‘yellow’ Am J Psychol 52 117–21 [12.2.1]

Mussap AJ, Levi DM (1995) Binocular processes in vernier acuity J Opt Soc Am A 12 225–33 [13.2.4a]

Mustari MJ, Fuchs AF (1990) Discharge patterns of neurons in the pretectal nucleus of the optic tract NOT in the behaving primate J Neurophysiol 64 77–90 [22.6.1b]

Mustari MJ, Fuchs AF, Wallman J (1988) Response properties of dorsolateral pontine units during smooth pursuit in the Rhesus macaque J Neurophysiol 60 664–86 [22.6.1d]

Mustillo P (1985) Binocular mechanisms mediating crossed and uncrossed stereopsis Psychol Bull 97 187–201 [18.6.4]

Mustillo P, Francis E, Oross S, et al. (1988) Anisotropies in global stereoscopic orientation discrimination Vis Res 28 1315–21 [16.2.1]

Mutch K, Smith IM, Yonas A (1983) The effect of two–dimensional and three–dimensional distance on apparent motion Perception 12 305–12 [22.5.3a]

Myers RE (1955) Interocular transfer of pattern discrimination in cats following section of crossed optic fibres J Comp Physiol Psychol 48 470–3 [13.4.2]

Nachmias J, Sansbury RV (1974) Grating contrast: discrimination may be better than detection Vis Res 14 1039–42 [13.1.3a]

Naegele J, Held R (1982) The postnatal development of monocular optokinetic nystagmus in infants Vis Res 22 341–6 [22.6.1b, 22.6.1e]

Naganuma T, Nose I, Inoue K et al. (2005) Information processing of geometrical features of a surface based on binocular disparity cues: as fMRI study Neurosci Res 51 147–55 [11.8.1]

Nagel WA (1902) Stereoskopie und Tiefenwahrnehmung im Dämmerungssehen Z Psychol Physiol Sinnesorg 27 294–6 [18.5.1]

Nakamizo S, Shimono K, Kondo M, Ono H (1994) Visual directions of two stimuli in Panum’s limiting case Perception 23 1037–48 [16.7.3b]

Nakamizo S, Ono H, Ujike H (1999) Subjective staircase: a multiple wallpaper illusion Percept Psychophys 61 13–22 [14.2.2]

Nakamizo S, Kawabata H, Ono H (2008) Misconvergence to the stimulus plane causes apparent displacement of the stimulus element seen monocularly Japanese Psychol Res 51 49–62 [16.7.5]

Nakamura S, Shimojo S (1999) Critical role of foreground stimuli in perceiving visually induced self-motion (vection) Perception 28 893–902 [22.7.3]

Nakayama K (1977) Geometric and physiological aspects of depth perception Proceedings of Society of Photo–Optical Instrumentation Engineers 120 2–9 [14.6.1d, 14.7]

Nakayama K (1996) Binocular visual surface perception Proc Natl Acad Sci 93 634–9 [22.1.2]

Nakayama K, Shimojo S (1990) Da Vinci stereopsis: depth and subjective occluding contours from unpaired image points Vis Res 30 1811–25 [17.2.2, 17.6.2, 17.6.4]

Nakayama K, Silverman GH (1986) Serial and parallel processing of visual feature conjunctions Nature 320 294–5 [22.5.1e, 22.8.2b]

(p.598) Nakayama K, Tyler CW (1978) Relative motion induced between stationary lines Vis Res 18 1663–8 [22.7.1]

Nakayama K, Silverman GH, MacLeod DIA, Mulligan J (1885) Sensitivity to shearing and compression motion in random dots Perception 14 225–38 [18.6.3b, 20.4.1a]

Nakayama K, Shimojo S, Silverman GH (1989) Stereoscopic depth: its relation to image segmentation grouping and the recognition of occluded objects Perception 18 55–8 [22.1.2]

Nascimento SMC, Foster DH (2001) Detecting changes of spatial cone-excitation ratios in dichoptic viewing Vis Res 41 2601–6 [13.1.3d]

Neary C (1992) The effect of a binocular disparate background on smooth pursuit eye movements Perception 21 (Supplement 2) 52 [22.6.2]

Neill RA (1981) Spatio–temporal averaging and the dynamic visual noise stereophenomenon Vis Res 21 673–82 [23.6.1, 23.6.2, 23.6.3, 23.6.4]

Neill RA, Fenelon B (1988) Scalp response topography to dynamic random dot stereograms EEG Clin Neurophysiol 69 209–217 [11.7]

Neinborg H, Cumming BG (2007) Psychophysically measured task strategy for disparity discrimination is reflected in V2 neurons Nat Neurosci 10 1608–14 [11.5.1]

Nelson JI (1975) Globality and stereoscopic fusion in binocular vision J Theor Biol 49 1–88 [15.4.5]

Nelson JI (1977) The plasticity of correspondence: after–effects illusions and horopter shifts in depth perception J Theor Biol 66 203–66 [21.7.1, 21.7.2]

Nelson JI (1981) A neurophysiological model for anomalous correspondence based on mechanisms of sensory fusion Doc Ophthal 51 3–100 [14.4.1e]

Nelson JI, Kato H, Bishop PO (1977) Discrimination of orientation and position disparities by binocularly activated neurons in cat striate cortex J Neurophysiol 40 290–83 [11.6.2]

Neri P, Parker AJ, Blakemore C (1999) Probing the human stereoscopic system with reverse correlation Nature 401 695–8 [11.4.1f, 15.3.7d]

Neri P, Bridge H, Heeger DJ (2004) Stereoscopic processing of absolute and relative disparity in human visual cortex J Neurophysiol 92 1880–91 [11.8.1]

Newsome WT, Wurtz RH, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II Differentiation of retinal from extraretinal inputs J Neurophysiol 60 604–20 [22.6.1d]

Ngo TT, Miller, SM, Liu GB, Pettigrew JD (2000) Binocular rivalry and perceptual coherence Curr Biol 10 R134–6 [12.4.4b]

Nguyen VA, Freeman A, Wenderoth P (2001) The depth and selectivity of suppression in binocular rivalry Percept Psychophys 63 348–60 [12.4.4a]

Nguyen VA, Freeman AW, Alais D (2003) Increasing depth of binocular rivalry suppression along two visual pathways Vis Res 43 2003–8 [12.3.3d]

Nguyenkim JD, DeAngelis GC (2003) Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons J Neurosci 23 7117–28 [11.5.2a]

Nichols DF, Wilson HR (2009) Stimulus specificity in spatially-extended interocular suppression Vis Res 49 2110–20 [12.4.2]

Nickalls RWD (1986) The rotating Pulfrich effect and a new method of determining visual latency differences Vis Res 29 367–72 [23.1.1]

Nickalls RWD (1996) The influence of target angular velocity on visual latency difference determined using the rotating Pulfrich effect Vis Res 36 2865–72 [23.1.2]

Nielsen KRK, Poggio T (1984) Vertical image registration in stereopsis Vis Res 27 1133–40 [18.4.2b]

Nienborg H, Bridge H, Parker AJ, Cumming BG (2004) Receptive field size in V1 neurons limits acuity for perceiving disparity modulation J Neurosci 24 2065–76 [11.6.3]

Nienborg H, Bridge H, Parker AJ, Cumming BG (2005) Neuronal computation of disparity in V1 limits temporal resolution for detecting disparity modulation J Neurosci 25 10207–19 [11.10.1b]

Nijhawan R (1995) “Reversed’ illusion with three-dimensional Müller-Lyer shapes Perception 27 1281–96 [22.5.2]

Nikara T, Bishop PO, Pettigrew JD (1968) Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex Exp Brain Res 6 353–72 [11.1.2, 11.3.1, 11.4.4]

Ninio J (1981) Random–curve stereograms: a flexible tool for the study of binocular vision Perception 10 403–10 [24.1.5]

Ninio J (1985) Orientational versus horizontal disparity in the stereoscopic appreciation of slant Perception 14 305–14 [15.3.5, 20.3.1a]

Ninio J (2007) The science and craft of autostereograms Spat Vis 21 185–200 [24.1.6]

Ninio J, Herlin I (1988) Speed and accuracy of 3D interpretation of linear stereograms Vis Res 28 1223–33 [15.3.11]

Nishida S, Ashida H (2000) A hierarchical structure of motion system revealed by interocular transfer of flicker motion aftereffects Vis Res 40 295–78 [13.3.3b]

Nishida S, Ashida H (2001) A motion aftereffect seen more strongly by the non-adapted eye: evidence of multistage adaptation in visual motion processing Vis Res 41 561–70 [13.3.3b]

Nishida S, Sato T (1995) Motion aftereffect with flickering test patterns reveals higher stages of motion processing Vis Res 35 477–90 [13.3.3b, 16.5.3a]

Nishida S, Ashida H, Sato T (1994) Complete transfer of motion aftereffect with flickering test Vis Res 34 2707–16 [13.3.3b]

Nishina S, Okada M, Kawato M (2003) Spatio-temporal dynamics of depth propagation on uniform region Vis Res 43 2493–503 [22.2.3a]

Noble J (1966) Mirror-images and the forebrain commissures of the monkey Nature 211 1293–6 [13.4.2]

Noble J (1968) Paradoxical interocular transfer of mirror-image discrimination in the optic chiasm sectioned monkey Brain Res 10 127–51 [13.4.2]

Noda H (1986) Mossy fibres sending retinal slip eye and head velocity signals to the flocculus of the monkey J Physiol 379 39–60 [22.6.1d]

Nomura M (1993) A model for neural representation of binocular disparity in striate cortex: distributed representation and veto mechanism Biol Cyber 69 165–71 [11.4.1d]

Nomura M, Matsumoto G, Fugiwara S (1990) A binocular model for the simple cell Biol Cyber 63 237–42 [11.4.1d]

Noorden GK von (1970) Etiology and pathogenesis of fixation anomalies in strabismus. I. Relationship between eccentric fixation and anomalous retinal correspondence Am J Ophthal 69 210–22 [14.4.1d]

Norcia AM, Tyler CW (1985) Spatial frequency sweep VEP: visual acuity during the first year of life Vis Res 25 1399–408 [13.1.8b]

Norcia AM, Sutter EE, Tyler CW (1985) Electrophysiological evidence for the existence of coarse and fine disparity mechanisms in human Vis Res 25 1603–11 [11.7]

Norling JS (1953) The stereoscopic art J Soc Motion Pict Televis Engin 60 298–308 [24.1.1]

Norman HF, Norman, JF, Bilotta J (2000) The temporal course of suppression during binocular rivalry Perception 29 831–41 [12.10, 12.3.6b]

Norman JF, Todd JT (1998) Stereoscopic discrimination of interval and ordinal depth relations on smooth surfaces and in empty space Perception 27 257–72 [18.6.2a]

Norman JF, Lappin JS, Zucker SW (1991) The discriminability of smooth stereoscopic surfaces Perception 20 789–807 [18.3.2b]

Nothdurft HC (1985) Texture discrimination does not occur at the cyclopean retina Perception 14 527–37 [16.6.1b]

O’Brien V (1958) Contour perception illusion and reality J Opt Soc Am 48 112–19 [21.4.2e]

O’Kane LM, Hibbard PB (2007) Vertical disparity affects shape and size judgments across surfaces separated in depth Perception 36 696–702 [20.6.3c]

O’Kane LM, Hibbard PB (2010) Contextual effects on perceived three-dimensional shape Vis Res 50 1095–100 [20.6.3a]

O’Shea RP (1987) Chronometric analysis supports fusion rather than suppression theory of binocular vision Vis Res 27 781–91 [12.7.2]

(p.599) O’Shea RP (1989) Depth with rival Kaufman–type stereograms Invest Ophthal Vis Sci 30 (Abs) 389 [17.1.2a]

O’Shea RP, Blake R (1986) Dichoptic temporal frequency differences do not lead to binocular rivalry Percept Psychophys 39 59–63 [12.3.5b]

O’Shea RP, Blake R (1987) Depth without disparity in random–dot stereograms Percept Psychophys 42 205–14 [16.1.2c, 17.5]

O’Shea RP, Corballis PM (2003) Binocular rivalry in split-brain observers J Vis 3 610–15 [12.9.2d]

O’Shea RP, Corballis PM (2005) Visual grouping on binocular rivalry in a split-brain observer Vis Res 45 247–61 [12.9.2d]

O’Shea RP, Crassini B (1981a) The sensitivity of binocular rivalry suppression to changes in orientation assessed by reaction–time and forced–choice techniques Perception 10 283–93 [12.5.3]

O’Shea RP, Crassini B (1981b) Interocular transfer of the motion after–effect is not reduced by binocular rivalry Vis Res 21 801–4 [12.6.4]

O’Shea RP, Crassini B (1982) The dependence of cyclofusion on orientation Percept Psychophys 32 195–6 [12.1.5]

O’Shea RP, Crassini B (1984) Binocular rivalry occurs without simultaneous presentation of rival stimuli Percept Psychophys 36 296–76 [12.3.5d]

O’Shea RP, Williams DR (1996) Binocular rivalry with isoluminant stimuli visible only via short-wavelength-sensitive cones Vis Res 36 1561–71 [12.3.2e]

O’Shea RP, Wilson RG, and Duckett A (1993) The effects of contrast reversal on the direct, indirect, and interocularly-transferred tilt aftereffect NZ J Psychol 22 94–100 [13.3.2a]

O’Shea RP, Blake R, Wolfe JM (1994a) Binocular rivalry and fusion under scotopic luminances Perception 23 771–84 [12.3.2c]

O’Shea RP, Blackburn SG, Ono H (1994b) Contrast as a depth cue Vis Res 34 1595–604 [18.7.3b]

O’Shea RP, Simms AJH, Govan DG (1997) The effect of spatial frequency and field size on the spread of exclusive visibility in binocular rivalry Vis Res 37 175–83 [12.4.1]

O’Shea RP, Parker A, La Rooy D, Alais D (2009) Monocular rivalry exhibits three hallmarks of binocular rivalry: Evidence for common processes Vis Res 49 671–81 [12.3.8d]

O’Shea WF, Ciuffreda KJ, Fisher SK, et al. (1988) Relation between distance heterophoria and tonic vergence Am J Optom Physiol Opt 65 787–93 [12.4.2]

O’Toole AJ, Kersten DJ (1992) Learning to see random–dot stereograms Perception 21 227–43 [18.14.2c, 18.14.2d]

O’Toole AJ, Walker CL (1997) On the preattentive accessibility of stereoscopic disparity: evidence from visual search Percept Psychophys 59 202–18 [22.8.2a]

Odom JV, Chao GM (1987) A stereo illusion induced by binocularly presented gratings: effects of number of eyes stimulated spatial frequency orientation field size and viewing distance Percept Psychophys 42 140–9 [14.2.2]

Odom JV, Chao GM (1995) Models of binocular luminance interaction evaluated using visually evoked potential and psychophysical measures: a tribute to M Russell Harter Int J Neurosci 80 255–80 [13.1.8b]

Ogle KN (1932) An analytical treatment of the longitudinal horopter; its measurement and application to related phenomena especially to the relative size and shape of the ocular images J Opt Soc Am 22 665–728 [14.6.2a]

Ogle KN (1938) Induced size effect. I. A new phenomenon in binocular space–perception associated with the relative sizes of the images of the two eyes Arch Ophthal 20 604–23 [20.2.3a, 20.2.3b, 20.2.4b]

Ogle KN (1939a) Induced size effect. II. An experimental study of the phenomenon with restricted fusion stimuli Arch Ophthal 21 604–25 [20.2.3a]

Ogle KN (1939b) Induced size effect. III. A study of the phenomenon as influenced by horizontal disparity of the fusion contours Arch Ophthal 22 613–35 [20.2.3a]

Ogle KN (1939c) Relative sizes of ocular images of the two eyes in asymmetrical convergence Arch Ophthal 22 1046–67 [18.10.2a, 19.6.3]

Ogle KN (1940) Induced effect with the eyes in asymmetrical convergence Arch Ophthal 23 1023–8 [20.2.3a]

Ogle KN (1946) The binocular depth contrast phenomenon Am J Psychol 59 111–29 [21.3.3, 21.5.2, 21.3.1]

Ogle KN (1952) On the limits of stereoscopic vision J Exp Psychol 44 253–9 [18.4.1a]

Ogle KN (1953) Precision and validity of stereoscopic depth perception from double images J Opt Soc Am 43 906–13 [18.3.3a]

Ogle KN (1955) Stereopsis and vertical disparity Arch Ophthal 53 495–504 [18.4.2a, 18.6.5]

Ogle KN (1956) Stereoscopic acuity and the role of convergence J Opt Soc Am 46 269–73 [18.6.2a, 18.10.2a]

Ogle KN (1958) Note on stereoscopic acuity and viewing distance J Opt Soc Am 48 794–8 [18.6.7]

Ogle KN (1962) The optical space sense. In The eye (ed H Davson) Vol 4 pp 211–432 Academic Press, New York [17.7, 17.9, 23.2.1]

Ogle KN (1963) Stereoscopic depth perception and exposure delay between images to the two eyes J Opt Soc Am 53 1296–304 [18.12.2a]

Ogle KN (1964) Researches in binocular vision Hafner, New York [12.1.1d, 14.6.1c, 14.6.2a, 18.3.4, 18.10.3b, 20.2.1, 20.2.2c, 20.6.5a]

Ogle KN, Prangen A de H (1953) Observations on vertical divergences and hyperphorias Arch Ophthal 49 313–34 [12.1.1a, 12.1.1d]

Ogle KN, Reiher L (1962) Stereoscopic depth perception from after–images Vis Res 2 439–47 [18.10.1a, 20.6.3b]

Ogle KN, Wakefield JM (1967) Stereoscopic depth and binocular rivalry Vis Res 7 89–98 [12.7.3]

Ogle KN, Weil MP (1958) Stereoscopic vision and the duration of the stimulus Arch Ophthal 59 4–17 [18.10.1a, 18.12.1a, 18.5.1]

Ohmi M, Howard IP (1991) Induced visual motion; dissociation of oculocentric and headcentric (oculomotor) components Invest Ophthal Vis Sci 32 (Abs) 1272 [22.7.1]

Ohmi M, Howard IP, Everleigh B (1986) Directional preponderance in human optokinetic nystagmus Exp Brain Res 63 387–94 [22.6.1c]

Ohmi M, Howard IP, Landolt J (1987) Circular vection as a function of foreground–background relationships Perception 16 17–22 [22.7.3]

Ohtsuka S (1995a) Perception of direction in three–dimensional space with occlusion The Institute of Electronics, Information and Communication Engineers Tech Rep 95 31–6 (Abstract in English) [16.7.4b]

Ohtsuka S (1995b) Relationship between error in inclination perception in observing Poggendorff figures and stereopsis The Institute of Electronics, Information and Communication Engineers Tech Rep 95 24–6 (Abstract in English) [16.7.4b]

Ohtsuka S, Yano S (1994) The phenomenon causing the Poggendorff illusion compensates geometrical error in reconstructed 2D image from stereopsis. The Institute of Television Engineers of Japan (ITE) Tech Rep 18–60 25–30 (Abstract in English) [16.7.4b]

Ohwaki S (1960) On the destruction of geometrical illusions in stereoscopic observation Tohoku Psychol Folia 29 27–36 [16.3.1]

Ohzawa I, Freeman RD (1986a) The binocular organization of simple cells in the cat’s visual cortex J Neurophysiol 56 221–42 [11.4.1d, 11.4.5b, 13.1.8a]

Ohzawa I, Freeman RD (1986b) The binocular organization of complex cells in the cat’s visual cortex J Neurophysiol 56 273–60 [11.3.1, 11.4.1d, 13.1.8a]

Ohzawa I, Freeman RD (1988) Cyclopean visual evoked potentials: a new test of binocular vision Vis Res 28 1167–70 [13.1.8b]

Ohzawa I, Sclar G, Freeman RD (1985) Contrast gain control in the cat’s visual system J Neurophysiol 54 651–67 [11.4.1f, 13.2.6]

Ohzawa I, DeAngelis GC, Freeman RD (1990) Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors Science 279 1037–41 [11.1.2, 11.4.1d, 11.10.1a, 11.10.1b]

Ohzawa I, DeAngelis GC, Freeman RD (1996) Encoding of binocular disparity by simple cells in the cat’s visual cortex J Neurophysiol 75 1779–805 [11.4.3a, 11.4.5b]

(p.600) Ohzawa I, DeAngelis GC, Freeman RD (1997) Encoding of binocular disparity by simple cells in the cat’s visual cortex J Neurophysiol 77 2879–910 [11.4.1f]

Okoshi T (1976) Three–dimensional imaging techniques Academic Press, New York [24.1.3b, 24.1.4b]

Ono H (1979) Axiomatic summary and deductions from Hering’s principles of visual direction Percept Psychophys 25 473–7 [16.7.2d]

Ono H (1981) On Well’s (1792) law of visual direction Percept Psychophys 30 403–6 [16.7.2d]

Ono H (1984) Exorcising the double–nail illusion: giving up the ghost Perception 13 763–8 [15.4.6, 17.6.3]

Ono H (1991) Binocular visual directions of an object when seen as single or double In D. Regan (Ed.) Vision and visual dysfunction: Vol 9. Binocular Vision, (pp. 1–18). MacMillan, London [16.7.2d]

Ono H, Angus R (1974) Adaptation to sensory–motor conflict produced by the visual direction of the hand specified from the cyclopean eye J Exp Psychol 103 l–9 [16.7.3a]

Ono H, Barbeito R (1982) The cyclopean eye vs the sighting–dominant eye as the center of visual direction Percept Psychophys 32 201–10 [16.7.3b, 16.7.6b]

Ono H, Barbeito R (1985) Utrocular discrimination is not sufficient for utrocular identification Vis Res 25 289–99 [16.8]

Ono H, Gonda G (1978) Apparent movement eye movements and phoria when two eyes alternate in viewing a stimulus Perception 7 75–83 [16.7.5, 16.7.5]

Ono H, Mapp AP (1995) A restatement and modification of WellsHering’s laws of visual direction Perception 27 237–52 [14.6.1c, 16.7.2d]

Ono H, Steinbach MJ (1983) The Pulfrich phenomenon with eye movement Vis Res 23 1735–7 [23.5]

Ono H, Wade NJ (1985) Resolving discrepant results of the Wheatstone experiment Psychol Res 47 135–42 [16.7.3a]

Ono H, Weber EU (1981) Nonveridical visual direction produced by monocular viewing J Exp Psychol HPP 7 937–47 [16.7.5]

Ono H, Hasdorf A, Osgood CE (1966) Binocular rivalry as a function of incongruity of meaning Scand J Psychol 7 225–33 [12.8.3a]

Ono H, Komoda M, Mueller ER (1971) Intermittent stimulation of binocular disparate colors and central fusion Percept Psychophys 9 343–7 [12.2.2]

Ono H, Wilkinson A, Muter P, Mitson L (1972) Apparent movement and change in perceived location of a stimulus produced by a change in accommodative vergence Percept Psychophys 12 187–92 [16.7.5, 16.7.7]

Ono H, Angus R, Gregor P (1977) Binocular single vision achieved by fusion and suppression Percept Psychophys 21 513–21 [16.7.3a]

Ono H, Shimono K, Shibuta K (1992) Occlusion as a depth cue in the Wheatstone–Panum limiting case Percept Psychophys 51 3–13 [17.6.4]

Ono H, Ohtsuka S, Lillakas L (1998) The visual system’s solution to Leonardo da Vinci’s paradox and to the problems created by the solution Proceeding for Workshop on Visual Cognition (Tsukuba, Japan: Science and Technology Association and National Institute of Bioscience and Human-Technology) 125–36 [16.7.4b]

Ono H, Shimono K, Saida S, Ujike H (2000) Transformation of the visual-line value in binocular vision: stimuli on corresponding points can be seen in two different directions Perception 29 421–36 [16.7.3a]

Ono H, Lillakas L, Mapp AP (2002a) The making of the direction sensing system for the Howard eggmobile In L Harris and M Jenkin (Eds) Levels of perception Springer Verlag, New York in press [16.7.7]

Ono H, Mapp AP, Howard IP (2002b) The cyclopean eye in vision: the new and old data continue to hit you right between the eyes Vis Res 42 1307–24 [16.7.7]

Ono H, Wade NJ, Lillakas L (2002c) The pursuit of Leonardo’s constraint Perception 31 83–102 [16.7.4b]

Ono H, Lillikas L, Grove PM, Suzuki M (2003) Leonardo’s constraint: two opaque objects cannot be seen in the same direction J Exp Psychol Gen 132 253–65 [16.7.4b]

Ono H, Lillikas L, Wade NJ (2007a) The cyclopean illusion unleashed Vis Res 47 2067–75 [16.7.7]

Ono H, Lillikas L, Wade NJ (2007b) Seeing double and depth with Wheatstone’s stereograms Perception 36 1611–23 [18.4.1a]

Ono H, Wade NJ, Lillakas L (2009) Binocular vision: Defining the historical direction Perception 38 492–507 [16.7.2b, 16.7.7]

Ooi TL, He ZJ (1999) Binocular rivalry and visual awareness: the role of attention Perception 28 551–74 [12.3.3c, 12.8.2]

Ooi TL, He ZJ (2003) A distributed intercortical processing of binocular rivalry: psychophysical evidence Perception 32 155–66 [12.4.4b]

Ooi TL, He ZJ (2006) Binocular rivalry and surface-boundary processing Perception 35 581–603 [12.3.3b]

Ooi TL, Loop MS (1994) Visual suppression and its effect upon color and luminance sensitivity Vis Res 34 2997–3003 [12.3.2f]

Orban GA, Janssen P, Vogels R (2006) Extracting 3D structure from disparity TINS 29 466–73 [11.6.3]

Oster G (1965) Optical art App Optics 4 1359–69 [12.1.7]

Osuobeni EP (1991) Effect of chromatic aberration on isoluminance stereothreshold Optom Vis Sci 68 552–5 [17.8]

Osuobeni EP, O’Leary DJ (1986) Chromatic and luminance difference contribution to stereopsis Am J Optom Physiol Opt 63 970–7 [17.1.4a]

Oswald I (1957) After–images from retina and brain Quart J Exp Psychol 9 88–100 [12.6.2, 13.3.1]

Over R (1971) Comparison of normalization theory and neural enhancement explanation of negative aftereffects Psychol Bull 75 225–43 [21.1]

Over R, Long N, Lovegrove W (1973) Absence of binocular interaction between spatial and color attributes of visual stimuli Percept Psychophys 13 534–40 [13.3.5, 15.3.8a]

Owens DA, Leibowitz HW (1975) Chromostereopsis with small pupils J Opt Soc Am 65 358–9 [17.8]

Paap KR, Ebenholtz SM (1977) Concomitant direction and distance aftereffects of sustained convergence: a muscle potentiation explanation for eye–specific adaptation Percept Psychophys 21 307–14 [13.4.3]

Pack CC, Born RT, Livingstone MS (2003) Two-dimensional substructure of stereo and motion interactions in macaque visual cortex Neuron 37 525–35 [11.6.5]

Paffen CLE, te Pas SF, Kanai R, et al. (2004) Center-surround interactions in visual motion processing during binocular rivalry Vis Res 44 1635–39 [12.3.3b]

Paffen CLE, Tadin D, te Pas SF, et al. (2006a) Adaptive center-surround interactions inhuman vision revealed during binocular rivalry Vis Res 46 599–604 [12.3.3b]

Paffen CLE, Alais D, Verstraten FA (2006b) Attention speeds binocular rivalry Psychol Sci 17 752–6 [12.8.2]

Paffen CLE, Naber M, Verstraten FAJ (2008a) The spatial origin of a perceptual transition in binocular rivalry PLoS ONE 3 e2311 [12.3.5e]

Paffen CLE, Verstraten FAJ, Vidnyánszky Z (2008b) Attention-based perceptual learning increases binocular rivalry suppression of irrelevant visual features J Vis 8(4) Article 25 [12.8.2]

Palanca BJA, DeAngelis GC (2003) Macaque middle temporal neurons signal depth in the absence of motion J Neurosci 23 7647–58 [11.5.2a]

Palmer DA (1961) Measurement of the horizontal extent of Panum’s area by a method of constant stimuli Optical Acta 8 151–9 [12.1.1d, 12.1.4]

Palmisano S, Allison RS, Howard IP (2001) Effects of horizontal and vertical additive disparity noise on stereoscopic corrugation detection Vis Res 41 3133–43 [11.10.1c, 18.4.2b]

Palmisano S, Allison RS, Howard IP (2006) Effect of 3-D grating detection with static and dynamic random-dot stereograms Vis Res 46 57–70 [20.6.3b]

Palmisano S, Gillam B, Govan DG, et al. (2010) Stereoscopic perception of real depths at large distances J Vis 10(6), 19 [15.2.2b]

(p.601) Pantle A (1974) Motion aftereffect magnitude as a measure of the spatio-temporal response properties of direction-selective analyzers Vis Res 14 229–36 [16.5.3a]

Pantle A, Picciano L (1976) A multistable movement display: evidence for two separate motion systems in human vision Science 193 500–2 [16.4.2a, 16.4.2e]

Panum PL (1858) Physiologische Untersuchungen über das Sehen mit zwei Augen. Schwerssche Buchhandlung, Kiel [12.1.1a, 14.2.1]

Papathomas TV, Julesz B (1989) Stereoscopic illusion based on the proximity principle Perception 18 589–94 [15.3.2]

Papathomas TV, Feher A, Julesz B, Zeevi Y (1996) Interactions of monocular and cyclopean components and the role of depth in the Ebbinghaus illusion Perception 25 783–95 [16.3.2, 22.5.2]

Papert S (1961) Centrally produced geometrical illusions Nature 191 733 [16.3.2]

Papert S (1964) Stereoscopic synthesis as a technique for locating visual mechanisms MIT Quart Prog Rep 73 239–43 [13.3.3d, 16.3.2, 16.5.3a]

Pardhan S (2003) Binocular recognition summation in the peripheral visual field: contrast and orientation dependence Vis Res 43 1249–55 [13.1.2e]

Pardhan S, Rose D (1999) Binocular and monocular detection of Gabor patches in binocular two-dimensional noise Perception 28 203–15 [13.1.2b]

Pardhan S, Gilchrist J, Douthwaite W (1989) The effect of spatial frequency on binocular contrast inhibition Ophthal Physiol Opt 9 46–9 [13.1.2b]

Pardon HR (1962) A new testing device for stereopsis J Am Optom Assoc 33 510–12 [18.2.1c]

Paris J, Prestrude AM (1975) On the mechanism of the interocular light adaptation effect Vis Res 15 595–603 [13.2.2]

Park K, Shebilske WL (1991) Phoria Hering’s Laws and monocular perception of direction J Exp Psychol HPP 17 219–31 [16.7.5]

Parker A, Alais D (2007) A bias for looming stimuli to predominate in binocular rivalry Vis Res 37 2661–74 [12.8.2]

Parker AJ (2007) Binocular depth perception and the cerebral cortex Nat Rev Neurosci 8 379–91 [11.9.2]

Parker AJ, Yang Y (1989) Spatial properties of disparity pooling in human stereo vision Vis Res 29 1525–38 [18.8.2c]

Parker AJ, Johnston EB, Mansfield JS, Yang Y (1991) Stereo surfaces and shape In Computational models of visual processing (ed MS Landy, JA Movshon) pp 359–81 MIT Press, Cambridge MA [17.1.2b]

Parks TE, Rock I (1990) Illusory contours from pictorially three-dimensional inducing elements Perception 19 119–21 [22.2.4a]

Pasino L, Maraini G (1966) Area of binocular vision in anomalous retinal correspondence Br J Ophthal 50 646–50 [14.4.1a]

Pasley BN, Mayes LC, Schultz RT (2004) Subcortical discrimination of unperceived objects during binocular rivalry Neuron 42 163–72 [12.9.2f]

Pastore N (1964) Induction of a stereoscopic depth effect Science 144 888 [21.3.1]

Pastore N, Terwilliger M (1966) Induction of stereoscopic depth effects Br J Psychol 57 201–2 [21.3.1]

Patel SS, Ukwade MT, Stevenson SB, et al. (2003) Stereoscopic depth perception from oblique phase disparities Vis Res 43 2479–92 [18.6.5]

Patterson R (1990) Spatiotemporal properties of stereoacuity Optom Vis Sci 67 123–8 [18.5.2]

Patterson R (1999) Stereoscopic (cyclopean) motion sensing Vis Res 39 3329–45 [16.4.1]

Patterson R, Becker S (1996) Direction-selective adaptation and simultaneous contrast induced by stereoscopic (cyclopean) motion Vis Res 36 1773–81 [16.5.3b]

Patterson R, Fox R (1983) Depth separation and the Ponzo illusion Percept Psychophys 34 25–8 [22.5.2]

Patterson R, Fox R (1984) Stereopsis during continuous head motion Vis Res 27 2001–3 [18.10.5]

Patterson R, Fox R (1990) Metacontrast masking between cyclopean and luminance stimuli Vis Res 30 439–48 [13.2.7a]

Patterson R, Hart P, Nowak D (1991) The cyclopean Ternus display and the perception of element versus group movement Vis Res 31 2085–92 [16.4.2e]

Patterson R, Moe L, Hewitt T (1992a) Factors that affect depth perception in stereoscopic displays Hum Factors 34 655–67 [18.6.4]

Patterson R, Ricker C, McGary J, Rose D (1992b) Properties of cyclopean motion perception Vis Res 32 149–56 [16.5.2]

Patterson R, Bowd C, Phinney R, et al. (1994) Properties of the stereoscopic (cyclopean) motion aftereffect Vis Res 34 1139–47 [16.5.3a]

Patterson R, Cayko R, Short GL, et al. (1995) Temporal integration differences between crossed and uncrossed stereoscopic mechanisms Percept Psychophys 57 891–7 [18.6.4, 18.12.1a]

Patterson R, Bowd C, Phinney R, et al. (1996) Disparity tuning of the stereoscopic (cyclopean) motion aftereffect Vis Res 36 975–83 [16.5.3a]

Patterson R, Donnelly M, Phinney RE, et al. (1997) Speed discrimination of stereoscopic (cyclopean) motion Vis Res 37 871–8 [16.5.2]

Patterson R, Bowd C, Donnelly M (1998) The cyclopean (stereoscopic) barber pole illusion Vis Res 38 2119–25 [22.3.1]

Patterson R, Fournier LR, Wiediger M, et al. (2005) Selective attention and cyclopean motion processing Vis Res 45 2601–2607 [16.5.3a]

Payne BR, Pearson HE, Berman N (1984a) Role of corpus callosum in functional organization of cat striate cortex J Neurophysiol 52 570–94 [11.9.2]

Payne BR, Pearson HE, Berman N (1984b) Deafferentation and axotomy of neurons in cat striate cortex: time course of changes in binocularity following corpus callosum transection Brain Res 307 201–15 [11.9.2]

Payne WH (1967) Visual reaction times on a circle about the fovea Science 155 481–82 [12.3.4]

Pearson J, Clifford CWG (2004) Determinants of visual awareness following interruptions during rivalry J Vis 4 96–202 [12.4.4b]

Pearson J, Clifford CWG (2005) Suppressed patterns alter vision during binocular rivalry Curr Biol 15 2142–48 [12.6.3]

Pearson J, Tadin D, Blake R (2007) The effects of transcranial magnetic stimulation on visual rivalry J Vis 7 1–11 [12.9.2a]

Peckham RH, Hart WM (1960) Binocular summation of subliminal repetitive visual stimulation Am J Ophthal 49 1121–5 [13.1.5]

Pei F, Pettet MW, Norcia AM (2002) Neural correlates of object-based attention J Vis 2 588–96 [22.8.1]

Peirce JW, Solomon SG, Forte JD, Lennie P (2008) Cortical representation of color is binocular J Vis 8 1–10 [17.1.4a]

Pelli DG, Palomares M, Majaj NJ (2004) Crowding is unlike ordinary masking: distinguishing feature integration from detection J Vis 4 1136–69 [13.2.5]

Pennington J (1970) The effects of wavelength on stereoacuity Am J Optom Arch Am Acad Optom 47 288–94 [18.5.5]

Penrose LS, Penrose R (1958) Impossible objects: a special type of illusion Br J Psychol 49 31–3 [15.3.2]

Péres-Martinez D (1995) Texture discrimination at the cyclopean retina Perception 27 771–86 [16.6.1b]

Perez R, Gonzalez F, Justo M, Ulibarrena C (1999) Interocular temporal delay sensitivity in the visual cortex Eur J Neurosci 11 2593–9 [23.3.1]

Peterhans E, Heitger F (2001) Simulation of neuronal responses defining depth order and contrast polarity at illusory contours in monkey area V2 J Comp Neurosci 10 195–211 [22.2.4c]

Peters HB (1969) The influence of anisometropia on stereosensitivity Am J Optom Arch Am Acad Optom 46 120–3 [18.5.4b]

Peterson I (1991) Plastic math. Growing plastic models of mathematical formulas Science News 140 72–3 [24.2.5]

Petrov AP (1980) A geometrical explanation of the induced size effect Vis Res 20 409–13 [19.6.5]

Petrov Y (2002) Disparity capture by flanking stimuli: a measure for the cooperative mechanism of stereopsis Vis Res 42 809–13 [22.2.3b]

(p.602) Petrov Y (2003) Is there a pop-out of exclusively binocular (cyclopean) contours and regions Perception 32 1441–50 [16.6.1b]

Petrov Y (2004) Higher-contrast is preferred to equal-contrast in stereo-matching Vis Res 44 775–84 [15.3.7a]

Petrov Y, Glennerster A (2004) The role of a local reference in stereoscopic detection of depth relief Vis Res 44 367–76 [18.3.2b]

Petrov Y, Glennerster A (2006) Disparity with respect to a local reference plane as a dominant cue for stereoscopic depth relief Vis Res 46 4321–32 [18.3.2b]

Pettet MW (1997) Spatial interactions modulate stereoscopic processing of horizontal and vertical disparities Perception 29 693–706 [21.4.2g]

Pettigrew JD, Dreher B (1987) Parallel processing of binocular disparity in the cat’s retinogeniculate pathways Proc R Soc B 232 297–321 [11.3.2]

Pettigrew JD, Nikara T, Bishop PO (1968) Binocular interaction on single units in cat striate cortex: simultaneous stimulation by single moving slit with receptive fields in correspondence Exp Brain Res 6 391–410 [11.1.2, 2, 11.4.3b]

Phinney R, Wilson R, Hays B, et al. (1994) Spatial displacement limits for cyclopean (stereoscopic) apparent-motion perception Perception 23 1287–300 [16.5.1]

Pianta MJ, Gillam BJ (2003a) Monocular gap stereopsis: manipulation of the outer edge disparity and the shape of the gap Vis Res 43 1937–50 [17.3]

Pianta MJ, Gillam BJ (2003b) Paired and unpaired features can be equally effective in human depth perception Vis Res 43 1–6 [17.3]

Piantanida TP (1986) Stereo hysteresis revisited Vis Res 29 431–7 [18.4.1b]

Pick HL, Hay JC, Willoughby RH (1966) lnterocular transfer of adaptation to prismatic distortion Percept Mot Skills 23 131–5 [13.4.3]

Pickersgill MJ (1961) On knowing with which eye one is seeing Quart J Exp Psychol 13 168–72 [16.8]

Pickersgill MJ, Jeeves MA (1964) The origin of the after–effect of movement Quart J Exp Psychol 16 90–103 [16.4.1]

Pierce BJ, Howard IP (1997) Types of size disparity and the perception of surface slant Perception 26 1503–17 [21.7.1]

Pierce BJ, Howard IP, Feresin C (1998) Depth interactions between inclined and slanted surfaces in vertical and horizontal orientations Perception 27 87–103 [21.4.2d]

Pierce DM, Benton AL (1975) Relationship between monocular and binocular depth acuity Ophthalmologica 170 43–50 [18.2.1a]

Pieron H (1947) Recherches sur la latence de la sensation lumineuse par la method de l’effet chronostereoscopique Ann Psychol 48 1–51 [23.2.1]

Piggins D (1978) Moirés maintained internally by binocular vision Perception 7 679–81 [14.2.2]

Pinckney GA (1964) Reliability of duration as a measure of the spiral aftereffect Percept Mot Skills 18 375–6 [13.3.3a]

Pirenne MH (1943) Binocular and uniocular threshold of vision Nature 152 698–9 [13.1.1b]

Pizlo Z, Li Y, Francis G (2005) A new look at binocular stereopsis Vis Res 45 2244–55 [22.1.3]

Plateau JAF (1850) Vierte Notiz über neue sonderbare Anwenduggen des Verweilens der Eindrücke auf die Netzhaut Poggendorff’s Ann Physik Chem 80 287–92 [13.3.3a]

Poggio GF (1991) Physiological basis of stereoscopic vision In Vision and vision dysfunction Vol 9 Binocular vision (ed D Regan) pp 227–38 MacMillan, London [11.4.1a]

Poggio GF (1995) Mechanisms of stereopsis in monkey visual cortex Cereb Cortex 5 193–204 [11.5.1]

Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey J Neurophysiol 40 1392–405 [11.4.1a, 11.6.4]

Poggio GF, Poggio T (1984) The analysis of stereopsis Ann Rev Neurosci 7 379–412 [11.4.1a, 11.5.1]

Poggio GF, Talbot WH (1981) Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey J Physiol 315 469–92 [11.4.1a, 11.6.4]

Poggio GF, Motter BC, Squatrito S, Trotter Y (1985) Responses of neurons in visual cortex (VI and V2) of the alert Macaque to dynamic random–dot stereograms Vis Res 25 397–406 [11.4.1a]

Poggio GF, Gonzalez F, Krause F (1988) Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity J Neurosci 8 4531–50 [11.4.1a]

Pollard SB, Frisby JP (1990) Transparency and the uniqueness constraint in human and computer stereo vision Nature 347 553–6 [15.3.1]

Pollard SB, Mayhew JEW, Frisby JP (1985) PMF: a stereo correspondence algorithm using a disparity gradient limit Perception 14 449–70 [11.10.1c]

Polonsky A, Blake R, Braun J, Heeger DJ (2000) Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry Nat Neurosci 3 1153–9 [12.9.2f]

Pong TC, Kenner MA, Otis J (1990) Stereo and motion cues in preattentive vision processing–some experiments with random-dot stereographic image sequences Perception 19 161–70 [15.3.9]

Poom L (2002) Seeing stereoscopic depth from disparity between kinetic edges Perception 31 1439–48 [17.1.5]

Poom L, Olsson H, Börjesson E (2007) Dissociations between slant-contrast and reversed slant-contrast Vis Res 47 746–54 [21.4.3]

Pope DR, Edwards M, Schor CS (1999) Extraction of depth from opposite-contrast stimuli: transient system can, sustained system can’t Vis Res 39 4010–17 [15.3.7c, 18.12.3]

Popple AV, Findlay JM (1999) ‘Coarse-to-fine’ cyclopean processing Perception 28 155–65 [18.3.3a]

Porac C, Coren S (1976) The dominant eye Psychol Bull 83 880–97 [12.3.7]

Porac C, Coren S (1978) Sighting dominance and binocular rivalry Am J Optom Physiol Opt 55 208–13 [12.3.7]

Porac C, Coren S (1984) Monocular asymmetries in vision: a phenomenal basis for eye signature Can J Psychol 38 610–27 [16.8]

Porac C, Coren S (1986) Sighting dominance and egocentric localization Vis Res 29 1709–13 [16.7.6b]

Porrill J, Mayhew JEW (1994) Gaze angle explanations of the induced effect Perception 23 219–22 [19.6.5]

Porrill J, Mayhew JEW, Frisby JP (1989) Cyclotorsion, conformal invariance, and induced effects in stereoscopic vision In Image Understanding (ed S Ullman, W Richards) pp 185–96 Ablex, Norwood NJ [20.3.2a]

Porrill J, Frisby JP, Adams WJ, Buckley D (1999) Robust and optimal use of information in stereo vision Nature 397 63–6 [20.2.4c]

Porta GB della (1593) De refractione Optices Parte Carlinum and Pacem Naples [12.7.2]

Porterfield W (1737) An essay concerning the motions of our eyes. Part 1. Of their external motions Edinburgh Medical Essays and Observations 3 160–263 [16.7.7]

Portfors-Yeomans CV, Regan D (1997) Just-noticeable differences in the speed of cyclopean motion in depth and the speed of cyclopean motion within a frontoparallel plane J Exp Psychol HPP 23 1074–86 [16.5.2]

Posner MI, Snyder CRR, Davidson BJ (1980) Attention and the detection of signals J Exp Psychol HPP 109 160–174 [22.8.1]

Potetz B, Lee TS (2003) Statistical correlations between two-dimensional images and three-dimensional structures in natural scenes J Opt Soc Am A 20 1292–30 [11.10.1]

Potts MJ, Harris JP (1979) Dichoptic induction of movement aftereffects contingent on color and on orientation Percept Psychophys 29 25–31 [13.3.5]

Pouget A, Sejnowski TJ (1994) A neural model of the cortical representation of egocentric distance Cereb Cortex 4 314–29 [11.4.6a]

Prablanc C, Tzavaras A, Jeannerod M (1975) Adaptation of the two arms to opposite prism displacements Quart J Exp Psychol 27 667–71 [13.4.3]

(p.603) Prazdny K (1983) Stereoscopic matching eye position and absolute depth Perception 12 151–60 [15.3.10]

Prazdny K (1984) Stereopsis from kinetic and flicker edges Percept Psychophys 36 490–2 [17.1.5]

Prazdny K (1985a) On the disparity gradient limit for binocular fusion Percept Psychophys 37 81–3 [12.1.3a]

Prazdny K (1985b) Detection of binocular disparities Biol Cyber 52 93–9 [15.4.5]

Prazdny K (1985c) Vertical disparity tolerance in random-dot stereograms Bull Psychonom Soc 23 413–14 [18.4.2b]

Prazdny K (1986) Three–dimensional structure from long–range apparent motion Perception 15 619–25 [22.3.4]

Prentice WCH (1948) New observations of binocular yellow J Exp Psychol 38 284–8 [12.2.1]

Preston TJ, Li S, Kourtzi Z, Welchman AE (2008) Multivoxel pattern selectivity for perceptually relevant binocular disparities in the human brain J Neurosci 28 11315–27 [11.4.1f]

Prestrude AM (1971) Visual latencies at photopic levels of retinal illuminance Vis Res 11 351–61 [23.2.3, 23.4.1]

Prestrude AM, Baker HD (1971) Light adaptation and visual latency Vis Res 11 363–9 [23.4.2a, 23.4.3]

Previc FH, Breitmeyer BG, Weinstein LF (1995) Discriminability of random-dot stereograms in three-dimensional space Int J Neurosci 80 277–53 [18.6.1b]

Prévost A (1843) Essai sur la theorie de la vision binoculaire Ramboz, Geneva [14.5.2c]

Price TJ, O’Toole AJ, Dambach KC (1998) A moving cast shadow diminishes the Pulfrich phenomenon Perception 27 591–3 [23.1.3]

Prince SJD, Eagle RA (1999) Size-disparity correlation in human binocular depth perception Proc R Soc B 296 1361–5 [18.7.2a]

Prince SJD, Eagle RA (2000a) Weighted directional energy model of human stereo correspondence Vis Res 40 1143–55 [11.10.1b, 15.2.1c]

Prince SJD, Eagle RA (2000b) Stereo correspondence in one-dimensional Gabor stimuli Vis Res 40 913–27 [18.4.1d]

Prince SJD, Rogers BJ (1998) Sensitivity to disparity corrugations in peripheral vision Vis Res 38 2533–7 [18.6.3b]

Prince SJD, Eagle RA, Rogers BJ (1998) Contrast masking reveals spatial-frequency channels in stereopsis Perception 27 1293–87 [18.7.4]

Prince SJD, Pointon AD, Cumming BG, Parker AJ (2000) The precision of single neuron responses in cortical area V1 during stereoscopic depth judgments J Neurosci 20 3387–3400 [11.4.1c]

Prince SJD, Pointon AD, Cumming BG, Parker AJ (2002a) Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms J Neurophysiol 87 191–208 [11.4.1a, 11.4.1b, 11.4.1d, 11.4.5a]

Prince SJD, Cumming BG, Parker AJ (2002b) Range and mechanism of encoding of horizontal disparity in macaque V1 J Neurophysiol 87 209–21 [11.4.3a, 18.7.2b]

Prins N, Juola JF (2001) Relative roles of 3-D and 2-D coordinate systems in solving the correspondence problem in apparent motion Vis Res 41 759–769 [22.5.3b]

Ptito M, Lepore F, Guillemot JP (1992) Loss of stereopsis following lesions of cortical areas 17–18 in the cat Exp Brain Res 89 521–30 [11.3.1]

Puerta AM (1989) The power of shadows: shadow stereopsis J Opt Soc Am 6A 309–11 [17.1.1c]

Pulfrich C (1922) Die stereoskopie im Dienste der isochromen und heterochromen Photometrie Naturwissenschaften 10 553–64 [23.1.1, 23.1.2, 23.4.1]

Pulliam K (1981) Spatial frequency analysis of three-dimensional vision. Visual stimulation and image realism II Proc Soc Photo Opt Instru Engin 303 71–7 [18.7.2c]

Purdy DM (1934) Double monocular diplopia J Gen Psychol 11 311–27 [14.4.2, 2]

Purghé F (1995) Illusory figures from stereoscopically three-dimensional inducers depicting no occlusion event Perception 27 905–18 [22.2.4a]

Puri A, Kollaris RV, Haskell BG (1997) Basics of stereoscopic video, new compression results with MPEG-2 and a proposal for MPEG-4 Sig Proc: Image Comm 10 201–34 [24.2.6]

Purkinje J (1825) Beobachtungen und Versuche zur Physiologie der Sinne Vol 2 p 60 JG Calve, Prague [13.3.3a]

Purves D, Shimpi A, Lotto RB (1999) An empirical explanation of the Cornsweet effect J Neurosci 19 8542–51 [22.4.4]

Pylyshyn ZW, Storm RW (1988) Tracking multiple independent targets: evidence for a parallel tracking mechanism Spat Vis 3 179–97 [22.8.2c]

Qian N (1994) Computing stereo disparity and motion with known binocular cell properties Neural Comput 6 390–404 [11.10.1a, 11.10.1b, 11.10.1c]

Qian N (1997) Binocular disparity and the perception of depth Neuron 18 359–68 [11.10.1b]

Qian N, Andersen RA (1994) Transparent motion perception as detection of unbalanced motion signals. II. Physiology J Neurosci 14 7367–80 [22.3.2]

Qian N, Andersen RA (1997) A physiological model for motion-stereo integration and a unified explanation of Pulfrich-like phenomena Vis Res 37 1683–98 [11.10.1b, 23.3.2]

Qian N, Freeman RD (2009) Pulfrich phenomena are coded effectively by a joint motion-disparity process J Vis 9(5) Article 24 [23.3.2]

Qian N, Zhu Y (1997) Physiological computation of binocular disparity Vis Res 37 1811–27 [11.4.1d, 11.10.1a, 11.10.1b]

Qian N, Andersen RA, Adelson EH (1994a) Transparent motion perception as detection of unbalanced motion signals 1 Psychophysics J Neurosci 14 7357–66 [22.3.2]

Qian N, Andersen RA, Adelson EH (1994b) Transparent motion perception as detection of unbalanced motion signals. III. Modeling J Neurosci 14 7381–92 [22.3.2]

Qiu FT, von der Heydt R (2005) Figure and ground in the visual cortex: V2 combines stereoscopic cues with gestalt rules Neuron 47 155–66 [11.5.1]

Quam LH (1987) Hierarchical warp stereo In Readings in computer vision (ed MA Fischler, O Firschein) pp 80–86 Los Altos, California [18.7.2e]

Quick RF (1974) A vector–magnitude model of contrast detection Kybernetik 16 65–7 [13.1.1b]

Radonjic A, Todorovic D, Gilchrist A (2010) Adjacency and surroundedness in the depth effect on lightness J Vis 10(9) 12 [22.4.3b]

Rady AA, Ishak IGH (1955) Relative contributions of disparity and convergence to stereoscopic acuity J Opt Soc Am 45 530–4 [18.5.4a, 18.10.2a]

Raghunandan A, Anderson CS, Saladin JJ (2009) Spatial scaling of the binocular capture effect Optom Vis Sci [16.7.4a]

Ramachandran VS (1973) Apparent movement with subjective contours Vis Res 13 1399–401 [16.4.2a]

Ramachandran VS (1975) Suppression of apparent movement during binocular rivalry Nature 256 122–3 [12.5.4a]

Ramachandran VS (1976) Learning–like phenomena in stereopsis Nature 292 382–4 [18.14.2a, 18.14.2d, 18.14.2f]

Ramachandran VS (1986) Capture of stereopsis and apparent motion by illusory contours Percept Psychophys 39 361–73 [22.2.4a, 22.2.4b]

Ramachandran VS (1987) Visual perception of surfaces: a biological approach. In The perception of illusory contours (ed S Petry, GE Meyer) pp 93–108 Springer–Verlag, New York [22.2.4a]

Ramachandran VS (1991) Form motion and binocular rivalry Science 251 950–1 [13.3.3d]

Ramachandran VS, Anstis SM (1990) Illusory displacement of equiluminous kinetic edges Perception 19 611–16 [16.4.2a]

Ramachandran VS, Braddick OL (1973) Orientation–specific learning in stereopsis Perception 2 371–6 [18.14.2d]

Ramachandran VS, Cavanagh P (1985) Subjective contours capture stereopsis Nature 317 527–30 [22.2.4b]

Ramachandran VS, Nelson JI (1976) Global grouping overrides point–to–point disparities Perception 5 125–8 [20.2.1]

(p.604) Ramachandran VS, Sriram S (1972) Stereopsis generated with Julesz patterns in spite of rivalry imposed by colour filters Nature 237 347–8 [12.5.4a, 15.3.8a]

Ramachandran VS, Rao VM, Vidyasagar TR (1973a) The role of contours in stereopsis Nature 272 412–14 [17.1.2a, 17.1.3]

Ramachandran VS, Rao VM, Sriram S, Vidyasagar TR (1973b) The role of colour perception and “pattern” recognition in stereopsis Vis Res 13 505–9 [15.3.3]

Ramachandran VS, Cobb S, Levi L (1994a) The neural locus of binocular rivalry and monocular diplopia in intermittent exotropes Neuroreport 5 1141–44 [12.3.8b, 14.4.2]

Ramachandran VS, Cobb S, Levi L (1994b) Monocular double vision in strabismus Neuroreport 5 1418 [12.3.8b, 14.4.2]

Ramamurthy M, Bedell HE, Patel SS (2005) Stereothresholds for moving line stimuli for a range of velocities Vis Res 45 789–99 [18.10.1b]

Ramón y Cajal S (1901) Recreaciones estereoscópicas y binoculares La Fotgrapfía 27 41–8. [24.1.2a, 24.1.5]

Ramón y Cajal S (1911) Histologie du system nerveux de l’homme et des vertébrés A Maloine, Paris [11.1.2]

Rao VM (1977) Tilt illusion during binocular rivalry Vis Res 17 327–8 [12.6.3]

Rashbass C (1970) The visibility of transient changes of luminance J Physiol 210 165–86 [13.1.6c]

Ratcliff F (1965) Mach Bands: Quantitative studies on neural networks in the retina Holden–Day, San Francisco [22.4.1]

Rauschecker JP, Campbell FW, Atkinson J (1973) Colour opponent neurones in the human visual system Nature 275 42–3 [12.3.8a]

Rawlings SC, Shipley T (1969) Stereoscopic acuity and horizontal angular distance from fixation J Opt Soc Am 59 991–3 [14.6.2a, 18.6.1a]

Raymond JE (1993) Complete interocular transfer of motion adaptation effects on motion coherence thresholds Vis Res 33 1865–70 [13.3.3a, 13.3.3b]

Read JCA (2005) Early computational processing in binocular vision and depth perception Prog Biophys Molec Biol 87 77–108 [11.9.2]

Read JCA, Cumming BG (2003) Testing quantitative models of binocular disparity selectivity in primary visual cortex J Neurophysiol 90 2795 – 817 [11.4.1d]

Read JCA, Cumming BG (2004) Ocular dominance predicts neither strength nor class of disparity selectivity with random-dot stimuli in primate V1 J Neurophysiol 91 1271–81 [11.3.1, 11.10.1a]

Read JCA, Cumming BG (2005a) All Pulfrich-like illusions can be explained without joint encoding of motion and disparity J Vis 5(11) Article 1. [23.3.2]

Read JCA, Cumming BG (2005b) The stroboscopic Pulfrich effect is not evidence for the joint encoding of motion and depth J Vis 5 417–34 c18 [15.3.9, 23.3.2]

Read JCA, Cumming BG (2006) Does depth perception require vertical-disparity detectors? J Vis 6 1323–55 [11.4.4, 11.10.1c, 20.2.5]

Read JCA, Cumming BG (2007) Sensors for impossible stimuli may solve the stereo correspondence problem Nat Neurosci 10 1322–28 [11.10.1b, 11.10.1c]

Read JCA, Eagle RA (2000) Reversed stereo depth and motion direction with anti-correlated stimuli Vis Res 40 3345–58 [15.3.7d]

Read JCA, Parker AJ, Cumming B, (2002) A simple model accounts for the reduced response of disparity-tuned V1 neurons to anti-correlated images Vis Neurosci 19 735–53 [11.4.1d, 11.10.1c]

Read JCA, Phillipson GP, Glennerster A (2009) Latitude and longitude vertical disparities J Vis 9(13) Article 11 [19.6.2]

Reading RW (1983) Possible alterations in correspondence associated with asymmetric convergence Ophthal Physiol Opt 3 121–7 [14.6.2a]

Reading RW, Tanlamai T (1980) The threshold of stereopsis in the presence of differences in magnification of the ocular images J Am Optom Assoc 51 593–5 [18.3.3a, 18.3.4]

Reading RW, Tanlamai T (1982) Finely graded binocular disparities from random-dot stereograms Ophthal Physiol Opt 2 47–56 [18.2.3b, 18.2.4]

Reading RW, Woo GS (1972) Some of the time factors associated with stereopsis Am J Optom Arch Am Acad Optom 41 20–8 [18.5.4a]

Reading VM (1973) An objective correlate of the Pulfrich stereo-illusion Proc R Soc Med 66 1043–4 [23.5]

Reading VM (1975) Eye movements and the Pulfrich stereo-illusion J Physiol 276 40P [23.5]

Redding GM, Lester CF (1980) Achromatic color matching as a function of apparent test orientation, test and background luminance, and lightness or brightness instructions Percept Psychophys 27 557–63 [22.4.3a]

Reed MJ, Steinbach MJ, Anstis SM, et al. (1991) The development of optokinetic nystagmus in strabismic and monocularly enucleated subjects Behav Brain Res 46 31–42 [22.6.1e]

Reeves A, Peachey NS, Auerbach E (1986) Interocular sensitization to a rod-detected test Vis Res 29 1119–27 [13.2.2]

Regan D (1973) Rapid objective refraction using evoked potentials Invest Ophthal 12 669–79 [13.1.8b]

Regan D (1977) Speedy assessment of visual acuity in amblyopia by the evoked potential method Ophthalmologica 175 159–64 [13.1.8b]

Regan D (1986) Form from motion parallax and form from luminance contrast: vernier discrimination Spat Vis 1 305–18 [16.4.1, 22.3.4]

Regan D (1989a) Human brain electrophysiology Evoked potentials and evoked magnetic fields in science and medicine Elsevier, New York [11.7]

Regan D (1989b) Orientation discrimination for objects defined by relative motion and objects defined by luminance contrast Vis Res 29 1389–400 [16.4.1]

Regan D, Hamstra SJ (1994) Shape discrimination for rectangles defined by disparity alone by disparity plus luminance and by disparity plus motion Vis Res 34 2277–91 [16.2.2a, 18.2.3a]

Regan D, Spekreijse H (1970) Electrophysiological correlate of binocular depth perception in man Nature 225 92–4 [11.7]

Regan D, Varney P, Purdy J, Kraty N (1976a) Visual field analyser: assessment of delay and temporal resolution of vision Med Biol Engin January 8–14 [23.7]

Regan D, Milner BA, Heron JR (1976b) Delayed visual perception and delayed evoked potentials in the spinal form of multiple sclerosis and in retrobulbar neuritis Brain 99 43–66 [23.7]

Regan D, Erkelens CJ, Collewijn H (1986) Necessary conditions for the perception of motion in depth Invest Ophthal Vis Sci 27 584–97 [18.3.2a]

Regan MP, Regan D (1988) A frequency domain technique for characterizing nonlinearities in biological systems J Theor Biol 133 293–317 [13.1.8b]

Regan MP, Regan D (1989) Objective investigation of visual function using a nondestructive zoom–FFT technique for evoked potential analysis Can J Neurol Sci 16 168–79 [13.1.8b]

Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system In Sensory communication (ed WA Rosenblith) pp 303–318 Wiley, New York [16.4.1]

Reimann D, Haken H (1994) Stereo vision by self organization Biol Cyber 71 17–29 [15.3.5]

Reinecke RD, Simons K (1974) A new stereoscopic test for amblyopia screening Am J Ophthal 78 714–21 [18.2.3c]

Reinhardt-Rutland AH (1999) The framing effect with rectangular and trapezoidal surfaces: actual and pictorial surface slant, frame orientation, and viewing condition Perception 28 1361–71 [24.1.7]

Richards W (1966) Attenuation of the pupil response during binocular rivalry Vis Res 6 239–40 [12.5.1]

Richards W (1970) Stereopsis and stereoblindness Exp Brain Res 10 380–8 [21.6.2a]

Richards W (1971) Independence of Panum’s near and far limits Am J Optom Arch Am Acad Optom 48 103–9 [12.1.1a]

(p.605) Richards W (1972) Response functions for sine– and square–wave modulations of disparity J Opt Soc Am 62 907–11 [11.4.2, 21.3.1, 21.3.5]

Richards W, Foley JM (1971) Interhemispheric processing of binocular disparity J Opt Soc Am 61 419–21 [18.4.1a, 18.4.1c]

Richards W, Foley JM (1974) Effect of luminance and contrast on processing large disparities J Opt Soc Am 64 1703–5 [18.4.1a]

Richards W, Foley JM (1981) Spatial bandwidth of channels for slant estimated from complex gratings J Opt Soc Am 71 274–9 [18.8.2c]

Richards W, Kaye MG (1974) Local versus global stereopsis: two mechanisms Vis Res 14 1345–7 [18.4.1d]

Richards W, Lieberman HR (1985) Correlation between stereo ability and the recovery of structure–from–motion Am J Optom Physiol Opt 62 111–18 [22.3.4]

Richards W, Regan D (1973) A stereo field map with implications for disparity processing Invest Ophthal Vis Sci 12 904–9 [18.6.1a]

Ridder WH, Smith EL, Manny RE, et al. (1992) Effects of interocular suppression on spectral sensitivity Optom Vis Sci 69 227–36 [12.3.2f]

Riggs LA, Whittle P (1967) Human occipital and retinal potentials evoked by subjectively faded visual stimuli Vis Res 7 441–51 [12.9.2e]

Ripamonti C, Bloj M, Hauk R, et al. (2004) Measurement of the effect of surface slant on perceived lightness J Vis 4 747–63 [22.4.3a]

Ritter AD, Breitmeyer BG (1989) The effects of dichoptic and binocular viewing on bistable motion percepts Vis Res 29 1215–19 [16.4.2e]

Ritter M (1977) Effect of disparity and viewing distance on perceived depth Percept Psychophys 22 400–7 [20.6.3a]

Ritter M (1979) Perception of depth: processing of simple positional disparity as a function of viewing distance Percept Psychophys 25 209–14 [20.6.3a]

Rivest J, Cavanagh P, Lassonde M (1994) Interhemispheric depth judgments Neuropsychologia 32 69–76 [11.9.2]

Robertson VM, Fry GA (1937) After–images observed in complete darkness Am J Psychol 49 295–76 [13.3.5]

Robinson DL, Petersen SE (1992) The pulvinar and visual salience TINS 15 127–32 [11.2.1]

Robinson DN (1968) Visual disinhibition with binocular and interocular presentation J Opt Soc Am 58 254–7 [13.2.7b]

Robinson JO (1972) The psychology of visual illusions Hutchinson, London [16.7.4b]

Robinson TR (1895) Experiments with Fechner’s paradoxon Am J Psychol 7 9–23 [13.1.4]

Rock ML, Fox BH (1949) Two aspects of the Pulfrich phenomenon Am J Psychol 62 279–84 [23.4.1, 23.4.2a]

Roelofs C, van der Waals HG (1935) Veränderung der haptischen und optischen Lokalisation bei optokinetischer Reizung Z Psychol 136 5–49 [22.7.2]

Roelofs CO (1959) Considerations on the visual egocentre Acta Psychol 16 229–34 [16.7.6a, 16.7.6b]

Rogers BJ (1987) Motion disparity and structure-from-motion disparity Invest Ophthal Vis Sci 28 (Abs) 233 [17.1.5]

Rogers BJ (1992) The perception and representation of depth and slant in stereoscopic surfaces In Artificial and biological vision systems (ed GA Orban, HH Nagel) pp 271–296 Springer-Verlag, Berlin [20.3.2a]

Rogers BJ, Anstis SM (1972) Intensity versus adaptation and the Pulfrich stereophenomenon Vis Res 12 909–28 [23.1.1, 23.2.1, 23.2.2, 23.3.2, 23.4.1, 23.4.2a]

Rogers BJ, Anstis SM (1975) Reversed depth from positive and negative stereograms Perception 4 193–201 [15.3.7b, 18.8.2b]

Rogers BJ, Bradshaw MF (1993) Vertical disparities, differential perspective and binocular stereopsis Nature 361 253–5 [19.6.2, 20.6.3c, 20.6.5a]

Rogers BJ, Bradshaw MF (1995) Disparity scaling and the perception of frontoparallel surfaces Perception 24 155–79 [20.6.5a]

Rogers BJ, Bradshaw MF (1999) Disparity minimisation, cyclovergence, and the validity of nonius lines as a technique for measuring torsional alignment Perception 28 127–41 [14.6.1c]

Rogers B, Brecher K (2007) “Straight lines, ‘uncurved lines’, and Helmholtz’s ‘great circles on the celestial sphere’” Perception 36 1275–89 [14.3.1c]

Rogers BJ, Cagenello R (1989) Disparity curvature and the perception of three–dimensional surfaces Nature 339 135–7 [11.6.3, 18.6.6, 19.5, 20.5.2]

Rogers BJ, Graham ME (1983) Anisotropies in the perception of three–dimensional surfaces Science 221 1409–11 [18.12.1b, 20.4.1a, 20.4.2, 21.4.2b, 21.4.2e, 21.5.2]

Rogers BJ, Graham ME (1985) Motion parallax and the perception of three–dimensional surfaces In Brain mechanisms and spatial vision (ed D Ingle, M Jeannerod, D Lee) pp 95–111 Martinus Nijhoff, The Hague [20.3.1d, 21.6.3a, 21.6.3b, 21.6.4]

Rogers BJ, Howard IP (1991) Differences in the mechanisms used to extract 3–D slant from disparity and motion parallax cues Invest Ophthal Vis Sci 32 (Abs) 695 [19.6.1]

Rogers BJ, Koenderink J (1986) Monocular aniseikonia: a motion parallax analogue of the disparity-induced effect Nature 322 62–3 [20.2.4b]

Rogers BJ, Steinbach MJ, Ono H (1974) Eye movements and the Pulfrich phenomenon Vis Res 14 181–5 [23.3.4, 23.5]

Rogers BJ, Cagenello R, Rogers S (1988) Simultaneous contrast effects in stereoscopic surfaces: the role of tilt slant and surface discontinuities Quart J Exp Psychol 40A 417 [21.4.2c, 21.5.2]

Rogers BJ, Bradshaw MF, Glennerster A (1993) Differential perspective disparity scaling and the perception of fronto-parallel surfaces Invest Ophthal Vis Sci 34 (Abs.) 1438 [20.6.5a]

Rogers BJ, Bradshaw MF, Gillam B (1995) The induced effect does not scale with viewing distance Perception 27 (Suppl) 33 [20.2.3c]

Rogers DC, Hollins M (1982) Is the binocular rivalry mechanism tritanopic? Vis Res 22 515–20 [12.3.2e]

Rohaly AM, Wilson HR (1993) Nature of coarse-to-fine constraints on binocular fusion J Opt Soc Am A 10 2733–41 [18.7.2e]

Rohaly AM, Wilson HR (1994) Disparity averaging across spatial scales Vis Res 34 1315–25 [18.8.2c]

Rohaly AM, Wilson HR (1999) The effects of contrast on perceived depth and depth discrimination Vis Res 39 9–18 [18.7.3b]

Rokers B, Cormack LK, Huk C (2009) Disparity- and velocity-based signals for three-dimensional motion perception in human MT+ Nat Neurosci 12 1050–5 [11.5.2a]

Rommetveit R, Toch H, Svendsen D (1968) Semantic syntactic and associative context effects in a stereoscopic rivalry situation Scand J Psychol 9 145–9 [12.8.3a]

Rose D (1978) Monocular versus binocular contrast thresholds for movement and pattern Perception 7 195–200 [13.1.6c]

Rose D (1980) The binocular: monocular sensitivity ratio for movement detection varies with temporal frequency Perception 9 577–80 [13.1.6c]

Rose D, Blake R (1988) Mislocation of diplopic images J Opt Soc Am A 5 1512–21 [16.7.3a]

Rose D, Blake R, Halpern DL (1988) Disparity range for binocular summation Invest Ophthal Vis Sci 29 283–90 [13.1.2d]

Rose D, Bradshaw MF, Hibbard PB (2003) Attention affects the stereoscopic depth aftereffect Perception 32 635–40 [21.6.2a]

Rosenbluth D, Allman JM (2002) The effect of gaze angle and fixation distance on the responses of neurons in V1, V2, and V4 Neuron 33 143–9 [11.4.6a, 11.4.6b]

Rosenfeld A, Vanderbrug GJ (1977) Coarse–fine template matching IEEE Tr Man Mach Cybern 7 104–7 [15.4.2]

Rosner J, Clift GD (1984) The validity of the Frisby stereotest as a measure of precise stereoacuity J Am Optom Assoc 55 505–06 [18.2.1e]

Ross J (1974) Stereopsis by binocular delay Nature 278 363–4 [23.3.1, 23.6.1, 23.6.2]

Ross J (1976) The resources of perception Sci Amer 234 80–6 [23.6.1, 23.6.2]

Ross J, Hogben JH (1974) Short–term memory in stereopsis Vis Res 14 1195–201 [18.12.2a, 23.2.2, 23.6.1]

(p.606) Ross J, Hogben JH (1975) The Pulfrich effect and short-term memory in stereopsis Vis Res 15 1289–90 [23.2.2]

Roumes C, Planter J, Menu JP, Thorpe S (1997) The effects of spatial frequency on binocular fusion: from elementary to complex images Hum Factors 39 359–73 [12.1.2]

Rovamo J, Virsu V (1979) An estimation and application of the human cortical magnification factor Exp Brain Res 37 495–510 [12.1.1d]

Rovamo J, Virsu V, Laurinen P, Hyvarinen L (1982) Resolution of gratings oriented along and across meridians in peripheral vision Invest Ophthal Vis Sci 23 666–670 [13.1.2e]

Roy JP, Komatsu H, Wurtz RH (1992) Disparity sensitivity of neurons in monkey extrastriate area MST J Neurosci 12 2778–92 [11.4.6a, 11.5.2a, 11.6.4]

Rozhkova GI, Nickolayev PP, Shchadrin VE (1982) Perception of stabilized retinal stimuli in dichoptic viewing conditions Vis Res 22 293–302 [12.3.3a]

Rubin E (1921) Figure and ground In Readings in perception, (ed DC Beardslee, M Wertheimer) pp 194–203 Van Nostrand, Princeton NJ [22.1.1]

Ruddock KH, Wigley E (1976) Inhibitory binocular interaction in human vision and a possible mechanism subserving stereoscopic fusion Nature 290 604–6 [13.2.6]

Ruddock KH, Waterfield VA, Wigley E (1979) The response characteristics of an inhibitory binocular interaction in human vision J Physiol 290 37–49 [13.2.6]

Rule JT (1941) The shape of stereoscopic images J Opt Soc Am 31 124–29 [24.1.7]

Rumelhart DE, McClelland JL (1986) Parallel distributed processing MIT Press, Cambridge MA [11.10.2]

Rushton D (1975) Use of the Pulfrich pendulum for detecting abnormal delay in the visual pathway in multiple sclerosis Brain 98 283–96 [23.7]

Russell PW (1979) Chromatic input to stereopsis Vis Res 19 831–4 [17.1.4a]

Rutstein RP, Marsh–Tootle W, Scheiman MM, Eskridge JB (1991) Changes in retinal correspondence after changes in ocular alignment Optom Vis Sci 68 325–30 [14.4.1e]

Ryan C, Gillam B (1993) A proximity-contingent stereoscopic depth aftereffect: evidence for adaptation to disparity gradients Perception 22 403–18 [21.6.3b, 21.6.4]

Ryan C, Gillam B (1994) Cue conflict and stereoscopic surface slant about horizontal and vertical axes Perception 23 645–58 [20.4.1d]

Rychkova SI, Ninio J (2009) Paradoxical fusion of images and depth perception with a squinting eye Vis Res 49 530–5 [14.4.2]

Sabrin HW, Kertesz AE (1983) The effect of imposed fixational eye movements on binocular rivalry Percept Psychophys 34 155–7 [12.3.6a]

Sachsenweger R (1958) Sensorische Fusion und Schielen Graefe’s Arch Klin Exp Ophthal 159 502–28 [16.7.3b]

Sachtler WLB, Gillam B (2007) The stereoscopic sliver: a comparison of duration thresholds for fully stereoscopic and unmatched versions Perception 36 135–44 [17.3]

Sagawa K (1981) Minimum light intensity required for color rivalry Vis Res 21 1467–74 [12.3.2e]

Sagawa K (1982) Dichoptic color fusion studied with wavelength discrimination Vis Res 22 945–52 [12.2.2]

Saito H, Yukie M, Tanaka K, et al. (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey J Neurosci 6 145–57 [11.6.4]

Sakai K, Ogiya M, Hirai Y (2005) Perception of depth and motion from ambiguous binocular information Vis Res 45 2471–80 [23.3.5]

Sakane I (1994) The random-dot stereogram and its contemporary significance: new directions in perceptual art In Stereogram pp 73–82 Cadence Books, San Francisco [24.1.6]

Sakano Y, Ando H (2010) Effect of head motion and stereo viewing on perceived glossiness J Vis 10(9) 15 [17.1.6]

Sakata H, Shibutani H, Kawano K (1980) Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey J Neurophysiol 43 1654–72 [11.4.6a]

Sakata H, Taira M, Kusunoki TM, et al. (1999) Neural representation of three-dimensional features of manipulation objects with stereopsis Exp Brain Res 128 160–9 [11.5.2b]

Saladin JJ (1995) Effects of heterophoria on stereopsis Optom Vis Sci 72 487–92 [18.10.3b]

Sanger TD (1988) Stereo disparity computation using Gabor filters Biol Cyber 59 405–18 [11.4.3a, 11.10.1b, 15.2.1d]

Sarmiento RF (1975) The stereoacuity of macaque monkey Vis Res 15 493–8 [18.3.1]

Sáry G, Vogels R, Kovács G, Orban GA (1995) Responses of monkey inferior temporal neurons to luminance-, motion-, and texture-defined gratings J Neurophysiol 75 1341–54 [11.5.3b]

Sasaki H, Gyoba J (2002) Selective attention to stimulus features modulates interocular suppression Perception 31 409–19 [12.8.2]

Sasaki KS, Tabuchi Y, Ohzawa I (2010) Complex cells in the cat striate cortex have multiple disparity detectors in the three-dimensional binocular receptive fields J Neurosci 30 13826–37 [11.4.1g]

Sato M, Howard IP (2001) Effects of disparity-perspective cue conflict on depth contrast Vis Res 41 415–26 [21.4.3]

Savoy RL (1984) “Extinction” of the McCollough effect does not transfer interocularly Percept Psychophys 36 571–6 [13.3.5]

Saxby G (1988) Practical holography Prentice Hall, New York [24.1.4a]

Saye A (1976) Facilitation of stereopsis from a large disparity random-dot stereogram by various monocular features: further findings (A short note) Perception 5 461–5 [18.14.2c]

Saye A, Frisby JP (1975) The role of monocularly conspicuous features in facilitating stereopsis from random–dot stereograms Perception 4 159–71 [15.2.2d, 18.14.2c]

Scarfe P, Hibbard PB (2006) Disparity-defined objects moving in depth do not elicit three-dimensional shape constancy Vis Res 46 1599–610 [20.6.5d]

Scharff LFV (1997) Decreases in the critical disparity gradient with eccentricity may reflect the size-disparity correlation J Opt Soc Am A 14 1205–12 [12.1.3c]

Scharff LFV, Geisler WS (1992) Stereopsis at isoluminance in the absence of chromatic aberrations J Opt Soc Am A 9 868–76 [17.1.4b]

Scheidt RA, Kertesz AE (1993) Temporal and spatial aspects of sensory interactions during human fusional response Vis Res 33 1259–70 [12.1.3b]

Schein SJ, De Monasterio FM (1987) Mapping of retinal and geniculate neurons onto striate cortex of macaque J Neurosci 7 996–1009 [12.4.1]

Schiff B, Cohen T, Raphan T (1988) Nystagmus induced by stimulation of the nucleus of the optic tract in the monkey Exp Brain Res 70 1–14 [22.6.1b]

Schiller PH (1965) Monoptic and dichoptic visual masking by patterns and flashes J Exp Psychol 69 193–9 [13.2.7b]

Schiller PH (1993) The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey Vis Neurosci 10 717–46 [11.5.3a]

Schiller PH, Dolan RP (1994) Visual aftereffects and the consequences of visual system lesions on their perception in the rhesus monkey Vis Neurosci 11 643–65 [11.5.4]

Schiller PH, Greenfield A (1969) Visual masking and the recovery phenomenon Percept Psychophys 6 182–4 [13.2.7b]

Schiller PH, Smith M (1968) Monoptic and dichoptic metacontrast Percept Psychophys 3 237–9 [13.2.7b]

Schiller PH, Wiener M (1962) Binocular and stereoscopic viewing of geometrical illusions Percept Mot Skills 15 739–47 [16.3.1]

Schiller PH, Wiener M (1963) Monoptic and dichoptic masking J Exp Psychol 66 386–93 [13.2.7b]

Schiller PH, Logothetis NK, Charles ER (1990) Role of the color-opponent and broad-band channels in vision Vis Neurosci 5 321–46 [11.5.4]

(p.607) Schiller PH, Slocum WM, Weiner VS (2007) How the parallel channels of the retina contribute to depth processing Eur J Neurosci 26 1307–21 [11.5.4, 18.12.1b, 20.1.1]

Schirillo JA, Shevell SK (1993) Lightness and brightness judgments of coplanar retinally noncontiguous surfaces J Opt Soc Am 10 2742–52 [22.4.2]

Schirillo J, Reeves A, Arend L (1990) Perceived lightness but not brightness of achromatic surfaces depends on perceived depth information Percept Psychophys 48 82–90 [22.4.3b]

Schlerf J, Domini F, Caudek C (2004) 3D shape-contingent processing of luminance gratings Vis Res 44 1079–91 [22.4.4]

Schlesinger BY, Yeshurun Y (1998) Spatial size limits in stereoscopic vision Spat Vis 11 279–93 [18.6.3b]

Schlosberg H (1941) Stereoscopic depth from single pictures Am J Psychol 54 601–5 [24.1.7]

Schmidt M, Schiff D, Bentivoglio M (1995) Independent efferent populations in the nucleus of the optic tract: an anatomical and physiological study in the rat and cat J Comp Neurol 360 271–85 [22.6.1a]

Schmidt PP (1994) Vision screening with the RDE stereotest in pediatric populations Optom Vis Sci 71 273–81 [18.2.3c]

Schmidt WC (1997) Artificial looming yields improved performance over lateral motion: implications for stereoscopic display techniques Hum Factors 39 352–8 [22.3.5]

Schneider B, Moraglia G (1992) Binocular unmasking with unequal interocular contrast: the case for multiple cyclopean eyes Percept Psychophys 52 639–60 [13.2.4b]

Schneider B, Moraglia G (1994) Binocular vision enhances target detection by filtering the background Perception 23 1297–86 [13.1.2f]

Schneider B, Moraglia G, Jepson A (1989) Binocular unmasking: an analogue to binaural unmasking Science 273 1479–81 [13.2.4b]

Schneider B, Moraglia G, Speranza F (1999) Binocular vision enhances phase discrimination by filtering the background Percept Psychophys 61 468–89 [13.2.4b]

Schneider SW, Sritharan KC, Geibel JP, et al. (1997) Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis Proc Natl Acad Sci 94 316–21 [24.2.3f]

Schoessler JP (1980) Disparity-induced vergence responses in normal and strabismic subjects Am J Optom Physiol Opt 57 666–75 [14.4.1d]

Schoppmann A (1985) Functional and developmental analysis of a visual corticopretectal pathway in the cat: neuroanatomical and electrophysiological study Exp Brain Res 60 363–74 [22.6.1b]

Schor CM (1991) Binocular sensory disorders In Vision and visual dysfunction Vol 9 Binocular vision (ed D Regan) pp 179–223 MacMillan, London [14.4.1b, 14.4.1e]

Schor CM, Badcock DR (1985) A comparison of stereo and vernier acuity within spatial channels as a function of distance from fixation Vis Res 25 1113–19 [18.11]

Schor CM, Heckmann T (1989) Interocular differences in contrast and spatial frequency: effects on stereopsis and fusion Vis Res 29 837–47 [18.5.4a]

Schor CM, Howarth PA (1986) Suprathreshold stereo–depth matches as a function of contrast and spatial frequency Perception 15 279–58 [18.7.3a, 18.7.3b]

Schor CM, Levi DM (1980) Disturbances of small–field horizontal and vertical optokinetic nystagmus in amblyopia Invest Ophthal Vis Sci 19 668–83 [22.6.1e]

Schor CM, Tyler CW (1981) Spatio–temporal properties of Panum’s fusional area Vis Res 21 683–92 [12.1.4]

Schor CM, Wood I (1983) Disparity range for local stereopsis as a function of luminance spatial frequency Vis Res 23 1649–54 [18.4.1d, 18.6.4, 18.7.2a, 18.7.3a]

Schor CM, Wood IC, Ogawa J (1984a) Binocular sensory fusion is limited by spatial resolution Vis Res 27 661–5 [12.1.2, 12.4.2]

Schor CM, Wood IC, Ogawa J (1984b) Spatial tuning of static and dynamic local stereopsis Vis Res 27 573–8 [15.3.6]

Schor CM, Landsman L, Erickson P (1987) Ocular dominance and the interocular suppression of blur in monovision Am J Optom Physiol Opt 64 723–30 [12.3.2b]

Schor CM, Heckmann T, Tyler CW (1989) Binocular fusion limits are independent of contrast luminance gradient and component phases Vis Res 29 821–35 [12.1.2]

Schor, CM, Edwards M, Pope DR (1998) Spatial-frequency and contrast tuning of the transient-stereopsis system Vis Res 38 3057–68 [15.3.5, 15.3.6]

Schor CM, Edwards M, Sato M (2001) Envelope size tuning for stereo-depth perception of small and large disparities Vis Res 41 2555–67 [18.12.3]

Schoups AA, Orban GA (1996) Interocular transfer in perceptual learning of a pop-out discrimination task Proc Natl Acad Sci 93 7358–62 [13.4.1]

Schoups AA, Vogels R, Orban GA (1995) Human perceptual learning in identifying the oblique orientation: retinotopy orientation specificity and monocularity J Physiol 483 797–810 [13.4.1]

Schreiber KM, Tweed DB (2003) Influence of eye position on stereo matching Strabismus 11 9–16 [15.3.10]

Schreiber KM, Crawford JD, Fetter M, Tweed D (2001) The motor side of depth vision Nature 410 819–22 [15.3.10]

Schreiber KM, Tweed DB, Schor CM (2006) The extended horopter: quantifying retinal correspondence across changes of 3D eye position J Vis 6 64–74 [14.5.2f]

Schreiber, KM, Hillis JM, Filippini HR, et al. (2008) The surface of the empirical horopter J Vis 8 1–20 [14.7]

Schrödinger E (1926) Die Gesichtempfindungen In Mueller–Pouillet’s Lehrbuch der Physik (11th edn) Book 2 Part 1 pp 456–560 Vieweg, Braunschweig [13.1.4b]

Schumann F (1900) Beitrage zur Analyse der Gesichtswahrnehmungen: 1. Einige Beobachtungen über die Zusammenfassung von Gesichtseindrücken zu Einheiten Z Psychol Physiol Sinnesorg 23 1–32. English translation by A Hogg (1987) In The perception of illusory contours (ed S Petry, GE Meyer) pp 21–34 Springer, New York [22.2.4a]

Schumer RA, Ganz L (1979) Independent stereoscopic channels for different extents of spatial pooling Vis Res 19 1303–14 [18.6.3e, 21.5.1, 21.6.4]

Schumer RA, Julesz B (1984) Binocular disparity modulation sensitivity to disparities offset from the plane of fixation Vis Res 27 533–42 [18.6.3b, 18.6.4, 21.5.1]

Schwartz AH (1971) Perception with single pictures Optical Spectra 5 25–7 [24.1.7]

Schwarz W (1993) Coincidence detectors and two–pulse visual temporal integration: new theoretical results and comparison data Biol Cyber 69 173–82 [13.1.1d]

Scott TR, Wood DZ (1966) Retinal anoxia and the locus of the aftereffect of motion Am J Psychol 79 435–42 [13.3.3b]

Scott-Samuel NE, Georgeson MA (1999) Does an early non-linearity account for second-order motion? Vis Res 39 2853–65 [18.7.2d]

Seiffert AE, Cavanagh P (1998) Position displacement, not velocity, is the cue to motion detection of second-order stimuli Vis Res 38 3569–82 [16.5.2]

Sekuler R, Pantle A, Levinson E (1978) Physiological basis of motion perception In Handbook of sensory physiology (ed R Held, HW Leibowitz, HL Teuber) Vol VIII pp 67–98 Springer–Verlag, Berlin [13.3.3f]

Sen DK, Singh B, Mathur GP (1980) Torsional fusional vergences and assessment of cyclodeviation by synoptophore method Br J Ophthal 64 354–7 [12.1.5]

Sengpiel F, Blakemore C (1994) Interocular control of neuronal responsiveness in cat visual cortex Nature 368 847–50 [12.9.2b]

Sengpiel F, Vorobyov V (2005) Intracortical origins of interocular suppression in the visual cortex J Neurosci 25 6394–400 [12.9.2b]

Sengpiel F, Klauer S, Hoffmann PK (1990) Effects of early monocular deprivation on properties and afferents of nucleus of the optic tract in the ferret Exp Brain Res 83 190–9 [22.6.1b]

(p.608) Sengpiel F, Blakemore C, Kind PC, Harrad R (1994) Interocular suppression in the visual cortex of strabismic cats J Neurosci 14 6855–71 [12.9.2b]

Sengpiel F, Blakemore C, Harrad R (1995a) Interocular suppression in the primary visual cortex: a possible neural basis of binocular rivalry Vis Res 35 179–95 [12.9.2b]

Sengpiel F, Freeman TCB, Blakemore C (1995b) Interocular suppression in cat striate cortex is not orientation selective Neuroreport 6 2235–9 [12.9.1, 12.9.2b]

Sereno ME, Trinath T, Augath M, Logothetis NK (2002) Three-dimensional shape representation in monkey cortex Neuron 33 635–52 [11.8.1]

Serope K, Schmid SR (2006) Manufacturing engineering and technology 5th edit. pp 586–7 Pearson Prentice Hall, New Jersey [24.2.5]

Serrano-Pedraza I, Read JCA (2009) Stereo vision requires an explicit encoding of vertical disparity J Vis 9(4) Article 3 [11.4.4, 11.10.1c, 20.2.5]

Serrano-Pedraza I, Read JCA (2010) Multiple channels for horizontal, but only one for vertical corrugations? A new look at the stereo anisotropy J Vis 10(2) 10 [20.4.2]

Serrano-Pedraza I, Phillipson GP, Read JCA (2010) A specialization for vertical disparity discontinuities J Vis 10(3) Article 2 [20.2.4a]

Shadlen M, Carney T (1986) Mechanisms of human motion perception revealed by a new cyclopean illusion Science 232 95–7 [12.5.4a, 16.4.2a]

Shapley R, Victor JD (1978) The effect of contrast on the transfer properties of cat retinal ganglion cells J Physiol 285 275–98 [11.4.1f]

Shattuck S, Held R (1975) Color and edge sensitive channels converge on stereo-depth analyzers Vis Res 15 309–11 [13.3.5]

Shebilske WL, Nice DS (1976) Optical insignificance of the nose and the Pinocchio effect in free–scan visual straight–ahead judgments Percept Psychophys 20 17–20 [16.7.1]

Sheedy JE, Fry GA (1979) The perceived direction of the binocular image Vis Res 19 201–11 [16.7.3a]

Sheedy JE, Bailey IL Buri M, Bass E (1986) Binocular vs monocular task performance Am J Optom Physiol Opt 63 839–46 [20.1.1]

Sheinberg DL, Logothetis NK (1997) The role of temporal cortical areas in perceptual organization Proc Natl Acad Sci 94 3408–13 [12.9.2a]

Sheni DD, Remole A (1986) Field of vergence limits Am J Optom Physiol Opt 63 252–8 [14.1]

Shepard RN, Cooper LA (1982) Mental images and their transformation MIT Press, Cambridge MA [16.2.2b]

Sher LD (1993) The oscillating-mirror technique for realizing true 3D In Stereo computer graphics and other true 3D technologies (ed DF McAllister) pp 196–213 Princeton University Press, Princeton NJ [24.1.4b]

Sherrington CS (1904) On binocular flicker and the correlation of activity of corresponding retinal points Br J Psychol 1 29–60 [12.7.1, 13.1.4, 13.1.5]

Shevell SK, Miller PR (1996) Color perception with test and adapting lights perceived in different depth planes Vis Res 36 949–54 [22.4.6]

Shiffrar M, Li X, Lorenceau J (1995) Motion integration across differing image features Vis Res 35 2137–46 [22.3.1]

Shimojo S, Nakajima Y (1981) Adaptation to the reversal of binocular depth cues: effects of wearing left–right reversing spectacles on stereoscopic depth perception Perception 10 391–402 [21.6.2g]

Shimojo S, Nakayama K (1990a) Real world occlusion constraints and binocular rivalry Vis Res 30 69–80 [17.2.3]

Shimojo S, Nakayama K (1990b) Amodal representation of occluded surfaces: role of invisible stimuli in apparent motion correspondence Perception 19 285–99 [22.5.3e]

Shimojo S, Silverman GH, Nakayama K (1988) An occlusion–related mechanism of depth perception based on motion and interocular sequence Nature 333 295–8 [23.3.5]

Shimojo S, Silverman GH, Nakayama K (1989) Occlusion and the solution to the aperture problem for motion Vis Res 29 619–29 [22.3.1]

Shimono K, Wade NJ (2002) Monocular alignment in different depth planes Vis Res 42 1127–35 [16.7.4a]

Shimono K, Ono H, Saida S, Mapp AP (1998) Methodological caveats for monitoring binocular eye position with nonius stimuli Vis Res 38 591–600 [14.6.1c]

Shimono K, Tam J, Nakamizo S (1999) Wheatstone-Panum limiting case: occlusion, camouflage, and vergence-induced disparity cues Percept Psychophys 61 445–55 [17.6.2]

Shimono K, Tam WJ, Asakura N, Ohmi M (2005) Localization of monocular stimuli in different depth planes Vis Res 45 2631–2641 [16.7.4a]

Shimono K, Tam, WJ, Ono H (2007) Apparent motion of monocular stimuli in different depth planes with lateral head movements Vis Res 47 1027–35 [16.7.4a]

Shioiri S, Hatori T, Yaguchi H, Kubo S (1994) Spatial frequency channels for stereoscopic depth Optical Review 1 311—13 [18.7.4]

Shipley T (1961) An experimental study of the frontal reference curves of binocular visual space Doc Ophthal 15 321–50 [14.6.1e]

Shipley T (1971) The first random–dot texture stereogram Vis Res 11 1491–2 [17.1.1c]

Shipley T, Rawlings SC (1970a) The nonius horopter. I. History and theory Vis Res 10 1225–62 [14.6.2a]

Shipley T, Rawlings SC (1970b) The nonius horopter. II. An experimental report Vis Res 10 1293–99 [14.6.2a]

Shipley WC, Kenney FA, King ME (1945) Beta apparent movement under binocular monocular and interocular stimulation Am J Psychol 58 545–9 [16.4.2a]

Shippman S, Cohen KR (1983) Relationship of heterophoria to stereopsis Arch Ophthal 101 609–10 [18.6.4]

Shorter S, Patterson R (2001) The stereoscopic (cyclopean) motion aftereffect is dependent upon the temporal frequency of adapting motion Vis Res 41 1809–16 [16.5.3a]

Shorter S, Bowd C, Donnelly M, Patterson R (1999) The stereoscopic (cyclopean) motion aftereffect is selective for spatial frequency and orientation of disparity modulation Vis Res 39 3745–51 [16.5.3a]

Shortess GK, Krauskopf J (1961) Role of involuntary eye movements in stereoscopic acuity J Opt Soc Am 51 555–9 [18.10.1a, 18.12.1a]

Siderov J, Harwerth RS (1993a) Effects of the spatial frequency of test and reference stimuli on stereo–thresholds Vis Res 33 1545–51 [18.7.2b]

Siderov J, Harwerth RS (1993b) Precision of stereoscopic depth perception from double images Vis Res 33 1553–60 [18.3.3a]

Siderov J, Harwerth RS (1995) Stereopsis spatial frequency and retinal eccentricity Vis Res 35 2329–37 [18.3.3a, 18.6.1a]

Siderov J, Harwerth RS, Bedell HE (1999) Stereopsis, cyclovergence and the backward tilt of the vertical horopter Vis Res 39 1347–57 [14.7]

Siegel H, Duncan CP (1960) Retinal disparity and diplopia vs luminance and size of target Am J Psychol 73 280–4 [12.1.2]

Silver MA, Logothetis NK (2004) Grouping and segmentation in binocular rivalry Vis Res 44 1675–92 [12.4.4b]

Silver MA, Logothetis NK (2007) Temporal frequency and contrast tagging bias the type of competition in interocular switch rivalry Vis Res 47 532–43 [12.4.4a]

Simmons DR (1998) The minimum contrast requirements for stereopsis Perception 27 1333–43 [18.5.3]

Simmons DR, Kingdom FAA (1994) Contrast thresholds for stereoscopic: depth identification with isoluminant and isochromatic stimuli Vis Res 34 2971–82 [17.1.4b]

Simmons DR, Kingdom FAA (1995) Differences between stereopsis with isoluminant and isochromatic stimuli J Opt Soc Am A 12 2094–2104 [17.1.4b]

Simmons DR, Kingdom FAA (1997) On the independence of chromatic and achromatic stereopsis mechanisms Vis Res 37 1271–80 [17.1.4b]

Simmons DR, Kingdom FAA (1998) On the binocular summation of chromatic contrast Vis Res 38 1063–71 [13.1.2g]

Simmons DR, Kingdom FAA (2002) Interactions between chromatic- and luminance-contrast-sensitive stereopsis mechanisms Vis Res 42 1535–45 [17.1.4b]

(p.609) Simonet P, Campbell MCW (1990a) The optical transverse chromatic aberration of the fovea of the human eye Vis Res 30 187–206 [17.8]

Simonet P, Campbell MCW (1990b) Effect of illuminance on the directions of chromostereopsis and transverse chromatic aberration observed with natural pupils Ophthal Physiol Opt 10 271–9 [17.8]

Simons K (1981) A comparison of the Frisby Random–Dot E TNO and Random Circles stereotests in screening and office use Arch Ophthal 99 446–52 [18.2.4]

Simons K (1984) Effects on stereopsis of monocular versus binocular degradation of image contrast Invest Ophthal Vis Sci 25 987–9 [18.5.4a]

Simons K, Elhatton K (1994) Artifacts in fusion and stereopsis testing based on red/green dichoptic image separation J Ped Ophthal Strab 31 290–7 [18.2.3b]

Simons K, Reinecke RD (1974) A reconsideration of amblyopia screening and stereopsis Am J Ophthal 78 707–13 [18.2.2b]

Simonsz HJ, Tonkelaar D (1990) 19th Century mechanical models of eye movements, Donders’ law, Listing’s law and Helmholtz’ direction circles Docum Ophthal 74 95–112 [14.3.1a]

Simpson JI (1984) The accessory optic system Ann Rev Neurosci 7 13–41 [22.6.1a]

Simpson T (1991) The suppression effect of simulated anisometropia Ophthal Physiol Opt 11 350–8 [12.3.2b]

Simpson WA, Swanston MT (1991) Depth–coded motion signals in plaid perception and optokinetic nystagmus Exp Brain Res 86 447–50 [22.3.3]

Sindermann F, Lüddeke H (1972) Monocular analogues to binocular contour rivalry Vis Res 12 763–72 [12.3.8a]

Sireteanu R, Best J (1992) Squint-induced modification of visual receptive fields in the suprasylvian cortex of the cat: binocular interaction, vertical effect and anomalous correspondence Eur J Neurosci 4 235–42 [14.4.1c]

Sireteanu R, Fronius M (1989) Different patterns of retinal correspondence in the central and peripheral visual field of strabismics Invest Ophthal Vis Sci 30 2023–33 [14.4.1a]

Skrandies W (1991) Contrast and stereoscopic visual stimuli yield lateralized scalp potential fields associated with different neural generators EEG Clin Neurophysiol 78 274–83 [11.7]

Skrandies W (1997) Depth perception and evoked brain activity: the influence of horizontal disparity and visual field location Vis Neurosci 14 527–32 [11.7]

Skrandies W, Vomberg HE (1985) Stereoscopic stimuli activate different cortical neurones in man: electrophysiological evidence Int J Psychophysiol 2 293–6 [11.7]

Slagsvold JE (1978) Pulfrich pendulum phenomenon in patients with a history of acute optic neuritis Acta Ophthal 56 817–29 [23.7]

Sloan LL, Altman A (1954) Factors involved in several tests of binocular depth perception Arch Ophthal 52 527–44 [18.2.1a]

Sloane AE, Gallagher JR (1945) Evaluation of stereopsis: a comparison of the Howard-Dolman and the Verhoeff test Arch Ophthal 34 357–9 [18.2.1b]

Sloane ME, Blake R (1984) Selective adaptation of monocular and binocular neurons in human vision J Exp Psychol HPP 10 406–42 [13.2.6]

Sloane ME, Blake R (1987) Perceptually unequal spatial frequencies do not yield stereoscopic tilt Percept Psychophys 42 569–75 [20.2.1]

Smallman HS (1995) Fine-to-coarse scale disambiguation in stereopsis Vis Res 35 1047–60 [18.7.2e]

Smallman HS, MacLeod DIA (1994) Size–disparity correlation in stereopsis at contrast threshold J Opt Soc Am A 11 2169–83 [18.5.2, 18.5.3, 18.7.2a]

Smallman HS, MacLeod DIA (1997) Spatial scale interactions in stereo sensitivity and the neural representation of binocular disparity Perception 29 977–94 [18.7.2b, 18.7.2e, 21.6.3a]

Smallman HS, McKee SP (1995) A contrast ratio constraint on stereo matching Proc R Soc B 290 295–71 [15.3.7a]

Smith AT (1983) Interocular transfer of colour–contingent threshold elevation Vis Res 23 729–34 [13.3.5]

Smith AT, Jeffreys DA (1979) Evoked potential evidence for differences in binocularity between striate and prestriate regions of human visual cortex Exp Brain Res 36 375–80 [13.1.8b]

Smith AT, Scott-Samuel NE (1998) Stereoscopic and contrast-defined motion in human vision Proc R Soc B 295 1573–81 [16.5.1]

Smith AT, Wall MB (2008) Sensitivity of human visual cortical areas to the stereoscopic depth of a moving stimulus J Vis 8(10) Article 1 [11.8.2]

Smith EL, Levi DM, Harwerth RS, White JM (1982) Color vision is altered during the suppression phase of binocular rivalry Science 218 802–4 [12.3.2f]

Smith EL, Chino YM, Ni J, et al. (1997a) Binocular spatial phase tuning characteristics of neurons in the macaque striate cortex  J Neurophysiol 78 351–65 [11.4.1f]

Smith EL, Chino YM, Ni J, Cheng H (1997b) Binocular combination of contrast signals by striate cortical neurons in the monkey J Neurophysiol 78 366–82 [11.4.1f, 13.1.8a]

Smith JR, Connell SD, Swift JA (1999) Stereoscopic display of atomic force microscope images using anaglyph techniques J Micros 196 347–51 [24.2.3f]

Smith R (1738) A compleat system of opticks in four books Cambridge [14.2.2, 24.1.6]

Smith S (1945) Utrocular or “which eye” discrimination J Exp Psychol 35 1–14 [16.8]

Snowden P, Davies I, Rose D, Kaye M (1996) Perceptual learning of stereoacuity Perception 25 1043–52 [18.14.1]

Snowden RJ, (1992) Sensitivity to relative and absolute motion Perception 21 563–8 [13.3.3f, 22.7.3]

Snowden RJ, Hammett ST (1992) Subtractive and divisive adaptation in the human visual system Nature 355 278–50 [12.9.2b]

Snowden RJ, Rossiter MC (1999) Stereoscopic depth cues can segment motion information Perception 28 193–201 [22.3.5]

Sobel EC, Collett TS (1991) Does vertical disparity scale the perception of stereoscopic depth? Proc R Soc B 244 87–90 [20.6.3c]

Sobel KV, Blake R (2002) How context influences predominance during binocular rivalry Perception 31 813–24 [12.4.3]

Sobel KV, Blake R (2003) Subjective contours and binocular rivalry suppression Vis Res 43 1533–40 [12.3.3d]

Sohn W, Seiffert AE (2006) Motion aftereffects specific to surface depth order: beyond binocular disparity J Vis 6 119–31 [22.5.4]

Sokol S (1976) The Pulfrich stereo-illusion as an index of optic nerve dysfunction Survey Ophthal 20 432–4 [23.7]

Solomon JA, Morgan MJ (1999) Dichoptically cancelled motion Vis Res 39 2293–7 [12.5.6]

Solomons H (1975a) Derivation of the space horopter Br J Physiol Opt 30 56–80 [14.5, 14.5.2g]

Solomons H (1975b) Properties of the space horopter Br J Physiol Opt 30 81–100 [14.5.2g]

Somers WW, Hamilton MJ (1984) Estimation of the stereoscopic threshold utilizing perceived depth Ophthal Physiol Opt 4 275–50 [18.2.4]

Sousa R, Brenner E, Smeets JBJ (2010) A new binocular cue for absolute distance: disparity relative to the most distant structure Vis Res 50 1786–92 [20.1.2]

Sparks DL, Mays LE, Gurski MR, Hickey TL (1986) Long-term and short-term monocular deprivation in the rhesus monkey: effects on visual fields and optokinetic nystagmus J Neurosci 6 1771–80 [22.6.1b]

Spehar B, Zaidi Q (1996) New configurational effects on perceived contrast and brightness: second-order White’s effects Perception 25 409–417 [22.4.5]

Spehar B, Gilchrist A, Arend L (1995) The critical role of relative luminance relations in White’s effect and grating induction Vis Res 35 2903–14 [22.4.5]

Spekreijse H, van der Tweel LH, Regan D (1972) Interocular sustained suppression: correlations with evoked potential amplitude and distribution Vis Res 12 521–6 [12.9.2e]

(p.610) Sperling G (1965) Temporal and spatial masking. I. Masking by impulse flashes J Op Soc Am 55 541–59 [13.2.3]

Sperling G (1970) Binocular vision: a physical and a neural theory Am J Psychol 83 461–534 [11.10.1b, 15.2.1a]

Sperry RW, Clark E (1949) Interocular transfer of visual discrimination habits in a teleost fish Physiol Zool 22 372–8 [13.4.2]

SPIE (1992) Applications of artificial intelligence X: machine vision and robotics Proc Int Soc Opt Engin 1708 20 [24.2.6]

Spiegler JB (1983) Distance, size and velocity changes during the Pulfrich effect Am J Optom Physiol Opt 60 902–7 [23.1.3]

Spiegler JB (1986) Apparent path of a Pulfrich target as a function of the slope of its plane of motion: a theoretical note Am J Optom Physiol Opt 63 209–16 [23.1.2]

Spillmann L (1993) The perception of movement and depth in moiré patterns Perception 22 287–308 [12.1.7, 24.1.3a]

Spillmann L, Redies C (1981) Random–dot motion displaces Ehrenstein illusion Perception 10 411–15 [22.2.4b]

Spottiswoode R, Spottiswoode N (1953) The theory of stereoscopic transmission and its application to the motion picture University of California Press, Berkeley CA [24.1.1]

Spottiswoode R, Spottiswoode N, Smith C (1952) Basic principles of the three-dimensional film J Soc Motion Pict Televis Engin 59 279–86 [24.1.1]

Spang K, Morgan M (2008) Cortical correlates of stereoscopic depth produced by temporal delay J Vis 8(9) Article 10 [11.8.2]

Springbett BM (1961) Some stereoscopic phenomena and their implications Br J Psychol 52 105–9 [16.3.1]

Squires PC (1956) Stereopsis produced without horizontally disparate stimulus loci J Exp Psychol 52 199–203 [17.7]

Srebro R (1978) The visually evoked response: binocular facilitation and failure when binocular vision is disturbed Arch Ophthal 96 839–44 [13.1.8b]

Srinivasan R, Russell DP, Edelman GM, Tonini G (1999) Increased synchronization of neuromagnetic responses during conscious perception J Neurosci 19 5435–48 [12.9.2e]

Srivastava S, Orban GA, De Mazière PA, Janssen P (2009) A distinct representation of three-dimensional shape in macaque anterior intraparietal area: fast, metric, and coarse J Neurosci 29 10613–26 [11.5.2b]

Sroczynski SF (1990) Methods for obtaining high quality stereoscopic images of microscopic objects J Micros 157 163–79 [24.2.3a]

St Cyr GF, Fender DH (1969) The interplay of drifts and flicks in binocular fixation Vis Res 9 275–65 [18.10.3a]

Staller JD, Lappin JS, Fox R (1980) Stimulus uncertainty does not impair stereopsis Percept Psychophys 27 361–7 [18.14.2b]

Stalmeier PFM, de Weert CMM (1988) Binocular rivalry with chromatic contours Percept Psychophys 44 456–62 [12.3.2e]

Standing LG, Dodwell PC, Lang D (1968) Dark adaptation and the Pulfrich effect Percept Psychophys 4 118–20 [23.4.1, 23.4.2a]

Starks M (1995) Stereoscopic imaging technology: A review of patents and the literature Int J Virtual Reality 1 2–25 [24.1.2e]

Starr BS (1971) Veridical and paradoxical interocular transfer of left/right mirror image discriminations Brain Res 31 377 [13.4.2]

Steenblik RA (1993) Chromostereoscopy In Stereo computer graphics and other true 3D technologies (ed DF McAllister) pp 183–95 Princeton University Press, Princeton NJ [17.8]

Stein BE, Magalháes-Castro B, Kruger L (1976) Relationship between visual and tactile representations in the cat superior colliculus J Neurophysiol 39 401–19 [11.2.3]

Steinbach MJ, Howard IP, Ono H (1985) Monocular asymmetries in vision: we don’t see eye–to–eye Can J Psychol 39 476–8 [16.8]

Steinbach MJ, Musarella MA, Gallie BL (1988) Extraocular muscle proprioception and visual function: psychophysical aspects In Strabismus and amblyopia: Experimental basis for advances in clinical management (ed G Lennerstrand, GK von Noorden, EC Campos) MacMillan, New York [16.7.5]

Steiner V, Blake R, Rose D (1994) Interocular transfer of expansion rotation and translation motion aftereffects Perception 23 1197–202 [13.3.3b]

Steinman RM, Collewijn H (1980) Binocular retinal image motion during active head rotation Vis Res 20 415–29 [18.10.5]

Steinman RM, Cushman WB, Martins AJ (1982) The precision of gaze Hum Neurobiol 1 97–109 [18.10.5]

Steinman RM, Levinson JZ, Collewijn H, van der Steen J (1985) Vision in the presence of known natural retinal image motion J Opt Soc Am A 2 229–33 [18.10.5]

Steinman SB (1987) Serial and parallel search in pattern vision? Perception 16 389–98 [22.8.2b]

Stenton SP, Frisby JP, Mayhew JEW (1984) Vertical disparity pooling and the induced effect Nature 309 622–4 [20.2.4b]

Stevenson SB, Cormack LK (2000) A contrast paradox in stereopsis, motion detection, and vernier acuity Vis Res 40 2881–4 [18.5.4a]

Stevenson SB, Schor CM (1997) Human stereo matching is not restricted to epipolar lines Vis Res 37 2717–23 [18.4.2b]

Stevenson SB, Cormack LK, Schor CM (1989) Hyperacuity superresolution and gap resolution in human stereopsis Vis Res 29 1597–605 [18.11]

Stevenson SB, Cormack LK, Schor CM (1991) Depth attraction and repulsion in random dot stereograms Vis Res 31 805–13 [18.8.2c, 21.2]

Stevenson SB, Cormack LK, Schor CM, Tyler CW (1992) Disparity tuning in mechanisms of human stereopsis Vis Res 32 1685–94 [11.4.2, 14.6.1b, 15.2.2d, 18.4.1e]

Stevenson TJ, Sanford EC (1908) A preliminary report of experiments on time relations in binocular vision Am J Psychol 19 130–7 [18.12.2a]

Stigmar G (1970) Observations on vernier and stereo acuity with special reference to their relationship Acta Ophthal 48 979–98 [18.11]

Stigmar G (1971) Blurred visual stimuli. II. The effect of blurred visual stimuli on vernier and stereo acuity Acta Ophthal 49 364–79 [18.11]

Stiles WS (1939) The directional sensitivity of the retina and the spectral sensitivities of the rods and cones Proc R Soc B 127 64–105 [13.2.7b]

Stoner GR, Albright TD (1997) Luminance contrast affects motion coherency in plaid patterns by acting as a depth-from-occlusion cue Vis Res 38 387–401 [22.3.3]

Stoner GR, Albright TD, Ramachandran VS (1990) Transparency and coherence in human motion perception Nature 344 153–5 [22.3.3]

Stork DG, Rocca C (1989) Software for generating auto–random–dot stereograms Behav Res Meth Instrum Comput 21 525–34 [24.1.6]

Stratton GM (1900) A new determination of the minimum visible and its bearing on localization and binocular depth Psychol Rev 7 429–35 [18.11]

Stroh A (1886) On a new form of stereoscope Proc R Soc 40 317–19 [24.1.2e]

Stromeyer CF (1978) Form–color aftereffects in human vision In Handbook of sensory physiology (ed H Teuber, R Held) Vol VII pp 97–142, Springer, New York [13.3.5]

Stromeyer CF, Mansfield RJW (1970) Colored aftereffects produced with moving edges Percept Psychophys 7 108–14 [13.3.5]

Stromeyer CF, Kronauer RE, Madsen JC, Klein SA (1984) Opponent-movement mechanisms in human vision J Opt Soc Am A 1 876–84 [22.3.2]

Strong DS (1979) Leonardo on the eye Garland, New York [17.2.1]

Stuart GW, Edwards M, Cook ML (1992) Colour inputs to random–dot stereopsis Perception 21 717–29 [17.1.4e]

Stuit SM, Verstraten FAJ, Paffen CLE (2010) Saliency in a suppressed image affects the spatial origin of perceptual alternation during binocular rivalry Vis Res 50 1913–21 [12.3.5e]

Stumpf C (1916) Binaurale Tonmischung, Mehrheitsschwelle und Mitteltonbildung Z Psychol 75 330–50 [11.1.1]

Stumpf P (1911) über die Abhängigkeit der Bewegegungsempfindung und ihres negativen Nachbildes von den Reizvorgängen auf der Netzhaut (Vorläufige Mitteilung) Z Psychol 59 321–330 (Translated by D Todorovic) Perception 25 1235–42 [22.3.1]

(p.611) Sturr JF, Teller DY (1973) Sensitization by annular surrounds: dichoptic properties Vis Res 13 909–18 [13.2.3]

Sugie N (1982) Neural models of brightness perception and retinal rivalry in binocular vision Biol Cyber 43 13–21 [12.10, 13.1.4b]

Sugita Y (1995) Contrast assimilation on different depth planes Vis Res 35 881–4 [22.4.5]

Sullivan A (2004) 3-deep. New displays render images you can reach out and touch IEEE Spectrum May 30–5 [24.1.4b]

Sumner FC, Watts FP (1936) Rivalry between uniocular negative after–images and the vision of the other eye Am J Psychol 48 109–16 [13.3.5]

Sun F, Tong J, Yang Q, et al. (2002) Multi-directional shits of optokinetic responses to binocular-rivalrous motion stimuli Brain Res 944 56–64 [12.3.6b]

Sundet JM (1972) The effect of pupil size variations on the colour stereoscopic phenomenon Vis Res 12 1027–32 [17.8]

Sundet JM (1976) Two theories of colour stereoscopy Vis Res 16 469–72 [17.8]

Sutherland NS (1961) Figural aftereffects and apparent size Quart J Exp Psychol 13 222–8 [21.1]

Suzuki DA, Keller EL (1984) Visual signals in the dorsolateral pontine nucleus of the alert monkey their relationship to smooth–pursuit eye movements Exp Brain Res 53 473–8 [22.6.1d]

Suzuki S, Grabowecky M (2002) Evidence for perceptual “trapping” and adaptation in multistable binocular rivalry Neuron 36 243–57 [12.4.4b]

Swanston MT, Wade NJ (1985) Binocular interaction in induced line rotation Percept Psychophys 37 363–8 [13.3.3e]

Symons LA, Pearson PM, Timney B (1996) The aftereffect to relative motion does not show interocular transfer Perception 25 651–60 [13.3.3b]

Szily A von (1921) Stereoscopische Versuche mit Schattenrissen Graefe’s Arch Klin Exp Ophthal 105 964–72 See Ehrenstein and Gillam (1999) for English translation [22.2.4a]

Taira M, Tsutsui KI, Jiang M, et al. (2000) Parietal neurons represent surface orientation from the gradient of binocular disparity J Neurophysiol 83 3140–46 [11.5.2b]

Takayama Y, Sugishita M, Kido T, et al. (1994) Impaired stereoacuity due to a lesion in the left pulvinar J Neurol Neurosurg Psychiat 57 652–4 [11.2.1]

Takeichi H, Nakazawa H (1994) Binocular displacement of unpaired region Perception 23 1025–36 [16.7.3b]

Takemura A, Inoue Y, Kawano K, et al. (2001) Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding J Neurophysiol 85 2245–66 [11.5.2a]

Tam WJ, Ono H (1987) Zero horizontal disparity in binocular depth mixture stimuli Vis Res 27 1207–10 [18.8.2c]

Tanabe S, Cumming BG (2008) Mechanisms underlying the transformation of disparity signals from V1 to V2 in the macaque J Neurosci 28 11304–14 [11.10.1c]

Tanabe S, Umeda K, Fujita I (2004) Rejection of false matches for binocular correspondence in macaque visual cortical area V4 J Neurosci 24 8170–80 [11.5.3b]

Tanabe S, Doi T, Umeda K, Fujita I (2005) Disparity-tuning characteristics of neuronal responses to dynamic random-dot stereograms in macaque visual area V4 J Neurophysiol 94 2683–99 [11.5.3a]

Tanaka H, Ohzawa I (2006) Neural basis for stereopsis from second-order contrast cues J Neurosci 26 4370–82 [11.4.7]

Tanaka H, Uka T, Yoshiyama K, Kato M, Fujita I (2001) Processing of shape defined by disparity in monkey inferior temporal cortex J Neurophysiol 85 735–44 [11.5.3b]

Tanner WP (1956) Theory of recognition J Acoust Soc Am 28 882–888 [13.1.4b]

Tansley BW, Boynton RM (1978) Chromatic border perception: the role of red- and green-sensitive cones Vis Res 18 683–97 [12.3.2e]

Tao R, Lankeet MJM, van de Gring WA, van Wezel RJA (2003) Velocity dependence of the interocular transfer of dynamic motion aftereffects Perception 32 855–66 [13.3.3c]

Taroyan NA, Buckley D, Porrill J, Frisby JP (2000) Exploring sequential stereopsis for co-planarity tasks Vis Res 40 3373–90 [18.10.2a]

Tauber ES, and Atkin A (1968) Optomotor responses to monocular stimulation: relation to visual system organization Science 160 1365–7 [22.6.1a]

Taya R, Ehrenstein WH, Cavonius CR (1995) Varying the strength of the Munker-White effect by stereoscopic viewing Perception 27 685–94 [22.4.5]

Taya S, Sato M, Nakamizo S (2005) Stereoscopic depth aftereffects without retinal position correspondence between adaptation and test stimuli Vis Res 45 1857–66 [21.6.1b]

Taylor J (1738) Le mechanisme ou le nouveau Traité de l’anatomie du globe de l’oeil avec l’usage de ses différentes paries et de celles qui lui sont contigues David, Paris [12.2.1]

Taylor MM (1963) Tracking the neutralization of seen rotary movement Percept Mot Skills 16 513–19 [13.3.3a]

Te Pas SF, Kappers, AML (2001) First-order structure induces the 3-D curvature contrast effect Vis Res 41 3829–35 [21.4.2f]

Teichert T, Klingenhoefer S, Wachtler T, Bremmer F (2008) Depth perception during saccades J Vis 8(14) Article 27 [18.10.2a]

Teichner WH, Kobrick JL, Wehrkamp RF (1955) The effects of terrain and observation distance on relative depth perception Am J Psychol 68 193–208 [18.3.1]

Teller DY, Gallanter E (1967) Brightness luminances and Fechner’s paradox Percept Psychophys 2 297–300 [13.1.4a]

Temme LA, Malcus L, Noell WK (1985) Peripheral visual field is radially organized Am J Optom Physiol Opt 62 545–54 [13.1.2e]

Templeton WB, Green FA (1968) Chance results in utrocular discrimination Quart J Exp Psychol 20 200–3 [16.8]

Teping C, Silny J (1987) evidence of pericentral stereopsis in random dot VECP Doc Ophthal 66 291–66 [11.7]

Ternus J (1926) Experimentalle Untersuchungen über phänomenale Identität Psychol Forsch 7 81–136 [16.4.2e]

Theeuwes J, Atchley P, Kramer AF (1998) Attentional control within 3-D space J Exp Psychol: HPP 27 1476–85 [22.5.1e]

Theimer WM, Mallot HA (1994) Phase-based vergence control and depth reconstruction using active vision Comput Vis Gr Im Proc: Im Underst 60 343–58 [18.10.4]

Thibos LN, Bradley DL, Still DL, et al. (1990) Theory and measurement of ocular chromatic aberration Vis Res 30 33–49 [17.8]

Thomas FH, Dimmick FL, Luria SM (1961) A study of binocular color mixture Vis Res 1 108–20 [12.2.2]

Thomas GJ (1956) Effect of contours on binocular CFF obtained with synchronous and alternate flashes Am J Psychol 69 369–77 [13.1.5]

Thomas J (1977) A reciprocal model for monocular pattern alternation Percept Psychophys 22 310–12 [12.3.8a]

Thomas J (1978) Binocular rivalry: the effects of orientation and pattern color arrangement Percept Psychophys 23 360–2 [12.3.3c]

Thomas OM, Cumming BG, Parker AJ (2002) A specialization for relative disparity in V2 Nat Neurosci 5 472–8 [11.5.1]

Thompson P, Wood V (1993) The Pulfrich pendulum phenomenon in stereoblind subjects Perception 22 7–14 [23.7]

Thomsen MN, Lang RD (2004) An experimental comparison of 3-dimensional and 2-dimensional endoscopic systems in a model Arthroscopy 20 419–23 [24.2.4]

Thomson LC (1947) Binocular summation within the nervous pathway of the pupillary light reflex J Physiol 106 59–65 [13.1.1a]

Thorn F, Boynton RM (1974) Human binocular summation at absolute threshold Vis Res 14 445–58 [13.1.1c, 13.1.6c]

Thorpe SJ, Celebrini S, Trotter Y, Imbert M (1991) Dynamics of stereo processing in area V1 of the awake primate J Neurosci 4 (Supp) 83 [11.4.8b]

Tian J, Wang C, Sun F (2003) Interocular motion combination for dichoptic moving stimuli Spat Vis 16 407–18 [12.3.6b]

Timney B, Elberger AJ, Vandewanter ML (1985) Binocular depth perception in the cat following early corpus callosum section Exp Brain Res 60 19–29 [11.9.2]

(p.612) Timney B, Wilcox LM, St John R (1989) On the evidence for a ‘pure’ binocular process in human vision Spat Vis 4 1–15 [12.7.4]

Timney B, Symons LA, Wilcox LM, O’Shea RP (1996) The effect of dark and equiluminant occlusion on the interocular transfer of visual aftereffects Vis Res 36 707–15 [13.3.3a]

Tittle JS, Todd JT, Perotti VJ, Norman JF (1995) Systematic distortion of perceived three-dimensional structure from motion and binocular stereopsis J Exp Psychol: HPP 21 663–78 [20.6.5c]

Todd JT, Norman JF (2003) The visual perception of 3-D shape from multiple cues: are observers capable of perceiving metric structure Percept Psychophys 65 31–47 [20.6.4]

Todd JT, Norman JF, Koenderink JJ, Kappers AML (1997) Effects of texture illumination and surface reflectance on stereoscopic shape perception Perception 29 807–22 [17.1.6]

Toet A, Levi DM (1992) The two–dimensional shape of spatial interaction zones in the parafovea Vis Res 32 1349–57 [13.2.5]

Toet A, van Eekhout MP, Simons HLJJ, Koenderink JJ (1987) Scale invariant features of differential spatial displacement discrimination Vis Res 27 441–51 [18.7.2d]

Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex Vis Res 23 775–85 [11.4.8a]

Tong F, Engel SA (2001) Interocular rivalry revealed in the human cortical blind-spot representation Nature 411 195–9 [12.9.2f]

Tong F, Nakayama K, Vaughan JT, Kanwisher N (1998) Binocular rivalry and visual awareness in human extrastriate cortex Neuron 21 753–9 [12.9.2f]

Tong L, Guido W, Tumosa N, et al. (1992) Binocular interactions in the cat’s dorsal lateral geniculate nucleus. II. Effects on dominant–eye spatial–frequency and contrast processing Vis Neurosci 8 557–66 [12.9.1, 18.5.4a]

Towle VL, Harter MR, Previc FH (1980) Binocular interaction of orientation and spatial frequency channels: evoked potentials and observer sensitivity Percept Psychophys 27 351–60 [13.2.4a]

Towne J (1865) The stereoscope, and stereoscopic results – Section VI. Guy’s Hospital Reports 11 144–80 [16.7.2b]

Towne J (1866) Contributions to the physiology of binocular vision – Section VII Guy’s Hospital Reports 12 285–301 [16.7.2b]

Townsend JT (1968) Binocular information summation and the serial processing model Percept Psychophys 4 125–8 [13.1.3e]

Toyama K, Komatsu Y, Kasai H, et al. (1985) Responsiveness of Clare-Bishop neurons to visual cues associated with motion of a visual stimulus in three-dimensional space Vis Res 25 407–14 [11.3.2]

Toyama K, Fugii K, Kasai S, Maeda K (1986) The responsiveness of Clare-Bishop neurons to size cues for motion stereopsis Neurosci Res 4 83–109 [11.3.2]

Traub AC (1967) Stereoscopic display using varifocal mirror oscillations Applied Opt 6 1085–7 [24.1.4b]

Travis ARL (1990) Autostereoscopic 3-D display App Optics 29 4341–3 [24.1.3c]

Tredici TD, von Noorden GK (1984) The Pulfrich effect in anisometropic amblyopia and strabismus Am J Ophthal 98 499–503 [23.7]

Treisman A (1962) Binocular rivalry and stereoscopic depth perception Quart J Exp Psychol 14 23–37 [15.3.7b, 15.3.8a]

Treisman A (1988) Features and objects Quart J Exp Psychol 40A 201–38 [22.8.2a]

Trick GL, Compton JR (1982) Analysis of the effect of temporal frequency on the dichoptic visual-evoked response Am J Optom Physiol Opt 59 155–61 [13.1.8b]

Trick GL, Guth SL (1980) The effect of wavelength on binocular summation Vis Res 20 975–80 [13.1.2c]

Tricoles G (1987) Computer generated holograms: an historical review App Optics 29 4351–60 [24.1.4a]

Trincker D (1953) Light dark adaptation and space perception. I. The Pulfrich effect as an asymmetrical phenomenon Pflügers Arch ges Physiol 257 48–69 [23.2.1]

Tripathy SP, Levi DM (1994) Long-range dichoptic interactions in the human visual cortex in the region corresponding to the blind spot Vis Res 34 1127–38 [13.2.5]

Trivedi HP, Lloyd SA (1985) The role of disparity gradient in stereo vision Perception 14 685–90 [19.4]

Troscianko T (1982) A stereoscopic presentation of the Hermann grid Vis Res 22 485–9 [16.3.2]

Trotter Y, Celebrini S (1999) Gaze direction controls response gain in primary visual-cortex neurons Nature 398 239–42 [11.4.6b]

Trotter Y, Celebrini S, et al. (1992) Modulation of neural stereoscopic processing in primate area V1 by the viewing distance Science 257 1279–81 [11.4.6a]

Trotter Y, Celebrini S, et al. (1996) Neural processing of stereopsis as a function of viewing distance in primate visual cortical area V1 J Neurophysiol 76 2872–85 [11.4.6a]

Trotter Y, Celebrini S, Durand JB (2004) Evidence for implication of primate area V1 in neural 3-D spatial localization processing J Physiol Paris 98 125–34 [11.4.6b]

Truchard AM, Ohzawa I, Freeman RD (2000) Contrast gain control in the visual cortex: monocular versus binocular mechanisms J Neurosci 20 3017–32 [11.4.1f]

Trueswell JC, Hayhoe MM (1993) Surface segmentation mechanisms and motion perception Vis Res 33 313–28 [22.3.3]

Tsai JJ, Victor JD (2000) Neither occlusion constraint nor binocular disparity accounts for the perceived depth in the ‘sieve effect’ Vis Res 40 2265–76 [17.5]

Tsai JJ, Victor JD (2003) Reading a population code: a multi-scale neural model for representing binocular disparity Vis Res 43 445–66 [11.4.3b, 11.10.1c]

Tsao DY, Vanduffel W, Sasaki Y, et al. (2003a) Stereopsis activates V3A and caudal intraparietal areas in macaque and humans Neuron 39 555–68 [11.5.1, 11.8.2]

Tsao DY, Conway BR, Livingstone MS (2003b) Receptive fields of disparity-tuned simple cells in macaque V1 Neuron 38 103–14 [11.4.3c]

Tschermak–Seysenegg A von (1899) über anomale Sehrichtungsgemeinschaft der Netzhäute bei einem Schielenden Graefe’s Arch Klin Exp Ophthal 47 508–50 [14.4.2]

Tschermak–Seysenegg A von (1900) Beiträge zur Lehre vom Längshoropter Pflügers Arch ges Physiol 81 328–48 [14.6.1b, 14.6.1c]

Tschermak-Seysenegg A von (1952) Introduction to physiological optics Thomas, Springfield IL [14.3.1c]

Tse PU, Logothetis NK (2002) The duration of 3-D form analysis in transformational apparent motion Percept Psychophys 64 244–65 [22.5.3d]

Tseng CH, Gobell JL, Lu ZL, Sperling G (2006) When motion appears stopped: stereo motion standstill Proc Natl Acad Sci 103 14953–8 [16.5.1]

Tsirlin I, Allison RS, Wilcox LM (2008) Stereoscopic transparency: constraints on the perception of multiple surfaces J Vis 8(5) Article 5 [18.9]

Tsirlin I, Wilcox LM, Allison RS (2010a) Monocular occlusions determine the perceived shape and depth of occluding surfaces J Vis 10(6) 11 [17.2.1, 17.3]

Tsirlin I, Wilcox LM, Allison RS (2010b) Perceptual artifacts in random-dot stereograms Perception 39 349–55 [18.9]

Tsuchiya N, Koch C (2005) Continuous flash suppression reduces negative afterimages Nat Neurosci 8 1096–101 [12.3.5f]

Tsuchiya N, Koch C, Gilroy LA, Blake R (2006) Depth of interocular suppression associated with continuous flash suppression, flash suppression, and binocular rivalry J Vis 6 1068–78 [12.3.5f]

Tsutsui KI, Jiang M, Yara K, Sakata H, Taira M (2001) Integration of perspective and disparity cues in surface-orientation selective neurons of area CIP J Neurophysiol 86 2856–67 [11.5.2b]

Tumosa N, McCall MA, Guido W, Spear PD (1989) Responses of lateral geniculate neurons that survive long–term visual cortex damage in kittens and adult cats J Neurosci 9 280–98 [12.9.1]

(p.613) Tychsen L, Lisberger SG (1986) Maldevelopment of visual motion processing in humans who had strabismus with onset in infancy J Neurosci 6 2795–508 [22.6.1e]

Tyler CW (1971) Stereoscopic depth movement: two eyes less sensitive than one Science 174 958–61 [13.3.3d]

Tyler CW (1973) Stereoscopic vision: cortical limitations and a disparity scaling effect Science 181 276–8 [12.1.3a, 18.6.3a]

Tyler CW (1974a) Depth perception in disparity gratings Nature 251 140–2 [16.2.2a, 18.6.3b, 24.1.5]

Tyler CW (1974b) Stereopsis in dynamic visual noise Nature 250 781–2 [23.6.1, 23.6.3]

Tyler CW (1975a) Spatial organization of binocular disparity sensitivity Vis Res 15 583–90 [18.6.3a]

Tyler CW (1975b) Stereoscopic tilt and size aftereffects Perception 4 187–92 [16.1.2d, 16.3.3]

Tyler CW (1977) Stereomovement from interocular delay in dynamic visual noise: a random spatial disparity hypothesis Am J Optom Physiol Opt 54 374–86 [23.6.2, 23.6.3, 23.6.4]

Tyler CW (1980) Binocular Moiré fringes and the vertical horopter Perception 9 475–8 [14.2.2]

Tyler CW (1983) Sensory processing of binocular disparity In Vergence eye movements: Basic and clinical aspects (ed MC Schor, KJ Ciuffreda) pp 199–296 Butterworth, Boston [14.5.2g, 18.6.3e, 18.11]

Tyler CW (1987) Analysis of visual modulation sensitivity. III. Meridional variations in peripheral flicker sensitivity J Opt Soc Am A 4 1612–19 [12.3.4]

Tyler CW (1990) A stereoscopic view of visual processing streams Vis Res 30 1877–95 [15.4.3]

Tyler CW (1991a) Cyclopean vision In Vision and visual dysfunction Vol 9 Binocular Vision (ed D Regan) pp 38–74 MacMillan, London [14.7, 16.1.2d, 20.6.5a]

Tyler CW (1991b) The horopter and binocular fusion In Vision and visual dysfunction Vol 9 Binocular Vision (ed D Regan) pp 19–37 MacMillan, London [11.10.1c, 14.5, 14.5.2g, 18.12.1a]

Tyler CW (1994) The birth of computer stereograms for unaided stereovision In Stereogram pp 86–9 Cadence Books, San Francisco [24.1.5]

Tyler CW (1997) On Ptolemy’s geometry of binocular vision Perception 26 1579–81 [16.7.2b]

Tyler CW (2004) Representation of stereoscopic structure in human and monkey cortex TINS 27 116–18 [11.8.2]

Tyler CW, Apkarian PA (1985) Effects of contrast orientation and binocularity in the pattern evoked potential Vis Res 25 755–66 [12.9.2e]

Tyler CW, Cavanagh P (1991) Purely chromatic perception of motion in depth: two eyes as sensitive as one Percept Psychophys 49 53–61 [17.1.4c, 17.1.4d]

Tyler CW, Clarke MB (1990) The autostereogram Proc Int Soc Opt Engin 1256 182–97 [24.1.6]

Tyler CW, Julesz B (1978) Binocular cross–correlation in time and space Vis Res 18 101–5 [15.2.2a]

Tyler CW, Julesz B (1980) On the depth of the cyclopean retina Exp Brain Res 40 196–202 [18.6.3a, 18.8, 18.10.1a]

Tyler CW, Kontsevich LL (1995) Mechanisms of stereoscopic processing: stereoattention and surface perception in depth reconstruction Perception 27 127–53 [18.10.4, 18.13]

Tyler CW, Kontsevich LL (2001) Stereoprocessing of cyclopean depth images: horizontally elongated summation fields Vis Res 41 2235–43 [18.6.3b]

Tyler CW, Raibert M (1975) Computer technology: generation of random–dot stereogratings Behav Res Meth Instrum 7 37–41 [24.1.5]

Tyler CW, Sutter EE (1979) Depth from spatial frequency difference: an old kind of stereopsis? Vis Res 19 859–65 [12.7.3, 19.2.4, 20.2.1]

Tyler CW, Likova LT, Kontsevich LL, Wade AR (2006) The specificity of cortical region KO to depth structure Neuroimage 30 228–38 [11.8.1]

Uhlarik JJ, Canon LK (1971) Influence of concurrent and terminal exposure conditions on the nature of perceptual adaptation J Exp Psychol 91 233–9 [13.4.3]

Uka T, DeAngelis GC (2002) Binocular vision: an orientation to disparity coding Cur Biol 12 R764–6 [11.4.4]

Uka T, DeAngelis GC (2003) Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity J Neurosci 23 3515–30 [11.5.2a]

Uka T, DeAngelis GC (2004) Contribution of area MT to stereoscopic depth perception: choice-related response modulations reflect task strategy Neuron 42 297–310 [11.5.2a]

Uka T, DeAngelis GC (2006) Linking neural representation to function in stereoscopic depth perception: role of the middle temporal area in coarse versus fine disparity discrimination J Neurosci 26 6791–802 [11.5.2a]

Uka T, Tanaka H, Kato M, Fujita I (1999) Behavioral evidence for visual perception of 3-dimensional surface structures in monkeys Vis Res 39 2399–410 [22.1.2]

Uka T, Tanaka H, Yoshiyama K, Kato M, Fujita I (2000) Disparity selectivity of neurons in monkey inferior temporal cortex J Neurophysiol 84 120–32 [11.5.3b]

Uka T, Tanabe S, Watanabe M, Fujita I (2005) Neural correlates of fine discrimination in monkey inferior temporal cortex J Neurosci 25 10796–802 [11.5.3b]

Ukwade MT, Bedell HE (1999) Stereothresholds in persons with congenital nystagmus and in normal observers during comparable retinal image motion Vis Res 39 2963–73 [18.10.3a]

Ukwade MT, Bedell HE, Harwerth RS (2003a) Stereopsis is perturbed by vergence error Vis Res 42 181–93 [18.10.3b]

Ukwade MT, Bedell HE, Harwerth RS (2003b) Stereothresholds with simulated vergence variability and constant error Vis Res 42 195–204 [18.10.3b]

Ukwade MT, Harwerth RS, Bedell E (2007) Stereoscopic acuity, observation distance and fixation disparity: a commentary on ‘Stereoscopic acuity and observation distance’ by Bradshaw and Glennerster (2006) Spat Vis 20 489–92 [18.6.7]

Ullman S (1978) Two dimensionality of the correspondence problem Perception 7 683–93 [22.5.3a]

Ullman S (1979) The interpretation of visual motion MIT Press, Cambridge MA [22.5.3a]

Ullman S (1980) The effect of similarity between line segments on the correspondence strength of apparent motion Perception 9 617–29 [22.5.3a]

Umeda K, Tanabe S, Fujita I (2007) Representation of stereoscopic depth based on relative disparity in macaque area V4 J Neurophysiol 98 241–52 [11.5.3a]

Updyke BV (1974) Characteristics of unit responses in superior colliculus of the Cebus monkey J Neurophysiol 37 896–908 [11.2.3]

Usery E (1993) Virtual stereo display techniques for three-dimensional geographic data Photogram Engin Rem Sens 59 1737–44 [24.2.1]

Uttal WR (1987) The perception of dotted forms Erlbaum, Hillsdale NJ [20.5.1]

Uttal WR, Fitzgerald J, Eskin TE (1975a) Parameters of tachistoscopic stereopsis Vis Res 15 705–12 [13.2.7a, 18.12.1b]

Uttal WR Fitzgerald J, Eskin TE (1975b) Rotation and translation effects on stereoscopic acuity Vis Res 15 939–44 [18.10.4]

Uttal WR, Davis SN, Welke C, Kakarala R (1988) The reconstruction of static visual forms from sparse dotted samples Percept Psychophys 43 223–40 [20.5.1]

Uttal WR, Davis NS, Welke C (1994) Stereoscopic perception with brief exposures Percept Psychophys 56 599–604 [18.12.1a]

Uttal WR, Baruch T, Allen L (1995) Dichoptic and physical information combination: a comparison Perception 27 351–62 [13.1.3e]

Vallortigara G, Bressan P (1994) Occlusion transparency and stereopsis: a new explanation for stereo capture Vis Res 34 2891–6 [22.2.4b]

Valmaggia C, Proudlock F, Gottlob I (2003) Optokinetic nystagmus in strabismus: are asymmetries related to binocularity? Invest Ophthal Vis Sci 44 5142–50 [22.6.1e]

Valyus NA (1966) Stereoscopy Focal Press, London [24.1.1, 24.1.3b]

(p.614) van Boxtel JJ, van Ee R, Erkelens CJ (2007) Dichoptic masking and binocular rivalry share common perceptual dynamics J Vis 7 3.1–11 [12.3.5d]

van Boxtel JJA, Alais D, van Ee R (2008) Retinotopic and non-retinotopic stimulus encoding in binocular rivalry and the involvement of feedback J Vis 8 (5) Article 17 [12.3.1a]

van Dam LCJ, van Ee R (2004) Stereoscopic matching and the aperture problem Perception 33 769–87 [18.6.5]

van Dam LCJ, van Ee R (2006a) The role of saccades in exerting voluntary control in perceptual and binocular rivalry Vis Res 46 787–99 [12.8.1]

van Dam LCJ, van Ee R (2006b) Retinal image shifts, but not eye movements per se, cause alternations in awareness during binocular rivalry J Vis 6 1172–9 [12.8.1]

Van Damme W, Brenner E (1997) The distance used for scaling disparities is the same as the one used for scaling retinal size Vis Res 37 757–64 [20.6.3d]

Van de Castle RL (1960) Perceptual defense in a binocular–rivalry situation J Person 28 448–62 [12.8.3a]

Van de Grind WA, Verstraten FAJ, Zwamborn KM (1994) Ensemble models of the movement aftereffect and the influence of eccentricity Perception 23 1171–9 [13.3.3a]

Van de Grind WA, Erkelens CJ, Laan AC (1995) Binocular correspondence and visual direction Perception 27 215–35 [16.7.2d]

Van de Grind WA, van Hof P, van der Smagt MJ, Verstraten FA (2001) Slow and fast visual motion channels have independent binocular rivalry stages Proc Roy Soc B 268 437–43 [13.3.3c]

Van der Meer HC (1978) Linear combinations of stereoscopic depth effects in dichoptic perception of gratings Vis Res 18 707–14 [20.2.1]

Van der Smagt MJ, Verstraten FA, van der Grind WA (1999) A new transparent motion aftereffect Nat Neurosci 2 595–6 [13.3.3c]

Van der Tweel LH, Estévez O (1974) Subjective and objective evaluation of flicker Ophthalmologica 169 70–81 [13.1.5]

Van der Willigen RF, Harmening WM, Vossen S, Wagner H (2010) Disparity sensitivity in man and owl: psychophysical evidence for equivalent perception of shape-from-stereo J Vis 10(1) Article 10 [20.4.2]

Van der Zwan R, Wenderoth P, Alais D (1993) Reduction of a pattern-induced motion aftereffect by binocular rivalry suggests the involvement of extrastriate mechanisms Vis Neurosci 10 703–9 [12.6.4]

Van Die GC, Collewijn H (1986) Control of human optokinetic nystagmus by the central and peripheral retina: effects of partial visual field masking, scotopic vision and central retinal scotomata Brain Res 383 185–94 [22.6.1c]

Van Ee R (2001) Perceptual learning without feedback and the stability of stereoscopic slant estimation Perception 30 95–114 [18.14.1]

Van Ee R (2003) Correlation between stereoanomaly and perceived depth when disparity and motion interact in binocular matching Perception 32 67–84 [15.3.9]

Van Ee R, Anderson BL (2001) Motion direction, speed and orientation in binocular matching Nature 410, 690–4 [15.3.11, 15.3.9]

Van Ee R, Erkelens CJ (1995) Binocular perception of slant about oblique axes relative to a visual frame of reference Perception 27 299–14 [20.3.2b]

Van Ee R, Erkelens C (1996a) Temporal aspects of binocular slant perception Vis Res 36 45–51 [18.12.1b, 21.4.2b]

Van Ee R, Erkelens CJ (1996b) Stability of binocular depth perception with moving head and eyes Vis Res 36 3827–42 [21.4.2b]

Van Ee R, Erkelens CJ (1996c) Anisotropy in Werner’s binocular depth-contrast effect Vis Res 36 2253–62 [21.4.2d]

Van Ee R, Erkelens CJ (1998) Temporal aspects of stereoscopic slant estimation: an evaluation and extension of Howard and Kaneko’s theory Vis Res 38 3871–82 [20.3.2a]

Van Ee R, Erkelens CJ (1999) The influence of large scanning eye movements on stereoscopic slant estimation of large surfaces Vis Res 39 467–79 [18.14.2c]

Van Ee R, Erkelens CJ (2000) Is there an interaction between perceived direction and perceived aspect ratio in stereoscopic vision? Percept Psychophys 62 910–26 [16.7.4b]

Van Ee R, Schor, CM (2000) Unconstrained stereoscopic matching of lines Vis Res 40 151–62 [18.6.5]

Van Ee R, van Dam LCJ (2003) The influence of cyclovergence on unconstrained stereoscopic matching Vis Res 43 307–19 [15.3.10]

Van Ee R, Banks MS, Backus BT (1999) An analysis of binocular slant contrast Perception 28 1121–45 [21.4.3]

van Ee R, van Boxtel JJA, Parker AL, Alais D (2009) Multisensory congruency as a mechanism for attentional control over perceptual selection J Neurosci 29 11641–9 [12.8.4]

Van Hof–van Duin J, Mohn G (1982) Stereopsis and optokinetic nystagmus In Functional basis of ocular motility disorders (ed G Lennerstrand, DS Zee, EL Keller) pp 113–9 Pergamon, New York [22.6.1e]

Van Hof-van Duin J, Mohn G (1986) Monocular and binocular optokinetic nystagmus in humans with defective stereopsis Invest Ophthal Vis Sci 27 574–83 [22.6.1e]

Van Kruysbergen NAWH, de Weert CMM (1993) Apparent motion perception: the contribution of the binocular and monocular systems. An improved test based on motion aftereffects Perception 22 771–84 [13.3.3d]

Van Kruysbergen NAWH, de Weert CMM (1994) Aftereffects of apparent motion: the existence of an AND-type binocular system in human vision Perception 23 1069–83 [13.3.3d]

Vanduffel W, Fize D, Peuskens H, Denys K, Sunaert S, Todd JT, Orban GA (2002) Extracting 3D from motion: differences in human and monkey intraparietal cortex Science 298 413–5 [11.5.2a]

Varela FJ, Singer W (1987) Neuronal dynamics in the visual corticothalamic pathway revealed through binocular rivalry Exp Brain Res 66 10–20 [12.9.1]

Vargas CD, Volchan E, Hokoc JN, et al. (1997) On the functional anatomy of the nucleus of the optic tract-dorsal terminal nucleus commissural connections in the opossum (Didelphis marsupialis aurita) Neuroscience 76 313–21 [22.6.1a]

Vautin RG, Berkley MA (1977) Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects J Neurophysiol 40 1051–65 [13.3.3f]

Verhoef BE, Vogels R, Janssen P (2010) Contribution of inferior temporal and posterior parietal activity to three-dimensional shape perception Curr Biol 20 909–13 [11.5.4]

Verhoeff FH (1928) An optical illusion due to chromatic aberration Am J Ophthal 11 898–900 [17.8]

Verhoeff FH (1933) Effect on stereopsis produced by disparate retinal images of different luminosities Arch Ophthal 10 640–4 [16.7.3b, 18.5.4a]

Verhoeff FH (1935) A new theory of binocular vision Arch Ophthal 13 151–75 [12.7.2]

Verhoeff FH (1942) Simple quantitative test for acuity and reliability of binocular stereopsis Arch Ophthal 28 1000–19 [18.2.1b]

Verstraten FAJ, Fredericksen RE, van de Grind WA (1994a) Movement aftereffect of bi-vectorial transparent motion Vis Res 34 349–58 [13.3.3c, 22.3.2]

Verstraten FAJ, Verlinde R, Fredericksen RE, van de Grind WA (1994b) A transparent motion aftereffect contingent on binocular disparity Perception 23 1181–8 [22.3.2, 22.5.4]

Verstraten FA, van der Smagt MJ, van de Grind WA (1998) Aftereffect of high speed motion Perception 27 1055–66 [13.3.3c]

Verstraten FAJ, van der Smagt MJ, Fredericksen RE, van de Grind WA (1999) Integration after adaptation to transparent motion: static and dynamic test patterns result in different aftereffect directions Vis Res 39 803–10 [22.3.2]

Vickery RM, Morley JW (1999) Binocular phase interactions in area 21a of the cat J Physiol 514 541–549 [11.3.2]

Vidyasagar TR (1976) Orientation specific colour adaptation at a binocular site Nature 291 39–40 [13.3.5]

(p.615) Vidyasagar TR, Henry GH (1990) Relationship between preferred orientation and ordinal position in neurons of cat striate cortex Vis Neurosci 5 565–9 [20.2.5]

Virsu V, Taskinen H (1975) Central inhibitory interactions in human vision Exp Brain Res 23 65–74 [13.3.2a]

Viswanathan L, Mingolla E (2002) Dynamics of attention in depth: evidence from multi-element tracking Perception 31 1415–37 [22.8.2c]

Vlaskamp BNS, Filippini HR, Banks MS (2009) Image-size differences worsen stereopsis independent of eye position J Vis 9(2) Article 17 [18.3.4]

Volkmann AW (1836) Neue Beiträge zur Physiologie des Gesichtssinnes Breitkopft, Leipzig [12.3.1a]

Von Aster E (1906) Beiträge zur Psychologie der Raumwahrnehmung Z Psychol 43 161–203 [24.1.7]

Von Bezold W (1876) The theory of colour Prang, Boston [22.4.5]

Von der Heydt R, Peterhans E (1989) Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity J Neurosci 9 1731–48 [13.3.2a, 22.2.4c]

Von der Heydt R, Adorjani CS, Hänny P, Baumgartner G (1978) Disparity sensitivity and receptive field incongruity of units in the cat striate cortex Exp Brain Res 31 523–45 [11.3.1, 11.4.3a, 11.4.5b, 20.3.1a]

Von der Heydt R, Hänny P, Dürsteler MR, Poggio GF (1982) Neuronal responses to stereoscopic tilt in the visual cortex of the behaving monkey Invest Ophthal Vis Sci 22 (Abs) 12 [11.6.2]

Von der Heydt R, Zhou H, Friedman HS (2000) Representation of stereoscopic edges in monkey visual cortex Vis Res 40 1995–67 [11.5.1]

Von Grünau MW, Dubé S, Kwas M (1993) The effect of disparity on motion coherence Spat Vis 7 227–41 [22.3.3]

Voorhorst FA, Overbeeke K, Smets GJF (1997) Using movement parallax for 3D laparoscopy Med Prog Technol 21 211–18 [24.2.4]

Vos JJ (1960) Some new aspects of color stereoscopy J Opt Soc Am 50 785–90 [17.8]

Vos JJ (1966) The color stereoscopic effect Vis Res 6 105–7 [17.8]

Vreven D (2006) 3D shape discrimination using relative disparity derivatives Vis Res 46 4181–92 [18.6.6]

Vreven D, Welch L (2001) The absence of depth constancy in contour stereograms Perception 30 693–705 [20.6.5c]

Vul E, Krizay E, MacLeod DIA (2008) The McCollough effect reflects permanent and transient adaptation in early visual cortex  J Vis 8 (12) Article 4 [13.3.5]

Wade NJ (1973) Binocular rivalry and binocular fusion of after–images Vis Res 13 999–1000 [12.3.5a, 12.3.6a]

Wade NJ (1974) The effect of orientation in binocular contour rivalry of real images and afterimages Percept Psychophys 15 227–32 [12.3.3c]

Wade NJ (1975a) Binocular rivalry between single lines viewed as real images and afterimages Percept Psychophys 17 571–7 [12.3.6a]

Wade NJ (1975b) Monocular and binocular rivalry between contours Perception 4 85–95 [12.3.2e, 12.3.8a]

Wade NJ (1976) Monocular and dichoptic interaction between afterimages Percept Psychophys 19 149–54 [12.3.8d]

Wade NJ (1977) Binocular rivalry between after-images illuminated intermittently Vis Res 17 310–12 [12.3.6a]

Wade NJ (1978) Why do patterned afterimages fluctuate in visibility? Psychol Bull 85 338–52 [12.3.3a]

Wade NJ (1980) The influence of colour and contour rivalry on the magnitude of the tilt illusion Vis Res 20 229–33 [12.6.3]

Wade NJ (1998) Early studies of eye dominance Laterality 3 97–108 [12.3.7]

Wade NJ (2007) The stereoscopic art of Ludwig Wilding Perception 36 479–82 [24.1.3a]

Wade NJ, de Weert CMM (1986) Aftereffects in binocular rivalry Perception 15 419–34 [12.3.1a]

Wade NJ, Ono H (2005) From dichoptic to dichotic: historical contrasts between binocular vision and binaural hearing Perception 34 645–68 [11.1.1]

Wade NJ, Swanston MT (1993) Monocular and dichoptic interactions between moving and stationary stimuli Perception 22 1111–19 [13.3.3e]

Wade NJ, Wenderoth P (1978) The influence of colour and contour rivalry on the magnitude of the tilt after–effect Vis Res 18 827–35 [12.6.3]

Wade NJ, De Weert CMM, Swanston MT (1984) Binocular rivalry with moving patterns Percept Psychophys 35 111–22 [12.3.6b]

Wade NJ, Swanston MT, de Weert CMM (1993) On interocular transfer of motion aftereffects Perception 22 1365–80 [13.3.3a]

Wade NJ, Ono H, Lillakas L (2001) Leonardo da Vinci’s struggles with representations of reality Leonardo 34 231–5 [16.7.4b]

Wade NJ, Ono H, Mapp AP (2006) The lost direction in binocular vision: The neglected signs posted by Wells, Towne, and LeConte J Hist Behav Sci 42 61–86 [16.7.2b]

Wade NJ, Ono H, Mapp AP, Lillakas L (2011) The singular vision of William Charles Wells (1757–1817) J History Neurosci 20 1–15 [16.7.2a]

Waespe W, Henn V (1979) The velocity response of vestibular nucleus neurons during vestibular visual and combined angular acceleration Exp Brain Res 37 337–47 [22.6.1a]

Wales R, Fox R (1970) Increment detection thresholds during binocular rivalry suppression Percept Psychophys 8 90–4 [12.7.2]

Walker GA, Ohzawa I, Freeman RD (1998) Binocular cross-orientation suppression in the cat’s striate cortex J Neurophysiol 79 227–39 [12.9.2b]

Walker JT (1976) Slant perception and binocular brightness differences: some aftereffects of viewing apparent and objective surface slants Percept Psychophys 20 395–402 [17.9]

Walker JT, Kruger MW (1972) Figural aftereffects in random–dot stereograms without monocular contours Perception 1 187–92 [16.3.3]

Walker P (1975) Stochastic properties of binocular rivalry alternations Percept Psychophys 18 467–73 [12.10]

Walker P (1978a) Orientation–selective inhibition and binocular rivalry Perception 7 207–14 [13.3.2a]

Walker P (1978b) Binocular rivalry: central or peripheral selective processes? Psychol Bull 85 376–89 [12.10]

Walker P, Powell DJ (1979) The sensitivity of binocular rivalry to changes in the nondominant stimulus Vis Res 19 277–9 [12.3.3d, 12.5.3]

Wallace JM, Mamassian P (2004) The efficiency of depth discrimination for non-transparent and transparent stereoscopic surfaces Vis Res 44 2253–67 [18.9]

Wallach H (1935) über visuell wahrgenommene Bewegungsrichtung Psychol Forsch 20 325–80 (Translated by S Wuerger, R Shapley, N Rubin) Perception 25 1317–67 [22.3.1, 22.3.3]

Wallach H (1948) Brightness constancy and the nature of achromatic colors J Exp Psychol 38 310–24 [22.4.3b]

Wallach H (1976) The direction of motion of straight lines. In On perception (H Wallach) pp 200–216 New York Times Book Co, New York [22.3.1]

Wallach H, Adams PA (1954) Binocular rivalry of achromatic colors Am J Psychol 67 513–6 [12.3.2d]

Wallach H, Bacon J (1976) Two forms of retinal disparity Percept Psychophys 19 375–82 [20.4.1a]

Wallach H, Frey KJ (1972) Adaptation in distance perception based on oculomotor cues Percept Psychophys 11 77–83 [13.4.3]

Wallach H, Goldberg J (1977) An exploration of the Pulfrich effect Scand J Psychol 18 231–6 [23.5]

Wallach H, Karsh EB (1963) Why the modification of stereoscopic depth–perception is so rapid Am J Psychol 76 413–20 [18.14.1]

Wallach H, Lindauer J (1962) On the definition of retinal disparity Psychol Beit 6 521–30 [20.1.2]

Wallach H, Zuckerman C (1963) The constancy of stereoscopic depth Am J Psychol 76 404–12 [20.6.3d]

Wallach H, Bacon J, Schulman P (1978) Adaptation in motion perception: alteration of induced motion Percept Psychophys 27 509–14 [22.7]

(p.616) Wallach H, Gillam B, Cardillo L (1979) Some consequences of stereoscopic depth constancy Percept Psychophys 29 235–40 [20.6.3d]

Walls GL (1943) Factors in human visual resolution J Opt Soc Am 33 487–505 [18.11]

Walls GL (1951) A theory of ocular dominance Arch Ophthal 45 387–412 [16.7.6b]

Walls GL (1953) Interocular transfer of after–images Am J Optom Arch Am Acad Optom 30 57–64 [13.3.1, 13.3.3a]

Walraven J (1975) Amblyopia screening with random–dot stereograms Am J Ophthal 80 893–9 [18.2.3b]

Walsh G (1988) The effect of mydriasis on the pupillary centration of the human eye Ophthal Physiol Opt 8 178–82 [17.8]

Walton NH (1952) A study of retinal correspondence by after-image methods Am J Optom Arch Am Acad Optom 29 90–103 [14.4.1b]

Wang C, Dreher B (1996) Binocular interactions and disparity coding in area 21a of cat extrastriate visual cortex Exp Brain Res 108 257–72 [11.3.2]

Wang YZ, Thibos LN, Bradley A (1997) Effects of refractive error on detection acuity and resolution acuity in peripheral vision Invest Ophthal Vis Sci 38 2134–43 [13.1.2e]

Wang Z, Wu X, Ni R, Wang U (2001) Double fusion does not occur in Panum’s limiting case: evidence from orientation disparity Perception 30 1143–9 [17.6.3]

Wanless HR (1965) Aerial stereo photographs Hubbard Scientific Company Northbrook Illinois [24.2.1]

Wann JP, Rushton S, Mon-Williams M (1995) Natural problems for stereoscopic depth perception in virtual environments Vis Res 35 2731–6 [23.6.4]

Ward R, Morgan MJ (1978) Perceptual effect of pursuit eye movements in the absence of a target Nature 274 158–9 [21.6.1a]

Ware C, Mitchell DE (1974) The spatial selectivity of the tilt aftereffect Vis Res 14 735–7 [21.6.1a]

Warren N (1940) A comparison of standard tests of depth perception Am J Optom Arch Am Acad Optom 17 208–11 [18.2.4]

Warren PA, Maloney LT, Landy MS (2002) Interpreting sampled contours in 3-D: analysis of variability and bias Vis Res 42 2431–46 [18.6.6]

Washburn MF (1933) Retinal rivalry as a neglected factor in stereoscopic vision Proc Natl Acad Sci 19 773–7 [12.7.2]

Washburn MF, Faison C, Scott R (1934) A comparison between the Miles A–B–C method and retinal rivalry as tests of ocular dominance Am J Psychol 46 633–6 [12.3.7]

Watamaniuk SNJ, Sekuler R, Williams DW (1989) Direction perception in complex dynamic displays: the integration of direction information Vis Res 29 47–59 [16.5.3b, 22.7.4]

Watanabe K (1999) Optokinetic nystagmus with spontaneous reversal of transparent motion perception Exp Brain Res 129 156–60 [22.6.1f]

Watanabe K, Paik Y, Blake R (2004) Preserved gain control for luminance during binocular rivalry suppression Vis Res 44 3065–71 [12.7.2]

Watanabe M, Tanaka H, Uka T, Fujita I (2002) Disparity-selective neurones in area V4 of macaque monkeys J Neurophysiol 87 1960–73 [11.5.3a]

Watanabe O, Fukushima K (1999) Stereo algorithm that extracts a depth cue from interocularly unpaired points Neural networks 12 569–78 [11.10.1c, 17.3]

Watanabe T, Cavanagh P (1992) Depth capture and transparency of regions bounded by illusory and chromatic contours Vis Res 32 527–32 [22.2.4b]

Watanabe T, Nanez JE, Moreno MA (1995) Depth release of illusory contour shape in the Ehrenstein grid Vis Res 35 2845–51 [22.2.4b]

Watson AB, Nachmias J (1977) Patterns of temporal interaction in the detection of gratings Vis Res 17 893–902 [13.1.6c]

Watson SE, Kramer AF (1999) Object-based visual attention and perceptual organization Percept Psychophys 61 31–49 [22.8.1]

Watson TL, Pearson J, Clifford CWG (2004) Perceptual grouping of biological motion promotes binocular rivalry Curr Biol 14 1670–4 [12.4.4b]

Watt RJ (1987) Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus J Opt Soc Am A 4 2006–21 [18.12.1c]

Waugh SJ, Levi DM (1993) Visibility, timing and vernier acuity Vis Res 33 505–26 [18.12.1a]

Weale RA (1954) Theory of the Pulfrich effect Ophthalmologica 128 380–8 [23.2.1]

Weale RA (1956) Stereoscopic acuity and convergence J Opt Soc Am 46 907 [18.10.2a]

Wehrhahn C, Westheimer G, Abulencia A (1990) Binocular summation in temporal-order detection J Opt Soc Am A 7 731–2 [13.1.6c]

Weinman J, Cooke V (1982) A nonspecific learning effect in the perception of random-dot stereograms Perception 11 93–5 [18.14.2a]

Weinshall D (1991) Seeing “ghost” planes in stereo vision Vis Res 31 1731–48 [15.3.1, 17.6.3, 18.9]

Weinshall D (1993) The computation of multiple matching of doubly ambiguous stereograms with transparent planes Spat Vis 7 183–98 [15.3.1, 17.6.3, 18.9]

Weiskrantz L (1987) Blindsight: a case study and implications Oxford University Press, London [11.6.4]

Weisstein N (1972) Metacontrast In Handbook of sensory physiology (ed D Jameson, LM Hurvich) Vol VII/4 pp 233–72 Springer, New York [13.2.7]

Weitzman B (1963) A threshold difference produced by a figure-ground dichotomy J Exp Psychol 66 201–5 [22.5.1a]

Welchman AE, Deubelius A, Conrad V, et al. (2005) 3D shape perception from combined depth cues in human visual cortex Nat Neurosci 8 820–7 [11.8.1]

Wells W C (1792) An Essay upon Single Vision with Two Eyes: Together with Experiments and Observations on several other Subjects in Optics (Cadell, London) (Reprinted in Wade 2003) [16.7.2b, 16.7.2d]

Welpe E, von Seelen W, Fahle M (1980) A dichoptic edge effect resulting from binocular contour dominance Perception 9 683–93 [12.3.1a]

Wenderoth PM (1970) A visual spatial aftereffect of surface slant Am J Psychol 83 576–90 [21.6.1b]

Wenderoth PM (1971) Studies of a stereoscopic aftereffect of a contour slanted in the median plane Aust J Optom 54 114–23 [21.6.1a]

Wenderoth PM, Rodger RS, Curthoys IS (1968) Confounding of psychophysical errors and sensory effects in adjustment measures of spatial aftereffects Percept Psychophys 4 133–8 [21.6.2b]

Werner A (2006) The influence of depth segmentation on colour constancy Perception 35 1171–84 Werner H (1935) Studies on contour: I Qualitative analysis Am J Psychol 47 40–64 [22.4.6]

Werner H (1937) Dynamics in binocular depth perception Psychol Monogr 49 1–120 [21.3.1, 21.3.4, 21.5.2]

Werner H (1938) Binocular depth contrast and the conditions of the binocular field Am J Psychol 51 489–97 [21.3.1, 21.5.2]

Werner H (1940) Studies on contour: strobostereoscopic phenomena Am J Psychol 53 418–22 [13.2.7, 13.2.7b]

Wertheimer M (1912) Experimentelle Studien über das Sehen von Bewegung Z Psychol Physiol Sinnesorg 61 161–295 [22.5.3d]

Wertheimer M (1923) Untersuchungen zur Lehre von der Gestalt Psychol Forsch 4 301–50. English translation in WD Ellis (1967) A source book of Gestalt psychology Humanities Press, New York [22.1.1]

Westall CA, Schor CM (1985) Asymmetries of optokinetic nystagmus in amblyopia: the effect of selected retinal stimulation Vis Res 25 1431–8 [22.6.1c]

Westall CA, Eizenman M, Kraft SP, et al. (1998) Cortical binocularity and monocular optokinetic asymmetry in early-onset esotropia Invest Ophthal Vis Sci 39 1352–9 [22.6.1e]

Westendorf DH (1989) Binocular rivalry and dichoptic masking: suppressed stimuli do not mask stimuli in a dominating eye J Exp Psychol HPP 15 485–92 [13.2.4c]

Westendorf DH, Blake R (1988) Binocular reaction times to contrast increments Vis Res 28 355–9 [13.1.7]

Westendorf DH, Fox R (1974) Binocular detection of positive and negative flashes Percept Psychophys 15 61–5 [13.1.6a]

(p.617) Westendorf DH, Fox R (1975) Binocular detection of vertical and horizontal line segments Vis Res 15 471–76 [13.1.2c, 13.1.6a]

Westendorf DH, Fox R (1977) Binocular detection of disparate light flashes Vis Res 17 697–702 [13.1.2d]

Westendorf DH, Blake R, Fox R (1972) Binocular summation of equivalent energy flashes of unequal duration Percept Psychophys 12 445–8 [13.1.6b]

Westendorf DH, Blake R, Sloane M, Chambers D (1982) Binocular summation occurs during interocular suppression J Exp Psychol HPP 8 81–90 [12.5.2]

Westheimer G (1965) Spatial interaction in the human retina during scotopic vision J Physiol 181 881–94 [13.2.3]

Westheimer G (1967) Spatial interaction in human cone vision J Physiol 190 139–54 [13.2.3]

Westheimer G (1978) Vertical disparity detection: is there an induced size effect? Invest Ophthal Vis Sci 17 545–51 [20.2.3a, 20.6.5a]

Westheimer G (1979a) Cooperative neural processes involved in stereoscopic acuity Exp Brain Res 36 585–97 [18.3.2a, 18.12.2b]

Westheimer G (1979b) The spatial sense of the eye Invest Ophthal Vis Sci 18 893–912 [18.11]

Westheimer G (1984) Sensitivity for vertical retinal image differences Nature 307 632–4 [20.2.3a, 20.6.5a]

Westheimer G (1986a) Panum’s phenomenon and the confluence of signals from the two eyes in stereoscopy Proc R Soc B 228 289–305 [17.6.1, 17.6.3]

Westheimer G (1986b) Spatial interaction in the domain of disparity signals in human stereoscopic vision J Physiol 370 619–29 [21.2, 21.5.1]

Westheimer G (2011) Reversed tilt effect for dichoptic stimulation in vertical meridian Vis Res 51 101–4 [13.3.2a]

Westheimer G, Hauske G (1975) Temporal and spatial interference with vernier acuity Vis Res 15 1137–41 [13.2.5]

Westheimer G, Levi DM (1987) Depth attraction and repulsion of disparate stimuli Vis Res 27 1361–8 [21.2]

Westheimer G, Ley E (1996) Temporal uncertainty effects on line orientation discrimination and stereoscopic thresholds J Opt Soc Am 13 884–6 [18.13]

Westheimer G, McKee SP (1977) Integration regions for visual hyperacuity Vis Res 17 89–93 [18.10.1a]

Westheimer G, McKee SP (1978) Stereoscopic acuity for moving retinal images J Opt Soc Am 68 450–5 [18.3.3a, 18.10.1b]

Westheimer G, McKee SP (1979) What prior uniocular processing is necessary for stereopsis? Invest Ophthal Vis Sci 18 614–21 [18.6.2a, 18.11]

Westheimer G, McKee SP (1980a) Stereogram design for testing local stereopsis Invest Ophthal Vis Sci 19 802–9 [18.6.2a, 24.1.5]

Westheimer G, McKee SP (1980b) Stereoscopic acuity with defocused and spatially filtered retinal images J Opt Soc Am 70 772–8 [18.5.2, 18.5.4b]

Westheimer G, Mitchell DE (1969) The sensory stimulus for disjunctive eye movements Vis Res 9 749–55 [15.3.4b, 18.10.3a]

Westheimer G, Pettet MW (1990) Contrast and duration of exposure differentially affect vernier and stereoscopic acuity Proc R Soc 27 42–6 [18.11]

Westheimer G, Pettet MW (1992) Detection and processing of vertical disparity by the human observer Proc R Soc B 250 273–7 [20.6.5a]

Westheimer G, Tanzman IJ (1956) Qualitative depth localization with diplopic images J Opt Soc Am 46 116–17 [18.4.1a, 18.6.4]

Westheimer G, Truong TT (1988) Target crowding in foveal and peripheral stereoacuity Am J Optom Physiol Opt 65 395–9 [18.6.2a]

Westheimer G, Shimamura K, McKee SP (1976) Interference with line-orientation sensitivity J Opt Soc Am 66 332–8 [13.2.5]

Wetherick NE (1977) The significance of the nose for certain phenomena of visual perception Nat New Biol 296 442–3 [16.7.1]

Wexler M, Quarti N (2008) Depth affects where we look Curr Biol 18 1872–6 [18.10.2b]

Weyand TG, Malpeli JG (1993) Responses of neurons in primary visual cortex are modulated by eye position J Neurophysiol 69 2258–60 [11.4.6b]

Wheatley C, Cook ML, Vidyasagar TR (2004) Surface segregation influences pre-attentive search in depth Neuroreport 15 303–5 [22.8.2b]

Wheatstone C (1838) Contributions to the physiology of vision – Part the first On some remarkable and hitherto unobserved phenomena of binocular vision Philos Tr R Soc 128 371–94 [12.1.1a, 12.3.1a, 16.7.3a, 16.7.7, 18.10.1a, 20.6.3b]

White CT, Bonelli L (1970) Binocular summation in the evoked potential as a function of image quality Am J Optom Arch Am Acad Optom 47 304–9 [13.1.8b]

White KD, Odom JV (1985) Temporal integration in global stereopsis Percept Psychophys 37 139–44 [20.4.2]

White KD, Petry HM, Riggs LA, Miller J (1978) Binocular interactions during establishment of McCollough effects Vis Res 18 1201–15 [12.6.3, 13.3.5]

White M (1979) A new effect of pattern on perceived lightness Perception 8 413–16 [22.4.5]

Whitten DN, Brown KT (1973) Photopic suppression of monkey’s rod receptor potential, apparently by a cone-initiated lateral inhibition Vis Res 13 1629–58 [13.2.3]

Whittle P (1965) Binocular rivalry and the contrast at contours J Exp Psychol 17 217–29 [12.3.2a]

Whittle P, Challands PDC (1969) The effect of background luminance on the brightness of flashes Vis Res 9 1095–1110 [13.2.2]

Whittle P, Bloor DC, Pocock S (1968) Some experiments on figural effects in binocular rivalry Percept Psychophys 4 183–8 [12.4.4b]

Wick B (1990) Stability of retinal correspondence during divergence: evaluation with afterimages and Haidinger brushes Optom Vis Sci 67 779–86 [14.6.2a]

Wick B (1991) Stability of retinal correspondence in normal binocular vision Optom Vis Sci 68 146–58 [14.4]

Wickelgren BG, Sterling P (1969) Influence of visual cortex on receptive fields in the superior colliculus of the cat J Neurophysiol 32 16–22 [11.2.3]

Wieniawa-Narkiewicz BM, Wimborne BM, Michalski A, Henry GH (1992) Area 21a in the cat and the detection of binocular orientation disparity Ophthal Physiol Opt 12 299–72 [11.6.2]

Wiesenfelder H, Blake R (1990) The neural site of binocular rivalry relative to the analysis of motion in the human visual system J Neurosci 10 3880–8 [12.6.4]

Wiesenfelder H, Blake R (1991) Apparent motion can survive binocular rivalry suppression Vis Res 31 1589–99 [12.5.4a]

Wiesenfelder H, Blake R (1992) Binocular rivalry suppression disrupts recovery from motion adaptation Vis Neurosci 9 143–8 [12.6.4]

Wilcox LM, Hess RF (1995) Dmax for stereopsis depends on size not spatial frequency content Vis Res 35 1061–9 [18.4.1c, 18.4.1d]

Wilcox LM, Hess RF (1996) Is the site of non-linear filtering in stereopsis before or after binocular combination Vis Res 36 391–9 [18.7.2d]

Wilcox LM, Hess RF (1997) Scale selection for second-order (non-linear) stereopsis Vis Res 37 2981–92 [18.7.2d]

Wilcox LM, Hess RF (1998) When stereopsis does not improve with increasing contrast Vis Res 38 3671–79 [18.7.2d]

Wilcox LM, Lakra DC (2007) Depth from binocular half-occlusions in stereoscopic images of natural scenes Perception 36 830–9 [17.2.2]

Wilcox LM, Timney B, St John R (1990) Measurement of visual aftereffects and inferences about binocular mechanisms in human vision Perception 19 43–55 [13.3.1, 13.3.2a]

Wilcox LM, Timney B, Girash M (1994) On the contribution of a binocular ‘AND’ channel at contrast threshold Perception 23 659–69 [13.3.2a]

Wilcox LM, Elder JH, Hess RF (2000) The effects of blur and size on monocular and stereoscopic localization Vis Res 40 3575–84 [18.7.2d]

Wilcox LM, Harris JM, McKee, SP (2007) The role of binocular stereopsis in monoptic depth perception Vis Res 47 2367–77 [17.6.5]

(p.618) Wilde K (1950) Der Punktreiheneffekt und die Rolle der binocularen Querdisparation beim Tiefensehen Psychol Forsch 23 223–62 [20.2.1, 22.2.3a]

Wilkie M, Logothetis NK, Leopold DA (2003) Generalized flash suppression of salient visual targets Neuron 39 1043–52 [12.3.5f]

Williams DR, Artal P, Navarro R, et al. (1996) Off-axis optical quality and retinal sampling in the human eye Vis Res 36 1103–14 [13.1.2e]

Williams JM, Lit A (1983) Luminance–dependent visual latency for the Hess effect the Pulfrich effect and simple reaction time Vis Res 23 171–9 [23.2.3]

Williams MA, Morris AP, McGlone F et al. (2004) Amygdala responses to fearful and happy facial expressions under conditions of binocular suppression J Neurosci 24 2898–904 [12.9.2f]

Williams R (1974) The effect of strabismus on dichoptic summation of form information Vis Res 14 307–9 [13.1.3e]

Williams S, Simpson A, Silva PA (1988) Stereoacuity levels and vision problems in children from 7 to 11 years Ophthal Physiol Opt 8 386–9 [18.2.3b]

Wilson HR (1976) The significance of frequency gradients in binocular grating perception Vis Res 16 983–9 [20.2.1]

Wilson HR (1977) Hysteresis in binocular grating perception: contrast effects Vis Res 17 843–51 [18.5.4a]

Wilson HR (2003) Computational evidence for a rivalry hierarchy in vision Proc Natl Acad Sci 100 14499–503 [12.10]

Wilson HR (2007) Minimal physiological conditions for binocular rivalry and rivalry memory Vis Res 47 2741–50 [12.10]

Wilson HR, Bergen JR (1979) A four mechanism model for threshold spatial vision Vis Res 19 19–32 [20.2.1]

Wilson HR, Gelb DJ (1984) Modified line element theory for spatial–frequency and width discrimination J Opt Soc Am A 1 127–31 [18.7.4]

Wilson HR, Giese SC (1977) Threshold visibility of frequency gradient patterns Vis Res 17 1177–90 [20.2.1]

Wilson HR, Kim J (1994) A model for motion coherence and transparency Vis Neurosci 11 1205–20 [22.3.3]

Wilson HR, Blake R, Pokorny J (1988) Limits of binocular fusion in the short wave sensitive (“blue”) cones Vis Res 28 555–62 [12.1.3d]

Wilson HR, Blake R, Halpern DL (1991) Coarse spatial scales constrain the range of binocular fusion on fine scales J Opt Soc Am A 8 229–36 [12.1.3b]

Wilson HR, Ferrera VP, Yo C (1992) A psychophysically motivated model for two-dimensional motion perception Vis Neurosci 9 79–97 [18.7.2d]

Wilson HR, Blake R, Lee SH (2001) Dynamics of travelling waves in visual perception Nature 412 907–10 [12.3.5e]

Wilson JA, Anstis SM (1969) Visual delay as a function of luminance Am J Psychol 82 350–8 [23.2.3, 23.4.1]

Wilson JA, Robinson JO (1986) The impossibly twisted Pulfrich pendulum Perception 15 503–4 [23.1.3]

Wilson ME, Cragg BG (1967) Projections from the lateral geniculate nucleus in the cat and monkey J Anat 101 677–92 [11.9.2]

Winn B, Bradley A, Strang NC, et al. (1995) Reversals of the colour-depth illusion explained by ocular chromatic aberration Vis Res 35 2975–84 [17.8]

Wist ER (1968) The influence of the equidistance tendency on depth shifts resulting from an interocular delay in stimulation Percept Psychophys 3 89–92 [23.3.1]

Wist ER (1970) Do depth shifts resulting from an interocular delay in stimulation result from a breakdown of binocular fusion? Percept Psychophys 8 15–19 [23.3.1]

Wist ER (1974) Mach bands and depth adjacency Bull Psychonom Soc 3 97–9 [22.4.2]

Wist ER (1975) Convergence and stereoscopic depth shifts produced by interocular delays in stimulation Bull Psychonom Soc 5 251–3 [23.3.1]

Wist ER, Gogel WC (1966) The effect of interocular delay and repetition interval on depth perception Vis Res 6 325–34 [18.12.2a]

Wist ER, Brandt TH, Diener HC, Dichgans J (1977) Spatial frequency effect on the Pulfrich stereophenomenon Vis Res 17 391–7 [23.3.6]

Witasek St (1899) über die Natur der geometrisch-optischen Täuschungen Z Psychol Physiol Sinnesorg 19 81–174 [16.3.1]

Wittenberg S, Brock FW, Folsom WC (1969) Effect of training on stereoscopic acuity Am J Optom Arch Am Acad Optom 46 645–53 [18.14.1]

Wohlgemuth A (1911) On the after–effect of seen movement Br J Psychol Monogr Supp No 1 1–117 [13.3.3a, 13.3.3d, 13.3.3f, 16.4.3, 21.1]

Wojciulik E, Kanwisher N, Driver J (1998) Modulation of activity in the fusiform face area by covert attention: an MRI study J Neurophysiol 79 1574–8 [12.9.2f]

Wolf E, Zigler MJ (1955) Course of dark adaptation under various conditions of pre–exposure and testing J Opt Soc Am 45 696–702 [13.2.2]

Wolf E, Zigler MJ (1963) Effects of uniocular and binocular excitation of the peripheral retina with test fields of various shapes on binocular summation J Opt Soc Am 53 1199–205 [13.1.2e]

Wolf E, Zigler MJ (1965) Excitation of the peripheral retina with coincident and disparate test fields J Opt Soc Am 55 1517–19 [13.1.2e]

Wolfe JM (1983a) Afterimages binocular rivalry and the temporal properties of dominance and suppression Perception 12 439–45 [12.3.5a]

Wolfe JM (1983b) Influence of spatial frequency luminance and duration on binocular rivalry and abnormal fusion of briefly presented dichoptic stimuli Perception 12 447–56 [12.3.5a]

Wolfe JM (1984) Reversing ocular dominance and suppression in a single flash Vis Res 27 471–8 [12.3.5f, 12.4.4a]

Wolfe JM (1986a) Briefly presented stimuli can disrupt constant suppression and binocular rivalry suppression Perception 15 413–17 [12.3.5a]

Wolfe JM (1986b) Stereopsis and binocular rivalry Psychol Rev 93 299–82 [12.7.3]

Wolfe JM, Franzel SL (1988) Binocularity and visual search Percept Psychophys 44 81–93 [16.6.1a, 16.8]

Wolfe JM, Held R (1980) Cyclopean stimulation can influence sensations of self-motion in normal and stereoblind subjects Percept Psychophys 28 139–42 [16.4.2g]

Wolfe JM, Held R (1981) A purely binocular mechanism in human vision Vis Res 21 1755–9 [13.3.1, 13.3.2a]

Wolfe JM, Held R (1982) Binocular adaptation that cannot be measured monocularly Perception 11 287–95 [13.3.2a]

Wolfe JM, Held R (1983) Shared characteristics of stereopsis and the purely binocular process Vis Res 23 217–27 [13.3.1, 13.3.2]

Wolfe JM, Held R, Bauer JA (1981) A binocular contribution to the production of optokinetic nystagmus in normal and stereoblind subjects Vis Res 21 587–90 [16.5.1]

Wolpert DM, Miall RC, Cumming B, Boniface SJ (1993) Retinal adaptation of visual processing time delays Vis Res 33 1421–30 [23.4.2b]

Wong BP, Woods RL, Peli E (2002) Stereoacuity at distance and near Optom Vis Sci 79 771–8 [18.2.4]

Wong E, Weisstein N (1982) A new perceptual context–superiority effect: line segments are more visible against a figure than against a ground Science 218 587–9 [22.5.1a]

Wong E, Weisstein N (1983) Sharp targets are detected better against a figure, and blurred targets are detected better against a background J Exp Psychol HPP 9 194–202 [22.5.1a]

Wong E, Weisstein N (1985) A new visual illusion: flickering fields are localized in a depth plane behind nonflickering fields Perception 14 13–17 [22.1.1]

Woo GCS (1974a) The effect of exposure time on the foveal size of Panum’s area Vis Res 14 473–80 [12.1.4]

Woo GCS (1974b) Temporal tolerance of the foveal size of Panum’s area Vis Res 14 633–5 [12.1.4]

Woo GCS, Sillanpaa V (1979) Absolute stereoscopic thresholds as measured by crossed and uncrossed disparities Am J Optom Physiol Opt 56 350–5 [18.6.4]

(p.619) Wood ICJ (1983) Stereopsis with spatially-degraded images Ophthal Physiol Opt 3 337–40 [18.5.4b]

Wood JM, Collins MJ, Carkeet A (1992) Regional variations in binocular summation across the visual field Ophthal Physiol Opt 12 46–51 [13.1.2e]

Woodburne LS (1934) The effect of constant visual angle upon the binocular discrimination of depth differences Am J Psychol 46 273–86 [18.2.1a]

Wood CC, Spear PD, Braun JJ (1973) Direction-specific deficits in horizontal optokinetic nystagmus following removal of visual cortex in the cat Brain Res 60 231–7 [22.6.1b]

Woods RL, Bradley A, Atchison DA (1996) Monocular diplopia caused by ocular aberrations and hyperopic defocus Vis Res 36 3597–606 [14.4.2]

Worth C (1903) Squint Blakiston, Philadelphia [14.4.2]

Wright MJ (1986) Apparent velocity of motion aftereffects in central and peripheral vision Perception 15 603–12 [13.3.3a]

Wright WD (1951) The role of convergence in stereoscopic vision Proc Physics Soc 64B 289–97 [18.10.2a]

Wu MC, David, SV, Gallant, JL (2006) Complete functional characterization of sensory neurons by system identification Ann Rev Neurosci 29 477–505 [11.10.1b]

Wu X, Zhou Q, Lin X, Wang YJ (1998) Stereo capture: local rematching driven by binocularly attended 3-D configuration rather than retinal images Vis Res 38 2081–5 [22.2.4b]

Wunderlich K, Schneider KA, Kastner S (2005) Neural correlates of binocular rivalry in the human lateral geniculate nucleus Nat Neurosci 8 1595–602 [12.9.1]

Würger SM, Landy MS (1989) Depth interpolation with sparse disparity cues Perception 18 39–54 [22.2.1]

Xue JT, Ramoa AS, Carney T, Freeman RD (1987) Binocular interaction in the dorsal lateral geniculate nucleus of the cat Exp Brain Res 68 305–10 [11.2.1]

Xue JT, Carney T, Ramoa AS, Freeman RD (1988) Binocular interaction in the perigeniculate nucleus of the cat Exp Brain Res 69 497–508 [11.2.1]

Yang J, Stevenson SB (1999) Post retinal processing of background luminance Vis Res 39 4045–51 [13.2.2]

Yang JN, Maloney LT (2001) Illuminant cues in surface color perception: tests of three candidate cues Vis Res 41 2581–600 [22.4.6]

Yang JN, Shevell SK (2002) Stereo disparity improves color constancy Vis Res 42 1979–89 [22.4.6]

Yang M, Papathomas TV, Kovács J, Julesz B (1996) No fusion in reverse-color-polarity stereograms: symmetries in luminance and color contributions Invest Ophthal Vis Sci 37 (Abs) 284 [15.3.8a]

Yang Y, Blake R (1991) Spatial frequency tuning of human stereopsis Vis Res 31 1177–89 [18.7.4]

Yang Y, Rose D, Blake R (1992) On the variety of percepts associated with dichoptic viewing of dissimilar monocular stimuli Perception 21 47–62 [12.3.3b]

Yang Z, Purves D (2003) A statistical explanation of visual space Nat Neurosci 6 632–40 [15.3.12]

Yantis S (1992) Multielement visual tracking; attention and perceptual organization Cog Psychol 24 295–340 [22.8.2c]

Yarbus AL (1967) Eye movements and vision (Translated by LA Riggs) Plenum, New York [18.10.4]

Ye M, Bradley A, Thibos LN, Zhang X (1991) Interocular differences in transverse chromatic aberration determine chromostereopsis for small pupils Vis Res 31 1787–96 [17.8]

Ye M, Bradley A, Thibos LN, Zhang X (1992) The effect of pupil size on chromostereopsis and chromatic diplopia: interaction between the Stiles–Crawford effect and chromatic aberrations Vis Res 32 2121–8 [17.8]

Yelin D, Rizvi I, White WM, et al. (2006) Three-dimensional miniature endoscopy Nature 443 765 [24.2.4]

Yellott JI, Kaiwi JL (1979) Depth inversion despite stereopsis: the appearance of random-dot stereograms on surfaces seen in reverse perspective Perception 8 135–42 [21.6.2g]

Yellott JI, Wandell BA (1976) Color properties of the contrast flash effect: monoptic vs dichoptic comparisons Vis Res 16 1275–80 [13.2.7b]

Yeshurun Y, Schwartz EL (1989) Cepstral filtering on a columnar image architecture: a fast algorithm for binocular stereo segmentation IEE Tr Patt Anal Mach Intel 11 759–67 [15.2.1d]

Yeshurun Y, Schwartz EL (1990) Neural maps as data structures Fast segmentation of binocular images In Computational neuroscience (ed EL Schwartz) pp 256–66 MIT Press, Cambridge MA [15.2.1d]

Yeshurun Y, Schwartz EL (1999) Cortical hypercolumn size determines stereo fusion limits Biol Cyber 80 117–29 [12.1.1d]

Yin C, Kellman PJ, Shipley TF (2000) Surface integration influences depth discrimination Vis Res 40 1969–78 [22.1.3]

Young RH, Lit A (1972) Stereoscopic acuity for photometrically matched background wavelengths at scotopic and photopic levels Percept Psychophys 11 213–16 [18.5.5]

Yu K, Blake R (1992) Do recognizable figures enjoy an advantage in binocular rivalry? J Exp Psychol 18 1158–73 [12.8.3a]

Zanoni D, Rosenbaum AL (1991) A new method for evaluating stereo acuity J Ped Ophthal Strab 28 255–60 [18.2.3d]

Zaretskaya N, Thielscher A, Logothetis NK, Bartels A (2010) Disrupting parietal function prolongs dominance durations in binocluar rivalry Curr Biol 20 2106–11 [12.9.2f]

Zee DS, Tusa RJ, Herdman SJ, et al. (1987) Effects of occipital lobotomy upon eye movements in primate J Neurophysiol 58 883–906 [22.6.1b]

Zeevi YY, Geri GA (1985) A purely central movement aftereffect induced by binocular viewing of dynamic visual noise Percept Psychophys 38 433–7 [16.4.3, 23.6.1]

Zeki SM (1978) Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex J Physiol 277 273–90 [13.1.8b]

Zeki SM (1990) A century of achromatopsia Brain 113 1721–77 [17.1.4e]

Zeki SM, Fries W (1980) A function of the corpus callosum in the Siamese cat Proc R Soc B 207 279–58 [11.9.2]

Zemon V, Pinkhasov E, Gordon J (1993) Electrophysiological tests of neural models: evidence for nonlinear binocular interactions in humans Proc Natl Acad Sci 90 2975–8 [13.1.8b]

Zhang X, Bradley A, Thibos LN (1991) Achromatizing the human eye: the problem of chromatic parallax J Opt Soc Am A 8 686–91 [17.8]

Zhang ZL, Edwards M, Schor CM (2001) Spatial interactions minimize relative disparity between adjacent surfaces Vis Res 41 2995–307 [15.3.2]

Zhang ZL, Berends EM, Schor CM (2003) Thresholds for stereo-slant discrimination between spatially separated targets are influenced mainly by visual and memory factors but not oculomotor instability J Vis 3 710–24 [18.10.2a, 18.10.2b]

Zhang ZL, Cantor C, Ghose T, Schor CM (2004) Temporal aspects of spatial interactions affecting stereo-matching solutions Vis Res 44 3183–92 [15.3.2]

Zhang ZL, Cantor C, Schor CM (2010) Perisaccadic stereo depth with retinal disparity Curr Biol 20 1176–81 [19.3.5]

Zhaoping L (2002) Pre-attentive segmentation and correspondence in stereo Philos Trans R Soc B 357 1877–83 [11.10.1c]

Zhou H, Friedman HS, von der Heydt R (2000) Coding of border ownership in monkey visual cortex J Neurosci 20 6594–611 [11.5.1]

Zhou W, Jiang Y, He S, Chen D (2010) Olfaction modulates visual perception in binocular rivalry Curr Biol 20 1356–8 [12.8.4]

Zhu M, Hertle RW, Kim CH, et al. (2008) Effect of binocular rivalry suppression on initial ocular following responses J Vis 8 (4) Article 19 [12.5.4b]

Zhu Y, Qian N (1996) Binocular receptive field models, disparity tuning and characteristic disparity Neural Comput 8 1647–77 [11.4.3c]

Ziegler LR, Hess RF (1997) Depth perception during diplopia is direct Perception 26 1225–30 [15.3.4b, 18.4.1g]

(p.620) Ziegler LR, Hess RF (1999) Stereoscopic depth but not shape perception from second order stimuli Vis Res 39 1491–507 [18.7.2d]

Ziegler LR, Kingdom FAA, Hess RF (2000a) Local luminance factors that determine the maximum disparity for seeing cyclopean surface shape Vis Res 40 1157–65 [18.4.1e]

Ziegler LR, Hess RF, Kingdom FAA (2000b) Global factors that determine the maximum disparity for seeing cyclopean surface shape Vis Res 40 493–502 [18.4.1f]

Zimba LD, Blake R (1983) Binocular rivalry and semantic processing: out of sight out of mind J Exp Psychol HPP 9 807–15 [12.8.3b]

Zinn WJ, Solomon H (1985) A comparison of static and dynamic stereoacuity J Am Optom Assoc 56 712–15 [18.2.4]

Zlatkova MB, Anderson RS, Ennis FA (2001) Binocular summation for grating resolution in foveal and peripheral vision Vis Res 41 3093–100 [13.1.2e]

Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for psychophysical performance Nature 370 140–3 [13.1.1b]

Zuber BL, Stark L (1966) Saccadic suppression: elevation of visual threshold associated with saccadic eye movements Exp Neurol 16 72–79 [23.2.4]