Jump to ContentJump to Main Navigation
Perceiving in DepthVolume 1 Basic Mechanisms$

Ian P. Howard

Print publication date: 2012

Print ISBN-13: 9780199764143

Published to Oxford Scholarship Online: May 2012

DOI: 10.1093/acprof:oso/9780199764143.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 25 February 2017

(p.549) References

(p.549) References

Source:
Perceiving in Depth
Publisher:
Oxford University Press

Bibliography references:

Numbers in square brackets indicate the sections where the references are cited.

Aaen-Stockdale C (2008) Ibn al-Haytham and psychophysics Perception 37 636–8 [2.2.4d]

Aarum J, Sandberg K, Budd Haeberlein SL, Persson MAA (2003) Migration and differentiation of neural precursor cells can be directed by microglia Proc Natl Acad Sci 100 15983–8 [5.5.1f, 6.4.2d]

Abbott LF, Dayan P (1999) The effect of correlated variability on the accuracy of a population code Neural Comput 11 91–101 [4.2.5a]

Abbott LF, Sejnowski TJ (1999) Neural codes and distributed representations: foundations of neural computation MIT Press, Cambridge, MA [4.2.6b, 5.6.5]

Abbott, ML, Schmid KL, Strang NC (1998) Differences in the accommodation stimulus response curves of adult myopes and emmetropes Ophthal Physiol Opt 18 13–20 [9.6.2a]

Abel LA, Schmidt D, Dell’Osso LF, Daroff RB (1978) Saccadic system plasticity in humans Ann Neurol 4 313–18 [10.8.3d]

Abel PL, O’Brien BJ, Olavarria JF (2000) Organization of callosal linkages in visual area V2 of macaque monkey J Comp Neurol 428 278–93 [5.3.5]

Abramov I, Gordon J, Hendrickson A, et al. (1982) The retina of newborn human infant Science 217 265–7 [6.3.2a]

Ackroyd C, Humphrey NK, Warrington EK (1974) Lasting effects of early blindness A case study Quart J Exp Psychol 26 114–24 [8.1.3]

Adams DL, Horton JC (2002) Shadows cast by retinal blood vessels in primary visual cortex Science 298 572–6 [6.7.2d]

Adams DL, Horton JC (2003) Capricious expression of cortical columns in the primate brain Nat Neurosci 6 113–14 [5.7.2f]

Adams DL, Horton JC (2006a) Monocular cells without ocular dominance columns J Neurophysiol 96 2253–64 [5.7.2f]

Adams DL, Horton, JC (2006b) Ocular dominance columns in strabismus Vis Neurosci 23 795 [5.7.2f]

Adams DL, Zeki S (2001) Functional organization for macaque V3 for stereoscopic depth J Neurophysiol 86 2195–203 [5.8.2b]

Adams DL, Sincich LC, Horton JC (2007) Complete pattern of ocular dominance columns in human primary visual cortex J Neurosci 27 10391–403 [5.7.2a]

Adams JP, Dudek SM (2005) Late-phase long-term potentiation: getting to the nucleus Nat Rev Neurosci 6 737–43 [6.4.4f]

Adams MM, Hof PR, Gattass R, et al. (2000) Visual cortical projections and chemoarchitecture of macaque monkey pulvinar J Comp Neurol 419 377–93 [5.5.4b, 5.9.1]

Adams RJ, Courage ML, Mercer ME (1991) Deficiencies in human neonates’ color vision: photoreceptoral and neural explanations Behav Brain Res 43 109–14 [7.2.1e]

Adams WJ, Banks MS, van Ee R (2001) Adaptation to three-dimensional distortions in human vision Nat Neurosci 4 1063–4 [9.9.3]

Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion J Opt Soc Am A 2 284–99 [5.6.4c, 10.3.2d]

Adorján P, Levitt JB, Lund JS, Obermayer K (1999) A model for the intracortical origin of orientation preference and tuning in macaque striate cortex Vis Neurosci 16 303–18 [5.5.6a]

Adrian ED, Matthews R (1927) The action of light on the eye J Physiol 63 378–90 [5.1.4a]

Aertsen AMHJ, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity” J Neurophysiol61 900–17 [4.3.4a]

Aggarwala KR, Nowbotsing S, Kruger PB (1995a) Accommodation to monochromatic and white-light targets Invest Ophthal Vis Sci 36 2695–705 [9.8.2d]

Aggarwala KR, Kruger ES, Mathews S, Kruger PB (1995b) Spectral bandwidth and ocular accommodation J Opt Soc Am 12 450–55 [9.8.2d]

Aggoun-Aouaoui D, Kiper DC, Innocenti GM (1996) Growth of callosal terminal arbors in primary visual acres of the cat Eur J Neurosci 8 1132–48 [6.4.6d]

Agmon-Snir H, Carr CE, Rinzel J (1998) The role of dendrites in auditory coincidence detection Nature 393 298–72 [4.2.2]

Aguilonius F (1613) Opticorum libri sex Plantin Antwerp [2.10.3b]

Agulhon C, Fiacco TA, McCarthy KD (2010) Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling Science 1250–4 [5.5.1f]

Ahissar E, Vaadia E, Ahissar M, et al. (1992) Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context Science 257 1412–15 [4.3.4f]

Ahlsén G, Lindström S, Lo F–S (1985) Interaction between inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat Exp Brain Res 58 134–43 [5.2.2a]

Ahmari SE, Buchanan J, Smith SJ (2000) Assembly of presynaptic active zones from cytoplasmic transport packets Nat Neurosci 3 445–51 [6.4.4a]

Ahmed B, Anderson JC, Douglas RJ, et al. (1994) Polyneuronal innervation of spiny stellate neurons in cat visual cortex J Comp Neurol 341 39–49 [5.5.1d]

Aiello A, Wright KW, Borchert M (1994) Independence of optokinetic nystagmus asymmetry and binocularity in infantile esotropia Arch Ophthal 112 1580–3 [8.4.5c]

Aizenberg A, Tkachenko A, Weiner S, et al. (2001) Calcitic microlenses as part of the photoreceptor system in brittlestars Nature 412 819–22 [6.1.2]

Akao T, Kurkin SA, Fukushima J, Fukushima K (2005a) Visual and vergence eye movement-related responses of pursuit neurons in the caudal frontal eye fields to motion-in-depth stimuli Exp Brain Res 164 92–108 [10.10.3]

Akao T, Mustari MJ, Fukushima J, et al. (2005b) Discharge characteristics of pursuit neurons in MST during vergence eye movements J Neurophysiol 93 2415–34 [10.10.3]

Akerman CJ, Smyth D, Thompson ID (2002) Visual experience before eye-opening and the development of the retinogeniculate pathway Neuron 36 869–79 [8.2.2b]

Akhtar MW, Raingo J, Nelson ED, et al. (2009) Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function J Neurosci 29 8288–97 [6.6.1a]

Albano JE, Marrero A (1995) Binocular interactions in rapid saccadic adaptation Vis Res 35 3439–50 [10.8.3a]

Albert MK (2000) The genetic viewpoint assumption and Bayesian inference Perception 29 601–8 [3.6]

(p.550) Albin RL, Sakuraai SY, Makowiec RL, et al. (1991) Excitatory amino acids, GABAA and GABAB binding sites in human striate cortex Cereb Cortex 1 499–509 [5.5.2c]

Albrecht DG (1995) Visual cortex neurons in monkey and cat: effect of contrast on the spatial and temporal phase transfer functions Vis Neurosci 12 1191–210 [5.6.4b]

Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function J Neurophysiol 48 217–37 [5.6.1, 5.6.3]

Albright TD (1992) Form-cue invariant motion processing in primate visual cortex Science 255 1141–3 [5.8.4b]

Albright TD, Desimone R (1987) Local precision of visuotopic organization in the middle temporal area (MT) of the macaque Exp Brain Res 65 582–92 [5.8.4b]

Albus K, Wolf W (1984) Early postnatal development of neuronal function in the kitten’s visual cortex: A laminar analysis J Physiol 348 153–85 [6.7.1]

Alexander I, Cowey A (2009) The cortical basis of global motion detection in blindsight Exp Brain Res 192 407–11 [5.5.7]

Alhazen Kitäb al-manäzir (Book of optics) In The optics of Ibn al-Haytham 2 volumes (Translated by AI Sabra) Warburg Institute, University of London 1989 [2.2.4d 2]

Alkondon M, Pereira EFA, Eisenberg HM, Albuquerque EX (2000) Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and disinhibition of neuronal networks J Neurosci 20 66–75 [5.5.2g, 5.9.1]

Allen D, Banks MS, Norcia AM (1993) Does chromatic sensitivity develop more slowly than luminance sensitivity? Vis Res 33 2553–62 [7.2.1e]

Allen D, Tyler CW, Norcia AM (1996) Development of grating acuity and contrast sensitivity in the central and peripheral visual field of the human infant Vis Res 36 1945–53 [7.2.1a]

Allen DC (1974) Vertical prism adaptation in anisometropes Am J Optom Physiol Opt 51 252–9 [10.2.6a]

Allen DG (1937) A test for aniseikonia by the use of central fixation and fusion Arch Ophthal 17 320–7 [9.9.2a]

Allen MJ (1953) An investigation of the time characteristics of accommodation and convergence of the eyes Am J Optom Arch Am Acad Optom 30 393–402 [10.4.3a]

Allen MJ, Carter JH (1967) The torsional components of the near reflex Am J Optom Arch Am Acad Optom 44 343–9 [10.1.2d, 10.7.1, 10.8.1b]

Allendoerfer KL, Shatz CJ (1994) The subplate a transient neocortical structure: its role in the development of connections between thalamus and cortex Ann Rev Neurosci 17 185–218 [6.4.5c]

Allendoerfer KL, Cabelli RJ, Escandón E, et al. (1994) Regulation of neurotrophin receptors during the maturation of the mammalian visual system J Neurosci 14 1795–811 [6.3.3b, 6.4.7b]

Allison DW, Gelfand VI, Spector I, Craig AM (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors J Neurosci 18 2723–36 [5.5.2b]

Allison RS, Howard IP, Fang X (2000) Depth selectivity of vertical fusional mechanisms Vision Res 40 2985–98 [10.6.3c]

Allison RS, Howard IP, Fang X (2004) Stimulus integration for horizontal vergence Exp Brain Res 156 305–13 [10.5.4b]

Allman JM, Meizin F, McGuinness EL (1985) Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT) Perception 14 105–29 [5.8.4b]

Alonso JM, Usrey WM, Reid RC (1996) Precisely correlated firing in cells of the lateral geniculate nucleus Nature 383 815–19 [4.3.4b]

Alpern M (1946) The after–effect of lateral duction testing on subsequent phoria measurements Am J Optom Arch Am Acad Optom 23 442–7 [10.2.5]

Alpern M (1958) Vergence and accommodation I. Can change in size induce vergence movements? Arch Ophthal 60 355–7 [10.3.2b]

Alpern M (1969) Types of eye movement. In The eye (ed H Davson) Vol 3 pp 65–174 Academic Press, New York [10.1.3b, 10.4.3b]

Alpern M, Ellen P (1956) A quantitative analysis of the horizontal movements of the eyes in the experiment of Johannes Müller Am J Ophthal 42 289–96 [10.8.2a]

Alpern M, Hofstetter HW (1948) The effect of prism on esotropia—a case report Am J Optom Arch Am Acad Optom 25 80–91 [10.2.2e]

Alpern M, Larson BF (1960) Vergence and accommodation IV Effect of luminance quantity on the AC/A Am J Ophthal 49 1140–9 [10.4.1]

Alpern M, Wolter JR (1956) The relation of horizontal saccadic and vergence movements Arch Ophthal 56 685–90 [10.10.1]

Alpern M, Kincaid WM, Lubeck MJ (1959) Vergence and accommodation: III. Proposed definitions of the AC/A ratios Am J Ophthal 48 141–8 [10.4.1]

Altmann L, Luhmann HJ, Greuel JM, Singer W (1987) Functional and neuronal binocularity in kittens raised with rapidly alternating monocular occlusion J Neurophysiol 58 965–80 [8.2.5b]

Alvarez TL, Semmlow JL, Yuan W (1998) Closely spaced fast dynamic movements in disparity vergence J Neurophysiol 79 37–44 [10.5.8a]

Alvarez TL, Semmlow JL, Yuan W, Munoz P (1999) Dynamic details of disparity convergence eye movements Ann Biomed Engin 27 380–90 [10.5.10d]

Alvarez TL, Semmlow JL, Yuan W, Munoz P (2000) Disparity vergence double responses processed by internal error Vis Res 40 341–7 [10.5.10b]

Alvarez TL, Semmlow JL, Pedrono C (2005a) Divergence eye movements are dependent on initial stimulus position Vis Res 45 1847–555 [10.5.7]

Alvarez TL, Bhavsar M, Semmlow JL, et al. (2005b) Short-term predictive changes in the dynamics of disparity vergence eye movements J Vis 5 640–9 [10.5.8c]

Alvarez VA, Sabatini BL (2007) Anatomical and physiological plasticity of dendritic spines Ann Rev Neurosci 30 79–97 [6.4.4a]

Alvarez-Maubecin V, Garcia-Hernández F, Williams JT, Van Bockstaele EJ (2000) Functional coupling between neurons and glia J Neurosci 20 4091–8 [5.5.1f]

Amedi A, Malach R, Hendler T, et al. (2001) Visuo-haptic object-related activation in the ventral visual pathway Nat Neurosci 4 324–30 [5.8.3c]

Ames A (1945) The space eikonometer test for aniseikonia Am J Ophthal 28 278–62 [9.9.2b]

Amigo G (1974) A vertical horopter Optica Acta 21 277–92 [10.7.1, 10.7.2a]

Amigo G, Fiorentini A, Pirchio M, Spinelli D (1978) Binocular vision tested with visual evoked potentials in children and infants Invest Ophthal Vis Sci 17 910–15 [7.6.3]

Andersen RA (1997) Multimodal integration for the representation of space in the posterior parietal cortex Phil Trans Roy Soc B 352 1421–8 [5.8.4e]

Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex Ann Rev Neurosci 25 189–220 [5.8.4e]

Andersen RA, Mountcastle VB (1983) The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex J Neurosci 3 532–48 [5.8.4e]

Andersen RA, Zipser D (1988) The role of the posterior parietal cortex in coordinate transformations for visual-motor integration Can J Physiol Pharmacol 66 488–501 [4.5.6]

Andersen RA, Bracewell RM, Barash S, et al. (1990) Eye–position effects on visual memory and saccade–related activity in areas LIP and 7a of macaque J Neurosci 10 1176–96 [5.8.4e]

Anderson CH, Van Essen DC (1987) Shifter circuits: a computational strategy for dynamic aspects of visual processing Proc Natl Acad Sci 84 6297–301 [10.5.4a]

Anderson JC, Martin KAC, Whitteridge D (1993) Form function and intracortical projections of neurons in the striate cortex of the monkey Macacus nemestrinus Cereb Cortex 3 412–20 [5.5.1e]

Anderson JC, Binzegger T, Martin KAC, Rockland KS (1998) The connection from cortical area V1 to V5: a light and electron microscopic study J Neurosci 18 10525–40 [5.8.4b]

Anderson JS, Lampel I, Gillespie DC, Ferster D (2000) The contribution of noise to contrast invariance of orientation tuning in cat visual cortex Science 290 1968–72 [4.4.4]

Anderson KC, Siegel RM (2005) Three-dimensional structure-from-motion selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey Cerebral Cortex 15 1299–307 [5.8.3b]

(p.551) Anderson NH (1974) Algebraic models in perception In Handbook of perception (ed EC Carterette, MP Friedman) pp 215–98 Academic Press, New York [4.5.7c]

Anderson PA, Olavarria J, Van Sluyters RC (1988) The overall pattern of ocular dominance bands in cat visual cortex J Neurosci 8 2183–200 [5.7.2c]

Anderson SA, Eisenstat DD, Shi L, Rubenstein J (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes Science 278 474–6 [6.4.5b]

Anderson SJ, Holliday IE, Harding GFA (1999) Assessment of cortical dysfunction in human strabismic amblyopia using magnetoencephalography (MEG) Vis Res 39 1723–38 [8.2.4a]

Andrews DP (1964) Error-correcting perceptual mechanisms Quart J Exp Psychol 16 104–111 [4.2.9b]

Andrews DP (1967) Perception of contour orientation in the central fovea Part 1: Short Lines Vis Res 7 975–97 [4.2.7]

Andrews TJ, Schluppeck D, Homfray D, et al. (2002) Activity in the fusiform gyrus predicts conscious perception of Rubin’s vase-face illusion NeuroImage 17 890–901 [4.5.9g, 5.9.3c]

Angelaki DE, McHenry MQ (1999) Short-latency primate vestibuloocular responses during translation J Neurophysiol 82 1651–4 [10.9.3]

Angelucci A, Levitt JB, Walton EJS, Hupé JM, et al. (2002) Circuits for local and global integration in primary visual cortex J Neurosci 22 8633–46 [5.6.7c]

Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system Neuron 41 881–90 [6.4.5a]

Antonini A, Stryker MP (1993) Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade J Neurosci 13 3549–73 [6.7.1, 6.7.2d]

Antonini A, Stryker MP (1996) Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat J Comp Neurol 369 64–82 [8.2.3c]

Antonini A, Stryker MP (1998) Effect of sensory disuse on geniculate afferents to cat visual cortex Vis Neurosci 15 401–9 [8.2.3d]

Antonini A, Gillespie DC, Crair MC, Stryker MP (1998) Morphology of single geniculocortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten J Neurosci 18 9896–909 [8.3.1c]

Anzai A, Peng X, Van Essen DC (2007) Neurons in monkey visual area V2 encode combinations of orientations Nat Neurosci 10 1313–21 [5.8.2a]

Aoto J, Ting P, Maghsoodi B, et al. (2007) Postsynaptic ephrinB3 promotes shaft glutamatergic synapse formation J Neurosci 27 7508–19 [6.4.4a, 6.4.4b]

Apkarian PA (1983) Visual training after long term deprivation: a case report Int J Neurosci 19 65–84 [8.1.3]

Apkarian PA (1993) Temporal frequency responsivity shows multiple maturation phases: state-dependent visual evoked potential luminance flicker fusion from birth to 9 months Vis Neurosci 10 1007–18 [7.2.3a]

Apkarian PA, Tijssen R, Spekreijse H, Regan D (1987) Origin of notches in CSF: optical or neural? Invest Ophthal Vis Sci 28 607–12 [9.6.2b]

Appel MA, Campos JJ (1977) Binocular disparity as a discriminable stimulus parameter for young infants J Exp Psychol 23 47–56 [7.6.1b]

Aravanis AM, Pyle JL, Tsien RW (2003) Single synaptic vesicles fusing transiently and successively without loss of identity Nature 423 643–7 [5.5.2b]

Archer SM, Dubin MW, Stark LA (1982) Abnormal development of kitten retino–geniculate connectivity in the absence of action potentials Science 217 743–5 [8.2.2a]

Arditi A (1986) Binocular vision In Handbook of perception and human performance Vol 1 Sensory processes and perception (ed KR Boff, L Kaufman, JP Thomas) Wiley, New York [1.3]

Arendt D (2003) Evolution of eyes and photoreceptor cell types Int J Devel Biol 47 563–71 [6.1.1]

Arguin M, Cavanagh P, Joanette Y (1994) Visual feature integration with an attention deficit Brain Cogn 27 44–56 [4.5.4a]

Ariel M, Daw NW, Rader RK (1983) Rhythmicity in rabbit retinal ganglion cell responses Vis Res 23 1485–93 [4.3.4a]

Ariens-Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man Vol 1. MacMillan, New York [6.5.1a]

Ariotti PE (1973) A little known early seventeenth century treatise on vision: Benedetto Castelli’s Discorso sopra la vista . Translation and critical comments Ann Sci 30 1–30 [2.5.2]

Aristotle De anima English translation by R.D. Hicks. (1991) Prometheus Books, New York [2.1.4]

Arnold HJP (1977) William Henry Fox Talbot. Pioneer of photography and man of science Hutchinson Benham, London [2.11.3]

Arnold HM, Burk JA, Hodgson EM, et al. (2002) Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention Neurosci 114 451–60 [5.9.1]

Arnulf A, Dupuy O (1960) Contribution à l’étude des microfluctuations d’accommodation de l’oeil Rev Opt 39 91–8 [9.3.1]

Artal P, Herreros de Tejada P, Munos Tedó C, Green DG (1998) Retinal image quality in the rodent eye Vis Neurosci 15 597–605 [9.2.2a]

Artal P, Guirao A, Berrio E, Williams DR (2001) Compensation of corneal aberrations by the internal optics in the human eye J Vis 1 1–8 [9.1.3c]

Artal P, Berrio E, Guirao A, Piers P (2002) Contributions of the cornea and internal surfaces to the change of ocular aberrations with age J Opt Soc Am A 19 137–43 [9.1.4]

Artal P, Chen L, Fernández EJ, Manzanera S, Williams DR (2004) Neural compensation for the eye’s optical aberrations J Vis 4 281–7 [9.6.5a]

Artal P, Benito A, Tabernero J (2006) The human eye is an example of robust optical design J Vis 6 1–7 [9.1.4]

Arterberry ME, Yonas, A (1988) Infants’ sensitivity to kinetic information for three-dimensional object shape Percept Psychophys 44 1–6 [7.4.2c]

Arterberry ME, Yonas A (2000) Perception of three-dimensional shape specified by optic flow by 8-week-old infants Percept Psychophys 62 550–6 [7.4.2c]

Arterberry ME, Yonas A, Bensen S (1989) Self-produced locomotion and the development of responsiveness to linear perspective and texture gradients Devel Psychol 25 976–82 [7.4.1e]

Asanuma C, Stanfield BB (1990) Induction of somatic sensory inputs to the lateral geniculate nucleus in congenitally blind mice and phenotypically normal mice Neurosci 39 533–45 [8.1.4b]

Ashby FG, Townsend JT (1986) Varieties of perceptual independence Psychol Rev 93 154–79 [4.5.1]

Aslin RN (1977) Development of binocular fixation in human infants J Exp Child Psychol 23 133–50 [7.3.6]

Aslin RN (1987) Motor aspects of visual development in infancy In Handbook of infant perception Vol 1 From sensation to perception (ed P Salapatek, LB Cohen) pp 43–113 Academic Press, Orlando FL [7.3.4]

Aslin RN (1988) Anatomical constraints on oculomotor development: implications for infant perception In Perceptual development in infancy (ed A Yonas) pp 67–104 Erlbaum, Hillsdale N J [7.5]

Aslin RN, Dobson V (1983) Dark vergence and dark accommodation in human infants Vis Res 32 1671–8 [7.3.6]

Aslin RN, Dumais ST (1980) Binocular vision in infants: a review and a theoretical framework Adv Child Devel Behav 15 53–94 [7.6.4]

Aslin RN, Jackson RW (1979) Accommodative–convergence in young infants: development of a synergistic sensory–motor system Can J Psychol 33 222–31 [7.3.1, 7.3.6]

Aslin RN, Johnson SP (1996) Suppression of the optokinetic reflex in human infants: implications for stable fixation and shifts of attention Infant Behav Devel 19 233–240 [7.3.4]

Aslin RN, Salapatek P (1975) Saccadic localization of visual targets by the very young human infant Percept Psychophys 17 293–302 [7.3.5]

(p.552) Aslin RN, Shea SL (1990) Velocity thresholds in human infants: implications for the perception of motion Devel Psychol 26 589–98 [7.2.3b]

Aslin RN, Dobson V, Jackson RW (1982) Dark vergence and dark focus in human infants Invest Ophthal Vis Sci 22 (Abs) 105 [7.3.6]

Astafiev SV, Shulman GL, Stanley CM, et al. (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing  J Neurosci 23 4689–99 [5.9.3b]

Asztély F, Gustafsson B (1996) Ionotropic glutamate receptors Molec Neurobiol 12 1–12 [6.5.1a]

Atchison DA, Charman WN (2010) Thomas Young’s contribution to visual optics: the Bakerian lecture “On the mechanism of the eye” J Vis 10 (12) [2.6.1]

Atchison DA, Collins MJ, Wildsoet CF, et al. (1995) Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique Vis Res 35 313–23 [9.1.1]

Atchison DA, Woods RL, Bradley A (1998) Predicting the effects of optical defocus on human contrast sensitivity J Opt Soc Am A 15 2536–44 [9.6.2b]

Atkinson J (2000) The developing visual brain Oxford University Press, Oxford [7.2.3b, 7.4.2a, 7.6.4]

Atkinson J, Braddick O (1976) Stereoscopic discrimination in infants Perception 5 29–38 [7.6.1b]

Atkinson J, Braddick O (1992) Visual segmentation of oriented textures by infants Behav Brain Res 49 123–31 [7.2.2]

Atkinson J, Braddick O, Moar K (1977) Development of contrast sensitivity over the first three months of life in the human infant Vis Res 17 1037–44 [7.2.1a]

Atkinson J, Hood B, Wattam–Bell J, et al. (1988) Development of orientation discrimination in infancy Perception 17 587–95 [7.2.2]

Atkinson J, Smith J, Anker S, et al. (1991) Binocularity and amblyopia before and after early strabismus surgery Invest Ophthal Vis Sci 32 820 [8.3.3a]

Attardi DG, Sperry RW (1963) Preferential selection of central pathways by regenerating optic fibers Exp Neurol 7 46–64 [6.7.3a]

Au E, Fishell G (2006) Adult cortical neurogenesis: nuanced, negligible or nonexistent? Nat Neurosci 9 1086–8 [6.4.2d]

Aulhorn E (1966) Phasendifferenz–Haploscopie Klin Monat Augenheilk 148 540 [9.9.2a]

Averbuch-Heller L, Lewis RF, Zee DS (1999) Disconjugate adaptation of saccades: contribution of binocular and monocular mechanisms Vis Res 39 341–52 [10.8.3b]

Azouz R, Gray CM (2000) Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo Proc Natl Acad Sci 97 8110–15 [6.5.2]

Azzopardi P, Cowey A (1993) Preferential representation of the fovea in the visual cortex Nature 361 719–21 [5.5.4c]

Azzopardi P, Cowey A (2001) Motion discrimination in cortically blind patients Brain 124 30–46 [5.5.7]

Azzopardi P, Jones KE, Cowey A (1999) Uneven mapping of magnocellular and parvocellular projections from the lateral geniculate nucleus to the striate cortex in the macaque monkey Vis Res 39 2179–89 [5.5.4c]

Bacci A, Huguenard JR, Prince DA (2003) Functional autaptic neurotransmission in fast-spiking interneurons: a novel form of feedback inhibition in the neocortex J Neurosci 23 859–66 [5.5.2e]

Baccus SA, Meister M (2002) Fast and slow contrast adaptation in retinal circuitry Neuron 36 909–19 [5.1.4f]

Bach M, Hoffmann MB (2000) Visual motion detection in man is governed by non-retinal mechanisms Vis Res 40 2379–85 [5.6.4a]

Bach M, Meigen T (1997) Similar electrophysiological correlates of texture segregation induced by luminance orientation motion and stereo Vis Res 37 1409–14 [4.3.5]

Bach–y–Rita P, Collins C, Saunders FA, et al. (1969) Visual substitution by tactile image Nature 221 963–4 [4.8.5]

Badcock DR, Westheimer G (1985) Spatial location and hyperacuity: the centre/surround location contribution function has two substrates Vis Res 25 1259–67 [3.1.3b, 4.2.9a]

Bagley CH (1949) Congenital cataracts Am J Ophthal 32 411–19 [8.3.3b]

Bagri A, Marin O, Plump AS, et al. (2002) Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain Neuron 33 233–48 [6.3.4b]

Bahill AT, Ciuffreda KJ, Kenyon R, Stark L (1976) Dynamic and static violations of Hering’s law of equal innervation Am J Optom Physiol Opt 53 786–96 [10.8.2b]

Bahrick LE, Watson JS (1985) Detection of intermodal proprioceptive-visual contingency as a potential basis of self-perception in infants Devel Psychol 21 963–73 [4.5.5b]

Bailey CH, Kandel ER (1993) Structural changes accompanying memory storage Ann Rev Physiol 55 397–429 [4.3.4f, 6.6.1c]

Baitch LW, Ridder WH, Harwerth RS, Smith EL (1991) Binocular beat VEPs: losses of cortical binocularity in monkeys reared with abnormal visual experience Invest Ophthal Vis Sci 32 3096–103 [8.2.4a]

Baizer JS (1982) Receptive field properties of V3 neurons in monkey Invest Ophthal Vis Sci 23 87–95 [5.8.2b]

Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques J Neurosci 11 168–90 [5.8.3, 5.8.4e]

Baizer JS, Desimone R, Ungerleider LG (1993) Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys Vis Neurosci 10 59–72 [5.8.2c]

Baker DH, Meese TS, Mansouri B, Hess RF (2007) Binocular summation of contrast remains intact in strabismic amblyopia Invest Ophthal Vis Sci 48 5332–8 [8.4.2a]

Baker DH, Meese TS, Hess RF (2008) Contrast masking in strabismic amblyopia: Attenuation, noise, interocular suppression and binocular summation Vis Res 48 1625–40 [8.4.2a]

Baker FH, Grigg P, Noorden GK von (1974) Effects of visual deprivation and strabismus on the response of neurons in the visual cortex of the monkey including studies on the striate and prestriate cortex in the normal animal Brain Res 66 185–208 [8.2.4b]

Baker GE, Reese BE (1993) Chiasmatic course of temporal retinal axons in the developing ferret J Comp Neurol 330 95–104 [6.3.4b]

Baker R, Highstein SM (1975) Physiological identification of interneurons in the abducens nucleus Brain Res 91 292–8 [10.10.2a]

Baker R, Brown B, Garner L (1983) Time course and variability of dark focus Invest Ophthal Vis Sci 24 1528–31 [9.3.1]

Ball EAW (1952) A study in consensual accommodation Am J Optom Arch Am Acad Optom 29 561–74 [9.7.3a]

Ball K, Sekuler R (1987) Direction-specific improvement in motion discrimination Vis Res 27 953–65 [4.9.1]

Ball W, Tronick E (1971) Infant responses to impending collision: optical and real Science 171 818–20 [7.4.1c]

Balliet R, Nakayama K (1978) Training of voluntary torsion Invest Ophthal Vis Sci 17 303–14 [10.7.1]

Baloh RW, Beykirch K, Honrubia V (1988) Eye movements induced by linear acceleration on a parallel swing J Neurophysiol 60 2000–l3 [10.9.2]

Baltrusaitis J (1977) Anamorphic art Abrams, New York [2.9.5]

Balzer R (1998) Peepshows: a visual history Abrams, New York [2.11.1c]

Bamji SX (2005) Cadherins: actin with the cytoskeleton to form synapses Neuron 47 175–8 [6.4.4b]

Bando T, Yamamoto N, Tsukahara N (1984) Cortical neurons related to lens accommodation in posterior lateral suprasylvian area in cats J Neurophysiol 52 879–91 [10.10.3, 9.2.3]

Bando T, Hara N, Takagi M, Yamamoto K, Toda H (1996) Roles of the lateral suprasylvian cortex in convergence eye movements in cats Prog Brain Res 112 143–56 [10.10.3, 9.2.3]

Banke TG, Traynelis SF (2003) Activation of NR1/NR2B NMDA receptors Nat Neurosci 6 144–52 [5.5.2c]

Banks EC (2001) Ernst Mach and the episode of the monocular depth sensations J Hist Behav Sci 37 327–48 [2.8.1]

Banks MS (1980) The development of visual accommodation during early infancy Child Devel 51 646–66 [7.3.1]

(p.553) Banks MS (1988) Visual recalibration and the development of contrast and optic flow perception In Perceptual development in infancy (ed A Yonas) pp 145–96 Erlbaum, Hillsdale N J [6.3.2a]

Banks MS, Bennett PJ (1988) Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates J Opt Soc Am A 5 2059–79 [7.2.1d, 7.2.1e]

Banks MS, Salapatek P (1978) Acuity and contrast sensitivity in 1 2 and 3–month–old human infants Invest Ophthal Vis Sci 17 361–5 [7.2.1a]

Banks MS, Stevens BR (1985) The development of basic mechanisms of pattern vision: spatial frequency channels J Exp Child Psychol 40 501–27 [7.2.1b]

Banks MS, Aslin RN, Letson RD (1975) Sensitive period for the development of human binocular vision Science 190 675–7 [8.3.3a]

Banks MS, Geisler WS, Bennett PJ (1987) The physical limits of grating visibility Vis Res 27 1915–27 [9.1.5]

Banton T, Bertenthal, BI (1996) Infants’ sensitivity to uniform motion Vis Res 36 1633–40 [7.2.3b]

Banton T, Bertenthal BI (1997) Multiple developmental pathways for motion processing Optom Vis Sci 74 751–60 [7.2.3b]

Banton T, Dobkins K, Bertenthal BI (2001) Infant direction discrimination thresholds Vis Res 41 1049–56 [7.2.3c]

Bapst G (1891) Essai sur l’histoie des panoramas et des dioramas G Masson, Paris [2.11.1d]

Barallobre MJ, Pascual M, Del Rio JA, Sorriano E (2005) The Netrin family of guidance factors: emphasis on Netrin-1 signalling Brain Res Rev 49 22–47 [6.4.3c]

Barbasid M (1994) The Trk family of neurotrophin receptors J Neurobiol 25 1386–403 [6.4.3d]

Barbeito R, Tam WJ, Ono H (1986) Two factors affecting saccadic amplitude during vergence: the location of the cyclopean eye and a left-right bias Ophthal Physiol Opt 6 201–5 [10.8.2a]

Barbeito R, Bedell HE, Flom MC (1988) Does impaired contrast sensitivity explain the spatial uncertainty of amblyopes? Invest Ophthal Vis Sci 29 323–6 [8.4.2a]

Barbur JL, Watson JDG, Frackowiak RSJ, Zeki S (1993) Conscious visual perception without V1 Brain 116 1293–302 [5.5.4a]

Bard L, Boscher C, Lambert M, et al. (2008) A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration J Neurosci 28 5879–90 [6.4.3a]

Barker AT (1999) The history and basic principles of magnetic nerve stimulation Electroenceph Clin Neurophysiol 51 3–21 [5.4.4]

Barker WB (1936) Binocular vision Br J Physiol Opt 10 64–72 [9.9.2a]

Barlow HB (1957) Increment thresholds at low intensities considered as signal/noise discrimination J Physiol 136 469–88 [5.1.5]

Barlow HB (1961) Possible principles underlying the transformations of sensory messages In Sensory communication (ed WA Rosenblith) pp 217–34 MIT Press, Cambridge MA [3.2.6a, 4.2.6b, 5.1.4f, 5.5.4d]

Barlow HB (1991) Vision tells you more than “what is there” In Representations of vision (ed A Gorea) pp 319–29 Cambridge University Press, New York [4.3.4f]

Barlow HB, Hill RM (1963) Selective sensitivity to direction of movement in ganglion cells of the rabbit retina Science 139 412–14 [5.6.4a]

Barlow HB, Levick WR (1969) Three factors limiting the reliable detection of light by retinal ganglion cells of the frog J Physiol 200 1–24 [5.1.5]

Barlow HB, Reeves BC (1979) The versatility and absolute efficiency of detecting mirror symmetry in random dot displays Vis Res 19 783–93 [4.6.3e]

Barlow HB, Fitzhugh R, Kuffler SW (1957) Change of organization in the receptive fields of the cat’s retina during dark adaptation J Physiol 137 338–54 [5.1.4f]

Barlow HB, Blakemore C, Pettigrew JD (1967) The neural mechanism of binocular depth discrimination J Physiol 193 327–42 [2.10.50]

Barlow HB, Levick WR, Yoon M (1971) Responses to single quanta of light in retinal ganglion cells of the cat Vis Res 3 87–101 [3.1.1a, 5.1.5]

Barlow HB, Kaushal TP, Hawken M, Parker AJ (1987) Human contrast discrimination and the threshold of cortical neurons J Opt Soc Am A 4 2366–71 [4.3.1a]

Barnes GR, Hess RF, Dumoulin SO, et al. (2001) The cortical deficit in humans with strabismic amblyopia J Physiol 533 281–97 [8.2.4a]

Baro JA, Lehmkuhle S, Kratz KE (1990) Electroretinograms and visual evoked potentials in long–term monocularly deprived cats Invest Ophthal Vis Sci 31 1405–9 [8.2.1, 8.2.3c]

Barres BA, Raff MC (1993) Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons Nature 361 258–60 [6.3.3c]

Barrett BT, Whitaker D, McGraw PV, Herbert AM (1999) Discriminating mirror symmetry in foveal and extra-foveal vision Vis Res 39 3737–44 [4.6.3e]

Barris MC, Dawson WW, Trick LR (1981) LASCER Bode plots for normal amblyopic and stereoanomalous observers Doc Ophthal 51 347–63 [8.4.6a]

Barrow HG, and Tenenbaum JM (1981) Interpreting line drawings as three-dimensional surfaces Artif Intell 17 75–116 [4.5.10a]

Barry SR (2009) Fixing my gaze: a scientist’s journey into seeing in three dimensions Basic Books [8.5.1]

Barski A, Cuddapah S, Cui K, et al. (2007) High-resolution profiling of histone mehylations in the human gnome Cell 129 823–37 [6.6.1a]

Bartfeld E, Grinvald A (1992) Relationships between orientation-preference pinwheels cytochrome oxidase blobs and ocular-dominance columns in primate striate cortex Proc Natl Acad Sci 89 11905–9 [5.7.1]

Bartmann M, Schaeffel F (1994) A simple mechanism for emmetropization without cues from accommodation or colour Vis Res 34 873–6 [6.3.1c]

Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals Nature 405 1055–8 [6.4.2a]

Bärtschi WA (1981) Linear perspective (Translated into English by F Bradley) Van Nostrand Reinhold, New York [2.9.3]

Basole A, White LE, Fitzpatrick D (2003) Mapping multiple features in the population response of visual cortex Nature 423 986–90 [5.6.5]

Batista AP, Andersen RA (2001) The parietal reach region codes the next planned movement in a sequential reach task J Neurophysiol 85 539–44 [5.8.4e]

Bauer H (1912) Die Psychologie Alhazens Beiträge zur Geschichte der Philosophie des Mittelhalters 5 1–72 [2.2.4d]

Bauer HU (1995) Development of oriented ocular dominance bands as a consequence of areal geometry Neural Comput 7 36–50 [5.7.2c]

Baumann R, van der Zwan R, Peterhans E (1997) Figure-ground segregation at contours: a neural mechanism in the visual cortex of alert monkeys Eur J Neurosci 9 1290–303 [4.5.2b]

Bayes T (1763) An essay towards solving a problem in the doctrine of chances Philos Tr R Soc 53 370–418 [3.6]

Baylis G, Driver J (2001) Shape-coding in IT cells generalizes over contrast and mirror reversal, but not figure-ground reversal Nat Neurosci 4 937–42 [5.8.3b]

Baylor DA, Nunn BJ, Schnapf JL (1984) The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis J Physiol 357 575–607 [5.1.2b]

Baylor DA, Nunn BJ, Schnapf JL (1987) Spectral sensitivities of cones of the monkey Macaca fascicularis J Physiol 390 145–60 [5.1.2b]

Bear MF, Colman H (1990) Binocular competition in the control of geniculate cell size depends upon cortical N-methyl-d-aspartate receptor activation Proc Natl Acad Sci 87 9276–9 [8.2.2d]

Bear MF, Daniels JD (1983) The plastic response to monocular deprivation persists in kitten visual cortex after chronic depletion of norepinephrine J Neurosci 3 407–16 [8.2.7h]

Bear MF, Singer W (1986) Modulation of visual cortical plasticity by acetylcholine and noradrenaline Nature 320 172–6 [8.2.7h]

Bear MF, Kleinschmidt A, Gu Q, Singer W (1990) Disruption of experience–dependent synaptic modification in striate cortex by infusion of an NMDA receptor antagonist J Neurosci 10 909–25 [8.2.7e]

(p.554) Beare JI (1906) Greek theories of elementary cognition from Alcmaeon to Aristotle Clarendon Press, Oxford [2.1.4]

Beare JI (1931) Parva naturalia De Somniis In The works of Aristotle Translated into English (ed WD Ross) Vol 3 pp 461b–462a Oxford University Press, London [2.1.4]

Beatty RM, Sadun AA, Smith L, et al. (1982) Direct demonstration of transsynaptic degeneration in the human visual system: a comparison of retrograde and anterograde changes J Neurol Neurosurg Psychiat 45 143–6 [8.1.4a]

Beaver CJ, Daw NW (1999) Effect of the group II metabotropic glutamate agonist, 2R,4R-APDC, varies with age, layer, and visual experience in the visual cortex J Neurophysiol 82 86–93 [6.7.2b]

Beaver CJ, Ji QJ, Fischer QS, Daw NW (2001a) Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex Nat Neurosci 4 159–63 [8.2.7f]

Beaver CJ, JI Q, Daw NW (2001b) Layer differences in the effect of monocular vision in light- and dark-reared kittens Vis Neurosci 18 811–20 [8.3.1b]

Beaver RS, Dunlop SA, Harman AM, et al. (2001) Continued neurogenesis is not a prerequisite for regeneration of a topographic retino-tectal projection Vis Res 41 1765–70 [6.4.2c]

Bechara A, Tranel D, Damasio H, et al. (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans Science 299 1115–18 [5.8.3c]

Bechtoldt HP, Hutz CS (1979) Stereopsis in young infants and stereopsis in an infant with congenital esotropia J Ped Ophthal Strab 16 49–54 [7.4.1a]

Beck DM, Rees G, Frith CD, Lavie N (2001) Neural correlates of change detection and change blindness Nat Neurosci 4 645–50 [5.9.3c]

Beck J (1860) Improvements in the stereoscope Photograph J 7 19–20 [2.11.3]

Beck J (1967) Perceptual grouping produced by line figures Percept Psychophys 2 491–5 [4.8.1a]

Beck J (1972) Similarity grouping and peripheral discrimination under uncertainty Am J Psychol 85 1–19 [4.8.1a]

Becker W, Jürgens R (1975) Saccadic reactions to double step stimuli: evidence for model feedback and continuous information uptake In Basic mechanisms of ocular motility and their clinical implications (ed G Lennerstrand, P Bach-y-Rita) pp 519–27 Pergamon, Oxford [10.5.7]

Bedell HE, Flom MC (1981) Monocular spatial distortion in strabismic amblyopia Invest Ophthal Vis Sci 20 263–8 [8.4.3]

Bedell HE, Flom MC (1985) Bilateral oculomotor abnormalities in strabismic amblyopes: evidence for a common central mechanism Doc Ophthal 59 309–21 [8.4.5b]

Bedell HE, Flom MC, Barbeito R (1985) Spatial aberrations and acuity in strabismus and amblyopia Invest Ophthal Vis Sci 26 909–16 [8.4.2a]

Bedell HE, Yap YL, Flom MC (1990) Fixation drift and nasal-temporal pursuit asymmetries in strabismic amblyopes Invest Ophthal Vis Sci 31 968–76 [8.4.5c]

Bedford RE, Wyszecki G (1957) Axial chromatic aberration of the human eye J Opt Soc Am 47 564–5 [9.1.2a]

Beer J, Blakemore C, Previc FH (2002) Areas of the human brain activated by ambient visual motion indicating three kinds of self-movement Exp Brain Res 143 78–88 [5.5.4b, 5.9.1]

Beer T (1894) Accommodation des Fischauges Pflüg Arch ges Physiol 58 523–50 [9.2.2a]

Beers APA, van der Heijde GL (1996) Age-related changes in the accommodation mechanism Optom Vis Sci 73 235–432 [7.3.1]

Behar TN, Scott CA, Greene CL, et al. (1999) Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration J Neurosci 19 4449–61 [6.4.5a, 6.4.5c]

Békésy G von (1967) Sensory inhibition Princeton University Press, Princeton N J [3.1.4a]

Belkin M, Yinon U, Rose L, Reisert I (1977) Effects of visual environment on refractive errors of cats Doc Ophthal 42 433–7 [6.3.1c]

Beller R, Hoyt CS, Marg E, Odom JV (1981) Good visual function after neonatal surgery for congenital monocular cataracts Am J Ophthal 91 559–65 [8.3.3b]

Bellocchio EE, Reimer RJ, Fremeau RT, Edwards RE (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter Science 289 957–60 [5.5.2b]

Belvindrah, R, Graus-Porta, D, Goebbels, S, et al. (2007) β1 integrins in radial glia but not in migrating neurons are essential for the formation of cell layers in the cerebral cortex J. Neurosci 27 13854–65 [6.4.5a]

Ben-Ari Y, Spitzer NC (2010) Phenotypic checkpoints regulate neuronal development TINS 33 485–92 [6.4.1]

Ben-Ari Y, Khalilov I, Represa A, Gozlan H (2004) Interneurons set the tune of developing networks TINS 27 422–7 [6.4.4d]

Bender DB, Youakim M (2001) Effect of attentive fixation in macaque thalamus and cortex J Neurophysiol 85 219–34 [5.9.3a]

Benedetti M, Levi A, Chao MV (1993) Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness Proc Natl Acad Sci 90 7859–63 [6.4.3d]

Benke TA, Lüthi A, Isaac TR, Collingridge GL (1998) Modulation of AMPA receptor unitary conductance by synaptic activity Nature 393 793–7 [6.4.4f]

Bennett AG, Rabbetts RB (1989) Clinical visual optics Butterworth-Heinemann, London [9.2.4b, 9.2.4d]

Bennett B (1859) The clairvoyant stereoscope Photograph J 5 297–8 [2.11.3]

Bennett MJ, Smith EL, Harwerth RS, Crawford MLJ (1980) Ocular dominance eye alignment and visual acuity in kittens reared with an optically induced squint Brain Res 193 33–45 [8.2.3a]

Bennett MVL, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain Neuron 41 495–511 [5.5.2a]

Bennett PJ, Banks MS (1987) Sensitivity loss in odd–symmetric mechanisms underlies phase anomalies in peripheral vision Nature 326 873–6 [8.4.3]

Bennett RG, Westheimer G (1991) The effect of training on visual alignment discrimination and grating resolution Percept Psychophys 49 541–6 [4.9.1]

Bennett WR (1933) New results in the calculation of modulation products Bell System Technical Journal 12 228–43 [3.4]

Benquet P, Gee CE, Gerber U (2002) Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes J Neurosci 22 9679–86 [6.5.1b]

Berardi N, Fiorentini A (1987) Interhemispheric transfer of visual information in humans: spatial characteristics J Physiol 384 633–47 [5.3.5]

Berardi N, Bisti S, Cattaneo A, et al. (1982) Correlation between the preferred orientation and spatial frequency of neurones in visual areas 17 and 18 of the cat J Physiol 203 603–18 [5.7.1]

Berardi N, Bisti S, Maffei L (1987) The transfer of visual information across the corpus callosum: spatial and temporal properties in the cat J Physiol 384 619–32 [5.3.5]

Berardi N, Domenici L, Parisi V, et al. (1993a) Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF) I. Visual cortex Proc R Soc B 251 17–23 [8.2.7f]

Berardi N, Cellerino A, Maffei L (1993b) Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). II. Lateral geniculate nucleus Proc R Soc B 251 25–31 [8.2.7f]

Berardi N, Pizzorusso T, Ratto GM, Maffei L (2003) Molecular basis of plasticity in the visual cortex TINS 26 369–78 [6.7.2d, 8.2.7f, 8.2.7h]

Berens C, Bannon RE (1963) Aniseikonia Arch Ophthal 70 181–8 [9.9.2b]

Berghuis P, Rajnicek AM, Morozov YM, et al. (2007) Hardwiring the brain: endocannabinoids shape neuronal connectivity Science 316 1212–6 [6.4.5b]

(p.555) Bergua A, Skrandies W (2000) An early antecedent to modern random dot stereograms—’the secret stereoscopic writing’ of Ramon y Cajal Int J Psychophysiol 36 69–72 [2.6.1]

Berkeley G (1709) An essay towards a new theory of vision Jeremy Pepyat, Dublin. Reprinted 1922 Dutton, New York. Also in Lindsay AD (Ed) (1910) Theory of vision and other writings by Bishop Berkeley Dent, London [2.10.3c, 2.5.4]

Berman N, Cynader M (1975) Receptive fields in cat superior colliculus after visual cortex lesions J Physiol 245 261–70 [8.2.2f]

Berman N, Daw NW (1977) Comparison of the critical periods for monocular and directional deprivation in cats J Physiol 265 249–59 [8.3]

Berman N, Murphy EH (1982) The critical period for alteration in cortical binocularity resulting from divergent and convergent strabismus Devel Brain Res 2 181–202 [8.2.3a, 8.3.1a]

Berman N, Payne BR (1982) Monocular deprivation in the Siamese cat: development of cortical orientation and direction sensitivity without visual experience Exp Brain Res 46 147–50 [8.4.6a]

Berman N, Payne BR (1983) Alterations in connections of the corpus callosum following convergent and divergent strabismus Brain Res 274 201–12 [6.4.6d, 8.2.3b]

Berman N, Sterling P (1976) Cortical suppression of the retino-collicular pathway in the monocularly deprived cat J Physiol 255 263–73 [8.2.2f]

Berman N, Blakemore C, Cynader M (1975) Binocular interaction in the cat’s superior colliculus J Physiol 276 595–615 [5.5.1b]

Berman N, Payne BR, Labar DR, Murphy EH (1982) Functional organization of neurons in cat striate cortex: variations in ocular dominance and receptive-field type with cortical laminae and location in the visual field J Neurophysiol 48 1362–77 [5.7.2b]

Berman N, Pearson HE, Payne BR (1989) Consequences of visual deprivation in the absence of binocular competitive mechanisms in Siamese cat area 17 Devel Brain Res 50 69–87 [8.4.6a]

Berns GS, Dayan P, Sejnowski TJ (1993) A correlational model for the development of disparity selectivity in visual cortex that depends on prenatal and postnatal phases Proc Natl Acad Sci 90 8277–81 [6.5.1a]

Bernstein LJ, Cooper LA (1997) Direction of motion influences perceptual identification of ambiguous figures J Exp Psychol HPP 23 721–37 [4.5.9e]

Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains Proc Natl Acad Sci 94 5411–16 [4.3.2]

Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock Science 295 10703 [5.1.4g, 5.3.1]

Bertenthal BI, Bradbury A (1992) Infants’ detection of shearing motion in random-dot displays Devel Psychol 28 1056–66 [7.2.3b]

Bertrand J (1889) Calcul des probabilité Chelsea Publishing Co, Bronx, NY [3.6]

Best PJ, White AM, Minai A (2001) Spatial processing in the brain: the activity of hippocampal place cells Ann Rev Neurosci 24 459–86 [5.8.3c]

Bezzi P, Gundersen V, Galbete JL, et al. (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate Nat Neurosci 7 613–20 [5.5.1f]

Bharadwaj SR, and Candy TR (2008) Cues for the control of ocular accommodation and vergence during postnatal human development J Vis 8 (16) Article 14 [7.3.1]

Bharadwaj SR, Schor CM (2005) Acceleration characteristics of human ocular accommodation Vis Res 45 17–28 [9.7.2c]

Bharadwaj SR, Hoenig MP, Sivaramakrishnan VC, et al. (2007) Variation of binocular-vertical fusion amplitude with convergence Invest Ophthal Vis Sci 48 1592–1600 [10.6.1]

Bi GQ (2002) Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms Biol Cybern 87 319–32 [4.3.4f, 6.5.2]

Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type J Neurosci 18 10464–72 [4.3.4f, 6.5.2]

Bichot NP, Schall JD, Thompson KG (1996) Visual feature selectivity in frontal eye fields induced by experience in mature macaques Nature 381 697–9 [5.8.4f]

Bickford ME, Guido W, Goodwin DW (1998) Neurofilament proteins in Y-cells of the cat lateral geniculate nucleus: normal expression and alteration with visual deprivation J Neurosci 18 6549–57 [8.2.2b]

Bickford ME, Ramcharan E, Godwin DW, et al. (2000) Neurotransmitters contained in the subcortical extraretinal inputs to the monkey lateral geniculate nucleus J Comp Neurol 427 701–17 [5.2.2a]

Bidyadhar NK (1941) Principles of Susrutian ocular therapy interpreted in the light of modern ophthalmic science Arch Ophthal 25 582–26 [2.2.3]

Biederman I (1981) On the semantics of a glance at a scene In Perceptual organization (ed M Kubovy, JR Pomerantz) pp 213–53 Erlbaum, Hillsdale, New Jersey [4.5.10c, 4.8.1a]

Biederman I (1987) Recognition-by-components: a theory of human image understanding Psychol Rev 94 115–147 [4.5.10a]

Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex J Neurosci 2 32–48 [6.7.2f]

Biguer B, Prablanc C (1981) Modulation of the vestibulo–ocular reflex in eye–head orientation as a function of target distance in man In Progress in oculomotor research (ed AF Fuchs, W Brecher) pp 525–30 Elsevier, Amsterdam [10.9.1]

Bijl P, Koenderink JJ, Kappers AML (1992) Deviations from strict M scaling J Opt Soc Am A 9 1233–9 [5.5.4c]

Binkofski F, Dohle C, Posse S, et al. (1998) Human anterior intraparietal area subserves prehension. A combined lesion and functional MRI activation study Neurology 50 1253–9 [5.8.4e]

Birch DG, Birch EE, Enoch JM (1980) Visual sensitivity resolution and Rayleigh matches following monocular occlusion for one week J Opt Soc Am 70 954–8 [8.2.1]

Birch EE (1985) Infant interocular acuity differences and binocular vision Vis Res 25 571–6 [7.2.1b]

Birch EE, Hale LA (1989) Operant assessment of stereoacuity Clin Vis Sci 4 295–300 [7.6.1c]

Birch EE, Held R (1983) The development of binocular summation in human infants Invest Ophthal Vis Sci 27 1103–7 [7.3.2]

Birch EE, Petrig B (1996) FPL and VEP measures of fusion stereopsis and stereoacuity in normal infants Vis Res 36 1321–7 [7.6.3]

Birch EE, Stager DR (1985) Monocular acuity and stereopsis in infantile esotropia Invest Ophthal Vis Sci 29 1627–30 [8.4.1]

Birch EE, Swanson WH (2000) Hyperacuity deficits in anisometropic and strabismic amblyopes with known ages of onset Vis Res 40 1035–40 [8.4.2a, 8.4.3b]

Birch EE, Gwiazda J, Held R (1982) Stereoacuity development for crossed and uncrossed disparities in human infants Vis Res 22 507–13 [7.6.1a]

Birch EE, Gwiazda J, Held R (1983) The development of vergence does not account for the onset of stereopsis Perception 12 331–6 [7.3.6]

Birch EE, Shimojo S, Held R (1985) Preferential–looking assessment of fusion and stereopsis in infants aged 1–6 months Invest Ophthal Vis Sci 29 366–70 [7.6.1a]

Birch EE, Stager DR, Berry P, Everett ME (1990) Prospective assessment of acuity and stereopsis in amblyopic infantile esotropes following early surgery Invest Ophthal Vis Sci 31 758–65 [8.3.3a]

Birch EE, Stager DR, Everett ME (1995) Random dot stereoacuity following surgical correction of infantile esotropia J Pediat Ophthal Strab 32 231–5 [8.3.3a]

Birch EE, Fawcett S, Stager DR (2000a) Why does early surgical alignment improve stereoacuity outcomes in infantile esotropia? J Am Assoc Pediat Ophthal Strab 4 10–14 [10.2.2e, 8.3.3a]

Birch EE, Fawcett S, Stager D (2000b) Co-development of VEP motion response and binocular vision in normal infants and infantile esotropes Invest Ophthal Vis Sci 41 1719–23 [7.2.3c, 8.4.4d]

Birnbaum MH, Koslowe K, Sanet R (1977) Success in amblyopia therapy as a function of age: a literature survey Am J Optom Physiol Optics 54 269–275 [8.4.6b]

(p.556) Birnholz JC (1981) The development of human fetal eye movement patterns Science 213 679–80 [7.3.4]

Bishop DL, Misgeld T, Walsh MK, et al. (2004) Axon branch removal at developing synapses by axosome shedding Neuron 44 651–61 [6.4.4e]

Bishop KM, Rubenstein LR, O’Leary DDM (2002) Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex J Neurosci 22 7627–38 [6.4.2a]

Bishop PO, Davis R (1953) Bilateral interaction in the lateral geniculate body Science 118 271–3 [5.2.3a]

Bishop PO, Pettigrew JD (1986) Neural mechanisms of binocular vision Vis Res 29 1587–600 [2.10.50]

Bishop PO, Henry GH, Smith CJ (1971) Binocular interaction fields of single units in the cat’s striate cortex J Physiol 216 39–68 [5.7.2e]

Bisti S, Carmignoto G (1986) Monocular deprivation in kittens differently affects crossed and uncrossed visual pathways Vis Res 29 875–84 [8.4.2a]

Blackie CA, Howland HC (1999) An extension of an accommodation and convergence model of emmetropization to include the effects of illumination intensity Ophthal Physiol Opt 19 112–125 [9.6.2a]

Blackwell HR (1952) Studies of psychophysical methods for measuring thresholds J Opt Soc Am 42 606–16 [3.1.1e]

Blais BS, Shouval HZ, Cooper LN (1999) The role of presynaptic activity in monocular deprivation: comparison of homosynaptic and heterosynaptic mechanisms Proc Natl Acad Sci 96 1083–7 [6.7.2f]

Blake R, Hirsch HVB (1975) Deficits in binocular depth perception in cats after alternating monocular deprivation Science 190 1114–16 [8.2.5b, 8.4.1]

Blakemore C (1969) Binocular depth discrimination and the nasotemporal division J Physiol 205 471–9 [5.3.4]

Blakemore C (1976) The conditions required for the maintenance of binocularity in the kitten’s visual cortex J Physiol 291 423–44 [8.2.5b]

Blakemore C, Campbell FW (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images J Physiol 203 237–60 [4.2.5b, 4.4.1b]

Blakemore C, Cooper GF (1970) Development of the brain depends on the visual environment Nature 228 477–8 [6.6.4b]

Blakemore C, Hawken MJ (1982) Rapid restoration of functional input to the visual cortex of the cat after brief monocular deprivation J Physiol 327 463–87 [8.2.3e]

Blakemore C, Price DJ (1987a) The organization and post–natal development of area 18 of the cat’s visual cortex J Physiol 384 293–92 [6.7.1]

Blakemore C, Price DJ (1987b) Effects of dark rearing on the development of area 18 of the cat’s visual cortex J Physiol 384 293–309 [8.1.1c]

Blakemore C, Van Sluyters RC (1974) Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period J Physiol 237 195–216 [8.3.1c]

Blakemore C, Van Sluyters RC (1975) Innate and environmental factors in the development of the kitten’s visual cortex J Physiol 482 663–716 [6.6.4a, 8.2.3d]

Blakemore C, Vital–Durand F (1986a) Effects of visual deprivation on the development of the monkey’s lateral geniculate nucleus J Physiol 380 493–511 [6.3.5b, 8.2.2b, 8.2.2c]

Blakemore C, Vital–Durand F (1986b) Organization and post–natal development of the monkey’s lateral geniculate nucleus J Physiol 380 453–91 [6.3.5c]

Blakemore C, van Sluyters RC, Peck CK, Hein A (1975) Development of cat visual cortex following rotation of one eye Nature 257 584–7 [8.2.5a]

Blakemore C, Garey L, Vital–Durand F (1978) The physiological effects of monocular deprivation and their reversal in the monkey’s visual cortex J Physiol 283 223–62 [8.3.2]

Blakemore C, Hawken MJ, Mark RF (1982) Brief monocular deprivation leaves subthreshold synaptic input on neurones of the cat’s visual cortex J Physiol 327 489–505 [8.2.3e, 8.2.7d]

Blank AA (1953) Luneburg theory of binocular visual space J Opt Soc Am 43 717–27 [4.7.2]

Blank AA (1958) Analysis of experiments in binocular space perception J Opt Soc Am 48 911–25 [4.7.2]

Blasdel GG (1992a) Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex J Neurosci 12 3115–38 [5.4.3a, 5.7.2a]

Blasdel GG (1992b) Orientation selectivity preference and continuity in monkey striate cortex J Neurosci 12 3139–61 [5.7.1]

Blasdel GG, Campbell D (2001) Functional retinotopy of monkey visual cortex J Neurosci 15 8286–301 [5.5.4c]

Blasdel GG, Fitzpatrick D (1984) Physiological organization of layer 4 in macaque striate cortex J Neurosci 4 880–95 [5.5.3]

Blasdel GG, Pettigrew JD (1979) Degree of interocular synchrony required for maintenance of binocularity in kitten’s visual cortex J Neurophysiol 42 1692–710 [8.2.5b]

Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex Nature 321 579–85 [5.7.1]

Blasdel GG, Lund JS, Fitzpatrick D (1985) Intrinsic connections of macaque striate cortex: axonal projections of cells outside lamina 4C J Neurosci 5 3350–69 [5.8.2a]

Blasdel GG, Obermayer K, Kiorpes L (1995) Organization of ocular dominance columns in the striate cortex of neonatal macaque monkeys Vis Neurosci 12 589–603 [5.7.1, 6.7.1]

Blevins E, Johnsen S (2004) Spatial vision in the echinoid genus Echinometra J Exp Biol 207 449–53 [6.1.2]

Bliss TV, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path J Physiol 232 331–56 [6.5.1a]

Blodi FC, Van Allen MW (1957) Electromyography of the extraocular muscles in fusional movements Am J Ophthal 44 136–44 [10.8.1b]

Blum R (1983) The cyclostereoscope Stereo World June 29–31 [2.11.4]

Blum R, Kafitz KW, Konnerth A (2002) Neurotrophin-evoked depolarization requires the sodium channel Nav1.9 Nature 419 687–93 [6.4.3d]

Blumenfeld W (1913) Untersuchungen über die scheinbare Grösse im Sehraume Z Psychol 65 271–404 [4.7.2]

Blunt W (1970) The dream king Hamish Hamilton, London [2.10.5]

Bobier WR, Braddick OJ (1985) Eccentric photorefraction: optical analysis and empirical measures Am J Optom Physiol Opt 62 614–20 [9.2.4d]

Bobier WR, McRae M (1996) Gain change in the accommodative convergence cross-link Ophthal Physiol Opt 16 318–25 [10.4.1]

Bobier WR, Campbell MC, Hinch M (1992) The influence of chromatic aberration on the static accommodative response Vis Res 32 823–32 [9.8.2b]

Bobier WR, Guinta A, Kurtz S, Howland HC (2000) Prism induced accommodation in infants 3 to 6 months of age Vis Res 40 529–37 [7.3.6]

Bode–Greuel KM, Singer W (1989) The development of N–methyl–D–aspartate receptors in cat visual cortex Devel Brain Res 46 197–204 [6.7.2a]

Boff KR, Kaufman L, Thomas JP (1986) Handbook of perception and performance. Vol I Sensory processes and perception Wiley New York [1.3]

Boire D, Morris R, Ptito M, et al. (1995) Effects of neonatal splitting of the optic chiasma on the development of feline visual callosal connections Exp Brain Res 104 275–86 [6.4.6d]

Boll F (1877) Zur Anatomie und Physiologie der Retina Arch Physiol 4–37 [2.6.1]

Bollmann JH, Engert F (2009) Subcellular topography of visually driven dendritic activity in the vertebrate visual system Neuron 61 895–905 [6.5.5]

Boltz RL, Harwerth RS (1979) Fusional vergence ranges of the monkey: a behavioural study Exp Brain Res 37 87–91 [10.5.3]

Boman DK, Kertesz AE (1983) Interaction between horizontal and vertical fusional responses Percept Psychophys 33 565–70 [10.6.3c]

(p.557) Boman DK, Kertesz AE (1985) Horizontal fusional responses to stimuli containing artificial scotomas Invest Ophthal Vis Sci 29 1051–6 [10.5.6]

Bomba PC (1984) The development of orientation categories between 2 and 4 months of age J Exp Child Psychol 37 609–36 [7.2.2]

Bonds AB, MacLeod DIA (1978) A displaced Stiles-Crawford effect associated with an eccentric pupil Invest Ophthal Vis Sci 17 754–61 [5.1.2a]

Bonelli MLR, Shea WR (1975) Reason, experiment, and mysticism Macmillan, London [2.5.4]

Bonhoeffer T, Grinvald A (1993) The layout of isoorientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel organization J Neurosci 13 4157–80 [5.7.1]

Bonhoeffer T, Huf J (1985) Position-dependent properties of retinal axons and their growth cones Nature 315 409–10 [6.3.4a]

Bonin V, Mante V, Carandini M (2005) The suppressive field of neurons in lateral geniculate nucleus J Neurosci 25 10844–56 [5.2.2b]

Bonneh YS, Sagi D, Polat U (2004) Local and non-local deficits in amblyopia: acuity and spatial interactions Vis Res 44 3099–110 [8.4.3b]

Booth MCA, Rolls ET (1998) View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex Cereb Cortex 8 510–23 [5.8.3b]

Boothe RG, Williams RA, Kiorpes L, Teller DY (1980) Development of contrast sensitivity in infant Macaca nemestrina monkeys Science 208 1290–2 [7.2.1a]

Boothe RG, Dobson V, Teller DY (1985) Postnatal development of vision in human and nonhuman primates Ann Rev Neurosci 8 495–545 [7.3.1, 7.4.1e]

Borg-Graham LJ, Monier C, Frégnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual neurons Nature 393 369–73 [5.5.2e]

Borghuis BG, Ratcliff CP, Smith RG, et al. (2008) Design of a neural array J Neurosci 28 3178–89 [5.1.4e]

Boring EG (1930) A new ambiguous figure Am J Psychol 42 444–5 [4.5.9a]

Boring EG (1942) Sensation and perception in the history of experimental psychology Appleton–Century–Crofts, New York [2.5.2]

Boring EG (1950) A history of experimental psychology Appleton–Century–Crofts, New York [4.2.4.c]

Born RT, Tootell BH (1992) Segregation of global and local motion processing in primate middle temporal visual area Nature 357 497–9 [5.8.4b]

Bornstein MH, Krinsky SJ, Benasich AA (1986) Fine orientation discrimination and shape constancy in young infants J Exp Child Psychol 41 49–60 [7.2.2]

Borrell V, Callaway EM (2002) Reorganization of exuberant axonal arbors contributes to the development of laminar specificity in ferret visual cortex J Neurosci 22 6682–95 [6.4.5a]

Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P (2008) Decoding the epigenetic language of neuronal plasticity Neuron 60 961–74 [6.6.1c]

Bortolotto ZA, Bashir ZI, Davies CH, Collingridge GL (1994) A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation Nature 368 740–3 [6.5.1b]

Bosking WH, Zhang, Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex J Neurosci 17 2112–7 [5.5.6a, 5.5.6b]

Boss VC, Schmidt JT (1984) Activity and the formation of ocular dominance patches in dually innervated tectum of goldfish J Neurosci 4 2891–905 [6.7.3b]

Bossomaier T, Snyder AW (1986) Why spatial frequency processing in the visual cortex? Vis Res 29 1307–9 [3.2.6a]

Bouma H (1970) Interaction effects in parafoveal letter recognition Nature 226 177–8 [4.8.3a]

Bouman MA, van den Brink G (1952) On the integrate capacity in time and space of the human peripheral retina J Opt Soc Am 42 617–20 [3.1.2]

Bour LJ (1981) The influence of the spatial distribution of a target on the dynamic response and fluctuations of the accommodation of the human eye Vis Res 21 1287–96 [9.6.4d]

Bourdet C, Olavarria JF, Van Sluyters, RC (1996) Distribution of visual callosal neurons in normal and strabismic cats J Comp Neurol 366 259–69 [6.4.6d, 8.2.3b]

Bourgeois JP, Rakic P (1993) Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage J Neurosci 13 2801–20 [6.4.5d]

Bourgeois JP, Rakic P (1996) Synaptogenesis in the occipital cortex of macaque monkey devoid of retinal input from early embryonic stages Eur J Neurosci 8 942–50 [6.4.5c]

Bourgeois JP, Goldman-Rakic PS, Rakic P (1994) Synaptogenesis in the prefrontal cortex of rhesus monkeys Cereb Cortex 4 78–96 [6.4.2d]

Bovolenta P, Mason C (1987) Growth cone morphology varies with position in the developing mouse visual pathway from retina to first targets J Neurosci 7 1447–60 [6.3.4a]

Bower TGR (1966) Slant perception and shape constancy in infants Science 151 832–4 [7.4.2a]

Bower TGR, Broughton JM, Moore MK (1970a) Infant responses to approaching objects: an indicator of response to distal variables Percept Psychophys 9 193–6 [7.4.1c]

Bower TGR, Broughton JM, Moore MK (1970b) Demonstrations of intention in the reaching behavior of neonate humans Nature 228 679–81 [7.4.1a]

Bowers B (2001) Sir Charles Wheatstone FRS 1802–1875 The Institution of Electrical Engineers, London [2.11.2b]

Bowne SF (1990) Contrast discrimination cannot explain spatial frequency orientation or temporal frequency discrimination Vis Res 30 449–61 [3.1.4a, 4.2.8c]

Boycott B, Wässle H (1999) Parallel processing in the mammalian retina Invest Ophthal Vis Sci 40 1313–28 [5.1.3]

Boyd J, Matsubara J (1994) Tangential organization of callosal connectivity in the cat’s visual cortex J Comp Neurol 347 197–210 [5.3.5, 6.4.6d]

Boyde A, Jones SJ, Taylor ML, et al. (1990) Fluorescence in the tandem scanning microscope J Micros 157 39–49 [5.4.1b]

Boyden ES, Zhang F, Bamberg E, et al. (2005) Millisecond-timescale, genetically targeted optical control of neural activity Nat Neurosci 8 1263–8 [5.4.4]

Boyle R (1688) A disquisition about the final causes of natural things J Taylor, London See Robert Boyle the works (ed T Birch) Vol 5 Olms, Hildesheim [2.10.3e]

Boynton RM, Onley JW (1962) A critique of the special status assigned by Brindley to “psychophysical linking hypotheses” of “class A” Vis Res 2 383–90 [3.1.1a]

Bozzi Y, Pizzorusso T, Cremisi F, et al. (1995) Monocular deprivation decreases the expression of messenger RNA for brain-derived neurotrophic factor in the rat visual cortex Neurosci 69 1133–44 [8.2.7f]

Braastad BO, Heggelund P (1985) Development of spatial receptive–field organization and orientation selectivity in kitten striate cortex J Neurophysiol 53 1158–78 [6.6.4a, 8.1.1c]

Bracewell RN (1978) The Fourier transform and its applications McGraw–Hill, New York [3.2.2]

Braddick OJ, Atkinson J, French J, Howland HC (1979) A photorefractive study of infant accommodation Vis Res 19 1319–30 [7.3.1]

Braddick OJ, Atkinson J, Julesz B, et al. (1980) Cortical binocularity in infants Nature 288 363–5 [7.6.3]

Braddick OJ, Wattam–Bell J, Day J, Atkinson J (1983) The onset of binocular function in human infants Hum Neurobiol 2 65–9 [7.6.3]

Braddick OJ, Wattam-Bell J, Atkinson J (1986) Orientation-specific cortical responses in early infancy Nature 320 617–19 [7.2.2]

Braddick O, Birtles D, Wattam-Bell J, Atkinson J (2005) Motion- and orientation-specific cortical responses in infancy Vis Res 45 3169–79 [7.2.3c]

Bradke F, Dotti CG (1999) The role of local actin instability in axon formation Science 283 1931–4 [6.4.5a]

(p.558) Bradley A, Freeman RD (1981) Contrast sensitivity in anisometropic amblyopia Invest Ophthal Vis Sci 21 467–76 [8.4.2a]

Bradley A, Freeman RD (1985a) Is reduced vernier acuity in amblyopia due to position contrast or fixation deficits? Vis Res 25 55–66 [8.4.2a]

Bradley A, Freeman RD (1985b) Temporal sensitivity in amblyopia: an explanation of conflicting reports Vis Res 25 39–46 [8.4.4b]

Bradley A, Rabin J, Freeman RD (1983) Nonoptical determinants of aniseikonia Invest Ophthal Vis Sci 27 507–12 [9.9.1b]

Bradley A, Freeman RD, Applegate R (1985) Is amblyopia spatial frequency or retinal locus specific? Vis Res 25 47–54 [8.4.2a]

Bradley A, Skottun BC, Ohzawa I, et al. (1987) Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior J Neurophysiol 57 755–72 [4.3.1a]

Bradley DC, Maxwell M, Andersen RA, et al. (1996) Mechanisms of heading perception in primate visual cortex Science 273 1544–7 [5.8.4c]

Bradley DC, Chang GC, Andersen RA (1998) Encoding of three-dimensional structure-from-motion by primate MT neurons Nature 392 714–17 [5.8.4b]

Bradley DV, Fernandes A, Lynn M, et al. (1999) Emmetropization in the rhesus monkey (Macaca mulatta): birth to adulthood Invest Ophthal Vis Sci 40 214–28 [6.3.1c]

Braendgaard H, Evans SM, Howard CV, Gundersen HJG (1990) The total number of neurons in the human neocortex unbiasedly estimated using optical disectors J Micros 157 285–304 [6.4.2a]

Brainard DH (1997) The psychophysics toolbox Spat Vis 10 433–46 [3.1.1a]

Braisted JE, McLaughlin T, Wang HU, et al. (1997) Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system Devel Biol 191 14–28 [6.4.3c]

Braitenberg V (1985) An isotropic network which implicitly defines orientation columns: discussion of a hypothesis In Models of the visual cortex (ed D Rose, VG Dobson) pp 479–84 Wiley, New York [4.3.4b]

Braitenberg V, Braitenberg C (1979) Geometry of orientation columns in visual cortex Biol Cyber 33 179–86 [5.7.1]

Bramham CR, Wells DC (2007) Dendritic mRNA: transport, translation and function Nat Rev Neurosc i 8 776–89 [6.4.4f]

Brautaset RL, Jennings JAM (2005) Increasing the proportion of binocular vision makes horizontal prism adaptation complete Ophthal Physiol Opt 25 168–70 [10.2.5a]

Bray GM, Villegas–Pérez MP, Vidal–Sanz M, Aguayo AJ (1992) Death and survival of axotomized retinal ganglion cells In Regeneration and plasticity in the mammalian visual system (ed DMK Lam, GM Garth) pp 29–43 MIT Press, Cambridge MA [6.3.3b]

Breasted JH (1930) The Edwin Smith surgical papyrus University of Chicago Press, Chicago [2.6.2]

Brecher GA (1934) Die optokinetische Auslösung von Augenrollung und rotatorischem Nystagmus Pflügers Arch ges Physiol 234 13–28 [10.7.1]

Brecher GA (1951) A new method for measuring aniseikonia Am J Ophthal 34 1016–21 [9.9.2a]

Brecher GA, Winters DM, Townsend CA (1958) Image alternation for aniseikonia determination Am J Ophthal 45 253–8 [9.9.2a]

Bredfeldt CE, Ringach DL (2002) Dynamics of spatial frequency tuning in macaque V1 J Neurosci 22 1976–84 [5.6.3]

Brefczynski JA, DeYoe EA (1999) A physiological correlate of the ‘spotlight’ of visual attention Nat Neurosci 2 370–4 [5.9.2a]

Breinin GM (1955) The nature of vergence revealed by electromyography Arch Ophthal 54 407–12 [10.8.1b]

Breinin GM, Moldaver J (1955) Electromyography of the human extraocular muscles. I. Normal kinesiology; divergence mechanism Arch Ophthal 54 200–10 [10.10.2a]

Bremmer F, Klam F, Duhamel JR, et al. (2002) Visual-vestibular interactive responses in the macaque ventral intraprietal area (VIP) Eur J Neurosci 16 1569–86 [5.8.4e]

Brennan C, Monschau B, Lindberg R, et al. (1997) Two Eph receptor tyrosine kinase ligands control axon growth and may be involved in the creation of the retinotectal map in the zebrafish Development 124 655–64 [6.4.3c]

Brenner RL, Charles ST, Flynn JT (1969) Pupillary responses in rivalry and amblyopia Arch Ophthal 82 23–9 [8.4.5a]

Brewster D (1856) The stereoscope its history theory and construction John Murray, London [2.11.2c]

Brewster D (1860) Notice respecting the invention of the stereoscope in the sixteenth century, and of binocular drawings by Jacopo Chimenti da Empoli, a Florentine artist Photo J 6 232–33 [2.11.2c]

Brewster D (1862) On the stereoscopic pictures executed in the 16th century Photog J 8 9–12 [2.11.2c]

Bridgeman B, Palca J (1980) Role of microsaccades in high acuity observational tasks Vis Res 20 813–17 [10.1.1]

Briggs F, Callaway EM (2001) Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex J Neurosci 21 3600–8 [5.5.1b]

Briggs F, Callaway EM (2005) Laminar patterns of local excitatory input to layer 5 neurons in macaque primary visual cortex Cereb Cortex 154 479–88 [5.5.5]

Briggs W (1676) Ophthalmographia. London [2.10.2]

Brigham EO (1974) The fast Fourier transform Prentice–Hall Englewood Cliffs NJ [3.2.2]

Brindley GS (1970) Physiology of the retina and visual pathway Williams and Wilkins, Baltimore Md [3.1.1a, 4.2.7]

Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex J Physiol 196 479–93 [5.5.4c]

Brindley GS, Gautier-Smith PC, Lewin W (1969) Cortical blindness and the functions of the non-geniculate fibres of the optic tracts J Neurol Neurorosug Psychiat 32 259–64 [5.5.7]

Britten KH, van Wezel RJA (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys Nat Neurosci 1 59–63 [5.8.4c]

Britten KH, Newsome WT, Shadlen MN, et al. (1996) A relationship between behavioral choice and the visual responses of neurons in macaque MT Vis Neurosci 13 87–100 [5.8.4b, 5.9.3b]

Britto J, Tannahill D, Keynes R (2002) A critical role for sonic hedgehog signaling in the early expansion of the developing brain Nat Neurosci 5 103–10 [6.4.2a]

Britto LR, Keyser KT, Hamassaki DE, Karten HJ (1988) Catecholaminergic subpopulation of retinal displaced ganglion cells projects to the accessory optic nucleus in the pigeon (Columba livia) J Comp Neurol 269 109–17 [5.1.4g]

Broadbent H, Westall C (1990) An evaluation of techniques for measuring stereopsis in infants and young children Ophthal Physiol Opt 10 3–7 [7.6.2]

Brodal P (1972) The corticopontine projection from the visual cortex of the cat. I. The total projection and the projection from area 17 Brain Res 39 297–317 [5.5.1b]

Brodsky MC (1999) Dissociated vertical divergence: a righting reflex gone wrong Arch Ophthal 117 1216–22 [10.6.2]

Brody CD (1998) Slow covariations in neuronal resting potentials can lead to artefactually fast cross-correlations in their spike trains J Neurophysiol 80 3345–51 [4.3.4e]

Broerse J, Dodwell PC, Ehrenstein WH (1994) Experiments on the afterimage of stimulus change (Dvorák 1870): a translation with commentary Perception 23 1135–44 [2.8.2]

Bronson GW (1990) Changes in infants visual scanning across the 2- to 14-week period J Exp Child Psychol 49 101–25 [7.3.5]

Brookman KE (1983) Ocular accommodation in human infants Am J Optom Physiol Opt 60 91–9 [7.3.1]

Brosnahan D, Norcia AM, Schor CM, Taylor DG (1998) OKN perceptual and VEP direction biases in strabismus Vis Res 38 2833–40 [8.4.4d]

Bross M (1984) Effect of monocular occlusion on lateral phoria Am J Optom Physiol Opt 61 31–3 [10.2.3a]

Brosseau-Lachaine O, Casanova C, Faubert J (2008) Infant sensitivity to radial optic flow fields during the first months of life J Vis 8 (4) Article 5 [7.2.3b]

(p.559) Brotchie PR, Andersen RA, Snyder LH, Goodman SJ (1995) Head position signals used by parietal neurons to encode locations of visual stimuli Nature 375 232–4 [4.5.6, 5.8.4e]

Brouwer B, Zeeman WPC (1926) The projection of the retina in the primary optic neuron in monkey Brain 49 1–35 [5.2.1]

Brown A, Yates PA, Burrola P, et al. (2000) Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signalling Cell 102 77–88 [6.4.3c]

Brown AM (1990) Development of visual sensitivity to light and color vision in human infants: a critical review Vis Res 30 1159–88 [7.2.1e]

Brown AM, Miracle JA (2003) Early binocular vision in human infants: limitations on the generality of the superposition hypothesis Vis Res 43 1563–74 [7.6.1a]

Brown AM, Lindsey DT, McSweeney EM, Walters MM (1995) Infant luminance and chromatic contrast sensitivity: optokinetic nystagmus data on 3-month-olds Vis Res 35 3145–60 [7.2.1e]

Brown B, Yap MKH, Fan WCS (1993) Decrease in stereoacuity in the seventh decade of life Ophthal Physiol Opt 13 138–42 [7.6.4]

Brown DL, Salinger WL (1975) Loss of X-cells in lateral geniculate nucleus with monocular paralysis: neural plasticity in the adult cat Science 189 1011–12 [8.2.2e]

Brown RJ, Wilson JR, Norcia AM, Boothe RG (1998) Development of directional motion symmetry in the monocular visually evoked potential of infant monkeys Vision Res 38 1253–63 [7.3.4]

Brown RJ, Candy TR, Norcia AM (1999) Development of rivalry and dichoptic masking in human infants Invest Ophthal Vis Sci 40 3327–33 [7.6.3, 7.6.3]

Bruce AS, Atchinson DA, Bhoola H (1995) Accommodation-convergence relationships and age Invest Ophthal Vis Sci 36 406–13 [10.4.3a]

Bruce CJ, Goldberg ME (1985) Primate frontal eye fields: I single neurons discharging before saccades J Neurophysiol 53 603–35 [5.8.4e]

Bruce CJ, Isley M, Shinkman PG (1981) Visual experience and development of interocular orientation disparity in visual cortex J Neurophysiol 46 215–28 [7.5]

Brunel N, Nadal JP (1998) Mutual information, Fisher information, and population coding Neural Comput 10 1731–57 [4.2.5b]

Bruner JS, Minturn AL (1955) Perceptual identification and perceptual organization J Gen Psychol 53 21–8 [4.5.9e]

Brunet I, Di Nardo AA, Sonnier L, et al. (2007) The topological role of homeoproteins in the developing central nervous system TINS 30 260–267 [6.4.1]

Bruno N, Cutting JE (1988) Minimodularity and the perception of layout J Exp Psychol Gen 117 161–70 [4.5.7c]

Bruno P, Van den Berg (1997) Relative orientation of primary positions of the two eyes Vis Res 37 935–47 [10.1.2d]

Bruno P, Inchingola P, van der Steen J (1995) Unequal saccades produced by aniseikonic patterns: a model approach Vis Res 35 3473–92 [10.8.3b]

Brunso-Bechtold JK, Casagrande VA (1985) Presence of retinogeniculate fibres is essential for initiating the formation of each interlaminar space in the lateral geniculate nucleus Devel Brain Res 20 123–6 [6.3.5b]

Bryant P (1974) Perception and understanding in young children Methuen London [4.6.3a]

Bucci MP, Kapoula Z, Eggert T, Garraud L (1997) Deficiency of adaptive control of the binocular coordination of saccades in strabismus Vis Res 37 2767–77 [10.8.2b]

Bucci MP, Kapoula Z, Eggert T (1999) Saccade amplitude disconjugacy induced by aniseikonia: role of monocular depth cues Vis Res 39 3109–22 [10.8.3b]

Bucci MP, Kapoula Z, Bernotas M, Zamfirescu F (2000) Disconjugate memory-guided saccades to disparate targets: temporal aspects Exp Brain Res 134 133–8 [10.8.3b]

Bucci MP, Gomes M, Paris G, Kapoula Z (2001) Disconjugate oculomotor learning caused by feeble image-size inequality: differences between secondary and tertiary positions Vis Res 41 625–37 [10.8.3b]

Büchel C, Price C, Frackowiak RSJ, Friston K (1998) Different activation patterns in the visual cortex of late and congenitally blind subjects Brain 121 409–19 [8.1.4b]

Buchs PA, Muller D (1996) Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses Proc Natl Acad Sci 93 8040–5 [6.4.4f]

Buck KB, Zheng JQ (2002) Growth cone turning induced by direct local modification of microtubule dynamics J Neurosci 22 9358–67 [6.4.3a]

Buckley EG, Seaber JH (1982) The incidence of strabismic amblyopia Invest Ophthal Vis Sci 22 (Abs) 162 [8.4.1]

Budden FJ (1972) The fascination of groups Cambridge University Press, London [3.7.1,[4.6.3e]

Buhl EH, Halasy K, Somogi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sties Nature 368 823–8 [5.5.6b]

Buisseret P, Imbert M (1976) Visual cortical cells: their developmental properties in normal and dark reared kittens J Physiol 255 511–25 [6.6.4a, 8.1.1c]

Buisseret P, Gary-Bobo E, Imbert M (1982) Plasticity in the kitten’s visual cortex: effects of the suppression of visual experience upon the orientational properties of visual cortical cells Devel Brain Res 4 417–29 [8.1.1c]

Bulfone A, Smiga SM, Shimamua K, et al. (1995) T-brain-1: a homolog of brachyury whose expression defines molecularly distinct domains within the cerebral cortex Neuron 15 63 [6.4.2b]

Bullier J, Kennedy H (1983) Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey Exp Brain Res 53 168–72 [5.8.1, 5.8.3a]

Bullier J Kennedy H, Salinger W (1984) Branching and laminar origin of projections between visual cortical areas in the cat J Comp Neurol 228 329–41 [5.5.1b]

Bullier J, Girard P, Salin PA (1994) The role of area 17 in the transfer of information to extrastriate visual cortex In Cerebral cortex Volume 10 Primary visual cortex in primates (ed A Peters, KS Rockland) pp 301–30 Plenum, New York [5.8.1]

Bullier J, Schall JD, Morel A (1996) Functional streams in occipito-frontal connections in the monkey Behav Brain Res 76 89–97 [5.8.4f]

Bunim MS (1940) Space in medieval painting and the forerunners of perspective AMS Press, New York [2.9.2]

Bunt AH, Minckler DS (1977) Foveal sparing. New anatomical evidence for bilateral representation of central retina Arch Ophthal 95 1445–7 [5.3.4]

Buonomano DV, Merzenich MM (1998) Cortical plasticity Ann Rev Neurosci 21 149–86 [5.6.8]

Buracas GT, Albright TD (1996) Contribution of area MT to perception of three-dimensional shape: A computational study Vis Res 36 869–87 [5.8.4b]

Burchfiel JL, Duffy FH (1981) Role of intracortical inhibition in deprivation amblyopia: reversal by microinontophoretic bicuculline Brain Res 206 479–84 [8.2.7d]

Burd HJ, Judge SJ, Flavell MJ (1999) Mechanics of accommodation of the human eye Vis Res 39 1591–95 [9.2.2b]

Burd HJ, Judge SJ, Cross JA (2002) Numerical modelling of the accommodating lens Vis Res 42 2235–51 [9.2.2b]

Burian HM (1939) Fusional movements: the role of peripheral retinal stimuli Arch Ophthal 21 486–91 [10.6.3b]

Burian HM (1943) Influence of prolonged wearing of meridional size lenses on spatial localization Arch Ophthal 30 645–68 [9.9.3]

Burian HM (1948) History of the Dartmouth eye institute Arch Ophthal 40 163–75 [9.9.2b]

Burian HM, Ogle KN (1945) Meridional aniseikonia at oblique axes Arch Ophthal 33 293–310 [9.9.2b]

Burkhalter A, Van Essen DC (1986) Processing of color form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey J Neurosci 6 2327–51 [5.8.2b]

Burkhalter A, Felleman DJ, Newsome WT, Van Essen DC (1986) Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex Vis Res 26 63–80 [5.8.2b]

(p.560) Burkhalter A, Bernardo KL, Charles V (1993) Development of local circuits in human visual cortex J Neurosci 13 1916–31 [6.4.6b]

Burkhardt DA (1993) Synaptic feedback depolarization and color opponency in cone photoreceptors Vis Neurosci 10 981–9 [5.1.3]

Burnett C (1997) The introduction of Arabic learning into England The British Library, London [2.3.1]

Burnett C (1998) Adelard of Bath, conversations with his nephew Cambridge University Press, Cambridge [2.3.1]

Burrone J, O’Byrne M, Murphy VN (2002) Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons Nature 420 414–18 [6.5.4, 6.7.2d]

Burrows RC, Wancio D, Levitt P, Lillien L (1997) Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex Neuron 19 251–67 [6.4.5b]

Burton H (2003) Visual cortex activity in early and late blind people J Neurosci 23 4005–11 [8.1.4b]

Burton HE (1945) The optics of Euclid J Opt Soc Am 35 357–72 [2.1.3b]

Bury RG (1946) Translation of Plato’s Timaeus Heinemann, London [2.1.2]

Busby A, Ciuffreda KJ (2005) The effect of apparent depth in pictorial images on accommodation Ophthal Physiol Opt 25 320–7 [9.5]

Busettini C, Mays LE (2003) Pontine omnipause activity during conjugate and disconjugate eye movements in macaques J Neurophysiol 90 3838–53 [10.8.2c]

Busettini C, Miles FA, Schwarz U (1991) Ocular responses to translation and their dependence on viewing distance. II. Motion of the scene J Neurophysiol 66 865–78 [10.9.2]

Busettini C, Miles FA, Schwarz U, Carl JR (1994) Human ocular responses to translation of the observer and of the scene: dependence on viewing distance Exp Brain Res 100 484–94 [10.9.2]

Busettini C, Miles FA, Krauzlis RJ (1996) Short-latency disparity vergence responses and their dependence on prior saccadic eye movements J Neurophysiol 75 1392–1410 [10.5.7, 10.5.8a]

Busettini C, Masson GS, Miles FA (1997) Radial optic flow induces vergence eye movements with ultra-short latencies Nature 390 512–15 [10.3.2d]

Busettini C, Fitzgibbon EJ, Miles FA (2001) Short-latency vergence in humans J Neurophysiol 85 1129–52 [10.5.7]

Bush GA, van der Steen J, Miles FA (1994) When two eyes see patterns of unequal size they produce saccades of unequal amplitude In Information processing underlying gaze control (ed JM Delgardo-Garcia, E Godaux, PP Vidal) pp 291–7 Pergamon, Oxford [10.6.4, 10.8.3b]

Bushnell MC, Goldberg ME, Robinson DL (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention J Neurophysiol 46 755–72 [5.8.4e, 5.9.2b]

Butler AK, Uryu K, Rougon G, Chesselet MF (1999) N-Methyl-D-aspartate receptor blockade affects polysialylated neural cell adhesion molecule expression and synaptic density during striatal development Neurosci 89 1169–81 [6.4.5d]

Butler AK, Dantzker JL, Shah RB, Callaway EM (2001) Development of visual cortical axons: layer-specific effects of extrinsic influences and activity blockade J Comp Neurol 430 321–31 [6.4.6b]

Büttner–Ennever JA (1988) Neuroanatomy of the oculomotor system Elsevier, New York [10.1.1]

Büttner–Ennever JA, Akert K (1981) Medial rectus subgroups of the oculomotor nucleus and their abducens internuclear input in the monkey J Comp Neurol 197 17–27 [10.10.1]

Buzsáki G, Geisler C, Henze DA, Wang XJ (2004) Circuit complexity and axon wiring economy of cortical connections TINS 27 186–93 [4.3.4a, 5.5.6b]

Buzzelli AR (1991) Stereopsis accommodative and vergence facility: do they relate to dyslexia? Optom Vis Sci 68 842–46 [10.2.2c]

Bystrom I, Rakic P, Molnar Z, Blakemore C (2006) The first neurons of the human cerebral cortex Nat Neurosci 9 880–6 [6.4.5a]

Cabelli RJ, Hohn A, Shatz CJ (1995) Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF Science 297 1662–6 [6.7.2d, 8.2.7f]

Cabelli RJ, Shelton DL, Segal RA, Shatz CJ (1997) Blockade of endogenous ligands of trkB inhibits formation of ocular dominance columns Neuron 19 63–76 [6.7.2d]

Cabungcal JH, Misslisch H, Hepp K, Hess BJM (2002) Geometrical properties of three-dimensional binocular eye position in light sleep Vis Res 42 89–98 [10.1.2e]

Cai D, DeAngelis GC, Freeman RD (1997) Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens J Neurophysiol 78 1045–61 [5.2.2b, 6.3.5c]

Cai D, Qiu J, Cao Z, et al. (2001) Neuronal cyclic AMP controls the development of loss in ability of axons to regenerate J Neurosci 21 4731–9 [6.4.3b]

Calder R (1970) Leonardo and the age of the eye New York, Simon and Schuster. [2.4.2]

Calford MB, Schmid LM, Rosa MGP (1998) Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortex Proc R Soc B 296 499–507 [5.5.6c]

Calford MB, Wright LL, Metha AB, Taglianetti V (2003) Topographic plasticity in primary visual cortex is mediated by local corticocortical connections J Neurosci 23 6434–42 [5.5.6c]

Calkins DJ, Sterling P (1996) Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina Nature 381 613–5 [5.1.4c]

Callaway EM (1998a) Local circuits in primary visual cortex of the macaque monkey Ann Rev Neurosci 21 47–74 [5.5.5]

Callaway EM (1998b) Prenatal development of layer-specific local circuits in primary visual cortex of the macaque monkey J Neurosci 18 1505–27 [6.4.6a]

Callaway EM (2005) A molecular and genetic arsenal for systems neuroscience TINS 28 196–201 [6.2]

Callaway EM, Katz LC (1990) Emergence and refinement of clustered horizontal connections in cat striate cortex J Neurosci 10 1134–53 [6.4.6b]

Callaway EM, Katz LC (1991) Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex Proc Natl Acad Sci 88 745–9 [6.4.6b, 8.1.1b]

Callaway EM, Katz LC (1992) Development of axonal arbors of layer 4 spiny neurons in cat striate cortex J Neurosci 12 570–82 [6.4.6b]

Caminiti R (1995) Spatial vision and movement in the parietal lobe Cereb Cortex 5 N5 Special Issue [5.8.4e]

Campbell AW (1905) Histological studies on the localization of the cerebral function Cambridge University Press, Cambridge [2.6.2]

Campbell FW (1954) The minimum quantity of light required to elicit the accommodation reflex in man J Physiol 123 357–66 [9.6.4d]

Campbell FW (1957) The depth of field of the human eye Optica Acta 4 157–64 [9.6.4a, 9.6.4b, 9.6.4e]

Campbell FW (1959) High–speed infra–red optometer J Opt Soc Am 49 268–72 [9.2.4d]

Campbell FW (1960) Correlation of accommodation between the two eyes J Opt Soc Am 50 738 [9.7.1a]

Campbell FW, Gubisch RW (1966) Optical quality of the human eye J Physiol 186 558–78 [9.1.3a, 9.1.5, 2, 9.6.4e]

Campbell FW, Primrose JAE (1953) The state of accommodation of the human eye in darkness Trans Ophthal Soc U K 73 353–61 [9.3.1]

Campbell FW, Robson JG (1968) Application of Fourier analysis to the visibility of gratings J Physiol 197 551–66 [3.2.5, 4.4.1a, 5.6.3]

Campbell FW, Westheimer G (1958) Sensitivity of the eye to differences in focus J Physiol 143 18P [9.6.3, 9.7.1a]

Campbell FW, Westheimer G (1959) Factors influencing accommodation responses of the human eye J Opt Soc Am 49 568–71 [9.8.1, 9.8.2c]

Campbell FW, Westheimer G (1960) Dynamics of accommodation responses of the human eye J Physiol 151 285–95 [9.5, 9.7.2a, 9.7.2b]

(p.561) Campbell FW, Robson JG, Westheimer G (1959) Fluctuations of accommodation under steady viewing conditions J Physiol 145 579–94 [9.7.1a]

Campbell FW, Hess RF, Watson PG, Banks R (1978) Preliminary results of a physiologically based treatment of amblyopia Br J Ophthal 62 748 [8.4.6c]

Campbell MCW, Harrison EM, Simonet P (1990) Psychophysical measurement of the blur on the retina due to optical aberrations of the eye Vis Res 30 1587–602 [9.1.2b, 9.8.2a]

Campos EC (1980) Anomalous retinal correspondence Arch Ophthal 98 299–302 [8.4.6a]

Campos EC, Chiesi C (1983) Binocularity in comitant strabismus: II Objective evaluation with visual evoked responses Doc Ophthal 55 277–93 [8.4.6a]

Campos EC, Bedell HE, Enoch JM, Fitzgerald CR (1978) Retinal receptive field–like properties and Stiles–Crawford effect in a patient with a traumatic choroidal rupture Doc Ophthal 45 381–95 [5.1.2a]

Campos JJ, Langer A, Crowitz A (1970) Cardiac responses on the visual cliff in prelocomotor human infants Science 170 196–7 [7.4.1b]

Candy TR, Bharadwaj SR (2007) The stability of steady state accommodation in human infants J Vis 7 (11) Article 4 [7.3.1]

Cang J, Kaneko M, Yamada J, et al. (2005a) Ephrin-As guide the formation of functional maps in the visual cortex Neuron 48 577–89 [6.4.3c]

Cang J, Renteria RC, Kaneko M, et al. (2005b) Development of precise maps in visual cortex requires patterned spontaneous activity in the retina Neuron 48 797–809 [6.6.2]

Cannon MW, Fullenkamp SC (1993) Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects Vis Res 33 1685–95 [5.5.6c]

Cao A, Schiller PH (2003) Neural responses to relative speed in the primary visual cortex of rhesus monkey Vis Neurosci 20 77–84 [5.6.4a]

Caputo G, Guerra S (1998) Attentional selection by distractor suppression Vis Res 38 669–89 [4.8.1c]

Carandini M, Heeger DJ (1994) Summation and division by neurons in primate visual cortex Science 276 1333–6 [4.2.8c, 5.5.3, 5.5.6c]

Carandini M, Barlow HB, O’Keefe LP, et al. (1997) Adaptation to contingencies in macaque primary visual cortex Philos Tr R Soc 359 1140–54 [4.2.9c]

Carandini M, Heeger DJ, Senn W (2002) A synaptic explanation of suppression in visual cortex J Neurosci 22 10053–65 [5.5.6c]

Carder RK, Jones EG, Hendry SHC (1991) Distribution of glutamate neurons and terminals in striate cortex of normal and monocularly deprived monkeys Soc Neurosci Abstr 17 115 [8.2.4]

Cardin JA, Palmer LA, Contreras D (2005) Stimulus=dependent γ (30–50 Hz) oscillations in simple and complex fast rhythmic bursting cells in primary visual cortex J Neurosci 25 5339–50 [4.3.2]

Cardoso de Oliveira S, Thiele A, Hoffmann PK (1997) Synchronization of neuronal activity during stimulus expectation in a direction discrimination task J Neurosci 17 9278–60 [4.3.4b, 4.3.4e, 5.9.1]

Caric D, Price DJ (1999) Evidence that the lateral geniculate nucleus regulates the normal development of visual corticocortical projections in the cat Exp Neurol 156 353–62 [6.4.6c]

Carkeet A, Levi, DM, Manny RE (1997) Development of vernier acuity in childhood Optom Vis Sci 74 741–50 [7.2.1c]

Carleton EH, Madigan LF (1937) Relationships between aniseikonia and ametropia Arch Ophthal 18 237–47 [9.9.1a]

Carlson S (1990) Visually guided behavior of monkeys after early binocular visual deprivation Int J Neurosci 50 185–94 [8.1.2]

Carlson S, Hyvärinen L, Raninen A (1986) Persistent behavioural blindness after early visual deprivation and active visual rehabilitation: a case report Br J Ophthal 70 607–11 [8.1.3]

Carlson S, Pertovaara A, Tanila H (1987) Late effects of early binocular visual deprivation on the function of Brodmann’s area 7 of monkeys (Macaca arctoides) Devel Brain Res 33 101–11 [8.1.1b]

Carlson VR (1962) Size constancy judgments and perceptual compromise J Exp Psychol 63 68–73 [4.7.2]

Carmignoto G, Vicini S (1992) Activity–dependent decrease in NMDA receptor responses during development of the visual cortex Science 258 1007–11 [6.7.2a]

Carmignoto G, Canella R, Candeo P, et al. (1993) Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex J Physiol 464 343–60 [8.2.7f]

Carmignoto G, Pizzorusso T, Tia S, Vicini S (1997) Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex J Physiol 498 153–64 [6.5.1c]

Caron AJ, Caron RF, Carlson VR (1978) Do infants see objects or retinal images? Shape constancy revisited Infant Behav Devel 1 229–43 [7.4.2a]

Caron AJ, Caron RF, Carlson VR (1979) Infant perception of the invariant shape of objects varying in slant Child Devel 50 716–21 [7.4.2a]

Carpenter MK, Cui X, Hu Z, et al. (1999) In vitro expansion of a multipotent population of human neural progenitor cells Exp Neurol 158 295–78 [6.4.2d]

Carpenter RHS (1988) Movements of the eyes Pion, London [10.1.1, 10.1.3b]

Carroll RC, Zukin S (2002) NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity TINS 25 571–7 [6.5.1a]

Carroll RC, Nicoll RA, Malenka RC (1998) Effects of PKA and PKC on miniature excitatory postsynaptic currents in CA1 pyramidal cells J Neurophysiol 80 2797–800 [6.5.1a]

Carroll RC, Beattie EC, Zastrow M von, Malenka RC (2001) Role of AMPA receptor endocytosis in synaptic plasticity Nat Rev Neurosci 2 315–24 [6.5.1a]

Carter BAR (1970) Perspective In The Oxford companion to art (ed H Osborne) pp 840–61 Clarendon Press, Oxford [2.9.3]

Carter DB (1958) Studies of fixation disparity. II. Apparatus, procedure and the problem of constant error Am J Optom Arch Am Acad Optom 35 590–8 [10.2.4b]

Carter DB (1963) Effects of prolonged wearing of prism Am J Optom Physiol Opt 40 295–73 [10.2.5a]

Carter DB (1964) Fixation disparity with and without foveal fusion contours Am J Optom Arch Am Acad Optom 41 729–36 [10.2.4g]

Carter DB (1965) Fixation disparity and heterophoria following prolonged wearing of prisms Am J Optom Arch Am Acad Optom 42 141–52 [10.2.5a]

Carter TF (1955) The invention of printing in China and its spread westward The Ronald Press, New York [2.2.2]

Carterette EC, Friedman MP (1974) Handbook of perception Vol II Psychophysical judgment and measurement Academic Press, New York [3.1.1a]

Casagrande VA, Brunso–Bechtold JK (1988) Development of lamination in lateral geniculate nucleus: critical factors In Advances in neural and behavioral development (ed PG Shinkman) Vol 3 pp 33–78 Ablex, Norwood NJ [5.2.2a, 6.3.5c]

Casagrande VA, Condo GJ (1988) Is binocular competition essential for layer formation in the lateral geniculate nucleus? Brain Behav Evol 31 198–208 [6.3.5a]

Casanova C, Freeman RD, Nordmann JP (1989) Monocular and binocular response properties of cells in the striate-recipient zone of the cat’s lateral posterior-pulvinar complex J Neurophysiol 62 544–57 [5.5.1b]

Case LC, Tessier-Lavigne M (2005) Regeneration of the adult central nervous system Curr Biol 15 R749–53 [6.4.2d]

Castanada-Castellanos DR, Kriegstein AR (2004) Controlling neuron number: does Numb do the math? Nat Neurosci 7 793–6 [6.4.5b]

Castellani V, Boltz J (1997) Membrane-associated molecules regulate the formation of layer-specific cortical circuits Proc Natl Acad Sci 94 7030–5 [6.4.6a]

Castelli B (1669) Discorso sopra la vista See Ariotti 1973 [2.5.2]

Castrén E, Zafra F, Thoenen H, Lindholm D (1992) Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex Proc Natl Acad Sci 89 9444–8 [8.1.1b]

(p.562) Catalano SM, Shatz CJ (1998) Activity-dependent cortical target selection by thalamic axons Science 281 559–62 [6.4.5c]

Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity Neuron 59 882–901 [6.4.3f]

Cavanagh P (1982) Functional size invariance is not provided by the cortical magnification factor Vis Res 22 140912 [5.5.4d]

Cavanagh P (1987) Reconstructing the third dimension: interactions between color texture motion binocular disparity and shape Comput Vis Gr Im Proc 37 171–95 [4.5.7c]

Cavanagh P, Arguin M, Treisman A (1990) Effect of surface medium on visual search for orientation and size features J Exp Psychol HPP 16 479–91 [4.2.6c]

Cave KR, Zimmerman JM (1997) Flexibility in spatial attention before and after practice Psychol Sci 8 399–403 [4.8.3d]

Caviness VS, Takahashi T, Nowakowski RS (1995) Numbers time and neocortical neuronogenesis: a general developmental and evolutionary model TINS 18 379–83 [6.4.5b]

Cavonius CR, Estévez O (1975) Contrast sensitivity of individual colour mechanisms of human vision J Physiol 248 649–62 [5.1.2a]

Cayouette M, Raff M (2002) Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals Nat Neurosci 5 1265–9 [6.4.5b]

Celebrini S, Newsome WT (1994) Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey J Neurosci 14 4109–27 [5.8.4c]

Celebrini S, Thorpe S, Trotter Y, Imbert M (1993) Dynamics of orientation coding in area V1 of the awake primate Vis Neurosci 10 811–25 [5.6.2c]

Chalfie M, Tu Y, Euskirchen G, et al. (1994) Green fluorescent protein as a marker for gene expression Science 263 802–5 [5.4.2a]

Challacombe JF, Snow DM, Letourneau PC (1996) Role of cytoskeleton in growth cone motility and axonal elongation Sem Neurosci 8 67–80 [6.4.3b]

Chalupa LM, Lia B (1991) The nasotemporal division of retinal ganglion cells with crossed and uncrossed projections in the fetal rhesus monkey J Neurosci 11 191–202 [6.3.4b]

Chalupa LM, Williams RW, Henderson Z (1984) Binocular interaction in the fetal cat regulates the size of the ganglion cell population Neurosci 12 1139–46 [6.3.3b, 8.2.6a]

Chan JA, Balasubramanian S, Witt RM, et al. (2009) Proteoglycan interactions with Sonic Hedgehog specify mitogenic responses Nat Neurosci 12 409–17 [6.4.4b]

Chan SO, Guillery RW (1993) Developmental changes produced in the retinofugal pathway of rats and ferrets by early monocular enucleations: the effects of age and the difference between normal and albino animals J Neurosci 13 5277–93 [6.3.4a, 8.2.6a]

Chan SO, Guillery RW (1994) Changes in fiber order in the optic nerve and tract of rat embryos J Comp Neurol 344 20–32 [6.3.4a]

Chan–Palay V, Palay SL, Billings–Gagliardi SM (1974) Meynert cells in the primate visual cortex J Neurocytol 3 631–58 [5.7.1]

Chance FS, Nelson SB, Abbott LF (1999) Complex cells as cortically amplified simple cells Nat Neurosci 2 277–82 [5.5.3]

Chandna A, Pennefather PM, Kovács I, Norcia AM (2001) Contour integration deficits in anisometropic amblyopia Invest Ophthal Vis Sci 42 875–8 [8.4.3c]

Chao DL, Ma L, Shen K (2009) Transient cell–cell interactions in neural circuit formation Nat Rev Neurosci 10 262–71 [6.4.3]

Chao MV (1992) Neurotrophin receptors: a window into neuronal differentiation Neuron 9 583–93 [6.4.3d]

Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways Nat Rev Neurosci 4 299–309 [6.4.3d, 6.7.2d]

Chao-yi L, Creutzfeldt O (1984) The representation of contrast and other stimulus parameters by single neurons in area 17 of the cat Pflügers Arch ges Physiol 401 304–14 [5.6.1]

Chapman B, Stryker MP (1993) Development of orientation selectivity in ferret visual cortex and effects of deprivation J Neurosci 13 5251–62 [8.1.1c]

Chapman B, Zahs KR, Stryker MP (1991) Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex J Neurosci 11 1347–58 [5.6.2b]

Charman WN (1979) Speckle movement in laser refraction. 1. Theory Am J Optom Physiol Opt 56 219–27 [9.2.4b]

Charman WN (1991) Optics of the human eye In Vision and visual dysfunction Vol 1 Visual optics and instrumentation (ed WN Charman) pp 1–29 MacMillan, London [5.1.1]

Charman WN, Heron G (1979) Spatial frequency and the dynamics of the accommodation response Optica Acta 26 217–28 [9.6.4c]

Charman WN, Heron G (1988) Fluctuations in accommodation: a review Ophthal Physiol Opt 8 153–64 [9.7.1a]

Charman WN, Heron G (2000) On the linearity of accommodation dynamics Vis Res 40 2057–66 [9.7.2b]

Charman WN, Jennings JAM (1976) Objective measurements of the longitudinal chromatic aberration of the human eye Vis Res 16 999–1005 [9.1.2a]

Charman WN, Tucker J (1977) Dependence of accommodation response on the spatial frequency spectrum of the observed object Vis Res 17 129–39 [9.6.4c]

Charman WN, Tucker J (1978a) Accommodation as a function of object form Am J Optom Physiol Opt 55 84–92 [9.6.4c]

Charman WN, Tucker J (1978b) Accommodation and color J Opt Soc Am 68 459–70 [9.1.2b, 9.6.4e]

Charnwood L (1951) The diagnostic and therapeutic use of monocular occlusion Brit J Physiol Opt 8 43–56 [10.2.3a, 8.3.3a]

Chatfield C (1997) The analysis of time series Chapman and Hall, London [3.5]

Chaturvedi V, van Gisbergen JAM (1997) Specificity of saccadic adaptation in three-dimensional space Vis Res 37 1367–82 [10.8.3a]

Chaturvedi V, van Gisbergen JAM (1998) Shared target selection for combined version-vergence eye movements J Neurophysiol 80 849–62 [10.8.1a]

Chaturvedi V, van Gisbergen JAM (1999) Perturbation of combined saccade-vergence movements by micro-stimulation in monkey superior colliculus J Neurophysiol 81 2279–96 [10.10.2e]

Chaturvedi V, van Gisbergen JAM (2000) Stimulation in the rostral pole of monkey superior colliculus: effects on vergence eye movements Exp Brain Res 132 72–8 [10.10.2e]

Chaudhuri A, Matsubara JA, Cynader MS (1995) Neuronal activity in primate visual cortex assessed by immunostaining for the transcription factor Zif298 Vis Neurosci 12 35–50 [5.4.3a, 5.7.2a, 6.6.1c]

Chawanya T, Aoyagi T, Nishikawa I, et al. (1993) A model for feature linking via collective oscillations in the primary visual cortex Biol Cyber 68 483–90 [4.3.4g]

Cheeseman EW, Guyton DL (1999) Vertical fusional vergence: the key to dissociated vertical deviation Arch Ophthal 117 1188–91 [10.6.2, 10.7.1]

Chen C, Regehr WG (2000) Developmental remodeling of the retinogeniculate synapse Neuron 28 955–66 [6.4.4e]

Chen DF, Schneider GE, Martinou JC, Tonegawa S (1997) Bcl-2 promotes regeneration of severed axons in mammalian CNS Nature 385 434–9 [6.4.3e, 6.4.7b]

Chen G, Sima J, Jin M, et al. (2008) Semaphorin-3A guides radial migration of cortical neurons during development Nature Neurosci 11 36–44 [6.4.5a]

Chen HX, Otmakhov N, Strack S, et al. (2001) Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP? J Neurophysiol 85 1368 76 [6.5.1a]

Chen L Kruger PB, Hofer H, et al. (2006) Accommodation with higher-order monochromatic aberrations corrected with adaptive optics J Opt Soc Am A 23 1–8 [9.8.2c]

Chen L, Artal P, Gutierrez D, Williams DR (2007) Neural compensation for the best aberration correction J Vis 7 (10) Article 9 [9.6.5a]

Chen X, He S (2004) Local factors determine the stabilization of monocular ambiguous and binocular rivalry stimuli Curr Biol 14 1013–17 [4.5.9b]

(p.563) Chen-Huang C, McCrea RA (1998) Viewing distance related sensory processing in the ascending tract of Deiters vestibulo-ocular reflex pathway J Vestib Res 8 175–84 [10.9.2]

Cheng H, Chino YM, Smith EL, et al. (1995) Transfer characteristics of X LGN neurons in cats reared with early discordant binocular vision J Neurophysiol 74 2558–72 [8.2.2c]

Cheng HM, Singh OS, Kwong KK, et al. (1992) Shape of the myopic eye as seen with high-resolution magnetic resonance imaging Optom Vis Sci 69 698–701 [9.2.1]

Cheng K, Hasegawa T, Saleem KS, Tanaka K (1997) Comparison of neuronal selectivity for stimulus speed length and contrast in the prestriate visual cortical area V4 and MT of the macaque monkey J Neurophysiol 71 2299–80 [5.8.3a]

Cheng K, Waggoner A, Tanaka K, (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging Neuron 32 359–74 [5.4.3f, 5.7.2a]

Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche Nat Neurosci 12 399–408 [6.4.2d]

Cheng X, Bradley A, Hong X, Thibos LN (2003) Relationship between refractive error and monochromatic aberrations of the eye Optom Vis Sci 80 43–9 [9.6.2a]

Cherniss H (1933) Galen and Posidonius’ theory of vision Am J Philol 54 154–61 [2.1.4]

Chérubin d’Orléans P (1671) La dioptique oculaire ou la theorique la positive et la mechanique de l’oculaire dioptique en toutes ses especes Jolly et Benard, Paris [2.11.2a]

Chérubin d’Orléans P (1677) La vision parfaite ou les concours des deux axes de la vision en un seul point de l’objet Marbre–Cramoisy, Paris [2.11.2a]

Chesselden W (1728) An account of some observations made by a young gentleman who was born blind or lost his sight so early that he had no remembrance of ever having seen and was couched between 13 and 14 years of age Philos Tr R Soc 35 447–50 [8.1.3]

Cheung BSK, Howard IP (1991) Optokinetic torsion: dynamics and relation to circularvection Vis Res 31 1327–36 [10.7.1]

Chevaleyre V, Castillo PE (2004) Endocannabinoid-mediated metaplasticity in the hippocampus Neuron 43 871–81 [6.5.3]

Chiang C, Litingtung Y, Lee E, et al. (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function Nature 383 407–13 [6.4.2a]

Chichilnisky EJ, Baylor DA (1999) Receptive-field microstructure of blue-yellow ganglion cells in primate retina Nat Neurosci 2 889–93 [5.1.4a]

Chichilnisky EJ, Kalmar RS (2002) Functional asymmetries in ON and OFF ganglion cells of primate retina J Neurosci 22 2737–47 [5.1.4a]

Chin NB, Breinin GM (1967) Ratio of accommodative convergence to accommodation Arch Ophthal 77 752–6 [10.4.1]

Chino YM (1997) Receptive-field plasticity in the adult visual cortex: dynamic signal rerouting or experience-dependent plasticity Sem Neurosci 9 34–46 [5.5.6c]

Chino YM, Kaplan E (1988) Abnormal orientation bias of LGN neurons in strabismic cats Invest Ophthal Vis Sci 29 644–8 [8.2.3a]

Chino YM, Shansky MS, Hamasaki DI (1980) Development of receptive field properties of retinal ganglion cells in kittens raised with convergent squint Exp Brain Res 39 313–20 [8.2.1]

Chino YM, Shansky MS, Jankowski WL, Banser FA (1983) Effects of rearing kittens with convergent strabismus on the development of receptive field properties in striate cortex neurons J Neurophysiol 50 295–86 [8.2.3f]

Chino YM, Ridder WH, Czora EP (1988) Effects of convergent strabismus on spatio-temporal response properties of neurons in cat area 18 Exp Brain Res 72 294–78 [8.2.3a]

Chino YM, Smith EL, Wada H, et al. (1991) Disruption of binocularly correlated signals alters the postnatal development of spatial properties in cat striate cortical neurons J Neurophysiol 65 841–59 [8.2.3a]

Chino YM, Kaas JH, Smith EL, et al. (1992) Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina Vis Res 32 789–96 [5.5.6c]

Chino YM, Cheng H, Smith EL, et al. (1994a) Early discordant binocular vision disrupts signal transfer in the lateral geniculate nucleus Proc Natl Acad Sci 91 6938–42 [8.2.2c]

Chino YM, Smith EL, Yoshida K, et al. (1994b) Binocular interactions in striate cortical neurons of cats reared with discordant visual inputs J Neurosci 14 5050–67 [8.2.3a]

Chino YM, Smith EL, Hatta S, Cheng H (1997) Postnatal development of binocular disparity sensitivity in neurons of the primate visual cortex J Neurosci 17 296–307 [6.6.4a, 6.7.1, 8.3.2]

Chino YM, Smith EL, Zhang B, et al. (2001) Recovery of binocular responses by cortical neurons after early monocular lesions Nat Neurosci 4 689–90 [5.5.6c]

Chiu C, Weliky M (2002) Relationship of correlated spontaneous activity to functional ocular dominance columns in the developing visual cortex Neuron 35 1123–4 [6.7.2d]

Chklovskii DB (2000) Binocular disparity can explain the orientation of ocular dominance stripes in primate primary visual area (V1) Vis Res 40 1765–73 [5.7.2c]

Choudhury BP, Whitteridge D, Wilson ME (1965) The function of the callosal connections of the visual cortex Quart J Exp Physiol 50 215–19 [5.3.5]

Chow KL (1973) Neuronal changes in the visual system following visual deprivation In Handbook of sensory physiology (ed R Jung) Vol VII/3A pp 599–630 Springer, New York [8.1.1a, 8.2.2d]

Christakos CN (1994) Analysis of synchrony (correlations) in neural populations by means of unit-to-aggregate coherence computations Neurosci 58 43–57 [4.3.4g]

Christopherson KS, Ullian EM, et al. (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis Cell 120 421–33 [6.4.4c]

Chubb C, Sperling G (1988) Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception J Opt Soc Am A 5 1986–2007 [4.4.4]

Chubykin AA, Atasoy D, Etherton MR, et al. (2007) Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54 919–31 [6.4.4b]

Chung STL, Li RW, Levi DM (2008) Learning to identify near-threshold luminance-defined and contrast-defined letters in observers with amblyopia Vis Res 48 2739–50 [8.4.6c]

Churchland PS, Sejnowski TJ (1988) Perspectives on cognitive neuroscience Science 242 741–5 [5.4.3f]

Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity Nat Rev Neurosci 6 351–62 [6.4.2a]

Ciccone DN, Su H, Hevi S, et al. (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints Nature 461 415–8 [6.6.1a]

Ciner EB, Scheiman MM, Schanel–Klitsch E (1989) Stereopsis testing in 18– to 35–month–old children using operant preferential looking Optom Vis Sci 66 782–7 [7.6.1c]

Ciner EB, Schanel–Klitsch E, Scheiman MM (1991) Stereoacuity development in young children Optom Vis Sci 68 533–6 [7.6.1c]

Ciner EB, Schanel–Klitsch E, Herzberg C (1996) Stereoacuity development: 6 months to 5 years A new tool for testing and screening Optom Vis Sci 73 43–8 [7.6.1c]

Citri A, Malenka RC (2007) Synaptic plasticity: multiple forms, functions, and mechanisms Neuropsychopharmacology Reviews. 1–24 [6.5.1a]

Ciuffreda KJ (1991) Accommodation and its anomalies In Vision and visual dysfunction Vol 1 Visual optics and instrumentation (ed WN Charman) pp 231–79 MacMillan, London [9.2.3]

Ciuffreda KJ, Hokoda SC (1983) Spatial frequency dependence of accommodative responses in amblyopic eyes Vis Res 23 1585–94 [8.4.5a, 9.6.4c]

Ciuffreda KJ, Hokoda SC (1985a) Effect of instruction and higher level control on the accommodative response spatial frequency profile Ophthal Physiol Opt 5 221–3 [9.6.4c]

Ciuffreda KJ, Hokoda SC (1985b) Subjective vergence error at near during active head rotation Ophthal Physiol Opt 5 411–15 [10.5.4a]

(p.564) Ciuffreda KJ, Kenyon RV (1983) Accommodative vergence and accommodation in normals amblyopes and strabismics In Vergence eye movements: Basic and clinical aspects (ed MC Schor, KJ Ciuffreda) pp 99–162 Butterworth, Boston [10.4.3b]

Ciuffreda KJ, Kruger PB (1988) Dynamics of human voluntary accommodation Am J Optom Physiol Opt 65 365–70 [9.7.2c]

Ciuffreda KJ, Kenyon RV, Stark L (1980) Increased drift in amblyopic eyes Br J Ophthal 64 7–14 [8.4.5b]

Ciuffreda KJ, Levi DM, Selenow A (1992) Amblyopia: Basic and clinical aspects Butterworth, Boston [8.4.1]

Ciuffreda KJ, Rosenfield M, Chen HW (1997) The AC/A ratio age and presbyopia Ophthal Physiol Opt 17 307–15 [10.4.3a]

Ciuffreda KJ, Wang B, Wong D (2005) Central and near peripheral retinal contributions to the depth-of-focus using naturalistic stimulation Vis Res 45 2650–2658 [9.6.4f]

Ciuffreda KJ, Wang B, Vasudevan B (2007) Conceptual model of human blur perception Vis Res 47 1245–52 [9.6.3]

Clare MH, Bishop GH (1954) Responses from an association area secondarily activated from optic cortex J Neurophysiol 17 271–7 [2.6.2]

Clark G (1989) An English translation of Iamblichus On the Pythagorian life Liverpool University Press, Liverpool [2.1.1]

Clark RA, Miller JM, Demer JL (2000) Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions Invest Ophthal Vis Sci 41 3787–97 [10.1.2e]

Clark WEL, Penman GG (1934) The projection of the retina in the lateral geniculate body Proc R Soc B 114 291–313 [5.2.1]

Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal connections related myelo– and cytoarchitecture and putative boundaries of functional visual areas J Comp Neurol 298 188–214 [5.3.5]

Claudet A (1858) A report from the Proceedings of the Royal Society The Edinburgh Review 108 223–241 [5.1.2a]

Claudet A (1865) Moving photographic figures J Franklin Inst 50 346–50. Also in Brit J Photog Sept. 1865 [2.11.4]

Cleary M, Houston CA, McFadzean RM, Dutton GN (1998) Recovery in microtropia: implications for aetiology and neurophysiology Br J Ophthal 82 225–31 [10.2.2e]

Clelend BG, Mitchell D, Crewther SG, Crewther DP (1980) Visual resolution of retinal ganglion cells in monocularly–deprived cats Brain Res 192 291–66 [8.2.1]

Clelend BG, Crewther DP, Crewther SG, Mitchell DE (1982) Normality of spatial resolution of retinal ganglion cells in cat with strabismus amblyopia J Physiol 329 235–49 [8.2.1]

Clifton RK, Morrongiello BA, Kulig JW, Dowd JM (1981) Newborns’ orientation toward sound: possible implications for cortical development Child Devel 52 833–8 [7.7]

Clifton RK, Perris E, Bullinger A (1991) Infant’s perception of auditory space Dev Psychol 27 187–97 [7.7]

Clothiaux EE, Bear MF, Cooper LN (1991) Synaptic plasticity in visual cortex: comparison of theory with experiment J Neurophysiol 66 1785–804 [4.3.4f, 8.2.5a]

Clower DM, Hoffman JM, Votaw JR, et al. (1996) Role of posterior parietal cortex in the recalibration of visually guided reaching Nature 383 618–21 [4.5.6]

Clowes MB (1971) Picture descriptions In Artificial intelligence and heuristic programming (ed NV Findler, B Meltzer) pp 245–57 Edinburgh University Press, Edinburgh [4.6.3h]

Cocker KD, Moseley MJ, Bissenden JG, Fielder AR (1994) Visual acuity and pupillary responses to spatial structure in infants Invest Ophthal Vis Sci 35 2920–5 [7.2.1b]

Coe B (1981) The history of movie photography Eastview Editions Westfield NJ [2.11.1b, 2.11.4]

Coffeen P, Guyton DL (1988) Monocular diplopia accompanying ordinary refractive errors Am J Ophthal 105 451–9 [9.6.2b]

Cogan AI (1979) The relationship between the apparent vertical and the vertical horopter Vis Res 19 655–65 [10.7.2b]

Cogan DG (1937) Accommodation and the autonomic nervous system Arch Ophthal 18 739–66 [9.2.3]

Cogan DG (1956) Neurology of the ocular muscles Thomas Springfield Illinois [10.10.1]

Cohen J, Burne JF, Winter J, Bartlett P (1986) Retinal ganglion cells lose response to laminin with maturation Nature 322 465–67 [6.4.3b]

Cohen LG, Celnik P, Pascual-Leone A, et al. (1997) Functional relevance of cross-modal plasticity in blind humans Nature 389 180–3 [8.1.4b]

Cohen LG, Weeks RA, Sadato N, et al. (1999) Period of susceptibility for cross-modal plasticity in the blind Ann Neurol 45 451–60 [8.1.4b]

Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex Nat Rev Neurosci 3 553–61 [5.8.4e]

Cohn TE, Green DG, Tanner WP (1975) Receiver operating characteristic analysis J Gen Physiol 66 583–616 [5.1.5]

Colbran RJ (2004) Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependent synaptic plasticity J Neurosci 29 8404–9 [6.5.1a]

Colby CL, Goldberg ME (1999) Space and attention in parietal cortex Ann Rev Neurosci 22 319–49 [5.8.4e]

Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque: anatomic location and visual response properties J Neurophysiol 69 902–14 [5.8.4e]

Colby CL, Duhamel JR, Goldberg ME (1996) Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area J Neurophysiol 76 2841–52 [5.8.4e]

Cole KS, Curtis HJ (1939) Electric impedance of the squid giant axon during activity J Gen Physiol 22 649–70 [2.6.1]

Cole KS, Hodgkin AL (1939) Membrane and protoplasmic resistance in the squid giant axon J Gen Physiol 22 671–87 [2.6.1]

Cole RG, Boisvert RP (1974) Effect of fixation disparity on stereo-acuity Am J Optom Physiol Opt 51 206–13 [10.2.4]

Colello SJ, Coleman LA (1997) Changing course of growing axons in the optic chiasm of the mouse J Comp Neurol 379 495–514 [6.3.4a]

Colello RJ, Guillery RW (1992) Observations on the early development of the optic nerve and tract of the mouse J Comp Neurol 317 357–78 [6.3.4a]

Colello RJ, Pott U, Schwab ME (1994) The role of oligodendrocytes and myelin on axon maturation in the developing rat retinofugal pathway J Neurosci 14 2594–605 [6.3.3c]

Coleman DJ (1970) Unified model for accommodative mechanism Am J Ophthal 69 1063–79 [9.2.2b]

Collewijn H, Erkelens CJ (1990) Binocular eye movements and the perception of depth In Eye movements and their role in visual and cognitive processes: review of oculomotor research (ed E Kowler) pp 213–61 Elsevier, Amsterdam [10.1.3b]

Collewijn H, van der Mark F, Jansen TC (1975) Precise recording of human eye movements Vis Res 15 447–50 [10.1.1, 10.7.2d]

Collewijn H, van der Steen J, Ferman L, Jansen TC (1985) Human ocular counterroll: assessment of static and dynamic properties from electromagnetic scleral coil recordings Exp Brain Res 59 185–96 [10.7.1, 10.7.2d]

Collewijn H, Erkelens CJ, Steinman RM (1988a) Binocular co–ordination of human horizontal saccadic eye movements J Physiol 404 157–82 [10.8.2b]

Collewijn H, Erkelens CJ, Steinman RM (1988b) Binocular co–ordination of human vertical saccadic eye movements J Physiol 404 183–97 [10.8.2b]

Collewijn H, Erkelens CJ, Steinman RM (1995) Voluntary binocular gaze-shifts in the plane of regard: dynamics of version and vergence Vis Res 35 3335–3358 [10.8.2c]

Collewijn H, Erkelens CJ, Steinman RM (1997) Trajectories of the human binocular fixation point during conjugate and non-conjugate gaze-shifts Vis Res 37 1049–69 [10.8.2a, 10.8.2b, 10.8.2c]

Collins CC, Carlson MR, Scott AB, Jampolsky A (1981) Extraocular muscle forces in normal human subjects Invest Ophthal Vis Sci 20 652–64 [10.8.2b]

Collins MJ, Wildsoet CF, Atchison DA (1995) Monochromatic aberrations and myopia Vis Res 35 1157–63 [9.6.2a]

(p.565) Colombo M, Colombo A, Gross C (2002) Bartolomeo Panizza’s observations on the optic nerve (1855) Brain Res Bull 58 529–39 [2.6.2]

Colonnese MT, Zhao JP, Constantine-Paton M (2005) NMDA receptor currents suppress synapse formation on sprouting axons in vivo J Neurosci 25 1291–303 [6.4.4e]

Connor CE, Gallant JL, Preddie DC, Van Essen DC (1996) Responses in area V4 depend on the spatial relationship between stimulus and attention J Neurophysiol 75 1306–8 [5.9.2c]

Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons TINS 13 99–104 [5.5.1c]

Constantine–Paton M, Law MI (1978) Eye-specific termination bands in tecta of three-eyed frogs Science 202 639–41 [6.7.3c]

Constantine–Paton M, Cline HT, Debski E (1990) Patterned activity synaptic convergence and the NMDA receptor in developing visual pathways Ann Rev Neurosci 13 129–54 [6.7.2a]

Constantinidis C, Steinmetz MA (2005) Posterior parietal cortex automatically encodes the location of salient stimuli J Neurosci 25 233–38 [5.9.3b]

Cook EP, Maunsell JHR (2002) Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey J Neurosci 22 1994–2004 [5.9.2b, 5.9.3b]

Cook JE, Chalupa LM (2000) Retinal mosaics: new insights into an old concept TINS 23 29–34 [6.3.2a]

Cook M, Field J, Griffiths K (1978) The perception of solid form in early infancy Child Devel 49 866–9 [7.4.2a]

Cook PM, Prusky G, Ramoa AS (1999) The role of spontaneous retinal activity before eye opening in the maturation of form and function in the retinogeniculate pathway of the ferret Vis Neurosci 16 491–501 [6.3.5b]

Cooke DF, Taylor CSR, Moore T, Graziano MSA (2003) Complex movements evoked by microstimulation of the ventral intraparietal area Proc Natl Acad Sci 100 6163–8 [5.8.4e]

Coolidge JL (1968) A history of the conic sections and quadric surfaces Dover, New York [2.9.3]

Cooper DP, Pease PL (1988) Longitudinal chromatic aberration of the human eye and wavelength in focus Am J Optom Physiol Opt 65 99–107 [9.1.2a]

Cooper GR, McGillem CD (1967) Methods of signal and system analysis Holt Rinehart and Winston, New York [3.2.3]

Cooper J, Feldman J (1978a) Operant conditioning and assessment of stereopsis in young children Am J Optom Physiol Opt 55 532–42 [7.6.2]

Cooper J, Feldman J (1978b) Random–dot stereogram performance by strabismic amblyopic and ocular–pathology patients in an operant–discrimination task Am J Optom Physiol Opt 55 599–609 [8.5.1]

Cooper J, Feldman J (1979) Assessing the Frisby stereo test under monocular viewing conditions J Am Optom Assoc 50 807–9 [10.2.2b]

Cooper J, Feldman J (1981) Depth perception in strabismics Br J Ophthal 65 510–11 [10.2.2b]

Cooper J, Feldman J, Medlin D (1979) Comparing stereoscopic performance of children using the Titmus TNO and Randot stereo tests J Am Optom Assoc 50 821–5 [7.6.2]

Cooper J, Feldman J, Horn D, Dibble C (1981) Reliability of fixation disparity curves Am J Optom Physiol Opt 58 960–4 [10.2.5a]

Cooper ML, Pettigrew JD (1979) The decussation of the retinothalamic pathway in the cat with a note on the major meridians of the cat’s eye J Comp Neurol 187 285–312 [5.3.4]

Corballis MC, Beale IL (1970) Bilateral symmetry and behaviour Psychol Rev 77 451–64 [4.6.3e]

Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain Nat Neurosci 3 201–15 [4.8.3d]

Corbetta M, Miezin FM, Dobmeyer S, et al. (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy of positron emission tomography J Neurosci 11 2383–402 [4.8.4, 5.9.3b]

Corbetta M, Miezin FM, Shulman GL, Petersen SE (1993) A PET study of visuospatial attention J Neurosci 13 1202–26 [5.9.2b]

Cordero D, Marcucio R, Hu D, et al. (2004) Temporal perturbations in Sonic hedgehog signaling elicit the spectrum of holoprosencephaly phenotypes J Clin Invest 114 485–94 [6.4.2a]

Coren S, Girgus JS, Erlichman H, Hakstian AR (1976) An empirical taxonomy of visual illusions Percept Psychophys 20 129–37 [3.1.1i]

Corlew R, Wang Y, Ghermazien H, et al. (2007) Developmental switch in the contribution of presynaptic and postsynaptic NMDA receptors to long-term depression J Neurosci 27 9835–45 [6.5.3]

Cornsweet TN (1962) The staircase method in psychophysics Am J Psychol 75 485–91 [3.1.1c]

Cornsweet TN, Crane HD (1973) Training the visual accommodation system Vis Res 13 713–15 [9.4]

Cosgaya JM, Chan JR, Shooter EM (2002) The neurotrophin receptor p75NTR as a positive modulator of myelination Science 289 1245–8 [6.3.3c]

Costa LF (1994) Topographical maps of orientation specificity Biol Cyber 71 537–46 [5.7.1]

Costano RM, Gardner EP (1981) Multiple-joint neurons in somatosensory cortex of awake monkeys Brain Res 214 321–33 [4.5.6]

Cotrufo T, Viegi A, Berardi N, et al. (2003) Effects of neurotrophins on synaptic protein expression in the visual cortex of dark-reared rats J Neurosci 23 3566–71 [8.1.1b]

Coubard O, Kapoula Z (2005) Inhibition of saccadic and vergence eye movements in 3D space J Vis 5 1–19 [10.5.4b]

Coubard O, Daunys G, Kapoula Z (2004) Gap effects on saccade and vergence latency Exp Brain Res 154 368–81 [10.5.7]

Courage ML, Adams RJ (1996) Infant peripheral vision: the development of monocular visual acuity in the first 3 months of postnatal life Vis Res 36 1207–15 [7.2.1a]

Courant R, Robbins H (1956) What is Mathematics? Oxford University Press, London [3.7.2c, 4.6.3f]

Cova A, Galiana HL (1995) Providing distinct vergence and version dynamics in a bilateral oculomotor network Vis Res 35 3359–71 [10.5.11]

Cova A, Galiana HL (1996) A bilateral model integrating vergence and the vestibulo-ocular reflex Exp Brain Res 107 435–52 [10.5.11]

Cowan WM (1973) Neuronal death as a regulative mechanism in the control of cell number in the nervous system Academic Press, New York [6.3.3b]

Cowan WM, Südhof TC, Stevens CF (2001) Synapses Johns Hopkins University Press, Baltimore [6.4.4f]

Cowey A (1979) Cortical maps and visual perception: the Grindley Memorial Lecture Quart J Exp Psychol 31 l–17 [5.8.1]

Cowey A (2010) The blindsight saga Exp Brain Res 200 3–24 [5.5.7]

Cowey A, and Franzini C (1979) The retinal origin of uncrossed optic nerve fibres in rats and their role in visual discrimination Exp Brain Res 35 443–55 [5.3.3]

Cowey A, Perry VH (1979) The projection of the temporal retina in rats, studied by retrograde transport of horseradish peroxidase Exp Brain Res 35 457–64 [5.3.3, 5.3.4]

Cowey A, Perry VH (1980) The projection of the fovea to the superior colliculus in rhesus monkeys Neuroscience 5 53–61 [5.3.4]

Cowey A, Rolls ET (1974) Human cortical magnification factor and its relation to visual acuity Exp Brain Res 21 447–54 [5.5.4c]

Coxeter HSM (1961) Non-Euclidean geometry University of Toronto Press Toronto [3.7.3]

Coxeter HSM (1964) Projective geometry Blaisdell, New York [3.7.2c]

Crair MC, Ruthazer ES, Gillespie DC, Stryker MP (1997) Ocular dominance peaks at pinwheel center sigularities of the orientation map in cat visual cortex J Neurophysiol 77 3381–5 [5.7.1]

Crair MC, Gillespie DC, Stryker MP (1998) The role of visual experience in the development of columns in cat visual cortex Science 279 566–70 [6.7.1]

Crair MC, Horton JC, Antonini A, Stryker MP (2001) Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age J Comp Neurol 430 235–49 [6.7.1]

Crane HD, Cornsweet TN (1970) Ocular-focus stimulator J Opt Soc Am 60 577 [9.2.4a]

(p.566) Craske B, Crawshaw M (1974) Adaptive changes of opposite sign in the oculomotor systems of the two eyes Quart J Exp Psychol 29 106–13 [4.5.7j]

Craton LG, Yonas A (1988) Infants’ sensitivity to boundary flow information for depth at an edge Child Devel 59 1522 9 [7.4.2b]

Crawford JD, Vilis T (1992) Symmetry of oculomotor burst neuron coordinates about Listing’s plane J Neurophysiol 68 432–48 [10.10.4]

Crawford JD, Cadera W, Vilis T (1991) Generation of torsional and vertical eye position signals by the interstitial nucleus of Cajal Science 252 1551–3 [10.10.4]

Crawford MLJ (1998) Column spacing in normal and visually deprived monkeys Exp Brain Res 123 282–8 [8.2.3a]

Crawford MLJ, Harwerth RS (2004) Ocular dominance column width and contrast sensitivity in monkeys reared with strabismus or anisometropia Invest Ophthal Vis Sci 45 3036–42 [8.2.4a]

Crawford MLJ, Noorden GK von (1979) The effects of short-term experimental strabismus on the visual system in Macaca mulatta Invest Ophthal Vis Sci 18 496–504 [8.2.2e]

Crawford MLJ, Noorden GK von (1980) Optically induced concomitant strabismus in monkeys Invest Ophthal Vis Sci 19 1105–9 [8.2.5a]

Crawford MLJ, Noorden GK von (1996) Shrinkage and recovery of cells of the lateral geniculate nuclei with prism-rearing in macaques Behav Brain Res 79 233–8 [8.2.2e]

Crawford MLJ, Noorden GK von, Meharg LS, et al. (1983) Binocular neurons and binocular function in monkeys and children Invest Ophthal Vis Sci 27 491–5 [8.2.5a]

Crawford MLJ, Smith EL, Harwerth RS, Noorden GK von (1984) Stereoblind monkeys have few binocular neurons Invest Ophthal Vis Sci 25 779–81 [8.2.5a]

Crawford MLJ, De Faber JT, Harwerth RS, et al. (1989) The effects of reverse monocular deprivation in monkeys. II. Electrophysiological and anatomical studies Exp Brain Res 74 338–47 [8.3.2]

Crawford MLJ, Harwerth RS, Smith EL, Noorden GK von (1996a) Loss of stereopsis in monkeys following prismatic binocular dissociation during infancy Behav Brain Res 79 207–18 [8.2.5a]

Crawford MLJ, Pesch TW, Noorden GK von (1996b) Excitatory neurons are lost following prismatic binocular dissociation in infant monkeys Behav Brain Res 79 227–32 [8.2.5a]

Creutzfeldt OD (1977) Generality of the functional structure of the neocortex Naturwissenschaften 64 507–17 [5.5.1b]

Crewther DP, Crewther SG, Pettigrew JD (1978) A role for extraocular afferents in post–critical period reversal of monocular deprivation J Physiol 282 181–95 [8.2.3e]

Crewther SG, and Grewther DP (1993) Amblyopia and suppression in binocular cortical neurones of strabismic cat Neuroreport 4 1083–6 [8.2.3a, 8.2.3b]

Crewther SG, Crewther DP, Peck CK, Pettigrew JD (1980) Visual cortical effects of rearing cats with monocular or binocular cyclotorsion J Neurophysiol 44 97–118 [7.5]

Crewther SG, Grewther DP, Mitchell DE (1983) The effects of short–term occlusion therapy on reversal of the anatomical and physiological effects of monocular deprivation in the lateral geniculate nucleus and visual cortex of kittens Exp Brain Res 51 206–16 [8.3.1c]

Crewther SG, Grewther DP, Clelland BG (1985) Convergent strabismic amblyopia in cats Exp Brain Res 60 1–9 [8.2.2e]

Crick F (1984) Function of the thalamic reticular complex: the searchlight hypothesis Proc Natl Acad Sci 81 4586–90 [5.2.2b]

Crick F, Koch C (1990) Towards a neurobiological theory of consciousness Seminars in the Neurosciences 2 293–75 [4.3.4e]

Crick F, Koch C (1995) Are we aware of neural activity in primary visual cortex Nature 375 121–3 [4.8.4]

Crino PB, and Eberwine J (1996) Molecular characterization of the dendritic growth cone: regulated MRNA transport and local protein synthesis Neuron 17 1173–87 [6.4.4f]

Crist RE, Kapadia MK, Westheimer G, Gilbert CD (1997) Perceptual learning of spatial localization: specificity for orientation, position, and context J Neurophysiol 78 2889–94 [4.9.1]

Crist RE, Li W, Gilbert CD (2001) Learning to see: experience and attention in primary visual cortex Nat Neurosci 4 519–25 [5.6.8]

Critchley M (1955) The parietal lobes Arnold, London [4.5.4a, 4.8.4, 5.8.5b]

Crombie AC (1961) Robert Grosseteste Clarendon Press, Oxford [2.3.1]

Crombie AC (1967) The mechanistic hypothesis and the scientific study of vision: some optical ideas as a background to the invention of the microscope” In Historical aspects of microscopy (ed S Bradbury, GLE Turner) pp 3–113 Heffer Cambridge [2.2.4d]

Crombie AC (1996) Science, art and nature in medieval and modern thought Hambledon Press, London [2.4.1]

Crone RA (1992) The history of stereoscopy Doc Ophthal 81 1–16 [2.10.1, 2.10.3d]

Crone RA, Everhard–Halm Y (1975) Optically induced eye torsion. I. Fusional cyclovergence Graefes Arch klin exp Ophthal 195 231–9 [10.7.2d, 10.7.5a]

Croner LJ, Kaplan E (1995) Receptive fields of P and M ganglion cells across the primate retina Vis Res 35 7–27 [5.1.4e]

Cronly–Dillon JR, Glaizner B (1974) Specificity of regenerating optic fibres for left and right optic tecta in goldfish Nature 251 505–7 [6.7.3a]

Cronly–Dillon JR, Gregory RL (1991) The evolution of the eye and visual system CRC Press, Boca Raton [7.6.4]

Crook JM, Kisvárday ZF, Eysel UT (1996) GABA-induced inactivation of functionally characterized sites in cat striate cortex (area 18): effects on direction selectivity J Neurophysiol 75 2071–88 [5.6.4c]

Crook JM, Kisvárday ZF, Eysel UT (1997) GABA-induced inactivation of functionally characterized sites in cat striate cortex: effects on orientation tuning and direction selectivity Vis Neurosci 14 141–58 [5.6.2b, 5.6.4c]

Crook KM, Engelmann R, Löwel S (2002) GABA-inactivation attenuates collinear facilitation in cat primary visual cortex Exp Brain Res 143 295–302 [5.6.7c]

Crowley JC, Katz LC (1999) Development of ocular dominance columns in the absence of retinal input Nat Neurosci 2 1125–30 [6.7.1, 6.7.2d]

Crowley JC, Katz LC (2000) Early development of ocular dominance columns Science 290 1321–4 [6.4.5a, 6.7.1]

Cudeiro J, Sillito AM (1996) Spatial frequency tuning of orientation-discontinuity-selective corticofugal feedback to the cat lateral geniculate nucleus J Physiol 490 481–92 [5.2.2b]

Cudeiro J, Sillito A (2006) Looking back: corticothalamic feedback and early visual processing TINS 29 298–306 [5.2.2a]

Cudeiro J, González F, Pérez R, et al. (1989) Does the pulvinar-LP complex contribute to motor programming? Brain Research 484 367–70 [5.5.4b, 5.9.1]

Cuijpers RH, Kappers AML, Koenderink JJ (2000) Large systematic deviations in visual parallelism Perception 29 1467–82 [4.7.2]

Cuijpers RH, Kappers AML, Koenderink JJ (2002) Visual perception of collinearity Percept Psychophys 64 392–404 [4.7.2]

Culham JC, Dukelow SP, Vilis T, et al. (1999) Recovery of fMRI activation in motion area MT following storage of the motion aftereffect J Neurophysiol 81 388–93 [5.4.3f]

Cumming BG, Judge SJ (1986) Disparity–induced and blur–induced convergence eye movement and accommodation in monkey J Neurophysiol 55 896–914 [10.4.1, 10.4.2, 10.5.7]

Cumming BG, Parker AJ (1999) Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity J Neurosci 19 5602–18 [10.5.2, 5.6.7a]

Cunningham TJ, Freeman JA (1977) Bilateral ganglion cell branches in the normal rat. A demonstration with electrophysiological collision and cobalt tracing methods J Comp Neurol 172 165–76 [5.3.4]

Curcio CA, Allen KA (1990) Topography of ganglion cells in the human retina J Comp Neurol 300 5–25 [5.1.4e]

Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography J Comp Neurol 292 497–523 [5.1.2a, 7.2.4, 9.1.5]

(p.567) Cusick CG, Selztzer B, Cola M, Griggs E (1995) Chemoarchitectonic and corticocortical terminations within the superior temporal sulcus of the Rhesus monkey J Comp Neurol 360 513–35 [5.8.3b]

Cutzu F, Tsotsos JK (2003) The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item Vis Res 43 205–19 [4.8.1c]

Cynader M (1983) Prolonged sensitivity to monocular deprivation in dark-reared cats: effects of age and visual exposure Devel Brain Res 8 155–64 [8.3.1b]

Cynader M, Chernenko G (1976) Abolition of direction selectivity in the visual cortex of the cat Science 193 504–5 [6.6.4b, 8.3.1a]

Cynader M, Mitchell DE (1980) Prolonged sensitivity to monocular deprivation in dark–reared cats J Neurophysiol 43 1029–40 [8.3.1a]

Cynader M, Berman N, Hein A (1976) Recovery of function in cat visual cortex following prolonged deprivation Exp Brain Res 25 139–56 [8.1.1c]

Cynader M, Timney BN, Mitchell DE (1980) Period of susceptibility of kitten visual cortex to the effect of monocular deprivation extends beyond 6 months of age Brain Res 191 545–50 [8.3.1a]

Cynader M, Lepore F, Guillemot JP (1981) Inter-hemispheric competition during postnatal development Nature 290 139–40 [8.2.3b]

Cynader M, Gardner JC, Mustari M (1984) Effects of neonatally induced strabismus on binocular responses in cat area 18 Exp Brain Res 53 384–99 [8.2.3a]

Czepita D, Daw NW (1996) The contribution of NMDA receptors to the visual response in animals that have been partially monocularly deprived Brain Res 728 7–12 [8.2.7e]

Czepita D, Reid SNM, Daw NW (1994) Effect of longer periods of dark rearing on NMDA receptors in cat visual cortex J Neurophysiol 72 1220–6 [6.7.2a, 8.1.1c, 8.2.7e]

D’Azzo JJ, Houpis CH (1995) Linear control system analysis and design conventional and modern McGraw-Hill, New York [3.3]

da Vinci L (1452) Trattato della pittura (Translated as A treatise on painting by A.P. McMahon Princeton University Press, Princeton, New Jersey, 1956 [2.10.3a]

Dacey DM, Lee BB, Stafford DK, et al. (1996) Horizontal cells of the primate retina: cone specificity without spectral opponency Science 271 656–17 [5.1.3, 5.1.4c]

Dahlhaus M, Hermans JM, Van Woerden LH, et al. (2008) Notch1 signaling in pyramidal neurons regulates synaptic connectivity and experience-dependent modifications of acuity in the visual cortex J Neurosci 28 10794–802 [6.4.4f]

Dailey ME (1964) Dynamic optical imaging of neuronal structure and physiology In Brain Mapping (ed AW Toga, JC Mazziotta) pp 29–46 Academic Press, New York [5.4.2a]

Dale AI (1982) Bayes or Laplace? An examination of the origin and early applications of Baye’s theorem Arch Hist Exact Sci 27 23–47 [3.6]

Dale RT (1982) Fundamentals of ocular motility and strabismus Grune and Stratton, New York [8.5.2]

Dalva MB, Katz LC (1994) Rearrangements of synaptic cortical connections in visual cortex revealed by laser photostimulation Science 295 255–8 [6.4.6b]

Dalva MB, Ghosh A, Shatz CJ (1994) Independent control of dendritic and axonal form in the developing lateral geniculate nucleus J Neurosci 14 3588–602 [6.3.5b]

Dalva MB, Takasu MA, Lin MZ, et al. (2000) EphB receptors interact with NMDA receptors and regulate excitatory synapse formation Cell 103 945–56 [6.5.3]

Damasio AR, Tranel D, Damasio H (1990) Face agnosia and the neural substrates of memory Ann Rev Neurosci 13 89–109 [5.8.3c]

Damisch H (1994) The origin of perspective (English trans by J Goodman) MIT Press, Cambridge, MA [2.9.3]

Dan Y, Poo M (1992) Hebbian depression of isolated neuromuscular synapses in vitro Science 256 1570–3 [4.3.4f]

Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception Physiol Rev 86 1033–48 [6.5.2]

Dan Y Atick JJ, Reid RC (1996) Efficient coding of neural scenes in the lateral geniculate nucleus: experimental test of a computational theory J Neurosci 16 3351–62 [4.3.4f]

Dan Y, Alonso JM, Usrey WM, Reid RC (1998) Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus Nat Neurosci 1 501–7 [4.3.4b]

Dani A, Huang B, Bergen J, et al. (2010) Superresolution imaging of chemical synapses in the brain Neuron 68 843–56 [5.4.1b]

Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys J Physiol 159 203–21 [5.5.4c]

Daniels JD, Norman JL, Pettigrew JD (1977) Biases for oriented moving bars in lateral geniculate nucleus of normal and stripe-reared cats Exp Brain Res 29 155–72 [5.2.2c]

Daniels JD, Pettigrew JD, Norman JL (1978) Development of single–neuron responses in kitten’s lateral geniculate nucleus J Neurophysiol 41 1373–93 [6.3.5c]

Daniels NT, Howard IP, Allison RS (2008) Gain of cyclovergence as a function of stimulus location Vis Sci Soc Abtstracts p. 171 [10.7.5a]

Dannemiller JL, Freedland RL (1993) Motion-based detection by 14-week-old infants Vis Res 33 657–64 [7.2.3b]

Dantzker JL, Callaway EM (1998) The development of local, layer-specific visual cortical axons in the absence of extrinsic influences and intrinsic activity J Neurosci 18 4145–54 [6.4.5b, 6.4.6a]

Danziger K (1979) The positivist repudiation of Wundt J Hist Behav Sci 15 205–30 [2.7.2]

Darcy KJ, Staras K, Collinson LM, Goda Y (2006) Constitutive sharing of recycling synaptic vesicles between presynaptic boutons Nat Neurosci 9 315–21 [5.5.2b]

Darian-Smith C, Gilbert CD (1994) Axonal sprouting accompanies functional reorganization in adult cat striate cortex Nature 368 737–40 [5.5.6c]

Darian-Smith C, Gilbert CD (1995) Topographic reorganization in the cortex of the adult cat and monkey is cortically mediated J Neurosci 15 1631–47 [5.5.6c]

Darrah WC (1964) Stereo views A history of stereographs in America and their collection Times and News Publishing Co, Gettysburg PA [2.11.3]

Das A, Gilbert CD (1995a) Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex Nature 375 780–4 [5.5.6a, 5.5.6c]

Das A, Gilbert CD (1995b) Receptive field expansion in adult visual cortex is linked to dynamic changes in strength of cortical connections J Neurophysiol 74 779–92 [5.5.6c, 5.5.4d, 5.7.2c]

Das A, Gilbert CD (1997) Distortions of visuotopic map match orientation singularities in primary visual cortex Nature 387 594–8 [5.5.4d]

Das A, Gilbert CD (1999) Topography of contextual modulations mediated by short-range interactions in primary visual cortex Nature 399 655–61 [5.5.6b]

Das I, Sparrow JR, Lin MI, et al. (2000) Trk C signaling is required for retinal progenitor cell proliferation J Neurosci 20 2887–95 [6.4.7b]

Daugman JG (1984) Spatial visual channels in the Fourier plane Vis Res 27 891–10 [4.4.2]

Daugman JG (1985) Uncertainty relation for resolution in space spatial frequency and orientation optimized by two-dimensional visual cortical filters J Opt Soc Am A 2 1160–9 [4.4.2]

Daugman JG (1990) An information–theoretic view of analog representation in striate cortex In Computational neuroscience (ed EL Schwartz) pp 401–23 MIT Press, Cambridge MA [3.2.6a, 4.4.2]

Daugman JG (1991) Self–similar oriented wavelet pyramids: conjectures about neural non–orthogonality In Representations of vision (ed A Gorea) pp 27–46 Cambridge University Press, New York [4.4.2]

Daum KM (1982) The course and effect of visual training on the vergence system Am J Optom Physiol Opt 59 223–7 [10.5.3]

Daum KM (1983) The stability of the fixation disparity curve Ophthal Physiol Opt 3 13–19 [10.2.5a]

Daum KM (1988) Characteristics of convergence insufficiency Am J Optom Physiol Opt 65 429–38 [10.5.3]

Daum KM (1989) Evaluation of a new criterion of binocularity Optom Vis Sci 66 218–28 [10.4.1]

(p.568) Daum KM, Rutstein RP, Cho M, Eskridge JB (1988) Horizontal and vertical vergence training and its effect on vergences and fixation disparity curves: I. Horizontal data Am J Optom Physiol Opt 65 1–7 [10.5.3]

Davenport RW, Thies E, Cohen ML (1999) Neuronal growth cone collapse triggers lateral extensions along trailing axons Nat Neurosci 2 254–9 [6.4.3a]

Davidson BL, Breakefield XO (2003) Viral vectors for gene delivery to the nervous system Nat Rev Neurosci 4 353–64 [5.4.2a]

Davis AA, Temple S (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex Nature 372 293–6 [6.4.5a]

Davison ML (1983) Multidimensional scaling Wiley, New York [4.5.1]

Davson H (1962) The eye Academic Press, New York [5.1.1, 9.2.1]

Daw NW (1995) Visual development Plenum, New York [7.6.4, 8.2.7e]

Daw NW, Videen TO, Rader RK, et al. (1985) Substantial reduction of noradrenaline in kitten visual cortex by intraventricular injections of 6–hydroxydopamine does not always prevent ocular dominance shifts after monocular deprivation Exp Brain Res 59 30–5 [8.2.7h]

Daw NW, Fox K, Sato H, Czepita D (1992) Critical period for monocular deprivation in the cat visual cortex J Neurophysiol 67 197–202 [8.3.1a,]

Daxecker F (1992) Christoph Scheiner’s eye studies Doc Ophtha l 81 27–35 [2.5.4]

Daxecker (1994) Further studies by Christoph Scheiner concerning the optics of the eye Doc Ophtha l 86 153–61 [2.5.4]

Day RH, McKenzie BE (1973) Perceptual shape constancy in early infancy Perception 2 315–20 [7.4.2a]

Day SH, Orel-Bixer DA, Norcia AM (1988) Abnormal acuity development in infantile esotropia Invest Ophthal Vis Sci 29 327–9 [8.4.1]

De Blas AL (1996) Brain GABAA receptors studied with subunit-specific antibodies Molec Neurobiol 12 55–71 [5.5.2e]

De Bruyn B, Orban GA (1988) Human velocity and direction discrimination measured with random dot patterns. Vis Res 28 1323–35 [7.2.3c]

De Bruyn B, Rogers BR, Howard IP, Bradshaw MF (1992) Role of positional and orientational disparities in controlling cyclovergent eye movements Invest Ophthal Vis Sci 33 (Abs) 1149 [10.7.5a]

De Carlos JA, O’Leary DDM (1992) Growth and targeting of subplate axons and establishment of major cortical pathways J Neurosci 12 1194–211 [6.4.5c]

De Courten C, Garey LJ (1982) Morphology of the neurons in the human lateral geniculate nucleus and their normal development Exp Brain Res 47 159–171 [6.3.5a]

De Lange H (1958) Research into the dynamic nature of the fovea–cortex system with intermittent and modulated light J Opt Soc Am 48 777–89 [3.2.5]

De Ruyter HH, van Steveninck RR, Laughlin SB (1996) The rate of information transfer at graded-potential synapses Nature 379 642–5 [4.2.2]

De Vries JV (1604) Perspective. Reproduced in 1968 by Dover Publications Inc., New York [2.9.3]

Dean AF (1981) The relationship between response amplitude and contrast for cat striate cortical neurones J Physiol 318 413–27 [5.6.1]

DeAngelis GC, Ohzawa I, Freeman RD (1993a) Spatiotemporal organization of simple–cell receptive fields in the cat’s striate cortex. I. General characteristics and postnatal development J Neurophysiol 69 1091–117 [5.4.3b, 5.6.4b]

DeAngelis GC, Ohzawa I, Freeman RD (1993b) Spatiotemporal organization of simple–cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation J Neurophysiol 69 1118–35 [5.6.4b]

DeAngelis GC, Freeman RD, Ohzawa I (1994) Length and width tuning of neurones in the cat’s primary visual cortex J Neurophysiol 71 347–74 [5.6.7a]

DeAngelis GC, Anzai A, Ohzawa I, Freeman RD (1995) Receptive field structure in the visual cortex: does selective stimulation induce plasticity? Proc Natl Acad Sci 92 9682–6 [5.5.6c]

DeAngelis GC, Ghose GM, OhzawaI, Freeman RD (1999) Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons J Neurosci 19 4046–64 [5.7.2b]

Deans MR, Volgyi B, Goodenough DA, et al. (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina Neuron 36 703–12 [5.1.3]

Dearworth JR, Davison RC, Li X, Gamlin PDR (2005) Vergence target selection in rhesus monkeys: behavior and modeling Vis Res 45 731–47 [10.5.10c]

DeBruyn EJ, Casagrande VA (1981) Demonstration of ocular dominance columns in a New World primate by means of monocular deprivation Brain Res 207 543–8 [5.7.2f]

Dehay C, Giroud P, Berland M, et al. (1996) Contribution of thalamic input to the specification of cxytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex J Comp Neurol 367 70–89 [8.1.1b]

Deiner MS, Kennedy TE, Fazeli A, et al. (1997) Netrin-1 and DCC mediate axon guidance locally a the optic disc: loss of function leads to optic nerve hypoplasia Neuron 19 595–89 [6.3.3a]

Delambre JBJ (1912) The optics of Ptolemy compared with that of Euclid Alhazen and Vitellio Annalen der Physik 40 371–88 [2.1.3d]

Delaunay D, Heydon K, Cumano A, et al. (2008) Early neuronal and glial fate restriction of embryonic neural stem cells J Neurosci 28 2551–62 [6.4.2b]

Delint PJ, Weissenbruch C, Berendschot TTJM, van Norren D (1998) Photoreceptor function in unilateral amblyopia Vis Res 38 613–17 [8.4.1]

Dell’Osso LF, Schmidt D, Daroff RB (1979) Latent, manifest latent and congenital nystagmus Arch Ophthal 97 1877–81 [10.2.2c]

Dell’Osso LF, Traccis S, Abel LA (1983) Strabismus—a necessary condition for latent and manifest latent nystagmus Neuro-Ophthal 3 277–57 [10.2.2c]

Della-Maggiore V, McIntosh AR (2005) Time course of changes in brain activity and functional connectivity associated with long-term adaptation to a rotational transformation J Neurophysiol 93 2254–62 [4.8.4]

Deller M (1988) Why should surgery for early-onset strabismus be postponed? Br J Ophthal 72 110–115 [8.3.3a]

DeMali KA, Wennerberg K, Burridge K (2003) Integrin signaling to the actin cytoskeleton. Curr Opin Cell Bio l 15 572–82 [6.4.3e]

Demanins R, Hess RF (1996a) Effect of exposure duration on spatial uncertainty in normal and amblyopic eyes Vis Res 36 1189–93 [8.4.4a]

Demanins R, Hess RF (1996b) Positional loss in strabismic amblyopia: interrelationship of alignment threshold bias spatial scale and eccentricity Vis Res 36 2771–94 [8.4.3]

Demanins R, Hess RF, Williams CB, Keeble DRT (1999a) The orientation discrimination deficit in strabismic amblyopia depends upon stimulus bandwidth Vis Res 39 4018–31 [8.4.2b]

Demanins R, Wang YZ, Hess RF (1999b) The neural deficit in strabismic amblyopia: sampling considerations Vis Res 39 3573–85 [8.4.3c]

Demer JL, Noorden GK von (1988) Optokinetic asymmetry in esotropia J Ped Ophthal Strab 25 286–92 [8.4.5c, 10.2.2e]

Demer JL, Poukens V, Miller JM, Micevych P (1997) Innervation of extraocular pulley smooth muscle in monkeys and humans Invest Ophthal Vis Sci 38 1774–85 [10.1.2e]

Demer JL, Kono R, Wright W (2003) Magnetic resonance imaging of human extraocular muscles in convergence J Neurophysiol 89 2072–85- [10.1.2e]

DeMonasterio FM (1978) Properties of ganglion cells with atypical receptive-field organization in retina of macaques J Neurophysiol 41 1435–49 [5.6.4a]

Deneve S, Latham PE, Pouget A (1999) Reading population codes: a neural implementation of ideal observers Nat Neurosci 2 740–5 [4.2.5a]

Denieul P (1982) Effects of stimulus vergence on mean accommodation response microfluctuations of accommodation and optical quality of the human eye Vis Res 22 561–9 [9.3.1, 9.7.1a]

(p.569) Denk W, Strockler JH, Webb WW (1990) Two-photon laser fluorescence microscopy Science 248 73–8 [5.4.1b]

Dent EW, Gertier FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance Neuron 40 209–27 [6.4.3a]

Derrington AM, Hawken MJ (1981) Spatial and temporal properties of cat geniculate neurones after prolonged deprivation J Physiol 314 107–20 [8.2.2c]

Derrington AM, Lennie P (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque J Physiol 357 219–40 [5.1.4c]

Des Rosiers MH, Sakurada O, Jehle, et al. (1978) Functional plasticity in the immature striate cortex of the monkey shown by the C deoxyglucose method Science 200 447–9 [6.7.1, 8.2.4b]

Desaguliers JT (1716) A plain and easy experiment to confirm Sir Isaac Newton’s doctrine of the different refrangibility of the rays of light Philos Tr R Soc 29 448–52 [2.11.2a]

Desaguliers JT (1719) Lectures on experimental philosophy Mears Creake and Sackfield, London [2.5.4]

Desagulier JT (1736) An attempt to explain the phenomenon of the horizontal moon appearing bigger than when elevated many degrees above the horizon Phil Trans Roy Soc 38 390–2 [2.10.3e]

Desai AR, McConnell SK (2000) Progressive restriction in fate potential by neural progenitors during cerebral cortical development Development 127 2863–72 [6.4.5a]

Desai NS, Cudmore RH, Nelson SB, Turrigiano GG (2002) Critical periods for experience dependent synaptic scaling in visual cortex Nat Neurosci 5 783–9 [6.5.4]

Descargues P (1977) Perspective (Translated from the French by IM Paris) Abrams, New York [2.9.3]

Descartes R (1664) Traité de l’homme In Oeuvres de Descartes (ed C Adam, P Tannery) Vol XI 1909 pp 119–215 Cerf, Paris (Translation by TS Hall) Treatise of man Harvard University Press, Cambridge MA 1972 [2.5.4, 2.5.5]

Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention Ann Rev Neurosci 18 193–222 [4.8.3d]

Desimone R, Schein SJ (1987) Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form J Neurophysiol 57 835–68 [5.8.3a]

Desimone R, Moran J, Schein SJ, Mishkin M (1993) A role for the corpus callosum in visual area V4 of the alert monkey Vis Neurosci 10 159–71 [5.3.5]

Deslandes J (1966) Histoire comparée du cinéma Casterman, Paris [2.11.4]

DeSouza JFX, Dukelow SP, Gati JS, et al. (2000) Eye position signal modulates a human parietal pointing region during memory-guided movements J Neurosci 20 5835–40 [5.8.4e]

Deubel H (1987) Adaptivity of gain and direction in oblique saccades In Eye movements: From physiology to cognition (ed JK O’Regan, A Levy–Schoen) pp 181–90 Elsevier, Amsterdam [10.8.3a]

Deubel H, Wolf W, Hauske G (1986) Adaptive gain control of saccadic eye movements Hum Neurobiol 5 275–53 [10.8.3a]

DeValois RL (1991) Orientation and spatial frequency selectivity In From pigments to perception (ed A Valberg, BB Lee) pp 291–7 Plenum, New York [5.6.6]

DeValois RL, DeValois KK (1988) Spatial vision Oxford University Press, New York [4.3.1a, 5.6.6, 5.7.1, 9.6.5b]

DeValois RL, Yund EW, Hepler N (1982) The orientation and direction selectivity of cells in macaque visual cortex Vis Res 22 531–44 [5.6.2a, 2]

DeValois RL, Thorell LG, Albrecht DG (1985) Periodicity of striate-cortex-cell receptive fields J Opt Soc Am A 2 1115–22 [5.6.3]

Deverman BE, Patterson PH (2009) Cytokines and CNS development Neuron 64 61–78 [6.4.5a]

DeVries H (1943) The quantum character of light and its bearing upon threshold of vision Physica 10 553 [5.1.5]

DeVries SH, Qi X, Smith R, Makous W, Sterling P (2002) Electrical coupling between mammalian cones Curr Biol 12 1900–7 [5.1.5]

Dews PB, Wiesel TN (1970) Consequences of monocular deprivation on visual behaviour in kittens J Physiol 206 437–55 [8.3.1a, 8.4.5d]

DeYoe EA, Van Essen DC (1985) Segregation of efferent connections and receptive field properties in visual area V2 of the macaque Nature 317 58–61 [5.8.2a]

DeYoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex TINS 11 219–29 [5.8.5a]

DeYoe EA, Felleman DJ, Van Essen DC, McClendon E (1994) Multiple processing streams in occipitotemporal visual cortex Nature 371 151–4 [5.8.3a]

DeYoe EA, Trusk TC, Wong-Riley MTT (1995) Activity correlates of cytochrome oxidase-defined compartments in granular and supragranular layers of primary visual cortex of the macaque monkey Vis Neurosci 12 629–39 [5.7.2a]

Di Cristo GD, Berardi N, Cancedda L, et al. (2001) Requirement of ERK activation for visual cortical plasticity Science 292 2337–40 [6.5.1a]

Di Cristo GD, Chattopadhyaya B, Kuhlman SJ, et al. (2007) Activity-dependent PSA expression regulates inhibitory maturation and the onset of critical period plasticity Nat Neurosci 10 1569- 77 [8.3.1b]

Di Marco S, Nguyen VA, Bisti S, Protti DA (2009) Permanent functional reorganization of retinal circuits induced by early long-term visual deprivation J Neurosci 29 13691–701 [8.1.1a]

Di Stefano M, Gargini C (1995) Recovery of the nasal field loss in esotropic cats after section of the optic chiasm Neuroreport 6 1341–5 [8.4.6a]

Di Stefano M, Gargini C (2002) Cortical binocularity in convergent strabismus after section of the optic chiasm Exp Brain Res 147 64–70 [8.2.3b]

DiAntonio A, Hicke L (2004) Ubiquitin-dependent regulation of the synapse Ann Rev Neurosci 27 223–46 [6.4.3e]

Diao YC, Jia WG, Swindale NV, Cynader MS (1990) Functional organization of the cortical 17/18 border region in the cat Exp Brain Res 79 271–82 [5.3.4]

Diaz–Araya C, Provis JM (1992) Evidence of photoreceptor migration during early foveal development: a quantitative analysis of human fetal retinae Vis Neurosci 8 505–14 [6.3.2a]

DiCarlo JJ, Maunsell JHR (2000) Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing Nat Neurosci 3 814–21 [5.8.3b]

Diefenbach TJ, Guthrie PB, Kater SB (2000) Stimulus history alters behavioral responses of neuronal growth cones J Neurosci 20 1484–94 [6.4.3b]

Dijkerman HC, Milner AD, Carey DP (1996) The perception and prehension of objects oriented in the depth plane. I. Effects of visual form agnosia Exp Brain Res 112 442–51 [5.8.5b]

Dinse HR, Krüger K, Best J (1990a) A temporal structure of cortical information processing Concepts in Neuroscience 1 199–238 [4.3.2]

Dinse HR, Racanzone GH, Merzenich MM (1990b) Direct observation of neural assemblies during neocortical representational reorganization In Parallel processing in neural systems and computers (ed R Eckmiller, G Hartmann, G Hauske) pp 65–69 Elsevier, Amsterdam [5.6.8]

Distler C, Boussaoud D, Desimone R, Ungerleider LG (1993) Cortical connections of inferior temporal area TEO in macaque monkeys J Comp Neurol 334 125–50 [5.5.4b]

Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity Nat Rev Neurosci 4 457–68 [6.4.3b]

Do MTH, Kang SH, Xue T, et al. (2009) Photon capture and signalling by melanopsin retinal ganglion cells Nature 457 281–8 [5.1.4g]

Dobbins AC, Jeo RM, Fiser J, Allman JM (1998) Distance modulation of neural activity in the visual cortex Science 281 552–5 [5.6.7d]

Dobkins KR, Teller DY (1996) Infant contrast detectors are selective for direction of motion Vis Res 36 281–94 [7.2.3c]

Dobson V, Sebris SL (1989) Longitudinal study of acuity and stereopsis in infants with or at risk for esotropia Invest Ophthal Vis Sci 30 1146–58 [10.2.2e, 8.2.3f]

(p.570) Dobson V, Teller DY (1978) Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies Vis Res 18 1469–83 [7.2.1b]

Dobson V, Fulton AB, Sebris SL (1984) Cycloplegic refractions of infants and young children: the axis of astigmatism Invest Ophthal Vis Sci 25 83–7 [7.3.1]

Dodd J, Jessell TM (1988) Axon guidance and the patterning of neuronal projections in vertebrates Science 272 692–99 [6.4.3b]

Dodd JV, Krug K, Cumming BG, Parker AJ (2001) Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT J Neurosci 21 4809–21 [5.8.4b]

Dodwell PC (1983) The Lie transformation group model of visual perception Percept Psychophys 34 1–16 [4.6.3c, 4.7.1]

Dodwell PC, Muir D, Di Franco D (1976) Responses of infants to visually presented objects Science 194 209–l1 [7.4.1a]

Domenici L, Berardi N, Carmignoto G, et al. (1991) Nerve growth factor prevents the amblyopic effects of monocular deprivation Proc Natl Acad Sci 88 8811–15 [8.2.7f]

Domenici L, Cellerino A, Maffei L (1993) Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). II. Lateral geniculate nucleus Proc R Soc 251 25–31 [8.2.7f]

Donders FC (1864) Accommodation and refraction of the eye The Sydenham Society, London [10.4.1, 2.5.4]

Donoghue MJ, Rakic P (1999) Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex J Neurosci 19 5967–79 [6.4.3c]

Dontchev VD, Letourneau PC (2002) Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility J Neurosci 22 6659–69 [6.4.3e]

Doresse J (1970) The secret books of the Egyptian gnostics Viking Press, New York [2.4.1]

Dosher BA, Lu ZL (1999) Mechanisms of perceptual learning Vis Res 39 3197–221 [4.9.2c]

Douglas RJ, Koch C, Mahowald M, et al. (1995) Recurrent excitation in neocortical circuits Science 299 981–5 [5.5.1e]

Dow BM (1991) Orientation and color columns in monkey striate cortex In From pigments to perception (ed A Valberg, BB Lee) pp 299–74 Plenum, New York [5.7.1]

Dowling JE (1987) The retina: an approachable part of the brain Harvard University Press, Cambridge MA [5.1.3, 5.1.4d]

Dowling JE, Boycott BB (1966) Organization of the primate retina Proc R Soc B 166 80–111 [5.1.1]

Dräger UC (1985) Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse Proc R Soc B 227 57–77 [6.3.4a]

Dragoi V, Sur M (2000) Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects J Neurophysiol 83 1019–30 [5.6.7b]

Dragoi V, Sharma J, Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex Neuron 28 287–98 [5.6.2a]

Drasdo N (1977) The neural representation of visual space Nature 296 554–6 [5.5.4c]

Drexler W, Baumgartner A, Findl O, et al. (1997) Biometric investigation of changes in the anterior eye segment during accommodation Vis Res 37 2789–800 [9.2.2b]

Drexler W, Findl O, Schmetterer L, et al. (1998) Eye elongation during accommodation in humans: differences between emmetropes and myopes Invest Ophthal Vis Sci 39 2140–7 [6.3.1c, 9.2.4c]

Driver J, Bayliss GC (1989) Movement and visual attention: the spotlight metaphor breaks down J Exp Psychol HPP 15 448–56 [4.8.3d]

Duboscq J (1857) Sur le stéréoscope Bull Soc Fran Photo 3 77–8 [2.11.4]

Dudek SM, Bear MF (1989) A biochemical correlate of the critical period for synaptic modification in the visual cortex Science 276 673–5 [6.7.2a]

Duffieux PM (1946) L’intégrale Fourier et ses applications a l’optique imprimeries Oberthur, Rennes [4.4.1a]

Duffy CJ, Wurtz RH (1991) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small–field stimuli J Neurophysiol 65 1346–59 [5.8.4c]

Duffy CJ, Wurtz RH (1995) Response of monkey MST neurons to optic flow stimuli with shifted centers of motion J Neurophysiol 15 5192–208 [5.8.4c]

Duffy CJ, Wurtz RH (1997) Medial superior temporal area neurons respond to speed patterns in optic flow J Neurosci 17 2839–51 [5.8.4c]

Duffy FH, Snodgrass RS, Burchfiel JL, Conway JL (1976) Bicuculline reversal of deprivation amblyopia in the cat Nature 290 256–7 [8.2.7d]

Duffy KR, Hubel DH (2007) Receptive field properties of neuons in the primary visual cortex under photopic and scotopic lighting conditions Vis Res 47 2569–74 [5.6.2d]

Duffy KR, Livingstone MS (2005) Loss of neurofilament labeling in the primary visual cortex of monocularly deprived monkeys Cereb Cortex 15 1146–54 [8.2.4b]

Duffy KR, Slusar JE (2009) Monocular deprivation provokes alteration of the neuronal cytoskeleton in developing lateral geniculate nucleus Vis Neurosci 26 319–28 [8.2.2b]

Duffy KR, Murphy KM, Singer W (1998) Analysis of postnatal growth of visual cortex Vis Neurosci 15 831–9 [6.7.1]

Dufour A, Seibt J, Passante L, et al. (2003) Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes Neuron 39 453–65 [6.4.3c]

Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements Science 255 90–95 [5.8.4e]

Duhamel JR, Bremmer F, BenHamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons Nature 389 845–8 [5.8.4e]

Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties J Neurophysiol 79 126–36 [5.8.4e]

Duke–Elder S (1961) System of ophthalmology Vol II The anatomy of the visual system Kimpton, London [2.1]

Dunaevsky A, Blazeski R, Yuste R, Mason C (2001) Spine motility with synaptic contact Nat Neurosci 4 685–6 [6.4.4c]

Duncan J (1984) Selective attention and the organization of visual information J Exp Psychol Gen 113 501–17 [4.8.2b]

Duncan J, Martens S, Ward R (1997) Restricted attentional capacity within but not between sensory modalities Nature 387 808–10 [4.8.1a]

Dunkeld J, Bower TGR (1980) Infant response to impending collision Perception 9 549–54 [7.4.1c]

Dunnett SB, Björkllund A (1992) Neural transplantation: a practical approach IRL Press, Oxford [5.4.3g, 6.2]

Durand JB, Nelissen K, Joly O, et al. (2007) Anterior regions of monkey parietal cortex process visual 3D shape Neuron 55 493–505 [5.8.4e]

Dürer A (1525) Underweysung der messung Nuremberg. English translation by WL Strauss, Abaris books, New York [2.9.3]

Dürsteler MR, von der Heydt R (1983) Plasticity in the binocular correspondence of striate cortical receptive fields in kittens J Physiol 345 87–105 [7.5]

Dürsteler MR, Garey LJ, Movshon JA (1976) Reversal of the morphological effects of monocular deprivation in the kitten’s lateral geniculate nucleus J Physiol 291 189–210 [8.2.2d]

Dürsteler MR, Wurtz RH, Newsome WT (1987) Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey J Neurophysiol 57 1292–87 [5.8.5b]

Durstewitz D, Seamans JK, Sejnowsky TJ (2000) Neurocomputational models of working memory Nat Neurosci 3 1184–91 [5.5.6c]

Dutour EF (1760) Discussion d’un question d’optique L’Académie des Sciences. Mémoires de Mathématique et de physique présentés par Divers Savantes 3 514–30. English translations by O’Shea RP (1999) of both papers are available at http://psy.otago.ac.nz:800/roshea.dutour63.html. [2.11.2a]

(p.571) Duwaer AL (1982a) Assessment of retinal image displacement during head movement using an afterimage method Vis Res 22 1379–88 [10.5.4a]

Duwaer AL (1982b) Nonmotor component of fusional response to vertical disparity: a second look using an afterimage method J Opt Soc Am 72 871–7 [10.6.1]

Duwaer AL, van den Brink G (1981a) Foveal diplopia thresholds and fixation disparities Percept Psychophys 30 321–9 [10.2.4g]

Duwaer AL, van den Brink G (1981b) Diplopia thresholds and the initiation of vergence eye–movements Vis Res 21 1727–37 [10.5.2, 10.6.3a]

Duwaer AL, van den Brink G, van Antwerpen G, Keemink CJ (1982) Comparison of subjective and objective measurements of ocular alignment in the vertical direction Vis Res 22 983–9 [10.6.1]

Duysens J, Maes H, Orban GA (1987) The velocity dependence of direction selectivity of visual cortical neurons in the cat J Physiol 387 95–113 [5.6.4a]

Dvorák V (1870) Versuche über Nachbilder von Reizveränderungen Sitzungsbericht der Kaiserlichen Akademie der Wissenschaften: Mathematisch-Naturwissenschaftliche Klasse, II Abteilung (Wein) 61 257–62. Translation in Broerse et al. (1994) [2.8.2]

Dwyer P, Wick B (1995) The influence of refractive correction upon disorders of vergence and accommodation Optom Vis Sci 72 227–32 [10.5.3]

Eadie AS, Carlin PJ (1995) Evolution of control system models of ocular accommodation vergence and their interaction Med Biol Engin Comput 33 517–27 [10.5.11]

Eadie AS, Gray LS, Carlin P, Mon-Williams M (2000) Modelling adaptation effects in vergence and accommodation after exposure to a simulated virtual reality stimulus Ophthal Physiol Opt 20 272–51 [10.4.3a]

Earle EW (1979) Points of view The stereograph in America—a cultural history The Book Bus Visual Studies Workshop, Rochester, NY [2.11.3]

Easter SS, Schmidt JT (1977) Reversed visuomotor behavior mediated by induced ipsilateral retinal projections in goldfish J Neurosci 40 1275–54 [6.7.3b]

Eastwood BS (1982) The elements of vision: the micro-cosmology of Galenic visual theory according to Hunayn ibn Ishäq Tr Am Philos Soc 72 part 5 1–58 [2.2.4a]

Eastwood BS (1986) Alhazen Leonardo and late-medieval speculation on the inversion of the images in the eye Ann Sci 43 413–46 [2.2.4d]

Ebenholtz SM (1983) Accommodative hysteresis: a precursor for induced myopia? Invest Ophthal Vis Sci 24 513–15 [9.3.2]

Ebenholtz SM (1991) Accommodative hysteresis Invest Ophthal Vis Sci 32 148–53 [9.3.2]

Ebenholtz SM, Citek K (1995) Absence of adaptive plasticity after voluntary vergence and accommodation Vis Res 35 2773–83 [10.2.5a]

Ebenholtz SM, Fisher SK (1982) Distance adaptation depends upon plasticity in the oculomotor control system Percept Psychophys 31 551–60 [10.4.3a]

Eckhorn R, Bauer R, Jordan W, et al. (1988) Coherent oscillations: a mechanism for feature linking in the visual cortex? Biol Cyber 60 121–30 [4.3.4c]

Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex Neural Comput 2 293–307 [4.3.4g]

Edelstein LR, Denaro FJ (2004) The claustrum: A historical review of its anatomy, physiology, cytochemistry and functional significance Cell Molec Biol 50 675–702 [5.5.4b]

Edgerton SY (1975) The renaissance rediscovery of linear perspective Basic Books, New York [2.9.1, 2.9.3]

Edgerton SY (1991) The heritage of Giotto’s geometry Cornell University Press, Ithaca [2.9.3]

Edwards DP, Purpura KP, Kaplan E (1995) Contrast sensitivity and spatial frequency responses of primate cortical neurons in and around cytochrome oxidase blobs Vis Res 35 1501–23 [5.6.6]

Edwards FA (1995) Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation Physiol Rev 75 757–87 [5.5.2, 6.4.4f, 6.6.1c]

Edwards M, Pope DR, Schor CM (1998) Luminance contrast and spatial-frequency tuning of the transient-vergence system Vis Res 38 705–17 [10.5.10c]

Eggers HM, Blakemore C (1978) Physiological basis of anisometropic amblyopia Science 201 294–7 [8.2.3a]

Eggert T, Kapoula Z (1995) Position dependency of rapidly induced saccadic disconjugacy Vis Res 35 3493–503 [10.8.3b]

Ehlers MD (2005) Synapse formation: astrocytes spout off Curr Biol 15 R134– 7 [6.4.4c]

Ehrenstein WH (1977) Geometry in visual space—some method-dependent (arti)facts Perception 6 657–60 [4.7.2]

Eifuku S, Wurtz RH (1999) Response to motion in extrastriate area MSTl: disparity sensitivity J Neurophysiol 82 2762–75 [5.8.4c]

Eizenman M, Frecker RC, Hallett PE (1984) Precise non–contacting measurement of eye movements using the corneal reflex Vis Res 27 167–74 [10.1.1]

Eizenman M, Westall CA, Geer I, et al. (1999) Electrophysiological evidence of cortical fusion in children with early-onset esotropia Invest Ophthal Vis Sci 40 354–62 [8.3.3a]

Elder JH, Goldberg RM (2002) Ecological statistics of Gestalt laws for the perceptual organization of contours J Vis 2 324–53 [4.5.10a]

Elias LAB, Wang DD, Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex Nature 448 901–8 [6.4.5b]

Elkins J (1988) Did Leonardo develop a theory of curvilinear perspective J Warburg and Courtauld Institutes 51 190–6 [2.9.3]

Ellemberg D, Lewis TL, Liu CH, Maurer D (1999) Development of spatial and temporal vision during childhood Vis Res 39 2325–33 [7.2.3a]

Ellemberg D, Hess RF, Arsenault AS (2002a) Lateral interactions in amblyopia Vis Res 42 2471–78 [8.4.3c]

Ellemberg D, Lewis TL, Maurer D, et al. (2002b) Better perception of global motion after monocular than after binocular deprivation Vis Res 42 169–79 [8.4.4c]

Ellerbrock VJ (1948) Further study of effects induced by anisometropic corrections Am J Optom Arch Am Acad Optom 25 430–7 [10.2.6a]

Ellerbrock VJ (1949a) Experimental investigation of vertical fusional movements Part I Am J Optom Arch Am Acad Optom 29 327–37 [10.6.1]

Ellerbrock VJ (1949b) Experimental investigation of vertical fusion Part II Am J Optom Arch Am Acad Optom 29 388–399 [10.6.1]

Ellerbrock VJ (1952) Effect of aniseikonia on the amplitude of vertical divergence Am J Optom Arch Am Acad Optom 29 403–15 [10.6.1]

Ellerbrock VJ (1954) Inducement of cyclofusional movements Am J Optom Arch Am Acad Optom 31 553–66 [10.7.2a]

Ellerbrock VJ, Fry GA (1941) The after–effect induced by vertical divergence Am J Optom Arch Am Acad Optom 18 450–4 [10.2.6a]

Ellerbrock VJ, Fry GA (1942) Effects induced by anisometropic corrections Am J Optom Arch Am Acad Optom 19 444–59 [10.2.6a]

Elliot J (1852) Letter to the Editor Lon Edin Dub Philos Mag J Sci 3 397 [2.11.2b]

Elliott T, Shadbolt NR (1996) A mathematical model of activity-dependent anatomical segregation induced by competition for neurotrophic support Biol Cyber 75 463–70 [6.7.2f]

Elliott T, Shadbolt NR (1999) A neurotrophic model of the development of the retinogeniculocortical pathway induced by spontaneous retina waves J Neurosci 19 7951–70 [6.7.2f]

Elliott T, Shadbolt NR (2002) Dissociating ocular dominance column development and ocular dominance plasticity: a neurotrophic model Biol Cybern 86 281–92 [6.7.2f]

Elliott T, Howarth CI, Shadbolt NR (1997) Axonal processes and neural plasticity. III. Competition for dendrites Philos Tr R Soc B 352 1975–83 [6.7.2f]

Ellis SR, Stark L (1978) Eye movements during the viewing of Necker cubes Perception 7 575–81 [4.5.9d]

(p.572) Elston GN, Tweedale R, Rosa MGP (1999) Cortical integration in the visual system of the macaque monkey: large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes Proc R Soc B 296 1367–74 [5.6.7b, 5.8.3b]

Emerson E (1864) The Chimenti pictures Brit J Photog 15 June 202–4 [2.11.2c]

Emerson RC (1997) Quadrature subunits in directionally selective simple cells: spatiotemporal interactions Vis Neurosci 14 357–71 [5.6.4c]

Emerson RC, Bergen JR, Adelson EH (1992) Directionally selective complex cells and the computation of motion energy in cat visual cortex Vis Res 32 203–18 [5.6.4b]

Emoto M, Niida T, Okano F (2005) Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television J Display Technol 1 328–40 [10.4.3d]

Emsley HH (1952) Visual optics Hatton Press, London [9.1.1]

Endo M, Kaas JH, Jain N, et al. (2000) Binocular cross-orientation suppression in the primary visual cortex (V1) of infant rhesus monkeys Invest Ophthal Vis Sci 41 4022–31 [7.6.3]

Engel AK, König P, Singer W (1991) Direct physiological evidence for scene segmentation by temporal coding Proc Natl Acad Sci 88 9136–40 [4.3.4c]

Engel AK, König P, Kreiter AK, et al. (1992) Temporal coding in the visual cortex: new vistas on integration in the nervous system TINS 15 218–29 [4.3.4c, 4.3.4e]

Engel AK, Moll CKE, Fried I, Ojemann GA (2005) Invasive recordings from the human brain: clinical insights and beyond Nat Rev 6 35–47 [5.4.3b]

Engel SA (1996) Looking into the black box: new directions in neuroimaging Neuron 17 375–8 [5.4.3f]

Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI Cereb Cortex 7 181–92 [5.5.4c]

Engelman HS, MacDermott AB (2004) Presynaptic ionotropic receptors and control of transmitter release Nat Rev Neurosci 5 135–45 [5.5.2f]

Engelmann R, Crook JM, Löwel S (2002) Optical imaging of orientation and ocular dominance maps in area 17 of cats with convergent strabismus Vis Neurosci 19 39–49 [8.2.3a]

Engert F, Bonheoffer T (1997) Synaptic specificity of long-term potentiation breaks down at short distances Nature 388 279–84 [6.5.1a]

Englund C, Fink A, Lau C, et al. (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex J Neurosci 25 247–51 [6.4.5a]

Enoch JM, Lakshminarayanan V (2000) Duplication of unique optical effects of ancient Egyptian lenses from the IV/V dynasties: lenses fabricated ca 2920–2700 BC or roughly 4600 years ago Ophthal Physiol Opt 20 129–30 [2.3.2]

Enoch JM, Rabinowicz IM (1976) Early surgery and visual correction of an infant born with unilateral eye lens opacity Doc Ophthal 41 371–82 [8.3.3a]

Enoch JM, Tobey FL (1981) Retinal photoreceptor optics Springer Verlag, Berlin [5.1.2a]

Enoch JM, Birch DG, Birch EE (1979) Monocular light exclusion for a period of days reduces directional sensitivity of the human retina Science 206 705–7 [5.1.2a]

Enright JT (1980) Ocular translation and cyclotorsion due to changes in fixation distance Vis Res 20 595–601 [10.8.1b]

Enright JT (1984) Changes in vergence mediated by saccades J Physiol 350 9–31 [10.8.2c]

Enright JT (1986a) The aftermath of horizontal saccades: saccadic retraction and cyclotorsion Vis Res 29 1807–14 [10.1.2d]

Enright JT (1986b) Facilitation of vergence changes by saccades: influences of misfocused images and of disparity stimuli in man J Physiol 371 69–87 [10.8.2c]

Enright JT (1987a) Perspective vergence: oculomotor responses to line drawings Vis Res 27 1513–29 [10.3.2b]

Enright JT (1987b) Art and the oculomotor system: perspective illustrations evoke vergence changes Perception 16 731–46 [10.3.2b]

Enright JT (1989) Convergence during human vertical saccades: probable causes and perceptual consequences J Physiol 410 45–65 [10.8.2b]

Enright JT (1990) Stereopsis cyclotorsional “noise” and the apparent vertical Vis Res 30 1487–97 [10.7.3b]

Enright JT (1992a) The remarkable saccades of asymmetrical vergence Vis Res 32 2291–76 [10.8.2a, 10.8.2c]

Enright JT (1992b) Unexpected role of the oblique muscles in the human vertical fusional reflex J Physiol 451 279–93 [10.7.1]

Enright JT (1996) Slow-velocity asymmetrical convergence: a decisive failure of “Hering’s law” Vis Res 36 3667–84 [10.8.2a]

Enright JT (1998a) On the “cyclopean eye”: saccadic asymmetry and the reliability of perceived straight-ahead Vis Res 38 459–69 [10.8.2a]

Enright JT (1998b) Monocularly programmed human saccades during vergence changes? J Physiol 512 235–50 [10.8.2c]

Enroth–Cugell C, Robson JG (1966) The contrast sensitivity of ganglion cells of the cat J Physiol 187 517–52 [5.1.4b]

Epstein CM, Vernon R, Zangaladze A (1996) Magnetic coil suppression of visual perception in an extracalcarine site J Clin Neurophysiol 13 247–52 [8.1.4b]

Epstein W (1972) Adaptation to uniocular image magnification: is the underlying shift proprioceptive? Percept Psychophys 11 89–91 [9.9.3]

Epstein W, Daviess N (1972) Modification of depth judgment following exposures to magnification of uniocular image: Are changes in perceived absolute distance and registered direction of gaze involved? Percept Psychophys 12 315–17 [9.9.3]

Epstein W, Morgan CL (1970) Adaptation to uniocular image magnification: modification of the disparity–depth relationship Am J Psychol 83 322–9 [9.9.3]

Epstein W, Morgan-Paap CL (1974) The effect of level of depth processing and degree of informational discrepancy on adaptation to uniocular image magnification J Exp Psychol 102 585–94 [9.9.3]

Eriksen BA, Eriksen CW (1974) Effects of noise-letters on identification of a target letter in a nonsearch task Percept Psychophys 16 143–9 [4.8.3a]

Eriksson L, Dahlbom M, Widén L (1990) Positron emission tomography—a new technique for studies of the central nervous system J Micros 157 305–33 [5.4.3e]

Erkelens CJ (1987) Adaptation of ocular vergence to stimulation with large disparities Exp Brain Res 66 507–16 [10.5.8b, 10.5.10a, 10.5.10d]

Erkelens CJ (2001) Organization of signals involved in binocular perception and vergence control Vis Res 41 3497–50 [10.5.10c]

Erkelens CJ, Collewijn H (1985a) Motion perception during dichoptic viewing of moving random–dot stereograms Vis Res 25 583–8 [10.5.4a]

Erkelens CJ, Collewijn H (1985b) Eye movements in relation to loss and regaining of fusion of disjunctively moving random–dot stereograms Hum Neurobiol 4 181–8 [10.5.3, 10.5.4a]

Erkelens CJ, Collewijn H (1985c) Eye movements and stereopsis during dichoptic viewing of moving random–dot stereograms Vis Res 25 1689–700 [10.5.1, 10.5.9a]

Erkelens CJ, Collewijn H (1991) Control of vergence: gating among disparity inputs by voluntary target selection Exp Brain Res 87 671–78 [10.5.10b]

Erkelens CJ, Regan D (1986) Human ocular vergence movements induced by changing size and disparity J Physiol 379 145–69 [10.3.2d]

Erkelens CJ, van der Steen J, Steinman RM, Collewijn H (1989a) Ocular vergence under natural conditions. I Continuous changes of target distance along the median plane Proc R Soc B 236 417–40 [10.5.7, 10.5.8a]

Erkelens CJ, Steinman RM, Collewijn H (1989b) Ocular vergence under natural conditions. II Gaze shifts between real targets differing in distance and direction Proc R Soc B 236 441–65 [10.3.1, 10.5.8a, 10.8.2a, 10.8.2c]

(p.573) Erkelens CJ, Collewijn H, Steinman RM (1989c) Asymmetrical adaptation of human saccades to anisometropic spectacles Invest Ophthal Vis Sci 30 1132–45 [10.8.3b]

Erskine L, Williams SE, Brose K, et al. (2000) Retinal ganglion cell axon guidance in the mouse optic chiasm: expression and function of Robos and Slits J Neurosci 20 4975–82 [6.4.3c]

Erwin E, Miller KD (1998) Correlation-based development of ocularly matched orientation and ocular dominance maps: determination of required input activities J Neurosci 18 9870–95 [6.7.2f]

Erwin E, Obermeyer K, Schulten K (1995) Models of orientation and ocular dominance columns in the visual cortex: a critical comparison Neural Comput 7 425–68 [5.7.1]

Eskandar EN, Assad JA (1999) Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance Nat Neurosci 2 88–93 [5.8.4e]

Eskandar EN, Richmond BJ, Optican LM (1992) Role of inferior temporal neurons in visual memory. I. Temporal encoding of information about visual images recalled images and behavioral context J Neurophysiol 68 1277–95 [5.8.3c]

Eskridge JB, Rutstein RP (1986) Clinical evaluation of vertical fixation disparity Am J Optom Physiol Opt 63 662–7 [10.2.5a]

Euclid (300 BC) Optics (Translated by HE Burton) J Opt Soc Am 1945 35 357–72 [2.1.3b]

Evans BJW (1997) Pickwell’s binocular vision anomalies Investigation and treatment Butterworth-Heinemann, London [10.2.3b, 7.3.1]

Evans BJW, Drasco N, Richards IL (1994) Investigation of accommodative and binocular function in dyslexia Ophthal Physiol Opt 14 5–19 [10.2.2c]

Everling S, Tinsley CJ, Gaffan D, Duncan J (2002) Filtering of neural signals by focused attention in the monkey prefrontal cortex Nat Neurosci 5 671–6 [4.8.1d]

Everson RM, Prashanth AK, Gabbay M, et al. (1998) Representation of spatial frequency and orientation in the visual cortex Proc Natl Acad Sci 95 8334–8 [5.7.1]

Evinger C (1988) Extraocular motor nuclei: location morphology and afferents In Neuroanatomy of the oculomotor system (ed JA Büttner–Ennever) pp 81–118 Elsevier, New York [10.8.1b]

Evinger LC, Fuchs AF, Baker R (1977) Bilateral lesions of the medial longitudinal fasciculus in monkeys: effects on the horizontal and vertical components of voluntary and vestibular induced eye movements Exp Brain Res 28 1–20 [10.10.2a]

Exner A (1891) The physiology of the compound eyes of insects and crustaceans English translation by R. C. Hardie (1989), Springer-Verlag [6.1.4]

Eysel UT, Grüsser OJ, Hoffmann KP (1979) Monocular deprivation and the signal transmission by x-and y-neurons of the cat lateral geniculate nucleus Exp Brain Res 34 521–39 [8.2.2b]

Eysel UT, Shevelev IA, Lazareva NA, Sharaev GA (1998) Orientation tuning and receptive field structure in cat striate neurons during local blockade of intracortical inhibition Neurosci 84 25–36 [5.6.2b]

Fabre PJ, Shimogori T, Charron F (2010) Segregation of ipsilateral retinal ganglion cell axons at the optic chiasm requires the Shh receptor Boc J Neurosci 30 266–75 [6.3.4b]

Fagiolini M, Hensch TK (2000) Inhibitory threshold for critical-period activation in primary visual cortex Nature 404 183–6 [8.2.7d]

Fagiolini M, Pizzorusso T, Berardi N, et al. (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation Vis Res 34 709–20 [8.3.1a]

Fagiolini M, Fritschy JM, Löw K, et al. (2004) Specific GABAA circuits for visual cortical plasticity Science 303 1681–3 [8.2.7d]

Fahle M (1983) Non–fusible stimuli and the role of binocular inhibition in normal and pathologic vision especially strabismus Doc Ophthal 55 323–40 [8.4.6b]

Fahle M (1987) Naso-temporal asymmetry of binocular inhibition Invest Ophthal Vis Sci 28 1016–17 [8.4.1]

Fahle M (1993) Figure–ground discrimination from temporal information Proc R Soc B 254 199–203 [4.3.5]

Fahle M (1997) Specificity of learning curvature orientation and vernier discriminations Vis Res 37 1885–95 [4.9.1, 8.4.6c]

Fahle M (2004) Perceptual learning: a case of early selection J Vis 4 879–90 [4.9.1]

Fahle M, Edelman S (1993) Long–term learning in vernier acuity: effects of stimulus orientation range and of feedback Vis Res 33 397–412 [4.9.1, 4.9.2b]

Fahle M, Schmid M (1988) Naso–temporal asymmetry of visual perception and of the visual cortex Vis Res 28 293–300 [7.2.4]

Fahle M, Edelman S, Poggio T (1995) Fast perceptual learning in hyperacuity Vis Res 35 3003–13 [4.9.1]

Falchier A, Clavagnier S, Barone P, Kennedy H (2002) Anatomical evidence of multimodal integration in primate striate cortex J Neurosci 22 5749–59 [5.5.4b, 5.8.6, 8.1.4b]

Falmagne JC (1985) Elements of psychophysical theory Oxford University Press, New York [3.1.1a, 3.1.1f, 4.6.2]

Fantz R (1965) Visual perception from birth as shown by pattern selectivity Ann N Y Acad Sci 118 793–814 [7.1]

Faraday M (1831) On a peculiar class of optical deception Journal of the Royal Institution 1 205–223 [2.11.4]

Farge M, Hunt J, Vassilicos S (1993) Wavelets, fractals and fourier transforms: new developments and new applications Oxford University Press, Oxford [4.4.2]

Farid H, Adelson EH (2001) Synchrony does not promote grouping in temporally structured displays Nat Neurosci 4 875–6 [4.3.4d]

Faubert J, Diaconu V, Ptito M, Ptito A (1999) Residual vision in the blind field of hemidecorticated humans predicted by a diffusion scatter model and selective spectral absorption of the human eye Vis Res 39 149–57 [5.5.7]

Faugeras O (1993) Three-dimensional computer vision MIT Press, Cambridge MA [3.7.4]

Favreau OE (1979) Persistence of simple and contingent motion aftereffects Percept Psychophys 29 187–94 [4.2.9c]

Fawcett JW (1993) Growth–cone collapse: too much of a good thing? TINS 16 165–7 [6.4.3b]

Fawcett JW, Willshaw DJ (1982) Compound eyes project stripes on the optic tectum in Xenopus Nature 296 350–2 [6.7.3d]

Fawcett SL, Birch EE (2000) Motion VEPs, stereopsis, and bifoveal fusion in children with strabismus Invest Ophthal Vis Sci 41 411–17 [8.4.4d]

Fawcett SL, Raymond JE, Astle WF, Skov CMB (1998) Anomalies of motion perception in infantile esotropia Invest Ophthal Vis Sci 39 727–35 [8.4.4d]

Fawcett SL, Stager DR, Felius J (2004) Factors influencing stereoacuity outcomes in adults with acquired strabismus Am J Ophthal 138 931–5 [10.2.2e]

Fazeli MS (1992) Synaptic plasticity: on the trail of the retrograde messenger TINS 15 115–17 [6.5.1a]

Fechner GT (1860) Elemente der Psychophysik Breitkopf and Härtel, Leipzig (English trans. by HE Adler (1966) Elements of Psychophysics Holt Rinehart and Winston, New York [3.1.1a]

Feindel W (1965) The anatomy of the brain and the nerves. An English translation of Cerebri anatome, cui accessit Nervorum descriptio et usus by T, Willis 1664. McGill University Press, Montreal [2.6.2]

Feldman DE (2000) Inhibition and plasticity Nat Neurosci 3 303–4 [8.2.7d]

Feldman DE, Knudsen EI (1998) Experience-dependent plasticity and the maturation of glutamatergic synapses Neuron 20 1067–71 [6.5.1a, 6.7.2a]

Feldman JM, Cooper J (1980) Rapid assessment of stereopsis in pre-verbal children using operant techniques: a preliminary study J Am Optom Assoc 51 767–71 [7.6.1c]

Feldman JM, Cooper J, Carniglia P, et al. (1989) Comparison of fusional ranges measured by Risley prisms vectograms and computer orthopter Optom Vis Sci 66 375–82 [10.5.3]

Feldman M, Cohen B (1968) Electrical activity in the geniculate body of the alert monkey associated with eye movements J Neurophysiol 31 455–66 [5.2.2d]

(p.574) Felleman DJ, Van Essen DC (1987) Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex J Neurophysiol 57 889–920 [5.8.2b, 5.8.5b]

Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex Cereb Cortex 1 1–47 [5.8.1, 5.8.2c, 5.8.5b]

Felleman DJ, Burkhalter A, Van Essen DC (1997a) Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex J Comp Neurol 379 21–47 [5.8.2b]

Felleman DJ, Xiao Y, McClendon E (1997b) Modular organization of occipito-temporal pathways: cortical connections between visual area 4 and visual area 2 and posterior inferotemporal ventral area in macaque monkeys J Neurosci 17 3185–200 [5.8.3a]

Feller MB, Wellis DP, Stellwagen D, et al. (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves Science 272 1182–7 [6.3.2b]

Felsen G, Shen YS, Yao H, et al. (2002) Dynamic modification of cortical orientation tuning by recurrent connections Neuron 36 945–54 [4.3.1c]

Fender D, Julesz B (1967) Extension of Panum’s fusional area in binocularly stabilized vision J Opt Soc Am 57 819–30 [10.5.4a]

Fendrich R, Wessinger CM, Gazzaniga MS (1992) Residual vision in a scotoma: implications for blindsight Science 258 1489–91 [5.5.7]

Feng D, Marshburn D, Jen D, et al. (2007) Stepping into the third dimension J Neurosci 21 12757–60 [5.4.1b]

Feng G, Mellor RH, Bernstein M, et al. (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP Neuron 28 42–51 [5.4.2a]

Feng J, Zhou Y, Campbell SL, et al. (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons Nat Neurosci 13 423–32 [6.6.1a]

Fenstemaker SB, Kiorpes L, Movshon JA (2001) Effects of experimental strabismus on the architecture of macaque monkey striate cortex J Comp Neurol 438 300–17 [6.7.1]

Fercher AF, Roth E (1986) Ophthalmic laser interferometry Proc Soc Photo Opt Instrum Engin 658 48–51 [9.2.4c]

Ferguson ES (1977) The mind’s eye: nonverbal thought in technology Science 197 827–36 [2.9.3, 4.6.3g]

Ferman L, Collewijn H, Van den Berg AV (1987a) A direct test of Listing’s law. I. Human ocular torsion measured in static tertiary positions Vis Res 27 929–38 [10.1.2d]

Ferman L, Collewijn H, Jansen TC, van den Berg AV (1987b) Human gaze stability in horizontal vertical and torsional direction during voluntary head movements evaluated with a three–dimensional scleral induction coil technique Vis Res 27 811–28 [10.7.1, 10.7.2d, 10.7.3b]

Fernández EJ, Artal P (2005) Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics J Opt Soc Am A 22 1732–8 [9.7.2c]

Ferraina S, Johnson PB, Garasto MR, et al. (1997) Combination of hand and gaze signals during reaching: activity in parietal area 7m of the monkey J Neurophysiol 77 1034–8 [5.8.4e]

Ferraina S, Paré M, Wurtz RH (2000) Disparity sensitivity of frontal eye field neurons J Neurophysiol 83 625–9 [10.10.3]

Ferraina S, Brunamonti E, Giusti MA, et al. (2009) Reaching in depth: hand position dominates over binocular eye position in the rostral superior parietal lobule J Neurosci 29 11461–70 [5.8.4e]

Ferrera VP, Nealey TA, Maunsell JHR (1992) Mixed parvocellular and magnocellular geniculate signals in visual area V4 Nature 358 756–8 [5.8.5a]

Ferrera VP, Nealey TA, Maunsell JHR (1994) Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways J Neurosci 14 2080–88 [5.8.5a]

Ferrero N (1952) Leonardo da Vinci: of the eye. An original new translation from codex D Am J Ophthal 35 507–21 [2.4.2]

Ferster D (1988) Spatially opponent excitation and inhibition in simple cells of the cat visual cortex J Neurosci 8 1172–80 [5.5.3]

Ferster D (1990) Binocular convergence of excitatory and inhibitory synaptic pathways onto neurons of cat visual cortex Vis Neurosci 4 625–9 [5.7.2b]

Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in the visual cortex Ann Rev Neurosci 23 441–71 [5.6.2b]

Ferster D, Chung S, Wheat H (1996) Orientation selectivity of thalamic input to simple cells of cat visual cortex Nature 380 279–52 [5.6.2b]

ffytche DH, Howard RJ, Brammer MJ, et al. (1998) The anatomy of conscious vision: an fMRI study of visual hallucinations Nat Neurosci 1 738–42 [4.8.4]

Fiala JC, Feinberg M, Popov V, Harris KM (1998) Synaptogenesis via dendritic filopodia in developing hippocampal area CA1 J Neurosci 18 8900–11 [6.4.4a]

Fick A (1854) Die Bewegungen des menschlichen von Augapfels Z Rat Med N.F. 4 101–128 [10.1.2b]

Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells J Opt Soc Am A 4 2379–94 [3.2.6a]

Field DJ, Brady N (1997) Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes Vis Res 37 3367–83 [9.6.5b]

Field DJ, Hayes A, Hess RF (1993) Contour integration by the human visual system: evidence for a local “association field” Vis Res 33 173–93 [4.5.2b]

Field J, DiFranco D, Dodwell P, Muir D (1979) Auditory-visual coordination of 21/2–month-old infants Infant Behav Devel 2 113–22 [7.7]

Field J, Muir D, Pilon R, Sinclair M, Dodwell P (1980) Infants’ orientation to lateral sounds from birth to three months Child Devel 51 295–8 [7.7]

Field JV (1986) Piero della Francesca’s treatment of edge distortion J Warb Court Inst 49 66–90 [2.9.3]

Field JV, Lunardi R, Settle TB (1989) The perspective scheme of Masaccio’s Trinity fresco Annali di Storia della Scienze 4 31–118 [2.9.3]

Filipek PA, Richelme C, Kennedy DN, Caviness VS (1994) The young adult human brain: an MRI-based morphometric analysis Cereb Cortex 4 344–60 [6.4.2a]

Fincham EF (1951) The accommodation reflex and its stimulus Br J Ophthal 35 381–93 [9.8.1, 9.8.2c, 9.8.3, 10.3.2a, 10.4.2]

Fincham EF (1955) The proportion of ciliary muscular force required for accommodation and convergence J Physiol 128 99–112 [10.4.2]

Fincham EF (1962) Accommodation and convergence in the absence of retinal images Vis Res 1 425–40 [10.3.1]

Fincham EF (1963) Monocular diplopia Brit J Ophthal 47 705–12 [9.6.2b]

Fincham EF, Walton J (1957) The reciprocal actions of accommodation and convergence J Physiol 137 488–508 [10.4.2]

Findlay JM, Harris LR (1993) Horizontal saccades to dichoptically presented targets of differing disparities Vis Res 33 1001–10 [10.8.2a]

Findler N (1979) Associative networks New York, Academic press [4.6.3a]

Fine I, Jacobs RA (2002) Comparing perceptual learning across tasks: a review J Vis 2 190–203 [4.9.1]

Fine I, Smallman HS, Doyle P, MacLeod DIA (2002) Visual function before and after the removal of bilateral congenital cataracts in adulthood Vis Res 42 191–210 [8.1.3]

Fineberg SK, Kosik KS, Davidson BL (2009) MicroRNAs potentiate neural development Neuron 64 303–9 [6.6.1b]

Finger FW, Spelt DK (1947) The illustration of the vertical-horizontal illusion J exp Psychol 37 243–50 [3.1.1h]

Finger S (2000) Minds behind the brain Oxford University Press, New York [2.6.2]

Fink GR, Dolan RJ, Halligan PW, et al. (1997) Space-based and object-based visual attention: shared and specific domains Brain 120 2013–28 [5.9.2b]

Finlay D, Quinn K, Ivinskis A (1982) Detection of moving stimuli in the binocular and nasal visual fields by infants three and four months old Perception 11 685–90 [7.2.4]

(p.575) Finn IM, Priebe NJ, Ferster D (2007) The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex Neuron 54 137–51 [5.6.2d]

Finney DJ (1971) Probit analysis Cambridge University Press, London [3.1.1b]

Fioravanti F, Inchingolo P, Pensiero S, Spanio M (1995) Saccadic eye movement conjugation in children Vis Res 35 3217–28 [10.8.2b]

Fiorentini A, Berardi N (1981) Learning in grating waveform discrimination: specificity for orientation and spatial frequency Vis Res 21 1149–58 [4.9.1]

Fiorentini A, Maffei L (1976) Spatial contrast sensitivity of myopic subjects Vis Res 16 437–8 [9.6.2a]

Fiorentini A, Berardi N, Maffei L (1995) Nerve growth factor preserves behavioral visual acuity in monocularly deprived kittens Vis Neurosci 12 51–5 [8.2.7f]

Firth AY (1999) Adie syndrome: evidence for refractive error and accommodative asymmetry as the cause of amblyopia Am J Ophthal 128 118 9 [8.4.1]

Fischer AJ, Reh TA (2001) Müller glia are a potential source of neural regeneration in the postnatal chicken retina Nat Neurosci 4 247–52 [5.5.1f, 6.4.2d]

Fischer B, Boch R (1981) Enhanced activation of neurones in prelunate cortex before visually guided saccades of trained rhesus monkeys Exp Brain Res 44 129–37 [5.9.2b]

Fischer B, Weber H (1993) Express saccades and visual attention Behav Brain Res 16 553–610 [10.5.7]

Fischer KF, Lukasiewicz PD, Wong RO (1998) Age-dependent and cell class-specific modulation of retinal cell bursting activity by GABA J Neurosci 18 3767–8 [6.3.5b]

Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines Neuron 20 847–54 [6.4.4f]

Fischer M, Kaech S, Wagner U, et al. (2000) Glutamate receptors regulate actin-based plasticity in dendritic spines Nat Neurosci 3 887–94 [6.4.4a]

Fishell G, Mason CA, Hatten ME (1993) Dispersion of neural progenitors within the germinal zones of the forebrain Nature 362 636–8 [6.4.5b]

Fisher CB, Bornstein MH (1982) Identification of symmetry: effects of stimulus orientation and head position Percept Psychophys 32 443–8 [4.6.3e]

Fisher RA (1966) The design of experiments Oliver and Boyd, London [4.5.7c]

Fisher SK, Ciuffreda KJ, Levine S (1987a) Tonic accommodation, accommodative hysteresis, and refractive error 6 Am J Optom Physiol Opt 64 799–809 [9.3.2]

Fisher SK, Ciuffreda KJ, Hammer, S (1987b) Interocular equality of tonic accommodation and consenuality of accommodative hysteresis Ophthal Physiol Opt 7 17–20 [9.3.2]

Fisher SK, Ciuffreda KJ, Tannen B, Super P (1988a) Stability of tonic vergence Invest Ophthal Vis Sci 29 1577–81 [10.2.1]

Fisher SK, Ciuffreda KJ, Bird JE (1988b) The effect of monocular versus binocular fixation on accommodation hysteresis Ophthal Physiol Opt 8 438–42 [9.3.2]

Fisher SK, Ciuffreda KJ, Bird JE (1990) The effect of stimulus duration on tonic accommodation and tonic vergence Optom Vis Sci 67 441–9 [9.3.2]

Fitzhugh R (1957) The statistical detection of threshold signals in the retina J Gen Physiol 40 925–48 [4.3.1a]

Fitzpatrick D, Itoh K, Diamond IT (1983) The laminar organization of the lateral geniculate body and the striate cortex of the squirrel monkey (Saimiri sciureus) J Neurosci 3 673–702 [5.5.5]

Fitzpatrick D, Lund JS, Blasdel GG (1985) Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C J Neurosci 5 3329–49 [5.5.1d, 5.5.5]

Fitzpatrick D, Usrey WM, Schofield BR, Einstein G (1994) The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex Vis Neurosci 11 307–15 [5.2.2a, 5.5.1b]

Fitzsimonds RM, Poo MM (1998) Retrograde signaling in the development and modification of synapses Physiol Rev 78 143–170 [6.4.3d]

Flames N, Long JE, Garratt AN, et al. (2004) Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1 Neuron 44 251–61 [6.4.5b]

Flanagan JR, Rao AK (1995) Trajectory adaptation to a nonlinear visuomotor transformation: Evidence of motion planning in visually perceived space J Neurophysiol 74 2174–8 [4.5.6]

Flavell SW, Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system Ann Rev Neurosci 31 563--90 [6.6.1c]

Fleagle JG (1988) Primate adaptation and evolution Academic Press, San Diego [5.7.2f]

Flament F (1955) Etude de la répartition de lumiere dans l’image rétinienne d’une fente Rev Opt theor Instrum 34 433–59 [9.1.3a]

Fleming DG, Hall JL (1959) Autonomic innervation of the ciliary body Am J Ophthal 48 287–93 [9.2.3]

Flitcroft DI (1990) A neural and computational model for the chromatic control of accommodation Vis Neurosci 5 547–555 [9.8.2a]

Flitcroft DI (1998) A model of the contribution of oculomotor and optical factors to emmetropization and myopia Vis Res 38 2869–79 [6.3.1c]

Flitcroft DI, Judge SJ (1988) The effect of stimulus chromaticity on ocular accommodation in the monkey J Physiol 398 36P [9.8.2d]

Flitcroft DI, Morley JW (1997) Accommodation in binocular contour rivalry Vis Res 37 121–5 [9.7.3a]

Flitcroft DI, Judge SJ, Morley JW (1992) Binocular interactions in accommodation control: effects of anisometropic stimuli J Neurosci 12 188–203 [9.7.3a]

Flom MC (1960a) On the relationship between accommodation and accommodative vergence Part I. Linearity Am J Optom Arch Am Acad Optom 37 474–82 [10.4.1]

Flom MC (1960b) On the relationship between accommodation an accommodative convergence. Part II: Stability Am J Optom Arch Am Acad Optom 37 517–23 [10.4.1]

Flom MC (1960c) On the relationship between accommodation an accommodative convergence. Part III: Effects of orthoptics Am J Optom Arch Am Acad Optom 37 619–32 [10.4.1]

Flom MC (1963) Treatment of binocular anomalies in children In Vision of children: an optometric symposium (ed MJ Hirsch, RE Wick) pp 197–228 Chilton, Philadelphia [10.2.2e]

Flom MC (1978) Eccentric fixation in amblyopia: is reduced foveal acuity the cause Am J Optom Physiol Opt 55 139–43 [8.4.5b]

Flom MC, Neumaier RW (1966) Prevalence of amblyopia Am J Optom Arch Am Acad Optom 43 732–51 [8.4.1]

Florence SL, Kaas JH (1992) Ocular dominance columns in area 17 of Old World macaque and talapoin monkeys: complete reconstructions and quantitative analysis Vis Neurosci 8 449–62 [5.7.2a]

Florence SL, Conley M, Casagrande VA (1986) Ocular dominance columns and retinal projections in New World spider monkeys (Ateles ater) J Comp Neurol 273 234–48 [5.7.2f]

Fogassi L, Gallese V, Fadiga L, et al. (1996) Coding of peripersonal space in inferior premotor cortex (areaF4) J Neurophysiol 76 141–57 [5.8.4g]

Fogt N, Jones R (1997) Comparison of the monocular occlusion and a direct method for objective measurement of fixation disparity Optom Vis Sci 74 43–50 [10.2.4d]

Fogt N, Jones R (1998a) Comparison of fixation disparities obtained by objective and subjective methods Vis Res 38 411–21 [10.2.4d]

Fogt N, Jones R (1998b) The effect of forced vergence on retinal correspondence Vis Res 38 2711–19 [10.2.4d]

Foley JD, van Dam A, Feiner SK, Hughes JF (1990) Computer graphics Addison-Wesley New York Foley JD, van Dam A, Feiner SK, Hughes JF (1990) Computer graphics Addison-Wesley New York [3.7.4]

Foley JM (1964) Desarguesian property in visual space J Opt Soc Am 54 684–92 [4.7.2]

Foster DH, Bischof WF (1997) Bootstrap estimates of the statistical accuracy of thresholds obtained from psychometric functions Spat Vis 11 135–9 [3.1.1b]

Fotheringhame D, Baddeley R (1997) Nonlinear principal components analysis of neuronal spike train data Biol Cyber 77 283–8 [4.3.5]

(p.576) Fourcade F (1962) La peinture murale de Touen Houang Editions Cercle d’Art, Paris [2.9.2]

Fox K, Daw NW (1993) Do NMDA receptors have a critical function in visual cortical plasticity? TINS 16 116–22 [6.6.3]

Fox K, Sato H, Daw N (1989) The location and function of NMDA receptors in cat and kitten visual cortex J Neurosci 9 2743–54 [6.7.2a]

Fox K, Daw N, Sato H, Czepita D (1992) The effect of visual experience on development of NMDA receptor synaptic transmission in kitten visual cortex J Neurosci 12 2972–84 [8.2.7e]

Fox R, Aslin RN, Shea SL, Dumais ST (1980) Stereopsis in human infants Science 207 323–4 [7.6.1d]

Fox R, Patterson R, Francis EL (1986) Stereoacuity in young children Invest Ophthal Vis Sci 27 598–609 [7.6.2]

Fraenkel GS, Gunn DL (1961) The orientation of animals Dover, New York [4.2]

Franceschetti AT, Burian HM (1971) Visually evoked responses in alternating strabismus Am J Ophthal 71 1292–7 [8.4.6a]

Francis EL, Owens DA (1983) The accuracy of binocular vergence for peripheral stimuli Vis Res 23 13–19 [10.2.4g, 10.5.6]

Frangenberg T (1986) The image and the moving eye. Jean Pélerin (Viator) to Guidoboldo del Monte J Warburg and Courtland Institutes 49 150–71 [2.9.3]

Frangenberg T (1991) Perspectivist Aristotelianism: three case-studies of cinquecento visual theory J Warb Court Inst 5 4 137–58 [2.1.4]

Frank H (1923) Uber die Beeinflussung von Nachbildern durch die Gestalt-eigenschaften der Pojektionsfläche Psychol Forsch 3 3–37 [4.8.3d, 5.9.3a]

Frank R (1980) Harvey and the Oxford circle University of California Press, Berkeley [2.6.2]

Fraser J (1908) A new visual illusion of direction Br J Psychol 2 307–20 [4.5.2b]

Fraser P (1972) Ptolemaic Egypt Oxford University Press, Oxford [2.1.3a]

Fraser SE (1991) Relative roles of positional cues and activity–based cues in the patterning of the retinotectal projection In Development of the visual system (ed DMK Lam, CJ Shatz) pp 123–32 MIT Press, Cambridge MA [6.3.3b]

Fredenburg P, Harwerth RS (2001) The relative sensitivities of sensory and motor fusion to small binocular disparities Vis Res 41 1969–79 [10.5.3]

Fredj NB, Burrone J (2009) A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse Nat Neurosci 12 751–8 [5.5.2b]

Fredj NB, Hammond S, Otsuna H, et al. (2010) Synaptic activity and activity-dependent Competition regulates arbor maturation, growth, and territory in the retinotectal projection J Neurosci 30 10939–51 [6.4.4a]

Freed MA (2005) Quantal encoding of information in a retinal ganglion cell J Neurophysiol 94 1048–56 [4.3.2]

Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2002) Visual categorization and the primate prefrontal cortex: neurophysiology and behavior J Neurophysiol 88 929–41 [4.6.2, 5.8.4f]

Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2003) A Comparison of primate prefrontal and inferior temporal cortices during visual categorization J Neurosci 23 5235–46 [5.8.3b, 5.8.4f]

Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2006) Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex Cereb Cortex 16 1631–44 [5.8.3b]

Freedman MS, Lucas RJ, Soni B, et al. (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors Science 284 502–4 [5.1.4g, 5.3.1]

Freeman AW, Nguyen VA, Jolly N (1996) Components of visual acuity loss in strabismics Vis Res 36 765--74 [8.4.2a]

Freeman M, Gurdon JB (2002) Regulatory principles of developmental signaling Ann Rev Cell Dev Biol 18 515–39 [6.4.1]

Freeman RD, Bradley A (1980) Monocularly deprived humans: nondeprived eye has supernormal vernier acuity J Neurophysiol 43 1645–53 [8.2.3f]

Freeman RD, Ohzawa I (1988) Monocularly deprived cats: binocular tests of cortical cells reveal functional connections from the deprived eye J Neurosci 8 2791–506 [8.2.3c]

Freeman RD, Ohzawa I (1992) Development of binocular vision in the kitten’s striate cortex J Neurosci 12 4721–36 [6.6.4a]

Freeman RD, Tsumoto T (1983) An electrophysiological comparison of convergent and divergent strabismus in the cat: electrical and visual activation of single cortical cells J Neurophysiol 49 238–53 [8.2.3a, 8.2.3b]

Freeman W (1975) Mass action in the nervous system Academic Press, New York [4.3.4a]

Freeman, WT (1994) The generic viewpoint assumption in a framework for visual perception Nature 368, 542–5 [4.5.9e]

Frégnac Y, Imbert M (1978) Early development of visual cortical cells in normal and dark-reared kittens: relationship between orientation selectivity and ocular dominance J Physiol 278 27–44 [6.6.4a, 8.1.1c]

Frégnac Y, Shulz D, Thorpe S, Bienenstock E (1988) A cellular analogue of visual cortical plasticity Nature 333 368–70 [6.7.2d]

Frégnac Y, Burke JP, Smith D, Friedlander MJ (1994) Temporal covariance of pre- and postsynaptic activity regulates functional connectivity in the visual cortex J Neurophysiol 71 1403–21 [6.5.1a]

Freier BE, Pickwell LD (1983) Physiological exophoria Ophthal Physiol Opt 3 297–72 [10.2.3a]

Freiwald WA, Kreiter AK, Singer W (1995) Stimulus dependent intercolumnar synchronization of single unit responses in cat area 17 Neuroreport 6 2348–52 [4.3.4c]

Frenkel MY, Bear MF (2004) How monocular deprivation shifts ocular dominance in visual cortex of young mice Neuron 44 917–23 [8.2.7b]

Freund TF, Martin KA C, Soltesz I, et al. (1989) Arborization pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey J Comp Neurol 289 315–36 [5.5.1d]

Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signalling Physiol Rev 83 1017–66 [5.5.2f]

Friauf E, Shatz CJ (1991) Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex J Neurophysiol 66 2059–71 [6.4.5c]

Frick A, Magee J, Johnston D (2004) LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites Nat Neurosci 7 126–35 [6.4.4f]

Fricke C, Lee JS, Geiger-Rudolph S, et al. (2001) Astray, a zebrafish roundabout homolog required for retinal axon guidance Science 292 507–10 [6.3.4b]

Friedenwald JS (1936) Diagnosis and treatment of anisophoria Arch Ophthal 15 283–307 [10.2.3a]

Friedlander MJ, Stanford LR (1984) Effects of monocular deprivation on the distribution of cell types in the LGN: a sampling study with fine-tipped micropipettes Exp Brain Res 53 451–61 [8.2.2b]

Friedlander MJ, Stanford LR, Sherman SM (1982) Effects of monocular deprivation on the structure-function relationship of individual neurons in the cat’s lateral geniculate nucleus J Neurosci 2 321–30 [8.2.2b]

Friedlander MJ, Martin KAC, Wassenhove-McCarthy D (1991) Effects of monocular visual deprivation on geniculocortical innervation of area 18 in cat J Neurosci 11 3298–88 [8.2.7g]

Friedman Z Neumann E, Hyams SW, Peleg B (1980) Ophthalmic screening of 38,000 children age 1 to 21/2 years in child welfare clinics J Ped Ophthal Strab 17 291–7 [10.2.2a]

Friedman-Hill SR, Robertson LC, Treisman A (1995) Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions Science 299 853–5 [4.5.4a]

Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention Science 291 1560–63 [4.3.4e]

Friesen CK, Moore C, Kingstone A (2005) Does gaze direction really trigger a reflexive shift of spatial attention? Brain Cognit 57 66–9 [4.8.1a]

(p.577) Frisby JP, Buckley D, Bergin L, Hill L (1993) Cyclotorsion to slanted surfaces with consistent and conflicting stereo and texture slant cues Perception 22 (ECVP Abs) 115 [10.7.5a]

Frischknecht R, Heine M, Perrais D, et al. (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity Nat Neurosci 12 897–904 [6.5.5]

Frith C, Dolan RJ (1997) Bran mechanisms associated with top-down processes in perception Philos Trans R Soc 352 1221–30 [5.6.8]

Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains Nature 416 433–7 [6.5.2]

Fronius M, Sireteanu R (1989) Monocular geometry is selectively distorted in the central visual field of strabismic amblyopes Invest Ophthal Vis Sci 30 2034–44 [8.4.3]

Fronius M, Sireteanu R (1994) Pointing errors in strabismics: complex patterns of distorted visuomotor coordination Vis Res 34 689–707 [8.4.5d]

Frost DO, Metin C (1985) Induction of functional retinal projections to the somatosensory system Nature 317 162–4 [6.4.2c]

Frost DO, Moy YP (1989) Effects of dark rearing on the development of visual callosal connections Exp Brain Res 78 203–13 [6.4.6d]

Frostig RD (1994) What does in vivo optical imaging tell us about the primary visual cortex in primates In Cerebral cortex Volume 10 Primary visual cortex in primates (ed A Peters, KS Rockland) pp 331–58 Plenum, New York [5.4.3a]

Frostig RD (2002) In vivo optical imaging of brain function CRC Press, New York [5.4.3a]

Fry GA (1939) Further experiments on the accommodation–convergence relationship Am J Optom Arch Am Acad Optom 16 325–34 [10.4.3c]

Fry GA (1950) Visual perception of space Am J Optom Arch Am Acad Optom 27 531–53 [10.1.3b]

Fry GA (1955) Blur of the retinal image Ohio University Press, Columbus OH [9.6.4e]

Fry GA (1968) Nomograms for torsion and direction of regard Am J Optom Arch Am Acad Optom 45 631–41 [10.1.2d]

Fry GA (1983) Basic concepts underlying graphical analysis In Vergence eye movements: Basic and clinical aspects (ed MC Schor, KJ Ciuffreda) pp 403–38 Butterworth, Boston [10.4.3b]

Fry GA, Treleaven CL, Baxter RC (1945) Specification of the direction of regard Am J Optom Arch Am Acad Optom 22 351–60 [10.1.2c]

Fu QG, Suarez JI, Ebner TJ (1993) Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys J Neurophysiol 70 2097–116 [5.8.4g]

Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex Nature 360 343–6 [5.8.3b]

Fujita S (1990) Morphogenesis of the human brain as studied by 3-D computer graphics simulation J Micros 157 259–69 [6.4.2a]

Fukuda Y, Sawai H, Watanabe M, et al. (1989) Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata) J Neurosci 9 2353–73 [5.3.3, 5.3.4]

Fukushima J, Hatta T, Fukushima K (2000) Development of voluntary control of saccadic eye movements: I. Age-related changes in normal children Brain Devel 22 173–80 [7.3.5]

Fukushima K, Yamanobe T, Shinmel Y, et al. (2002) Coding of smooth eye movements in three-dimensional space by frontal cortex Nature 419 157–62 [10.10.3, 5.8.4f]

Funahashi S, Bruce CJ, Goldman–Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex J Neurophysiol 61 331–49 [5.8.4f]

Furmanski CE, Schluppeck D, Engel AS (2004) Learning strengthens the response of primary visual cortex to simple patterns Curr Biol 14 573–8 [5.6.8]

Fuster JM, Jervey JP (1981) Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli Science 212 952–5 [5.9.3c]

Gabor D (1946) Theory of communication J Inst Elec Engin (London) 93 429–57 [4.4.1c]

Gabrieli DE, Brewer JB, Desmond JE, Glover GH (1997) Separate neural bases of two fundamental processes in the human medial temporal lobe Science 276 294–6 [5.8.3c]

Gaffan D (1994) Scene–specific memory for objects: a model of episodic memory impairment in monkeys with fornix transection J Cog Neurosci 6 305–20 [5.8.3c]

Gaiano N, Fishell G (2002) The role of Notch in promoting glial and neural stem cell fates Ann Rev Neurosci 25 471–90 [6.4.7b]

Galarreta M, Hestrin S (2001) Electrical synapses between GABA-releasing interneurones Nat Rev Neurosci 2 425–33 [5.5.2a]

Galen C (175) De usa partium corporis humani (Translated in 1968 by MT May) Cornell University Press, Ithaca NY [2.1.3f]

Gallant JL, Braun J, Van Essen DC (1993) Selectivity for polar hyperbolic and Cartesian gratings in macaque visual cortex Science 259 100–3 [4.7.1, 5.8.3a]

Gallant JL, Connor CE, Rakshit S, et al. (1996) Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey J Neurophysiol 76 2718–39 [5.8.3a]

Galletti C, Battaglini PP (1989) Gaze-dependent visual neurons in area V3A of monkey prestriate cortex J Neurosci 9 1112–1125 [5.8.2c]

Galletti C, Battaglini PP, Fattori P (1993) Parietal neurons encoding spatial locations in craniotopic coordinates Exp Brain Res 96 221–9 [5.8.4a]

Galletti C, Battaglini PP, Fattori P (1997) The posterior parietal cortex in humans and monkeys News Physiol Sci 12 166–71 [5.8.4e]

Galletti C, Kutz DF, Gamberini M, et al. (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements Exp Brain Res 153 158–70 [5.8.4a]

Galli L, Maffei L (1988) Spontaneous impulse activity of rat retinal ganglion cells in prenatal life Science 272 90–1 [6.3.2b]

Galli-Resta L (2002) Putting neurons in the right places: local interactions in the genesis of retinal architecture TINS 25 638–43 [6.3.2a]

Gallo G, Lefcort FB, Letourneau PC (1997) The trkA receptor mediates growth cone turning toward a localized source of nerve growth factor J Neurosci 17 5445–54 [6.4.7b]

Galuske RAW, Kim DS, Castrén E, Singer W (2000) Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex Eur J Neurosci 12 3315–300 [8.2.7f]

Galvin SJ, O’Shea RP, Squire AM, Govan DG (1997) Sharpness overconstancy in peripheral vision Vis Res 37 2035–9 [9.6.4f]

Gamlin PDR, Clarke RJ (1995) Single-unit activity in the primate nucleus reticularis tegmenti pontis related to vergence and ocular accommodation J Neurophysiol 73 2115–9 [10.10.2d]

Gamlin PDR, Mays LE (1992) Dynamic properties of medial rectus motoneurons during vergence eye movements J Neurophysiol 67 64–74 [10.10.2b]

Gamlin PDR, Yoon K (2000) An area for vergence eye movement in primate frontal cortex Nature 407 10037 [10.10.3]

Gamlin PDR, Gnadt JW, Mays LE (1989) Abducens internuclear neurones carry an inappropriate signal for ocular convergence J Neurophysiol  62 70–81 [10.10.2b, 10.8.1b]

Gamlin PDR, Zhang Y, Clendaniel RA, Mays LE (1994) Behavior of identified Edinger-Westphal neurons during ocular accommodation J Neurophysiol 72 2368–82 [9.2.3]

Gamlin PDR, Yoon K, Zhang H (1996) The role of cerebro-ponto-cerebellar pathways in the control of vergence eye movements Eye 10 167–71 [10.10.2d, 10.10.3]

Gandhi SP, Stevens CF (2003) Three modes of synaptic vesicular recycling revealed by single-vesicle imaging Nature 423 607–13 [5.5.2b]

Gandhi SP, Heeger DJ, Boynton GM (1999) Spatial attention affects brain activity in human primary visual cortex Proc Natl Acad Sci 96 3314–19 [5.9.2a]

Ganguly K, Kiss L, Poo MM (2000) Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking Nat Neurosci 3 1018–29 [6.5.3]

Ganz L, Hirsch HVB, Tieman SB (1972) The nature of perceptual deficits in visually deprived cats Brain Res 44 547–68 [8.4.3d]

(p.578) Garaschuk O, Linn J, Eilers J, Konnerth A (2000) Large-scale oscillatory calcium waves in the immature cortex Nat Neurosci 3 452–9 [6.6.2]

García-Pérez MA (1989) Visual inhomogeneity and eye movements in multistable perception Percept Psychophys 46 397–400 [4.5.9d]

Gardner EP, Costanzo RM (1980) Spatial integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkeys J Neurophysiol 43 420–43 [3.1.4a]

Gardner JC, Raiten EJ (1986) Ocular dominance and disparity–sensitivity: why there are cells in the visual cortex driven unequally by the two eyes Exp Brain Res 64 505–14 [5.7.2e]

Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic J Neurosci 28 3988–99 [5.8.1]

Garey LJ (1984) Structural development of the visual system of man Hum Neurobiol 3 75–80 [6.3.5a]

Garey LJ, Blakemore C (1977) The effects of monocular deprivation on different neuronal classes in the lateral geniculate nucleus of the cat Exp Brain Res 28 259–78 [8.2.2b]

Garey LJ, de Courten C (1983) Structural development of the lateral geniculate nucleus and cortex in monkey and man Behav Brain Res 10 3–13 [6.4.5d]

Garey LJ, Dreher B, Robinson SR (1991) The organization of the visual thalamus In Neuroanatomy of the visual pathways and their development (ed B Dreher, SR Robinson) pp 176–234 CRC Press, Boston [5.2.1]

Garm A, Bielecki J (2008) Swim pacemakers in box jellyfish are modulated by the visual system J Comp Physiol A 194 641–51 [6.1.3]

Garm A, Mori S (2009) Multiple photoreceptor systems control the swim pacemaker activity in box jellyfish J Exp Biol 212 3951–60 [6.1.3]

Garm A, O’Connor M, Parkefelt L, Nilsson DE (2007) Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie J Exp Biol 210 3616–23 [6.1.3]

Garner WR (1962) Uncertainty and structure as psychological concepts Wiley, New York [3.1.1f, 4.6.2]

Garner WR (1974) The processing of information and structure Erlbaum, New York [4.5.1]

Garraghty PE, Roe AW, Chino YM, Sur M (1989) Effect of convergent strabismus on the development of physiologically identified retinogeniculate axons in cats J Comp Neurol 289 202–12 [8.2.2e]

Garzia RP (1987) Efficacy of vision therapy in amblyopia: a literature review Am J Optom Physiol Opt 64 393–404 [8.4.6b]

Garzia RP, Nicholson SB (1988) The effect of volition on the horizontal forced-vergence fixation disparity curve Am J Optom Physiol Opt 65 61–3 [10.2.4b]

Gaska JP, Jacobson LD, Pollen DA (1988) Spatial and temporal frequency selectivity of neurons in visual cortical area V3A of the macaque monkey Vis Res 28 1179–91 [5.8.2c]

Gaska JP, Jacobson LD, Chen HW, Pollen DA (1994) Space-time spectra of complex cell filters in the macaque monkey: a comparison of results obtained with pseudowhite noise and grating stimuli Vis Neurosci 11 805–21 [5.6.4c]

Gaspard N, Bouschet T, Hourez R, et al. (2008) An intrinsic mechanism of corticogenesis from embryonic stem cells Nature 455 351–8 [6.4.1]

Gattass R, Oswaldo–Cruz E, Sousa APB (1979) Visual receptive fields of units in the pulvinar of cebus monkey Brain Res 160 413–30 [5.5.1b]

Gattass R, Sousa APB, Gross CG (1988) Visuotopic organization and extent of V3 and V4 of the macaque J Neurosci 8 1831–45 [5.8.3a]

Gawne TJ (2000) The simultaneous coding of orientation and contrast in the responses of V1 complex cells Exp Brain Res 133 293–302 [4.3.5]

Gawne TJ, Richmond BJ, Optican LM (1991) Interactive effects among several stimulus parameters on the responses of striate cortical complex cells J Neurophysiol 66 379–89 [4.3.5]

Gawne TJ, Kjaer TW, Richmond BJ (1996) Latency: another potential code for feature binding in striate cortex J Neurophysiol 76 1356–60 [4.3.4g]

Gaze RM, Keating MJ (1970) The restoration of the ipsilateral visual projection following regeneration of the optic nerve in the frog Brain Res 21 207–16 [6.7.3a, 6.7.3a]

Gaze RM, Sharma SC (1970) Axial differences in the reinnervation of the goldfish optic tectum by regenerating optic nerve fibres Exp Brain Res 10 171–81 [6.7.3a]

Gazzaniga MS, LeDoux JE (1978) The integrated mind Plenum, New York [5.3.5]

Geesaman BJ, Andersen RA (1966) The analysis of complex motion patterns by form/cue invariant MSTd neurons J Neurosci 16 4716–32 [5.8.4c]

Gegenfurtner KR, Kiper DC, Fenstemaker SB (1996) Processing of color form and motion in macaque area V2 Vis Neurosci 13 161–72 [5.8.2a]

Gegenfurtner KR, Kiper DC, Levitt JB (1997) Functional properties of neurons in macaque area V3 J Neurophysiol 77 1906–23 [5.8.2b]

Gehler S, Gallo G, Veien E, Letourneau PC (2004) p75 neurotrophin receptor signaling regulates growth cone filopodia dynamics through modulating RhoA activity J Neurosci 24 4363–72 [6.4.3d]

Gehring WJ (1987) Homeo boxes in the study of development Scienc e 236 1245–52 [6.4.1]

Geisler WS (1984) Physical limits of acuity and hyperacuity J Opt Soc Am A 1 775–82 [3.1.4a, 7.2.1d]

Gelfand IM, Fomin SV (2000) Calculus of variations, Dover [4.6.2]

Gelman DM, Martini FJ, Nobrega-Pereira S, et al. (2009) The embryonic preoptic area is a novel source of cortical GABAergic interneurons J Neurosci 29 9380–9 [6.4.5b]

Gentilucci M, Fogassi L, Luppino G, et al. (1988) Functional organization of inferior area 6 in the macaque monkey Exp Brain Re s 71 475–90 [5.8.4g]

Georgeson MA (1980) Spatial frequency analysis in early visual processing Phil Trans Roy Soc B 290 11–22 [5.6.1]

Georgeson MA, Sullivan GD (1975) Contrast constancy: deblurring in human vision by spatial frequency J Physiol 252 627–56 [3.2.5]

Georgopoulos AP (1991) Higher order motor control Ann Rev Neurosci 14 361–77 [4.5.6]

Gernsheim H (1969) History of photography McGraw-Hill, New York [2.11.1b, 2.11.3, 2.11.4]

Gerstein GL, Aertsen AMH (1985) Representation of cooperative firing activity among simultaneously recorded neurons J Neurophysiol 54 1513–28 [4.3.4a]

Gescheider, GA (1997) Psychophysics: The Fundamentals 3rd ed Erlbaum, New Jersey Erlbaum [3.1.1a]

Ghose GM, Freeman RD (1992) Oscillatory discharge in the visual system: does it have a functional role? J Neurophysiol 68 1558–74 [4.3.4a, 4.3.4c]

Ghose GM, Freeman RD (1997) Intracortical connections are not required for oscillatory activity in the visual cortex Vis Neurosci 14 963–79 [4.3.4g]

Ghose GM, Maunsell JHR (2002) Attentional modulation in visual cortex depends on task timing Nature 419 616–20 [5.9.3c]

Ghose GM, Ts’o DY (1997) Form processing modules in primate area V4 J Neurophysiol 77 2191–96 [5.8.3a]

Ghose GM, Ohzawa I, Freeman RD (1994a) Receptive–field maps of correlated discharge between pairs of neurons in the cat’s visual cortex J Neurophysiol 71 330–46 [4.3.4b]

Ghose GM, Freeman RD, Ohzawa I (1994b) Local intracortical connections in the cat’s visual cortex: postnatal development and plasticity J Neurophysiol 72 1290–303 [5.5.3]

Ghose GM, Yang T, Maunsell JHR (2002) Physiological correlates of perceptual learning in monkey V1 and V2 J Neurophysiol 87 1867–88 [5.6.8]

Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences Science 298 239–47 [6.5.1a]

Ghosh A, Shatz CJ (1992a) Involvement of subplate neurons in the formation of ocular dominance columns Science 255 1441–3 [6.4.5c]

Ghosh A, Shatz CJ (1992b) Pathfinding and target selection by geniculocortical axons J Neurosci 12 39–55 [6.4.5c]

(p.579) Ghosh A, Shatz CJ (1994) Segregation of geniculocortical afferents during the critical period: a role for subplate neurons J Neurophysiol 14 3862–80 [6.4.5c]

Ghosh A, Antonini A, McConnell SK, Shatz CJ (1990) Requirement for subplate neurons in the formation of thalamocortical connections Nature 347 179–81 [6.4.5c]

Gianfranceschi L, Siciliano R, Walls J, et al. (2003) Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF Proc Natl Acad Sci 100 12486–91 [8.1.1b, 8.2.7d]

Gianna CC, Gresty MA, Bronstein AM (1997) Eye movements induced by lateral acceleration steps. Effect of visual context and acceleration levels Exp Brain Res 114 124–9 [10.9.2]

Giaschi DE, Regan D, Kraft SP, Hong XH (1992) Defective processing of motion-defined form in the fellow eye of patients with unilateral amblyopia Invest Ophthal Vis Sci 33 2483–8 [8.2.3f]

Gibson EJ (1967) Principles of perceptual learning and development Appleton-Century-Crofts, London [4.6.2]

Gibson EJ, Walk RD (1960) The visual cliff Sci Am 202 64–71 [7.4.1b]

Gibson EJ, Owsley CJ, Walker A, Megaw-Nyce J (1979) Development of the perception of invariants: substance and shape Perception 8 609–19 [7.4.2c]

Gibson JJ (1933) Adaptation after–effect and contrast in the perception of curved lines J Exp Psychol 16 1–31 [4.2.9a, 9.6.5c]

Gibson JJ (1950) The perception of the visual world Houghton Mifflin, Boston [1.3]

Gibson JJ (1961) Ecological optics Vis Res 1 253–62 [1.3]

Gibson JJ (1966) The senses considered as perceptual systems Houghton-Mifflin, Boston, MA [1.3]

Gibson JJ (1977) The theory of affordances. In R. Shaw & J. Bransford (eds.) Perceiving, acting and knowing Erlbaum, Hillsdale, NJ [4.1.1]

Gibson JJ, Kaplan GA, Reynolds HN, Wheeler K (1969) The change from visible to invisible: a study of optical transitions Percept Psychophys 5 113–16 [7.4.2b]

Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex Nature 402 75–9 [5.5.2e]

Gilbert CD, Wiesel TN (1979) Morphology and intracortical projections of functionally characterized neurones in the cat visual cortex Nature 280 120–5 [5.5.3, 5.5.5, 6.4.6b]

Gilbert CD, Wiesel TN (1985) Intrinsic connectivity and receptive field properties in visual cortex Vis Res 25 365–74 [5.5.6a]

Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinsic horizontal and connections in cat visual cortex J Neurosci 9 2732–42 [5.5.6a]

Gilbert CD, Wiesel TN (1990) The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat Vis Res 30 1689–1701 [5.6.7a]

Gilbert CD, Wiesel TN (1992) Receptive field dynamics in adult primary visual cortex Nature 356 150–2 [5.5.6c]

Gilbert CD, Ts’o DY, Wiesel TN (1991) Lateral interactions in visual cortex In From pigments to perception (ed A Valberg, BB Lee) pp 239–47 Plenum, New York [5.6.7a]

Gilbert CD, Sigman M, Crist RE (2001) The neural basis of perceptual learning Neuron 31 681–97 [5.6.8]

Gilbert DS, Fender DH (1969) Contrast thresholds measured with stabilized and non–stabilized sine–wave gratings Optica Acta 16 191–204 [10.1.1]

Gill AT (1969) Early stereoscopes Photograph J 109 546–59; 606–14; 641–51 [2.11.2c]

Gillam B (1967) Changes in the direction of induced aniseikonic slant as a function of distance Vis Res 7 777–83 [9.9.2b]

Gillard-Crewther S, Crewther DP (1988) Neural site of strabismic amblyopia in cats: X-cell acuities in the LGN Exp Brain Res 72 503–9 [8.2.1]

Gillespie DC, Crair MC, Stryker MP (2000) Neurotrophin-4/5 alters responses and blocks the effect of monocular deprivation in cat visual cortex during the critical period J Neurosci 20 9174–86 [8.2.7f, 6.7.2d]

Gillott HF (1956) The effect on binocular vision of variations in the relative sizes and levels of illumination of the images Br J Physiol Opt 13 122–46 218–34 [9.9.2b]

Gillott HF (1957) The effect on binocular vision of variations in the relative sizes and levels of illumination of the images Part III Br J Physiol Opt 14 43–58 [9.9.1a]

Girard LJ, Friedman B, Moore CD, et al. (1962) Intraocular implants and contact lenses Arch Ophthal 68 762–75 [9.9.1c]

Girgus JJ, Rock I, Egatz R (1977) The effects of knowledge of reversibility on the reversibility of ambiguous figures Percept Psychophys 22 550–6 [4.5.9e]

Glasser A, Campbell MCW (1998) Presbyopia and the optical changes in the human crystalline lens with age Vis Res 38 209–29 [7.3.1]

Glasser A, Campbell MCW (1999) Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia Vis Res 39 1991–15 [7.3.1]

Glasser A, Howland HC (2003) A history of studies o visual accommodation in birds Quart Rev Biol 71 475–509 [9.2.2a]

Glazewski S, Giese KP, Silva A, Fox K (2000) The role of a-CaMKII autophosphorylation in neocortical experience-dependent plasticity Nat Neurosci 3 911–18 [6.5.1a, 8.2.7f]

Gleason G, Schor C, Lunn R, Maxwell J (1992) Directionally selective short–term nonconjugate adaptation of vertical pursuits Vis Res 33 33–46 [10.2.6c]

Gleason MR, Higashijima S, Dallman J, et al. (2003) Translocation of CaM kinase II to synaptic sites in vivo Nat Neurosci 6 217–8 [6.5.1a]

Glendenning KK, Kofron EA, Diamond IT (1976) Laminar organization of projections of the lateral geniculate nucleus to the striate cortex in Galago Brain Res 105 538–46 [5.7.2f]

Glickstein M, Stein J, King RA (1972) Visual input to the pontine nucleus Science 178 1110–11 [9.2.3]

Gnadt JW, Beyer J (1998) Eye movements in depth: what does the monkey’s parietal cortex tell the superior colliculus? Neuro Report 29 233–8 [10.10.3]

Gnadt JW, Mays LE (1995) Neurons in monkey parietal area LIP are tuned for eye-movement parameters in three-dimensional space J Neurophysiol 73 280–97 [10.10.3]

Gochin PM (1996) The representation of shape in the temporal lobe Behav Brain Res 76 99–116 [5.8.3b]

Goda Y, Davis GW (2003) Mechanisms of synapse assembly and disassembly Neuron 40 243–64 [6.4.4a]

Godde B, Leonhardt R, Cords SM, Dinse HR (2002) Plasticity of orientation preference maps in the visual cortex of adult cats Proc Natl Acad Sci 99 6352–7 [5.7.1]

Gödecke I, Bonhoeffer T (1996) Development of identical orientation maps for two eyes without common visual experience Nature 379 251–54 [7.2.2]

Godement P, Salaün J, Métin C (1987) Fate of uncrossed retinal projections following early or late prenatal monocular enucleation in the mouse J Comp Neurol 255 97–109 [8.2.6a]

Godement P, Salaun J, Mason CA (1990) Retinal axon pathfinding in the optic chiasm: divergence of crossed and uncrossed fibers Neuron 5 173–86 [6.3.4a]

Godement P, Wang LC, Mason CA (1994) Retinal axon divergence in the optic chiasm: dynamics of growth cone behavior at the midline J Neurosci 14 7027–39 [6.3.4a]

Goebel R, Muckli L, Zanella FE, et al. (2001) Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients Vis Res 41 1459–74 [5.5.7]

Gogel WC, Szoc R (1974) Differential modification of the equidistance and nonius horopter Vis Res 14 1441–9 [9.9.3]

Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation Nature 418 326–31 [6.5.2]

Goldowiz D, Wahlsten D, Wimer RE (1992) Techniques for the genetic analysis of brain and behavior: focus on the mouse Elsevier, Amsterdam [6.2]

(p.580) Goldstein B (2001) Blackwell handbook of perception Blackwell Publisher, Oxford [1.3]

Golomb D, Kleinfeld D, Reid RC, et al. (1994) On temporal codes and the spatiotemporal response of neurons in the lateral geniculate nucleus J Neurophysiol 72 2990–3003 [4.3.5]

Good WV, da Sa LCF, Lyons CJ, Hoyt CS (1993) Monocular visual outcome in untreated early onset esotropia Br J Ophthal 77 492–4 [8.4.6b]

Goodenough DR, Sigman E, Oltman PK, et al. (1979) Eye torsion in response to a tilted visual stimulus Vis Res 19 1177–9 [10.7.1]

Goodhill GJ (1993) Topography and ocular dominance: a model exploring positive correlations Biol Cyber 69 109–18 [6.7.2f]

Goodhill GJ, Löwel S (1996) Theory meets experiment: correlated neural activity helps determine ocular dominance column periodicity TINS 18 437–9 [8.2.3a]

Goodhill GJ, Willshaw DJ (1990) Application of the elastic net algorithm to the formation of ocular dominance stripes Network 1 41–59 [5.7.2c]

Gordon B, Gummow L (1975) Effects of extraocular muscle section on receptive fields in cat superior colliculus Vis Res 15 1011–19 [8.2.2f]

Gordon B, Presson J (1977) Effects of alternating occlusion on receptive fields in cat superior colliculus J Neurophysiol 40 1406–14 [8.2.2f]

Gordon FR, Yonas A (1976) Sensitivity to binocular depth information in infants J Exp Child Psychol 22 413–22 [7.4.1a]

Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse J Neurosci 16 3274–86 [8.2.3c]

Gordon JA, Cioffi D, Silva AJ, Stryker MP (1996) Deficient plasticity in the primary visual cortex of a-calcium/calmodulin-dependent protein kinase II mutant mice Neuron 17 491–9 [8.2.7f]

Gorski JA, Talley T, Qiu M, et al. (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage J Neurosci 22 6309–14 [6.4.7b]

Gorski JA, Zeiler SR, Tamowski S, Jones KR (2003) Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites J Neurosci 23 6856–65 [6.5.1c]

Goss DA (1995) Accommodation convergence and fixation disparity: A manual of clinical analysis Professional Press/Fairchild Publications, New York [1.3, 10.2.3b, 10.2.4a, 10.4.3c]

Goss DA, Zhai H (1994) Clinical and laboratory investigations of the relationship of accommodation and convergence function with refractive error: a literature review Doc Ophthal 86 349–80 [9.3.1]

Gosser HM (1977) Selected attempts at stereoscopic moving pictures and their relationship to the development of motion picture technology 1852–1903 Arno Press, New York [2.11.4]

Gottlieb J, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkeyoarietal cortex Nature 391 481–4 [5.9.3b]

Gottmann K, Mehrie A, Gisselmann G, Hatt H (1997) Presynaptic control of subunit composition of NMDA receptors mediating synaptic plasticity J Neurosci 17 2766–74 [6.5.1a]

Gottmann K, Mittmann T, Lessmann V (2009) BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses Exp Brain Res 199 203–34 [6.5.1c]

Gould E, Reeves AJ, Graziano MSA, Gross CG (1999) Neurogenesis in the neocortex of adult primates Science 286 548–52 [6.4.2d]

Gouras P (1991) Cortical mechanisms of colour vision In Vision and visual dysfunction Vol 6 The perception of colour (ed P Gouras) pp 179–97 MacMillan, London [4.2.8c, 5.6.6]

Govi G (1885) L’Ottica di Claudio Tolomeo Turin [2.1.3d]

Grabska-Barwinska A, von der Malsburg C (2008) Establishment of a scaffold for orientation maps in primary visual cortex of higher mammals J Neurosci 28 249–57 [5.7.1]

Graf ER, Zhang XZ, Jin SX, et al. (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins Cell 119 1013–26 [6.4.4b]

Graf EW, Maxwell JS, Schor CM (2002) Changes in cyclotorsion and vertical eye alignment during prolonged monocular occlusion Vis Res 42 1185–94 [10.2.3a, 10.6.2, 10.7.5c]

Graf EW, Maxwell JS, Schor CM (2003) Comparison of the time course of concomitant and nonconcomitant vertical phoria adaptation Vis Res 43 567–76 [10.2.6b]

Grafstein B, Laureno R (1973) Transport of radioactivity from eye to visual cortex in the mouse Exp Neurol 39 44–57 [5.7.2a]

Graham CHR, Brown RH, Mote FA (1939) The relation of size of stimulus and intensity in the human eye J Exp Psychol 24 555–73 [4.2.4.b]

Graham N, Nachmias J (1971) Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channel models Vis Res 11 251–9 [4.2.5b, 4.4.1b]

Graham NVS (1989) Visual pattern analyzers Oxford University Press, New York [4.2.5b, 4.4.1c]

Graham PA (1974) The epidemiology of strabismus Br J Ophthal 58 227–31 [10.2.2a, 10.2.2d]

Granger F (1931) English translation of De Architectura by Vitruvius. Loeb, London [2.9.1]

Granrud CE (1986) Binocular vision and spatial perception in 4– and 5–month–old infants J Exp Psychol HPP 12 36–49 [7.4.1a]

Granrud CE (2006) Size constancy in infants: 4-month-olds’ responses to physical versus retinal image size J Exp Psychol HPP 32 1398–1404 [7.4.1d]

Granrud CE, Schmechel TTN (2006) Development of size constancy in children: A test of the proximal mode sensitivity hypothesis Percept Psychophys 68 1372–81 [7.4.1d]

Granrud CE, Yonas A, Smith IM, et al. (1984) Infants’ sensitivity to accretion and deletion of texture as information for depth at an edge Child Devel 55 1630–6 [7.4.2b]

Granrud CE, Yonas A, Opland EA (1985) Infants’ sensitivity to the depth cue of shading Percept Psychophys 37 415–19 [7.4.2d]

Grasse KL, Cynader MS (1986) Response properties of single units in the accessory optic system of the dark-reared cat Devel Brain Res 27 199–210 [8.1.1a]

Gratiolet LP (1854) Note sur les expansions des racines cérébrales du nerf optique et sur leur terminaison dans une région déterminée de l’écorce des hémisphères Comp Rendu Acad Sci 39 274–7 [2.5.3]

Gray CM, Di Prisco GV (1997) Stimulus-dependent neuronal oscillations and local synchronization in striate cortex of the alert cat J Neurosci 17 3239–53 [4.3.4b]

Gray CM, McCormick DA (1996) Chatering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex Science 274 109–13 [4.3.4a, 5.5.1c]

Gray CM, Singer W (1989) Stimulus–specific neuronal oscillations in orientation columns of cat visual cortex Proc Natl Acad Sci 86 1698–1702 [4.3.4b]

Gray CM, Engel AK, König P, Singer W (1991) Synchronous neuronal oscillations in cat visual cortex: functional implications In Representations of vision (ed A Gorea) pp 83–96 Cambridge University Press, New York [4.3.4c]

Gray GE, Sanes JR (1991) Migratory paths and phenotypic choices of clonally related cells in the avian central nervous system Neuron 6 211–25 [6.4.5b]

Gray LS, Winn B, Gilmartin B (1993a) Accommodative microfluctuations and pupil diameter Vis Res 33 2083–90 [9.7.1a]

Gray LS, Winn B, Gilmartin B (1993b) Effect of target luminance on microfluctuations of accommodation Ophthal Physiol Opt 13 258–65 [9.7.1a]

Gray LS, Winn B, Gilmartin B, Eadie AS (1993c) Objective concurrent measures of open–loop accommodation under photopic conditions Invest Ophthal Vis Sci 34 2996–3003 [10.4.3a]

Gray R, Regan D (1996) Cyclopean motion perception produced by oscillations of size disparity and location Vis Res 36 655–65 [4.5.7d]

Graziano MSA (1999) Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position Proc Natl Acad Sci 96 10418–21 [5.8.4g]

Graziano MSA, Gross CG (1993) A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields Exp Brain Res 97 96–109 [5.8.4g]

(p.581) Graziano MSA, Gross CG (1998) Visual responses with and without fixation: neurons in premotor cortex encode spatial locations independently of eye position Exp Brain Res 118 373–80 [4.5.7b]

Graziano MSA, Andersen RA, Snowden RJ (1994) Tuning of MST neurons to spiral motions J Neurosci 14 54–67 [5.8.4c]

Graziano MSA, Hu XT, Gross CG (1997) Visuospatial properties of ventral premotor cortex J Neurophysiol 77 2268–92 [5.8.4g]

Graziano MSA, Reiss LAJ, Gross CG (1999) A neuronal representation of the location of nearby sounds Nature 397 428–30 [5.8.4g]

Graziano MSA, Cooke DF, Taylor CSR (2000) Coding the location of the arm by sight Science 290 1782–6 [5.8.4e]

Graziano MSA, Taylor CSR, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex Neuron 34 841–51 [5.8.4g]

Green DG, Powers MK, Banks MS (1980) Depth of focus, eye size and visual acuity Vis Res 20 827–35 [7.3.1]

Green DM, Swets JA (1966) Signal detection theory and psychophysics Wiley, New York [3.1.1a, 3.1.1d]

Green M (1991) Visual search visual streams and visual architectures Percept Psychophys 50 388–403 [4.5.4a]

Green M (1992) Visual search: detection identification and localization Perception 21 765–777 [4.5.4a, 4.8.2c]

Greene HA, Madden DJ (1987) Adult age differences in visual acuity stereopsis and contrast sensitivity Am J Optom Physiol Opt 64 749–53 [7.6.4]

Gregg FM, Parks MM (1992) Stereopsis after congenital monocular cataract extraction Am J Ophthal 114 314–17 [8.1.3]

Gregory RL (1999) Shaving in a mirror with Ockham’s razor Interdisciplinary Science Reviews 24 45–51 [4.6.3e]

Gregory RL, Wallace JG (1963) Recovery from early blindness A case study Exp Psychol Monogr No 2 Heffer, London [8.1.3]

Gresty MA, Bronstein AM, Barratt H (1987) Eye movement responses to combined linear and angular head movement Exp Brain Res 65 377–84 [10.9.2]

Greuel JM, Luhmann HJ, Singer W (1988) Pharmacological induction of use-dependent receptive field modifications in the visual cortex Science 272 74–7 [6.7.2c]

Grieve KL, Acuna C, Cudeiro J (2000) The primate pulvinar nuclei: vision and action TINS 23 35–9 [5.5.4b, 5.9.1]

Griffin JR, Grisham JD (1995) Binocular anomalies Diagnosis and vision therapy Butterworth-Heinemann, Boston [10.2.3b]

Grigsby SS, Tsou BH (1994) Grating and flicker sensitivity in the near and far periphery: naso-temporal asymmetries and binocular summation Vis Res 34 2841–8 [7.2.4]

Grill-Spector K, Kushnir T, Edelman S, et al. (1998) Cue-invariant activation in object-related areas of the human occipital lobe Neuron 21 191–202 [5.8.3c]

Grill-Spector K, Kushnir T, Edelman S, et al. (1999) Differential processing of objects under various viewing conditions in the human lateral occipital cortex Neuron 24 187–203 [5.8.3c]

Grinvald A, Hildesheim (2004) VSDI: a new era in functional imaging of cortical dynamics Nat Rev Neurosci 5 874–85 [5.4.3a]

Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point-spread function and range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex J Neurosci 14 2545–68 [5.5.6a, 5.5.6c]

Grinvald A, Slovin H, Vanzetta I (2000) Non-invasive visualization of cortical columns by fMRI Nat Neurosci 3 105–7 [5.4.3f, 5.7.2a]

Gross CG (1973) Visual functions of inferotemporal cortex In Handbook of sensory physiology (ed R Jung) Vol VII/3B pp 451–82 Springer, New York [5.8.1]

Gross CG (1992) Representation of visual stimuli in inferior temporal cortex Philos Tr R Soc B 335 3–10 [5.8.3b]

Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque J Neurophysiol 35 96–111 [5.8.3b]

Grossberg S (1990) A model cortical architecture for the preattentive perception of 3–D form In Computational neuroscience (ed ER Schwartz) pp 117–38 MIT Press, Cambridge MA [5.8.5b]

Grossberg S, Somers D (1991) Synchronized oscillations during cooperative feature linking in a cortical model of visual perception Neural Networks 4 453–66 [4.3.4g]

Grossman I, Magnus SW (1964) Groups and their graph s Random House, New York [3.7.1]

Grosvenor T (1987) Reduction in axial length with age: an emmetropizing mechanism for the adult eye Am J Optom Physiol Opt 64 657–63 [6.3.1c]

Grosvenor T (1988) High axial length/corneal radius ratio as a risk factor in the development of myopia Am J Physiol Opt 65 689–96 [9.2.1]

Grosvenor T, Scott R (1994) Role of the axial length/corneal radius ratio in determining the refractive state of the eye Optom Vis Sci 71 573–9 [9.2.1]

Grove AC (1991) An introduction to the Laplace transform and the z transform Prentice Hall, New York [3.3]

Grubb MS, Rossi FM, Changeux JP, Thompson ID (2003) Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the β2 subunit of the nicotinic acetylcholine receptor Neuron 40 1161–72 [6.3.2b]

Grüber HE, Fink CD, Damm V (1957) Effects of experience on perception of causality J Exp Psychol 53 89–93 [4.6.3g]

Grünert U, Greferath U, Boycott BB, Wässle H (1993) Parasol (Pα) ganglion-cells of the primate fovea: immunocytochemical staining with antibodies against GABAA-receptors Vis Res 33 1–14 [5.1.4d]

Grunewald A, Grossberg S (1998) Self-organization of binocular disparity tuning by reciprocal corticogeniculate interactions J Cog Neurosci 10 199–215 [5.2.3a]

Grunewald A, Skoumbourdis EK (2004) The integration of multiple stimulus features by V1 neurons J Neurosci 24 9185–94x [5.6.5]

Grunewald A, Bradley DC, Andersen RA (2002) Neural correlates of structure-from-motion perception in macaque V1 and MT J Neurosci 2 2 6195–207 [5.8.4b]

Grüsser OJ, Grüsser–Cornehls U (1965) Neurophysiological Grundlagen des Binocularsehens Arch Psychiat Z ges Neurol 207 296–317 [5.7.2d, 5.7.2e]

Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex Nature 420 812–16 [6.4.4a]

Gu Q (1995) Involvement of nerve growth factor in visual cortex plasticity Rev Neurosci 6 329–51 [8.2.7f]

Gu Q, Bear MF, Singer W (1989) Blockade of NMDA–receptors prevents ocularity changes in kitten cortex after reversed monocular deprivation Devel Brain Res 47 281–88 [8.2.7e]

Gu Q, Patel B, Singer W (1990) The laminar distribution and postnatal development of serotonin-immunoreactive axons in the cat primary visual cortex Exp Brain Res 81 257–66 [5.5.2g]

Gu Q, Liu Y, Cynader MS (1994) Nerve growth factor-induced ocular dominance plasticity in adult cat visual cortex Proc Natl Acad Sci 91 8408–12 [8.2.7f]

Gu J, Firestein BL, Zheng JQ (2008) Microtubules in dendritic spine development. J Neurosci 28 12120–4 [6.4.3a]

Guido W, Tumosa N, Spear PD (1989) Binocular interactions in the cat’s dorsal lateral geniculate nucleus: I Spatial-frequency analysis of responses of X Y and W cells to nondominant-eye stimulation J Neurophysiol 62 529–43 [5.2.3a]

Guilford JP (1954) Psychometric methods McGraw–Hill, New York [3.1.1a]

Guillery RW (1972) Binocular competition in the control of geniculate cell growth J Comp Neurol 144 117–30 [8.2.2d]

Guillery RW (1989) Early monocular enucleations in ferrets produce a decrease of uncrossed and an increase of crossed retinofugal components: a possible model for the albino abnormality J Anat 164 73–84 [8.2.6a]

Guillery RW, Stelzner DJ (1970) The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus of the cat J Comp Neurol 139 413–22 [8.2.2d]

Guillery RW, Ombrellaro M, LaMantia AL (1985) The organization of the lateral geniculate nucleus and of the geniculocortical pathway that develops without retinal afferents Devel Brain Res 20 221–3 [6.3.5a]

(p.582) Guillery RW, Mason CA, Taylor JSH (1995) Developmental determinants at the mammalian optic chiasm J Neurosci 15 4727–37 [6.3.4b]

Guillery RW, Feig SL, Lozsádt DA (1998) Paying attention to the thalamic reticular nucleus TINS 21 28–32 [5.9.1]

Guillin O, Diaz J, Carroll P, et al. (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization Nature 411 86–9 [6.4.6b]

Guirao A, González C, Redondo M, et al. (1999) Average optical performance of the human eye as a function of age in a normal population Invest Ophthal Vis Sci 40 203–13 [7.6.4]

Guire ES, Lickey ME, Gordon B (1999) Critical period for the monocular deprivation effect in rats: assessment with sweep visually evoked potentials J Neurophysiol 81 121–8 [8.3.1a]

Guitton D (1991) Control of saccadic eye movements by the superior colliculus and basal ganglia In Vision and visual dysfunction Vol 8 (ed RHS Carpenter) pp 244–276 CRC Press, Boston [5.3.1]

Guitton D (1999) Gaze shifts in three-dimensional space: a closer look at the superior colliculus J Comp Neurol 413 77–82 [10.10.2e]

Güldenagel M, Ammermüller J, Feigenspan A, et al. (2001) Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36 J Neurosci 21 6036–44 [5.1.3]

Gulick WL, Lawson RB (1976) Human stereopsis Oxford University Press, New York [1.3, 2.10.5]

Gunderson VM, Yonas A, Sargent PL, et al. (1993) Infant macaque monkeys respond to pictorial depth Psychol Sci 4 93–8 [7.4.1e]

Guo HG, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels Nature 466 835–41 [6.4.2b]

Gupta A, Toledo-Rodriguez M, Silberberg G, Markram H (2004) Interneuron heterogeneity in neocortex In Excitatory-inhibitory balance: synapses, circuits, systems (Ed TK Hensch, M Fagiolini) pp 149–72. Plenum, New York [5.5.1e]

Gupta S, Kim SY, Artis S, et al. (2010) Histone methylation regulates memory formation J Neurosci 30 3589–99 [6.6.1a]

Gur M, Snodderly DM (1997) Visual receptive fields of neurons in primary visual cortex (V1) move in space with the eye movements of fixation Vis Res 37 257–65 [10.5.4a]

Gur M, Snodderly DM (2006) High response reliability of neurons in primary visual cortex (V1) of alert, trained monkeys Cereb Cortex 16 888–95 [4.3.1b]

Gutfreund Y, Yarom Y, Segev I (1995) Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling J Physiol 483 621–40 [4.3.4a]

Guthrie D (1945) A history of medicine Nelson, New York [2.3.1]

Gutierrez C, Cola MG, Seltzer B, Cusick C (2000) Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys J Comp Neurol 419 61–86 [5.5.4b, 5.9.1]

Gutiérrez-Igarza K, Fogarty DJ, Pérez-Cerdá F, et al. (1996) Localization of AMP- selective glutamate receptor subunits in the adult cat visual cortex Vis Neurosci 13 61–72 [5.5.2e]

Gütig R, Sompolinsky H (2006) The tempotron: a neuron that learns spike timing-based decisions Nat Neurosci 9 420–8 [4.3.5]

Guttman M, Amit I, Garber M, et al. (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in ammals Nature 458 223–7 [6.4.2b]

Guyton DL (2000) Dissociated vertical deviation: etiology, mechanism, and associated phenomena J Am Ass Ped Ophthal Strab 4 131–41 {9} [10.6.2]

Gwiazda J, Scheiman M, Mohindra I, Held R (1984) Astigmatism in children: changes in axis and amount from birth to six years Invest Ophthal Vis Sci 25 88–92 [7.3.1]

Gwiazda J, Bauer J, Held R (1989) Binocular function in human infants: correlation of stereoptic and fusion-rivalry discriminations J Ped Ophthal Strab 26 128–32 [7.6.1a]

Gwiazda J, Thorn F, Bauer J, Held R (1993) Myopic children show insufficient accommodative response to blur Invest Ophthal Vis Sci 34 690–4 [9.6.2a]

Gwiazda J, Bauer J, Thorn F, Held R (1997) Development of spatial contrast sensitivity from infancy to adulthood: psychophysical data Optom Vis Sci 74 785–9 [7.2.1a]

Gwiazda J, Grice K, Thorn F (1999) Response AC/A ratios are elevated in myopic children Ophthal Physiol Opt 19 173–9 [10.4.1, 6.3.1c]

Haase HJ (1980) Binoculare Korrektion Die Methodeik und Theorie von HJ Haas Willy Schrinkel, Düsseldorf [10.2.5a]

Hack I, Bancila M, Loulier K, et al. (2002) Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis Nat Neuroscience 5 939–46 [6.4.5a]

Hadjikhani N, Liu K, Dale AM, et al. (1998) Retinotopy and color sensitivity in human visual cortical area V8 Nat Neurosci 1 23–41 [5.8.3a]

Haenny PE, Schiller PH (1988) State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks Exp Brain Res 69 225–44 [5.6.8]

Hagemans KH, Wildt GJ von der (1979) The influence of stimulus width on the contrast sensitivity function in amblyopia Invest Ophthal 18 842–7 [8.4.2a]

Haggard P, Hutchinson K, Stein J (1995) Patterns of coordinated multi-joint movement Exp Brain Res 107 254–66 [4.5.6]

Hahm DE (1978) Early Hellenistic theories of vision and the perception of color In Studies in perception (ed PK Machamer, RG Turnbull) pp 61–85 Ohio State University Press, Columbus Ohio [2.1.3c, 2.1.4]

Hahm JO, Langdon RB, Sur M (1991) Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors Nature 351 568–70 [6.3.5b]

Hahm JO, Cramer KS, Sur M (1999) Pattern formation by retinal afferents in the ferret lateral geniculate nucleus: developmental regulation and the role of N-methyl-D-aspartate receptors J Comp Neurol 411 327–45 [6.4.4e]

Haig ND (1993) Why is the retina capable of resolving finer detail than the eye’s optical or neural systems? Spat Vis 7 257–73 [9.1.5]

Haijiang Q, Saunders J, Stone RW, Backus BT (2006) Demonstration of cue recruitment: change in visual appearance by means of Pavlovian conditioning Proc Nat Acad Sci 103 483–8 [4.5.7k]

Hain TC, Luebke AE (1990) Phoria adaptation in patients with cerebellar dysfunction Invest Ophthal Vis Sci 31 1394–7 [10.10.2d]

Hainline L (1993) Conjugate eye movements of infants In Early visual development normal and abnormal (ed K Simons) pp 47–79 Oxford University Press, New York [7.3.4]

Hainline L, Riddell PM (1995) Binocular alignment and vergence in early infancy Vis Res 35 3229–36 [7.3.6]

Hainline L, Turkel J, Abramov I, et al. (1984) Characteristics of saccades in human infants Vis Res 27 1771–80 [7.3.5]

Hainline L, Riddell PM, Grose-Fifer J, Abramov I (1992) Development of accommodation and vergence in infancy Behav Brain Res 49 33–50 [7.3.1]

Halaas S (1966) Aniseikonia – a survey of the literature Am J Optom Arch Am Acad Optom 43 505–27 [9.9.2b]

Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila Science 267 1788–92 [6.3.1b]

Hall TS (1972) Treatise of man René Descartes Harvard University Press, Cambridge MA [2.5.5]

Halloran MC, Kalil K (1994) Dynamic behaviors of growth cones extending in the corpus callosum of living cortical brain slices observed with video microscopy J Neurosci 14 2161–77 [6.4.3a, 6.4.6d]

Hämäläinen M, Hari R, Ilmoniemi RJ, et al. (1993) Magnetoencephalography. Theory, instrumentation and applications to noninvasive studies of the working human brain Rev Mod Phys 65 413–97 [5.4.3d]

Hamasaki DI, Flynn JT (1981) Amblyopic eyes have longer reaction times Invest Ophthal Vis Sci 21 846–53 [8.4.4a]

(p.583) Hamer RD, Norcia AM (1994) The development of motion sensitivity during the first year of life Vis Res 34 2387–402 [7.2.3b]

Hamer RD, Schneck ME (1984) Spatial summation in dark–adapted human infants Vis Res 27 77–85 [6.3.1a]

Hamer RD, Norcia AM, Tyler CW, Hsu–Winges C (1989) The development of monocular and binocular VEP acuity Vis Res 29 397–408 [7.2.1b]

Hamerly JR, Dvorak CA (1981) Detection and discrimination of blur in edges and lines J Opt Soc Am 71 448–52 [9.6.3]

Hamilton DB, Albrecht DG, Geisler WS (1989) Visual cortical receptive fields in monkey and cat: spatial and temporal phase transfer function Vis Res 29 1285–308 [5.6.4b]

Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters Nat Rev Neurosci 11 227–38 [5.5.1f]

Hamilton PV, Ardizzoni SC, Penn JS (1983) Eye structure and optics in the intertidal snail Litorina irrorata J Comp Physiol 152 435–45 [6.1.3]

Hammond JH (1981) The camera obscura Hilkger, Bristol [2.11.1b, 2.9.4]

Hammond JH (1987) The camera lucida Hilger, Bristol [2.9.4]

Hammond P (1979) Stimulus dependence of ocular dominance of complex cells in area 17 of the feline visual cortex Exp Brain Res 35 583–9 [5.7.2d]

Hammond P (1981) Non–stationarity of ocular dominance in cat striate cortex Exp Brain Res 42 189–95 [5.7.2d]

Hammond P, Fothergill LK (1991) Interocular comparison of length summation and end–inhibition in striate cortical neurones of the anaesthetized cat Proc Physiol Soc 446 232P [5.7.2b]

Hammond P, Kim JN (1996) Role of suppression in shaping orientation and direction selectivity of complex neurons in cat striate cortex J Neurophysiol 75 1163–76 [5.7.2e]

Hampton DR, Kertesz AE (1982) Human response to cyclofusional stimuli containing depth cues Am J Optom Physiol Opt 59 21–7 [10.7.2a]

Hampton DR, Kertesz AE (1983) Fusional vergence response to local peripheral stimulation J Opt Soc Am 73 7–10 [10.5.6]

Hanashima C, Shen L, Li SC, Lai E (2002) Brian Factor-1 controls the proliferation and differentiation of neocortical progenitor cells through independent mechanisms J Neurosci 22 6526–36 [6.4.5b]

Hanashima C, Li SC, Shen L, et al. (2004) Foxg1 suppresses early cortical cell fate Science 303 56–9 [6.4.5a]

Hanganu IL, Ben-Ari Y, Khazipov R (2006) Retinal waves trigger spindle bursts in the neonatal rat visual cortex J Neurosci 26 6728–36 [6.6.2]

Hänny P, von der Heydt R (1982) The effect of horizontal–plane environment on the development of binocular receptive fields of cells in cat visual cortex J Physiol 329 75–92 [7.5]

Hanover JL, Huang ZJ, Tonegawa S, Stryker MP (1999) Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex J Neurosci 19 RC40 [8.2.7f]

Hansen MJ, Dallal GE, Flanagan JG (2004) Retinal axon response to ephrin-As shows a graded, concentration-dependent transition from growth promotion to inhibition Neuron 42 717–30 [6.4.3c]

Hao H, Rivkees SA (1999) The biological clock of very premature primate infants is responsive to light Proc Natl Acad Sci 96 2426–9 [6.3.2b]

Hara N, Steffen H, Roberts DC, Zee DS (1998) Effects of horizontal vergence on the motor and sensory components of vertical fusion Invest Ophthal Vis Sci 39 2298–76 [10.6.1]

Harata NC, Choi S, Pyle JL, et al. (2006) Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods Neuron 49 243–56 [5.5.2b]

Harauzov A, Spolidoro M, Di Cristo G, et al. (2010) Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity J Neurosci 30 361–71 [8.2.7d]

Harker GS (1960) Two stereoscopic measures of cyclorotation of the eyes Am J Optom Arch Am Acad Optom 37 461–73 [10.7.2a]

Harris AE, Ermentrout GB, Small SL (1997) A model of ocular dominance column development by competition for trophic factor Proc Natl Acad Sci 94 9944–9 [6.7.2f]

Harris GG (1960) Binaural interactions of impulsive stimuli and pure tones J Acoust Soc Am 32 685–92 [4.5.7d]

Harris H (1999) The birth of the cell Yale University Press, New haven, CT [2.6.1]

Harris J (1775) A treatise of optics B White, London [2.10.3d, 2.10.3e]

Harris JP (1980) How does adaptation to disparity affect the perception of reversible figures Am J Psychol 93 445–57 [4.5.9c]

Harris L, Jenkin M (2002) Levels of perception New York, Springer [3.1.1a]

Harris P, MacFarlane A (1974) The growth of the effective visual field from birth to seven weeks J Exp Child Psychol 18 340–8 [7.3.5]

Harris WA (1984) Axonal pathfinding in the absence of normal pathways and impulse activity J Neurosci 4 1153–62 [6.4.3d]

Harsanyi K, Friedlander MJ (1997a) Transient synaptic potentiation in the visual cortex I cellular mechanisms J Neurophysiol 77 1269–83 [6.6.3]

Harsanyi K, Friedlander MJ (1997b) Transient synaptic potentiation in the visual cortex II developmental regulation J Neurophysiol 77 1284–93 [6.6.3]

Harter MR, Seiple WH, Salmon L (1973) Binocular summation of visually evoked responses to pattern stimuli in humans Vis Res 13 1433–46 [5.4.3c]

Hartig JK, Huerta MF, Hashikawa T, Lieshout DP (1991) Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species J Comp Neurol 304 275–306 [5.8.4b]

Hartline HK (1938) The response of single optic nerve fibres of the vertebrate eye to illumination of the retina Am J Physiol 121 400–15 [5.1.4a]

Hartline HK, Graham CH (1932) Nerve impulses from single receptors in the eye J Cell Comp Physiol 1 277–95 [5.1.4a]

Hartline PH, Hurley AC, Lange GD (1979) Eye stabilization by statocyst mediated oculomotor reflex in Nautilus J Comp Physiol A 132 117–26 [6.1.2]

Hartmann EE, Banks MS (1992) Temporal contrast sensitivity in human infants Vis Res 32 1163–8 [7.2.3a]

Hartmann EU, Succop A, Buck SL, et al. (1993) Quantification of monocular optokinetic nystagmus asymmetries and motion perception with motion-nulling techniques J Opt Soc Am A 10 1835–40 [8.4.5c]

Hartveit E, Ramberg SI, Heggelund P (1993) Brain stem modulation of spatial receptive field properties of single cells in the dorsal lateral geniculate nucleus of the cat J Neurophysiol 70 1644–55 [5.2.2d]

Haruta M, Hata Y (2007) Experience-driven axon retraction without binocular imbalance in developing visual cortex Curr Biol 17 37–42 [8.2.7c]

Harvey AR (1980) A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat J Physiol 302 507–34 [5.3.5]

Harvey CD, Svoboda K (2007) Locally dynamic synaptic learning rules in pyramidal neuron dendrites Nature 450 1195–200 [6.5.5]

Harvey LO (1978) Single representation of the visual midline in humans Neuropsychologia 16 601–10 [5.3.5]

Harwerth RS, Smith EL, Boltz RL, Crawford MLJ, Noorden GK von (1983a) Behavioral studies on the effect of abnormal early visual experience in monkeys: spatial modulation sensitivity Vis Res 23 1501–10 [8.4.2a]

Harwerth RS, Smith EL, Boltz RL, et al. (1983b) Behavioral studies on the effect of abnormal early visual experience in monkeys: temporal modulation sensitivity Vis Res 23 1511–17 [8.4.4b]

Harwerth RS, Smith EL, Okundaye OJ (1983c) Oblique effects vertical effects and meridional amblyopia in monkeys Exp Brain Res 53 142–50 [8.4.2b]

Harwerth RS, Smith EL, Crawford MLJ, Noorden GK von (1984) Effects of enucleation of the nondeprived eye on stimulus deprivation amblyopia in monkeys Invest Ophthal Vis Sci 25 10–25 [8.3.2]

(p.584) Harwerth RS, Smith EL, Duncan GC, et al. (1986a) Effects of enucleation of the fixating eye on strabismic amblyopia in monkey Invest Ophthal Vis Sci 27 276–54 [8.4.6a]

Harwerth RS, Smith EL, Duncan GC, et al. (1986b) Multiple sensitive periods in the development of the primate visual system Science 232 235–8 [8.3]

Harwerth RS, Smith EL, Crawford MLJ, Noorden GK von (1990) Behavioral studies of the sensitive period of development of visual functions in monkeys Behav Brain Res 41 179–98 [8.3.2]

Harwerth RS, Smith EL, Paul AD, et al. (1991) Functional effects of bilateral form deprivation in monkeys Invest Ophthal Vis Sci 32 2311–27 [8.1.2]

Harwerth RS, Smith EL, Siderov J (1995) Behavioral studies of local stereopsis and disparity vergence in monkeys Vis Res 35 1755–70 [10.5.3]

Harwerth RS, Smith EL, Crawford MLJ, Noorden GK von (1997) Stereopsis and disparity vergence in monkeys with subnormal binocular vision Vis Res 37 483–93 [8.3.2]

Hasebe H, Ohtsuki H, Kono R, Nakahira Y (1998) Biometric confirmation of the Hirschberg ratio in strabismic children Invest Ophthal Vis Sci 39 2782–5 [10.2.3b]

Hasebe H, Oyamada H, Kinomura S, et al. (1999) Human cortical areas activated in relation to vergence eye movements—a PET study NeuroImage 10 200–8 [10.10.3]

Haslwanter T (1995) Mathematics of three-dimensional eye rotations Vis Res 35 1727–39 [10.1.2d]

Hasson U, Hendler T, Ben Bashat D, Malach R (2001) Vase or face? A neural correlate of shape-selective grouping processes in the human brain J Cog Neurosci 13 744–53 [5.8.3c]

Hata Y, Stryker MP (1994) Control of thalamocortical afferent rearrangement by postsynaptic activity in developing visual cortex Science 295 1732–5 [8.2.7c]

Hata Y, Tsumoto T, Sato H, et al. (1988) Inhibition contributes to orientation selectivity in visual cortex of cat Nature 335 815–7 [5.6.2b]

Hata Y, Tsumoto T, Sato H, et al. (1993) Development of local interactions in cat visual cortex studied by cross–correlation analysis J Neurophysiol 69 40–56 [6.4.6b]

Hata Y, Tsumoto T, Stryker MP (1999) Selective pruning of more active afferents when cat visual cortex is pharmacologically inhibited Neuron 22 375–81 [8.2.7c]

Hata Y, Ohshima M, Ichisaka S, et al. (2000) Brain-derived neurotrophic factor expands ocular dominance columns in visual cortex in monocularly deprived and nondeprived kittens but does not in adult cats J Neurosci 20 RC57 [6.7.2d, 8.2.7f]

Hatanaka Y, Murakami F (2002) In vitro analysis of the origin, migratory behavior, and maturation of cortical pyramidal cells J Comp Neurol 454 1–14 [6.4.5b]

Hattori M, Osterfield M, Flanagan JG (2000) Regulated cleavage of a contact-mediated axon repellent Science 289 1360–5 [6.4.3c]

Hawken MJ, Parker AJ (1984) Contrast sensitivity and orientation selectivity in lamina IV of the striate cortex of old world monkeys Exp Brain Res 54 367–72 [5.6.1]

Hawken MJ, Shapley RM, Grosof DH (1996) Temporal-frequency selectivity in monkey visual cortex Vis Neurosci 13 477–92 [5.6.4b]

Hawken MJ, Blakemore C, Morley JW (1997) Development of contrast sensitivity and temporal-frequency selectivity in primate lateral geniculate nucleus Exp Brain Res 114 86–98 [6.3.5c]

Hay JC, Pick HL, Rosser E (1963) Adaptation to chromatic aberration by the human visual system Science 141 167–9 [9.6.5c]

Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones J Neurosci 20 5764–74 [6.4.5a, 6.4.5b]

Haydar TF, Ang E, Rakic P (2003) Mitotic spindle rotation and mode of cell division in the developing telencephalon Proc Natl Acad Sci 100 2890–5 [6.4.5b]

Haydon PG (2001) Glia: listening and talking Nat Rev Neurosci 2 185–93 [5.5.1f]

Hayes RM (1989) 3-D movies A history and filmography of stereoscopic cinema McFarland, London [2.11.4]

Haynes H, White BL, Held R (1965) Visual accommodation in human infants Science 148 528–30 [7.3.1]

He HY, Hodos W, Quinlan EM (2006) Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex J Neurosci 26 2951–5 [8.3.1b]

He JC, Burns SA, Marcos S (2000) Monochromatic aberrations in the accommodated human eye Vis Res 40 41–8 [9.1.1]

He S, Cavanagh P, Intriligator J (1996) Attentional resolution and the locus of visual awareness Nature 383 334–7 [4.8.3b]

He S, Cohen ER, Hu X (1998) Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect Curr Biol 8 1215–18 [5.8.4b]

Hearn D, Baker MP (1986) Computer graphics Prentice-Hall, Englewood Cliffs NJ [3.7.4]

Heath GG (1956a) Components of accommodation Am J Optom 33 569–79 [9.2.1]

Heath GG (1956b) The influence of visual acuity on accommodative responses of the eye Am J Optom Arch Am Acad Optom 33 513–24 [9.3.1]

Heath GG (1956c) Accommodative responses of totally color blind observers Am J Optom Arch Acad Optom 33 457–65 [9.6.1]

Heath G, Hofstetter HW (1952) The effect of orthoptics on the zone of binocular vision in intermittent exotropia – a case study Am J Optom Arch Am Acad Optom 29 12–31 [10.4.3c]

Hebb DO (1949) The organization of behavior Wiley, New York [4.3.4f, 6.5.1a, 8.2.5a]

Hebbard FW (1962) Comparison of subjective and objective measurements of fixation disparity J Opt Soc Am 52 706–12 [10.2.4d]

Hebbard FW (1964) Effect of blur on fixation disparity Am J Optom Arch Am Acad Optom 41 540–48 [10.2.4g]

Hecht H, van Doorn A, Koenderink JJ (1999) Compression of visual space in natural scenes and their photographic counterparts Percept Psychophys 61 1299–86 [4.7.2]

Hecht S, Mintz EU (1939) The visibility of single lines at various illuminations and the retinal basis of visual resolution J Gen Physiol 22 593–612 [3.1.2]

Hecht S, Schlaer S, Pirenne MH (1942) Energy, quanta, and vision J Gen Physiol 25 819–40 [5.1.5]

Heeger DJ (1992a) Normalization of cell responses in cat striate cortex Vis Neurosci 9 181–97 [4.2.8c, 5.6.4c]

Heeger DJ (1992b) Half-squaring in responses of cat striate cells Vis Neurosci 9 427–43 [5.5.3]

Heeger DJ (1999) Linking visual perception with human brain activity Curr Opin Neurobiol 9 474–9 [5.4.3f]

Heeley DW, Buchanan-Smith HM (1996) Mechanisms specialized for the perception of image geometry Vis Res 36 3607–27 [5.5.6c]

Hegde AN, DiAntonio A (2002) Ubiquitin and the synapse Nat Rev Neurosci 3 854–61 [6.4.3e, 6.5.1a]

Hegdé J, Van Essen DC (2000) Selectivity for complex shapes in primate visual area V2 J Neurosci 20 RC61 [5.8.2a]

Hegdé J, Van Essen DC (2003) Strategies of shape representation in macaque visual area V2 Vis Neurosci 20 313–28 [5.8.2a]

Heggelund P, Albus K (1978) Orientation selectivity of single cells in striate cortex of cat: the shape of orientation tuning curves Vis Res 18 1067–71 [5.6.2a]

Heider B, Meskenaite V, Peterhans E (2000) Anatomy and physiology of a neural mechanism defining depth order and contrast polarity at illusory contours Eur J Neurosci 12 4117–30 [5.6.7b]

Held R (1981) Acuity in infants with normal and anomalous visual experience In The development of perception: Psychobiological perspectives (ed RN Aslin, JR Roberts, MR Petersen) Vol 2 Academic Press, New York [7.2.2]

Held R (1991) Development of binocular vision and stereopsis In Vision and visual dysfunction Vol 9 Binocular vision (ed D Regan) pp 170–8 MacMillan, London [7.6.4]

Held R (1993) Two stages in the development of binocular vision and eye alignment In Early visual development, normal and abnormal (ed K Simmons) pp 250–57 Oxford University Press, New York [7.3.6]

(p.585) Held R, Bauer JA (1967) Visually guided reaching in infant monkeys after restricted rearing Science 155 718–20 [4.5.5b]

Held R, Leibowitz, HW, Teuber HL (1978) Handbook of sensory physiology, Volume I Perception Springer-Verlag, Heidelberg [1.3]

Held R, Birch EE, Gwiazda J (1980) Stereoacuity of human infants Proc Natl Acad Sci 77 5572–4 [7.2.1c, 7.6.1a]

Heller D (1988) History of eye movements In Eye movement research (ed G Lüer U Lass, J Shallo-Hoffmann) pp 37–54 Hogrefe, Toronto [2.10.2]

Heller J, Hertz JA, Kjaer TW, Richmond BJ (1995) Information flow and temporal coding in primate pattern vision J Comput Neurosci 2 175–93 [4.3.5]

Helmchen C, Rambold H, Fuhry L, Büttner U (1998) Deficits in vertical and torsional eye movements after uni- and bilateral muscimol inactivation of the interstitial nucleus of Cajal of the alert monkey Exp Brain Res 119 436–52 [10.10.4]

Helmholtz H von (1851) Beschreibung eines Augenspiegels zur Untersuchung der Netzhaut in lebenden Auge. Forstner. English translation by T. H. Shastrid The description of an ophthalmoscope, Cleveland Press 1916. [2.5.4]

Helmholtz H von (1855) Ueber die Accommodation des Auges Graefes Arch Ophthal 1, 1 [2.5.4, 9.2.3]

Helmholtz H von (1864) Uber den horopter Graefes Arch klin exp Ophthal 10 1–60 [2.10.4]

Helmholtz H von (1893) Popular lectures on scientific subjects (Translated by E Atkinson) Longmans Green, London [2.10.5]

Helmholtz H von (1909) Physiological optics Dover, New York 1962 (Translation by JPC Southall from the 3rd German edition of Handbuch der Physiologischen Optik) Vos Hamburg [2.11.4, 2.8.3, 3.6, 4.5.7f, 10.2.1, 10.7.1, 10.7.2b]

Helveston EM, Noorden GK von (1967) Microtropia Arch Ophthal 78 272–81 [10.2.4f]

Hemker L, Kavsek M (2010) The relative contribution of relative height, linear perspective, and texture gradients to pictorial depth perception in 7-month-old infants Perception 39 1476–90 [7.4.1e]

Hendricks JM, Holliday IE, Ruddock KH (1981) A new class of visual defect: spreading inhibition elicited by chromatic light stimuli Brain 104 813–40 [5.8.3a]

Hendrickson AE, Boothe R (1976) Morphology of the retina and dorsal lateral geniculate nucleus in dark–reared monkeys (Macaca nemestrina) Vis Res 16 517–21 [8.1.1a, 8.2.2d]

Hendrickson AE, Drucker D (1992) The development of parafoveal and mid-peripheral human retina Behav Brain Res 49 21–31 [6.3.2a]

Hendrickson AE, Kupfer C (1976) The histogenesis of the fovea in the macaque monkey Invest Ophthal Vis Sci 15 746–56 [6.3.2a]

Hendrickson AE, Tigges M (1985) Enucleation demonstrates ocular dominance columns in Old World macaque but not in New World squirrel monkey visual cortex Brain Res 333 340–4 [5.7.2f]

Hendrickson AE, Yuodelis C (1984) The morphological development of the human fovea Ophthalmology 91 603–12 [6.3.2a]

Hendrickson AE, Wilson JR, Ogren MP (1978) The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates J Comp Neurol 182 123–36 [5.7.2f]

Hendrickson AE, Movshon JA, Eggers HM, et al. (1987) Effects of early unilateral blur on the macaque’s visual system. II. Anatomical observations J Neurosci 7 1327–39 [8.2.4a]

Hendry SHC, Jones EG (1986) Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17 Nature 320 750–3 [8.2]

Hendry SHC, Kennedy MB (1986) Immunoreactivity for a cadmodulin-dependent protein kinase is selectively increased in macaque striate cortex after monocular deprivation Proc Natl Acad Sci 83 1536–40 [5.4.3a, 5.7.2a]

Hendry SHC, Reid RC (2000) The koniocellular pathway in primate vision Ann Rev Neurosci 23 127–53 [5.2.1]

Hendry SHC, Yoshioka T (1994) A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus Science 294 575–7 [5.2.1]

Hendry SHC, Huntsman MM, Vinuela A, et al. (1994) GABAA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood J Neurosci 14 2383–401 [5.4.3a, 5.7.2a]

Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes Nature 463 232–7 [6.5.1c]

Hennessy RT, Iida T, Shina K, Leibowitz HW (1976) The effect of pupil size on accommodation Vis Res 16 587–9 [9.5, 9.6.4b]

Henry GH (1991) Afferent inputs receptive field properties and morphological cell types in different laminae of the striate cortex In Vision and visual dysfunction Volume 4 The neural basis of visual function (ed AG Leventhal) pp 223–270 MacMillan, London [5.5.5]

Henry GH, Vidyasagar TR (1991) The evolution of visual pathways In The evolution of the eye and visual system (ed JR Cronly–Dillon, RL Gregory) pp 442–65 CRC Press, Boca Raton [6.3.5c]

Henry GH, Bishop PO, Coombs JS (1969) Inhibitory and sub–liminal excitatory receptive fields of simple units in cat striate cortex Vis Res 9 1289–96 [5.7.2e]

Hensch TK, Stryker MP (1996) Ocular dominance plasticity under metabotropic glutamate receptor blockade Science 272 554–57 [6.7.2b]

Hensch TK, Stryker MP (2004) Columnar architecture sculpted by GABA circuits in developing cat visual cortex Science 303 1678–81 [6.7.2e]

Hensch TK, Fagiolini M, Mataga N, et al. (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cortex Science 282 1504–8 [8.2.7d]

Henson DB (1978) Corrective saccades: effects of altering visual feedback Vis Res 18 63–7 [10.8.3a]

Henson DB, Dharamshi BG (1982) Oculomotor adaptation to induced heterophoria and anisometropia Invest Ophthal Vis Sci 22 234–40 [10.2.6b]

Henson DB, North RE (1980) Adaptation to prism–induced heterophoria Am J Optom Physiol Opt 57 129–37 [10.2.5a]

Henson DB, Williams DE (1980) Depth perception in strabismus Br J Ophthal 64 349–53 [10.2.2b]

Hepp K, van Opstal AJ, Straumann D, et al. (1993) Monkey superior colliculus represents rapid eye movements in a two-dimensional motor map J Neurophysiol 69 965–79 [10.1.2e]

Herbert S (2000) A history of pre-cinema London, Routledge [2.11.1a, 2.11.1d]

Hergueta S, Ward R, Lemire M, et al. (1992) Overlapping visual fields and ipsilateral retinal projections in turtles Brain Res 29 427–33 [5.3.3]

Hering E (1864) Allgemeine geometrische Auslösung des Horopterproblems In Beitrage zur Physiologie Part 4, pp 225–86 Engelmann, Leipzig [2.8.2, 2.8.3]

Hering E (1865) Die Gesetze der binocularen Tiefenwahrnehmung Arch für Anat Physiol Wissen Med 152–165 [2.10.1, 2.8.3]

Hering E (1868) Die Lehre vom Binocularen Sehen Engelmann, Leipzig. English Translation (ed B Bridgeman and L Stark) The theory of binocular vision Plenum, New York [10.8.1a]

Hering E (1879) Spatial sense and movements of the eye (Translated by CA Radde) Am Acad Optom, Baltimore 1942 [12.10.2]

Hering H, Sheng M (2003) Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis J Neurosci 17 11795–59 [6.4.4f]

Hermann JS, Samson CR (1967) Critical detection of the accommodative convergence to accommodation ratio by photosensor-oculograph Arch Ophthal 78 427–30 [10.4.1]

Hermans CO, Eakin RM (1974) Fine structure of the eyes of an alciopid polychaete, Vanadis tagensis (Annelida) Zoomorphol 79 245–67 [6.1.3]

Hernandez-Gonzalez A, Cavada C, Reinoso-Suárez F (1994) The lateral geniculate nucleus projects to the inferior temporal cortex in the macaque monkey Neuroreport 5 2993–6 [5.8.3b]

Heron G, Winn B (1989) Binocular accommodation reaction and response times for normal observers Ophthal Physiol Opt 9 176–83 [9.7.2c]

(p.586) Heron G, Dholakia S, Collins DE, McLaughlan H (1985) Stereoscopic threshold in children and adults Am J Optom Physiol Opt 62 505–15 [7.6.2]

Heron G, Charman WN, Gray LS (1999) Accommodation responses and ageing Invest Ophthal Vis Sci 40 2872–83 [7.3.1]

Heron G, Charman WN, Schor C (2001) Dynamics of the accommodation response to abrupt changes in target vergence as a function of age Vis Res 41 507–19 [7.3.1]

Herrera E, Brown L, Aruga J, et al. (2003) Zic2 patterns binocular vision by specifying the uncrossed retinal projection Cell 114 545–7 [6.3.4b]

Herrera E, Marcus R, Li S, Williams SE, et al. (2004) Foxd1 is required for proper formation of the optic chiasm Development 131 5727–39 [6.3.4b]

Hershberger W (1970) Attached-shadow orientation perceived as depth by chickens reared in an environment illuminated from below J Comp Physiol Psychol 73 407–11 [7.4.2d]

Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA (1980) Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis Proc Natl Acad Sci 7 1783–6 [6.4.3e]

Herz A, Sulzer B, Küne R, van Hemmen JL (1989) Hebbian learning reconsidered: representation of static and dynamic objects in associative nets Biol Cyber 60 457–67 [4.3.4f]

Herzog MH, Fahle (1997) The role of feedback in learning a vernier discrimination task Vis Res 37 2133–41 [4.9.2b]

Hesler J, Pickwell D, Gilchrist J (1989) The accommodative contribution to binocular vergence eye movements Ophthal Physiol Opt 9 379–84 [10.2.5b]

Hess DT, Edwards MA (1987) Anatomical demonstration of ocular segregation in the retinogeniculocortical pathway of the New World capuchin monkey (Cebus apella) J Comp Neurol 294 409–20 [5.7.2f]

Hess RF (1980) A preliminary investigation of neural function and dysfunction in amblyopia. I. Size-selective channels Vis Res 20 749–54 [8.4.3]

Hess RF, Anderson SJ (1993) Motion sensitivity and spatial undersampling in amblyopia Vis Res 33 881–96 [8.4.4c]

Hess RF, Baker CL (1984) Assessment of retinal function in severely amblyopic individuals Vis Res 27 1367–76 [8.4.1]

Hess RF, Bradley A (1980) Contrast perception above threshold is only minimally impaired in human amblyopia Nature 287 463–4 [8.4.2a]

Hess RF, Demanins R (1998) Contour integration in anisometropic amblyopia Vis Res 38 889–94 [8.4.3c]

Hess RF, Field DJ (1994) Is the spatial deficit in strabismic amblyopia due to loss of cells or an uncalibrated disarray of cells Vis Res 34 3397–406 [8.4.3]

Hess RF, Field DJ (1995) Contour integration across depth Vis Res 35 1699–711 [4.5.2b]

Hess RF, Holliday I (1992) The spatial localization deficit in amblyopia Vis Res 32 1319–39 [8.4.3]

Hess RF, Howell ER (1977) The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification Vis Res 17 1049–55 [8.4.2a]

Hess RF, Pointer JS (1985) Differences in the neural basis of human amblyopia: the distribution of the anomaly across the visual field Vis Res 25 1577–94 [8.4.5e, 8.4.6a]

Hess RF, Campbell FW, Greenhalgh T (1978) On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss Pflügers Arch ges Physiol 377 201–7 [8.4.3, 8.4.3c]

Hess RF, Campbell FW, Zimmern R (1980) Differences in the neural basis of human amblyopia: the effect of mean luminance Vis Res 20 295–305 [8.4.2a]

Hess RF, France TD, Tulunay-Keesey U (1981) Residual vision in humans who have been monocularly deprived of pattern stimulation in early life Exp Brain Res 44 295–311 [8.5.1]

Hess RF, Hayes A, Kingdom FAA (1997a) Integrating contours within and through depth Vis Res 37 691–6 [4.5.2b]

Hess RF, McIlhagga W, Field DJ (1997b) Contour integration in strabismic amblyopia: the sufficiency of an explanation based on positional uncertainty Vis Res 37 3145–61 [8.4.3c]

Hess RF, Demanins R, Bex PJ (1997c) A reduced motion aftereffect in strabismic amblyopia Vis Res 37 1303–11 [8.4.4c]

Hess RF, Wang YZ, Demanins R, et al. (1999) A deficit in strabismic amblyopia for global shape detection Vis Res 39 901–14 [8.4.2a, 8.4.3c]

Hess RF, Dakin Sc, Tewfik M, Brown B (2001) Contour interaction in amblyopia: scale selection Vis Res 41 2285–96 [8.4.3b]

Hess, RF, Pointer JS, Simmers A, Bex P (2003) Border distinctness in amblyopia Vis Res 43 2255–64 [8.4.2a, 9.6.5a]

Hetherington PA, Swindale NV (1999) Receptive field and orientation scatter studied by tetrode recordings in cat area 17 Vis Neurosci 16 637–52 [5.7.1]

Heuer H, Owens DA (1989) Vertical gaze direction and the resting posture of the eyes Perception 18 363–77 [10.2.1]

Heuer H, Dunkel–Abels G, Brüwer M, et al. (1988) The effects of sustained vertical gaze deviation on the resting state of the vergence system Vis Res 28 1337–44 [10.2.1]

Heumann D, Rabinowicz T (1982) Postnatal development of the visual cortex of the mouse after enucleation at birth Exp Brain Res 46 99–106 [8.1.4a]

Heuser J (2003) My little spontaneous blips Science 300 1248 [2.6.1]

Hevner RF, Wong-Riley MTT (1993) Mitochrondrial and nuclear gene expression for cytochrome oxidase subunits are disproportionately regulated by functional activity in neurones J Neurosci 13 1805–19 [8.2.4b]

Heynen AJ, Yoon BJ, Liu CH, et al. (2003) Molecular mechanism for loss of cortical responsiveness following brief monocular deprivation Nat Neurosci 6 854–62 [8.2.7e]

Heywood CA, Cowey A, Necombe F (1991) Chromatic discrimination in a cortically colour blind observer Eur J Neurosci 3 802–12 [5.8.3a]

Heywood CA, Gadotti A, Cowey A (1992) Cortical area V4 and its role in the perception of color J Neurosci 12 4056–65 [5.8.3a]

Hickey TL (1977) Postnatal development of the human lateral geniculate nucleus: relationship to a critical period for the visual system Science 198 836–8 [6.3.5a]

Hickey TL, Spear PD, Kratz AE (1977) Quantitative studies of cell size in the cat’s dorsal lateral geniculate nucleus following visual deprivation J Comp Neurol 172 295–82 [8.2.2b]

Hietanen JK, Perrett DI (1996) Motion sensitive cells in the macaque superior temporal polysensory area: response discrimination between self-generated and externally generated pattern motion Behav Brain Res 76 155–67 [5.8.4]

Higginbotham HR, Gleeson G (2007) The centrosome in neuronal development TINS 30 276–83 [6.4.5b]

Higgins KE, Daugman JG, Mansfield RJW (1982) Amblyopic contrast sensitivity: insensitivity to unsteady fixation Invest Ophthal Vis Sci 23 113–20 [8.4.2a]

Highman VN (1977) Stereopsis and aniseikonia in unipolar aphakia Brit J Ophthal 61 30–33 [9.9.1c]

Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M (2000) Expression of GAP-43 and SCG10 mRNAs in lateral geniculate nucleus of normal and monocularly deprived macaque monkeys J Neurosci 20 6030–8 [8.2.7f]

Hill DK, Keynes RD (1949) Opacity changes in stimulated nerve J Physiol 108 279 [5.4.3a]

Hillis JM, Ernst MO, Banks MS, Landy MS (2002) Combining sensory information: mandatory fusion within, but not between, senses Science 298 1627–30 [4.5.7b]

Hine T, Thorn F (1987) Compensatory eye movements during active head rotation for near targets: effects of imagination rapid head oscillation and vergence Vis Res 27 1639–57 [10.9.1]

Hinkle DA, Connor CE (2002) Three-dimensional orientation tuning in macaque area V4 Nat Neurosci 5 665–70 [5.8.3a]

Hinton GE (1987) The horizontal-vertical delusion Perception 16 667–80 [4.6.3g]

(p.587) Hinton GE (1989) Connectionist learning procedures Artificial Intelligence 40 185–234 [3.4]

Hinton GE, McClelland JL, Rumelhart DE (1986) Distributed representations In Parallel distributed processing (ed DE Rumelhart, JL McClelland) Vol 1 pp 77–109 MIT Press, Boston [4.5.4a]

Hirabayashi Y, Gotoh Y (2010) Epigenetic control of neural precursor cell fate during development Nat Rev 11 377–88 [6.6.1a]

Hirrlinger J, Hülsmann S, Kirchoff F (2004) Astroglial processes show spontaneous motility at active synaptic terminals in situ Eur J Neurosci 20 2235–9 [6.4.4c]

Hirsch HVB, Spinelli DN (1971) Modification of the distribution of receptive field orientation in cats by selective visual exposure during development Exp Brain Res l 3 509–27 [6.6.4b]

Hirsch J, Curcio CA (1989) The spatial resolution capacity of the human foveal retina Vis Res 29 1095–101 [9.1.5]

Hirsch J, Hylton R (1982) Limits of spatial–frequency discrimination as evidence of neural interpolation J Opt Soc Am 72 1367–74 [3.1.4b]

Hirsch J, Hylton R (1984) Quality of the primate photoreceptor lattice and limits of spatial vision Vis Res 24 347–55 [9.1.5]

Hirsch JA, Gilbert CD (1991) Synaptic physiology of horizontal connections in the cat’s visual cortex J Neurosci 11 1800–9 [5.5.6a]

Hirsch JA, Gilbert CD (1993) Long–term changes in synaptic strength along specific intrinsic pathways in the cat visual cortex J Physiol 461 277–62 [5.5.6c, 5.6.8, 6.4.6b]

Hirsch JA, Alonso JM, Reid RC, Martinez LM (1998) Synaptic integration in striate cortical simple cells J Neurosci 18 9517–28 [5.6.2b]

Hirsch JA, Martinez LM, Pillai C, et al. (2003) Functionally distinct inhibitory neurons at the first stage of visual cortical processing Nat Neurosci 6 1300–8 [5.6.2b]

Hirschberg J (1982–92) The history of ophthalmology 11 Volumes (Translated by FC Blodi, JP Bonn) Wayenborgh [2.10.5]

Hitchcock PF, Hickey TL (1980) Ocular dominance columns: evidence for their presence in humans Brain Res 82 176–9 [5.7.2a]

Hochberg J, Brooks V (1960) The psychophysics of form: reversible-perspective drawings of spatial objects Am J Psychol 73 337–54 [4.5.9e]

Hochstein S, Ahissar M (2002) View from the top: hierarchies and reverse hierarchies in the visual system Neuron 36 791–804 [5.8.5b]

Hockney D (2006) Secret knowledge. Rediscovering the lost techniques of the old masters Thames and Hudson, London [2.9.4]

Hodgkin AL, Huxley AF (1939) Action potentials recorded from inside a nerve fibre Nature 144 710–12 [2.6.1]

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve J Physiol 117 500–44 [2.6.1, 4.2.1]

Hoekstra J, Van der Groot DPJ, Van den Brink G, Bilsen FA (1974) The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns Vis Res 14, 365–8 [8.4.2a]

Hofer H, Carroll J, Neitz M, Williams DR (2005) Organization of the trichromatic cone mosaic J Neurosci 25 9669–79 [5.1.2a]

Hofer MM, Barde YA (1988) Brain-derived neurotrophic factor prevents neuronal death in vivo Nature 331 291–2 [6.7.2d]

Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M (2006) Prior experience enhances plasticity in adult visual cortex Nat Neurosci 9 127–32 [8.3.1b]

Hoffman DM, Girshick AR, Akeley K, Banks MS (2008) Vergence-accommodation conflicts hinder visual performance and cause visual fatigue J Vis 8(3) Article 33 [10.4.3d]

Hoffman WC (1966) The Lie algebra of visual perception J Math Psychol 3 65–98 [3.7.1, 3.7.5, 4.7.1]

Hoffmann J, Sebald A (2007) Eye vergence is susceptible to the hollow-face illusion Perception 36 461 – 70 [10.3.2c]

Hoffmann KP, Lippert P (1982) Recovery of vision with the deprived eye after the loss of the non-deprived eye in cats Hum Neurobiol 1 45–8 [8.2.3e, 8.4.6a]

Hoffmann KP, Schoppmann A (1984) Shortage of binocular cells in area 17 of visual cortex in cats with congenital strabismus Exp Brain Res 55 470–82 [8.2.3a]

Hoffmann KP, Sherman SM (1974) Effects of early monocular deprivation on visual input to cat superior colliculus J Neurophysiol 37 1276–86 [8.2.2f]

Hofman MA (1985) Size and shape of the cerebral cortex in mammals. I. The cortical surface Brain Behav Evol 27 28–40 [6.4.2a]

Hofman MA (1989) On the evolution and geometry of the brain in mammals Prog Neurobiol 32 137–58 [6.4.2a]

Hofmann FB, Bielschowsky A (1900) über die der Willkür entzogenen Fusionsbewegungen der Augen Pflügers Arch ges Physiol 80 1–40 [10.2.4, 10.7.2c]

Hofstetter HW (1945) The zone of clear single binocular vision Am J Optom Arch Am Acad Optom 22 301–33 and 361–84 [10.4.1, 10.4.3c]

Hofstetter HW (1983) Graphical analysis In Vergence eye movements: Basic and clinical aspects (ed CM Schor, KJ Ciuffreda) pp 439–64 Butterworth-Heinemann, Boston [10.4.3c]

Hofstetter HW, Bertsch JD (1976) Does stereopsis change with age? Am J Optom Physiol Opt 53 664–7 [7.6.4]

Hohmann CF, Berger-Sweeney J (1998) Cholinergic regulation of cortical development and plasticity Perspectives in Developmental Neurobiology 5 401–25 [6.4.7b]

Holekamp TF, Tutaga D, Holy TE (2008) Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy Neuron 57 861–72 [5.4.1b]

Holländer H, Vanegas H (1977) The projection from the lateral geniculate nucleus onto the visual cortex in the cat A quantitative study with horseradish-peroxidase J Comp Neurol 173 519–36 [5.5.5]

Hollmann M, Heinemann S (1994) Cloned glutamate receptors Ann Rev Neurosci 17 31–108 [5.5.2c]

Holmes EJ, Gross CG (1984) Effects of inferior temporal lesions on discrimination of stimuli differing in orientation J Neurosci 4 3063–8 [5.8.3b]

Holmes G (1918) Disturbances of vision by cerebral lesions Brit J Ophthal 2 353–84 [2.6.2]

Holmes OW (1859) The stereoscope and the stereograph Atlantic Monthly 3 738–48. Also (1861) 5 13–29; (1863) 7 1–15 [2.11.3]

Holopigian K, Blake R (1983) Spatial vision in strabismic cats J Neurophysiol 50 287–96 [8.2.3f]

Holopigian K, Blake R, Greenwald M (1986) Selective losses in binocular vision in anisometropic amblyopes Vis Res 29 621–30 [8.5.1]

Holopigian K, Blake R, Greenwald MJ (1988) Clinical suppression and amblyopia Invest Ophthal Vis Sci 29 444–51 [8.5.2]

Hölscher C (1997) Nitric oxide the enigmatic neuronal messenger: its role in synaptic plasticity TINS 20 298–303 [6.5.3]

Holt CE, Harris WA (1993) Position guidance and mapping in the developing visual system J Neurobiol 27 1400–22 [6.3.3a]

Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain Nat Rev Neurosci 10 647–58 [6.4.4a]

Honda H, Findlay JM (1992) Saccades to targets in three–dimensional space: dependence of saccadic latency on target location Percept Psychophys 52 167–74 [10.8.2c]

Hooge ITC, van den Berg AV (2000) Visually evoked cyclovergence and extended Listing’s law J Neurophysiol 83 2757–75 [10.1.2d]

Hooke R (1665) Micrographia Martyn and Allestry, London [2.6.1]

Hooten K, Myers E, Worrall R, Stark L (1979) Cyclovergence: the motor response to cyclodisparity Graefes Arch klin exp Ophthal 210 65–8 [10.7.2d]

Hopf JM, Luck SJ, Boelmans K, et al. (2006) The neural site of attention matches the spatial scale of perception J Neurosci 26 3532–40 [5.9.2c]

Hopkins AA (1898) Magic. Stage illusions, special effects and trick photography Reprinted by Dover, New York, 1976 [2.11.1b]

Horch HW, Katz LC (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons Nat Neurosci 5 1177–84 [6.4.7b]

Horng JL, Semmlow JL, Hung GK, Ciuffreda KJ (1998a) Initial component control in disparity vergence: A model-based study IEEE Tr Biomed Engin 45 279–57 [10.5.11]

(p.588) Horng JL, Semmlow JL, Hung GK, Ciuffreda KJ (1998b) Dynamic asymmetries in disparity convergence eye movements Vis Res 38 2761–8 [10.5.11, 10.8.2c]

Horridge GA (1980) Review lecture: Apposition eyes of large diurnal Insects as organs adapted to seeing Proc Roy Soc B 207 287–309 [6.1.4]

Horsten GPM, Winkelman JE (1962) Electrical activity of the retina in relation to histological differentiation in infants born prematurely and at full term Vis Res 2 299–76 [7.2.3a]

Horton JC (1984) Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex Philos Tr R Soc B 304 199–253 [5.6.6, 6.7.1]

Horton JC, Hedley-White ET (1984) Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex Philos Tr R Soc B 304 255–72 [5.7.2a, 8.2.4b]

Horton JC, Hocking DR (1996a) Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys J Neurosci 16 7228–39 [5.7.2b]

Horton JC, Hocking DR (1996b) Anatomical demonstration of ocular dominance in striate cortex of the squirrel monkey J Neurosci 16 5510–22 [5.7.2f]

Horton JC, Hocking DR (1996c) An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience J Neurosci 16 1791–1807 [6.7.1, 3]

Horton JC, Hocking DR (1996d) Pattern of ocular dominance columns in human striate cortex in strabismic amblyopia Vis Neurosci 13 787–95 [8.2.4a]

Horton JC, Hocking DR (1997) Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex J Neurosci 17 3684–709 [8.3.2]

Horton JC, Hocking DR (1998a) Monocular core zones and binocular strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity J Neurosci 18 5433–55 [5.6.6]

Horton JC, Hocking DR (1998b) Effect of early monocular enucleation upon ocular dominance columns and cytochrome oxidase activity in monkey and human visual cortex Vis Neurosci 15 289–303 [5.7.2d, 8.3.2]

Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of the macaque monkey Nature 292 762–4 [5.6.6]

Horton JC, Stryker MP (1993) Amblyopia induced by anisometropia without shrinkage of ocular dominance columns in human striate cortex Proc Natl Acad Sci 90 5494–8 [8.2.4a]

Horton JC, Dagi LR, McCrane EP, de Monasterio FM (1990) Arrangement of ocular dominance columns in human visual cortex Arch Ophthal 108 1025–31 [5.7.2a]

Horton JC, Hocking DR, Kiorpes L (1997) Pattern of ocular dominance columns and cytochrome oxidase in a macaque monkey with naturally occurring anisometropic amblyopia Vis Neurosci 14 681–9 [8.2.4a]

Horton JC, Hocking DR, Adams DL (1999) Metabolic mapping of suppression scotomas in striate cortex of macaques with experimental strabismus J Neurosci 15 7111–29 [8.2.4b]

Horwood AM, Riddell PM (2008) The use of cues to convergence and accommodation in naive, uninstructed participants Vis Res 48 1613–24 [10.5]

Hosoba M, Bando T, Tsukahara N (1978) The cerebellar control of accommodation of the eye in the cat Brain Res 153 495–505 [9.2.3]

Hosoya T, Baccus SA, Meister M (2005) Dynamic predictive coding by the retina Nature 436 71–77 [5.1.4f]

Hotta T, Kamena K (1963) Interactions between somatic and visual or auditory responses in the thalamus of the cat Exp Neurol 8 1–13 [5.2.2d]

Houck MR, Hoffman JE (1986) Conjunction of color and form without attention. Evidence from an orientation-contingent color aftereffect J Exp Psychol HPP 12 186–99 [4.5.4a]

Household GA, Smith LMH (1997) To catch a sunbeam. Victorian reality through the magic lantern Michael Joseph, London [2.11.1b]

Houston CA, Cleary M, Dutton GN, McFadzean RM (1998) Clinical characteristics of microtropia--is microtropia a fixed phenomenon? Brit J Ophthal 82 219–27 [10.2.2e]

Houtman WA, van der Pol BAE (1982a) Fusional movements by peripheral retinal stimulation Graefes Arch klin exp Ophthal 218 218–20 [10.6.3b]

Houtman WA, van der Pol BAE (1982b) Fixation disparity in vertical vergence Ophthalmologica 185 220–5 [10.6.4]

Houtman WA, Roze JH, Scheper W (1981) Vertical vergence movements Doc Ophthal 51 199–207 [10.6.4]

Howard IP (1961) An investigation of a satiation process in the reversible perspective of a revolving skeletal cube Quart J Exp Psychol 13 19–33 [4.5.7e, 4.5.7f]

Howard IP (1974) Proposals for the study of adaptation to anomalous schemata Perception 3 497–513 [4.5.9e, 4.6.3a]

Howard IP (1978) Recognition and knowledge of the water-level principle Perception 7 151–60 [4.6.3g]

Howard IP (1982) Human visual orientation Wiley, Chichester [2.5.4, 4.2.8b, 4.5.6c, 5.6.2a, 7.2.2, 8.4.2b]

Howard IP (1986) The vestibular system In Handbook of perception and performance (ed KR Boff, L Kaufman, JP Thomas) Chap 11 Wiley, New York [10.1.1, 10.9.1]

Howard IP (1991) Image cyclorotation, cyclovergence and perceived slant SAE Technical Paper Series 911392 [10.7.5a]

Howard IP (1993) The optokinetic system In The vestibulo–ocular reflex nystagmus and vertigo (ed JA Sharpe, HO Barber) pp 163–84 Raven Press, New York [10.1.1]

Howard IP (1996) Alhazen’s neglected discoveries of visual phenomena Perception 25 1203–18 [2.2.4d]

Howard IP (1997a) Interactions within and between the spatial senses J Vestib Res 7 311–45 [4.5.7l]

Howard IP (1997b) Seeing in reverse Nature 389 235–6 [10.5.10c]

Howard IP, Evans J (1963) The measurement of eye torsion Vis Res 3 447–55 [10.7.2d]

Howard IP, Howard A (1994) Vection; the contribution of absolute and relative visual motion Perception 23 745–51 [4.8.3c]

Howard IP, Kaneko H (1994) Relative shear disparities and the perception of surface inclination Vis Res 34 2505–17 [10.7.5c]

Howard IP, Ohmi M (1984) The efficiency of the central and peripheral retina in driving human optokinetic nystagmus Vis Res 27 969–76 [10.7.5b]

Howard IP, Rogers BJ (1995) Binocular vision and stereopsis Oxford University Press, New York [1.3]

Howard IP, Wade N (1996) Ptolemy on binocular vision Perception 25 1189–203 [2.10.1]

Howard IP, Zacher JE (1991) Human cyclovergence as a function of stimulus frequency and amplitude Exp Brain Res 85 445–50 [10.7.3a]

Howard IP, Bergström SS, Ohmi M (1990) Shape from shading in different frames of reference Perception 19 523–30 [3.1.1h, 7.4.2d]

Howard IP, Ohmi M, Sun L (1993) Cyclovergence: a comparison of objective and psychophysical measurements Exp Brain Res 97 349–55 [10.7.2c]

Howard IP, Sun L, Shen X (1994) Cycloversion and cyclovergence: the effects of the area and position of the visual display Exp Brain Res 100 509–14 [10.7.5b]

Howard IP, Allison RS, Zacher JE (1997) The dynamics of vertical vergence Exp Brain Res 116 153–9 [10.6.4]

Howard IP, Fang X, Allison RS, Zacher JE (2000) Effects of stimulus size and eccentricity on horizontal and vertical vergence Exp Brain Res 130 124–32 [10.5.5a, 10.5.6, 10.6.3b]

Howarth PA, Bradley A (1986) The longitudinal chromatic aberration of the human eye, and its correction Vis Res 26 361–6 [9.1.2a]

Howe E (1972) The magicians of the Golden Dawn Routledge and Kegan Paul, London [2.4.1]

(p.589) Howell ER, Hess RF (1978) The functional area for summation to threshold for sinusoidal gratings Vis Res 18 369–74 [8.4.2a]

Howell ER, Mitchell DE, Keith CG (1983) Contrast thresholds for sign gratings of children with amblyopia Invest Ophthal Vis Sci 27 782–7 [8.4.3b]

Howland HC (1991) Determination of ocular refraction In Vision and visual dysfunction Vol 1 Visual optics and instrumentation (ed WN Charman) pp 399– 414 MacMillan, London [9.2.4c]

Howland HC (1993) Early refractive development In Early visual development, normal and abnormal (ed K Simons) pp 5–13 Oxford University Press, New York [6.3.1c]

Howland HC, Howland B (1974) Photorefraction: a technique for the study of refractive state at a distance J Opt Soc Am 64 270–9 [7.3.1]

Howland HC, Howland B (1977) A subjective method for the measurement of monochromatic aberrations of the eye J Opt Soc Am 67 1508–18 [9.1.1]

Howland HC, Howland M (2008) A standard nomenclature for the axes and planes of vertebrate eyes Vis Res 48 1926–7 [, 1.2]

Howland HC, Sayles N (1984) Photorefractive measurements of astigmatism in infants and young children Invest Ophthal Vis Sci 25 93–102 [7.3.1]

Howland HC, Dobson V, Sayles N (1987) Accommodation in infants as measured by photorefraction Vis Res 27 2141–52 [7.3.1]

Hoyt CS, Stone RD, Fromer C (1981) Monocular axial myopia associated with neonatal eyelid closure in human infants Am J Ophthal 91 197–200 [6.3.1c]

Hu X, Viesselmann, Nam CS, et al. (2008) Activity-dependent dynamic microtubule invasion of dendritic spines J Neurosci 28 13094–105 [6.4.3a]

Huang B, Jones AS, Brandenburg B, Zhuang X (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution Nature Methods 5 1047–52 [5.4.1b]

Huang S, Gu Y, Quinlan EM, Kirkwood A (2010) A refractory period for rejuvenating GABAergic synaptic transmission and ocular dominance plasticity with dark exposure J Neurosci 30 1636–42 [8.3.1b]

Huang ZJ, Kirkwood A, Pizzorusso T, et al. (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse cortex Cell 98 739–55 [6.4.7b]

Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s visual cortex J Physiol 148 574–91 [2.10.5, 5.7.2]

Hubel DH, Wiesel TN (1962) Receptive fields binocular interaction and functional architecture in the cat’s visual cortex J Physiol 160 106–54 [2.10.5, 5.7.2, 5.7.2b]

Hubel DH, Wiesel TN (1963) Receptive fields of cells in striate cortex of very young visually inexperienced kittens J Neurophysiol 26 994–1002 [6.7.1]

Hubel DH, Wiesel TN (1965) Binocular interaction in striate cortex of kittens reared with artificial squint J Neurophysiol 28 1041–59 [8.2.3a, 8.2.3d, 8.2.5b]

Hubel DH, Wiesel TN (1967) Cortical and callosal connections concerned with the vertical meridian in the cat J Neurophysiol 30 1561–73 [5.3.5]

Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex J Physiol 195 215–43 [5.5.3, 5.7.2, 5.7.2b]

Hubel DH, Wiesel TN (1969) Anatomical demonstration of columns in the monkey striate cortex Nature 221 747–50 [5.4.1a, 5.7.2a]

Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens J Physiol 206 419–36 [8.3.1a]

Hubel DH, Wiesel TN (1974a) Uniformity of monkey striate cortex: a parallel relationship between field size scatter and magnification factor J Comp Neurol 158 295–306 [5.5.4c, 5.7.2b]

Hubel DH, Wiesel TN (1974b) Sequence regularity and geometry of orientation columns in the monkey striate cortex J Comp Neurol 158 297–93 [5.7.1]

Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex Proc R Soc B 198  l–59 [5.5.3, 5.7.2c]

Hübener M, Shoham D, Grinvald A, Bonhoeffer T (1997) Spatial relationships among three columnar systems in cat area 17 J Neurosci 17 9270–84 [5.7.1]

Huber AB, Kolodkin AL, Ginty DD, Cloutier JF (2003) Signaling at the growth cone Ann Rev Neurosci 26 509–63 [6.4.3]

Huber KM, Kayser MS, Bear MF (2000) Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression Science 288 1254–7 [6.4.4f]

Huberman AD, Wang G, Liets LC, et al. (2003) Eye-specific retinogeniculate segregation independent of normal neuronal activity Science 300 994–8 [6.3.5b]

Huberman AD, Dehay C, Berland M, et al. (2005a) Early and rapid targeting of eye-specific axonal projections to the dorsal lateral geniculate nucleus in the fetal macaque J Neurosci 25 4014–23 [6.3.5a]

Huberman AD, Murray KD, Warland DK, et al. (2005b) Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus Nat Neurosci 8 1013–21 [6.3.5a]

Huberman AD, Speer CM, Chapman B (2006) Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in V1 Neuron 52 247–54 [6.7.1]

Hubin N, Noethe L (1993) Active optic, adaptive optics, and laser stars Science 262 1390–4 [9.6.5a]

Hudspeth AJ (1989) How the ear’s works work Nature 341 397–404 [4.2.1]

Hughes A (1972) Vergence in the cat Vis Res 12 1961–94 [10.1.3a]

Hughes JT (1991) Thomas Willis 1621–1675, his life and work Royal Society of Medicine, London [2.6.2]

Huk AC, Heeger DJ (2002) Pattern-motion responses in human visual cortex Nat Neurosci 5 72–5 [5.8.4b]

Hultén KG (1952) A peep show by Carel Fabritius Art Quart 15 279–90 [2.9.5]

Humphrey AL, Hendrickson AE (1983) Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey J Neurosci 3 345–58 [5.7.2f]

Hung GK (1992a) Quantitative analysis of associated and disassociated phorias: linear and nonlinear static models IEEE Tr Biomed Engin 39 135–45 [10.2.4e]

Hung GK (1992b) Adaptation model of accommodation and vergence Ophthal Physiol Opt 12 319–29 [10.2.5b]

Hung GK (1997) Quantitative analysis of the accommodative convergence to accommodation ratio: linear and nonlinear static models IEEE Tr Biomed Engin 44 306–16 [10.4.1, 10.4.3b]

Hung GK (1998) Dynamic model of saccade-vergence interactions Med Sci Res 26 9–14 [10.8.2c]

Hung GK, Ciuffreda KJ (1988) Dual-mode behaviour in the human accommodation system Ophthal Physiol Opt 8 327–32 [9.7.2a, 9.7.2c]

Hung GK, Semmlow JL, Ciuffreda KJ (1983) Identification of accommodative vergence contribution to the near response using response variance Invest Ophthal Vis Sci 27 772–7 [10.4.1]

Hung GK, Semmlow JL, Ciuffreda KJ (1986) A dual–mode dynamic model of the vergence eye movement system IEEE Tr Biomed Engin BME– 33 1021–36 [10.5.11]

Hung GK, Wang T, Ciuffreda KJ, Semmlow JL (1989) Suppression of sensitivity to surround displacement during vergence eye movements Exp Neurol 105 300–5 [10.3.1]

Hung GK, Sun L, Semmlow JL, Ciuffreda KJ (1990) Suppression of sensitivity to change in target disparity during vergence eye movements Exp Neurol 110 291–7 [10.3.1]

Hung GK, Semmlow JL, Sun L, Ciuffreda KJ (1991) Vergence control of central and peripheral disparities Exp Neurol 113 202–11 [10.5.6]

Hung GK, Ciuffreda KJ, Semmlow JL, Horng JL (1994) Vergence eye movements under natural viewing conditions Invest Ophthal Vis Sci 35 3486–92 [10.5.8a]

Hung GK, Ciuffreda KJ, Rosenfield M (1996) Proximal contribution to a linear static model of accommodation and vergence Ophthal Physiol Opt 16 31–41 [10.3.2c]

(p.590) Hung GK, Zhu H, Ciuffreda KJ (1997) Convergence and divergence exhibit different response characteristics to symmetric stimuli Vis Res 37 1197–1205 [10.5.7, 10.5.8a]

Hung GK, Ciuffreda KJ, Khosroyani M, Jiang BC (2002) Models of accommodation In Models of the visual system (ed GK Hung, KJ Ciuffreda) pp 287–339. Academic Press, New York [9.2.3]

Hung LF, Crawford MLJ, Smith EL (1995) Spectacle lenses alter eye growth and the refractive status of young monkeys Nat Med 1 761–5 [6.3.1c]

Hupé JM, James AC, Payne BR, et al. (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurones Nature 394 784–7 [5.5.1b]

Hupé JM, James AC, Girard P, et al. (2001a) Feedback connections act on the early part of the responses in monkey visual cortex J Neurophysiol 85 134–145 [5.6.7c]

Hupé JM, James AC, Girard P, Bullier J (2001b) Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2 J Neurophysiol 85 146–63 [5.6.7c]

Hurvich LM (1981) Colour vision Sinauer, Sunderland, MA [3.1.4b]

Husi H, Ward MA, Choudhary JS, et al. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes Nat Neurosci 3 661–9 [6.4.1]

Hutson LD, Chien CB (2002) Pathfinding and error correction by retinal axons: the role of astray/robo2 Neuron 33 205–17 [6.3.4b]

Huttenlocher PR, de Courten C (1987) The development of synapses in striate cortex of man Hum Neurobiol 6 1–9 [6.4.5d]

Huxley JS (1932) Problems of relative growth Methuen, London [3.7.2d]

Huygens C (1690) Traité de la Lumiere Van der Aa, Leiden Trans by SP Thompson, Macmillan, London [2.5.4]

Hyman I (Ed) (1974) Brunelleschi in perspective Prentice-Hall, Englewood Cliffs, NJ [2.9.3]

Hyvärinen J (1982) Posterior parietal lobe of the primate brain Physiol Rev 62 1060–1129 [5.8.4e]

Hyvärinen J, Poranen A (1974) Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys Brain 97 673–92 [5.8.4e]

Hyvärinen J, Hyvärinen L, Linnankoski I (1981) Modification of parietal association cortex and functional blindness after binocular deprivation in young monkeys Exp Brain Res 42 1–8 [8.1.1b]

Ide CF, Fraser SE, Meyer RL (1983) Eye dominance columns from an isogenic double-nasal frog eye Science 221 292–5 [6.7.3e]

Ikeda H, Jacobson SG (1977) Nasal field loss in cats reared with convergent squint: behavioural studies J Physiol 270 367–81 [8.4.2a]

Ikeda H, Tremain KE (1979) Amblyopia occurs in retinal ganglion cells in cats reared with convergent squint without alternating fixation Exp Brain Res 35 559–82 [8.2.1]

Ikeda H, Wright MJ (1976) Properties of LGN cells in kittens reared with convergent squint: a neurophysiological demonstration of amblyopia Exp Brain Res 25 63–77 [8.2.1]

Ikeda H, Plant GT, Tremain KE (1977) Nasal field loss in kittens reared with convergent squint: neurophysiological and morphological studies of the lateral geniculate nucleus J Physiol 270 345–66 [8.2.2e]

Ikegaya Y, Le Bon-Jego M, Yuste R (2005) Large-scale imaging of cortical network activity with calcium indicators Neurosci Res 52 132–8 [5.4.3a]

Ikonomidou C, Bosch F, Miksa M, et al. (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain Science 283 70–4 [6.6.3]

Illing RB (1980) Axonal bifurcation of cat retinal ganglion cells as demonstrated by retrograde double labelling with fluorescent dyes Neurosci Lett 19 125–30 [5.3.4]

Illing RB, Wássle H (1981) The retinal projection to the thalamus in the cat: a quantitative investigation and a comparison with the retinotectal pathway J Comp Neurol 202 295–85 [5.3.1]

Imamizu H, Uno Y, Kawato M (1995) Internal representations of the motor apparatus: Implications from generalization in visuomotor learning J Exp Psychol HPP 21 1174–98 [4.5.6]

Imamura K, Kasamatsu T (1989) Interaction of noradrenergic and cholinergic systems in regulation of ocular dominance plasticity Neurosci Res 6 519–36 [8.2.7h]

Imamura K, Kasamatsu T (1991) Ocular dominance plasticity restored by NA infusion to aplastic visual cortex of anesthetized and paralyzed kittens Exp Brain Res 87 309–18 [8.2.7h]

Imamura K, et al. (1997) Reduced activity in the extrastriate cortex of individuals with strabismic amblyopia Neurosci Let 225 173–6 [8.2.4a]

Imamura K, Kasamatsu T, Shirokawa T, Ohashi T (1999) Restoration of ocular dominance plasticity mediated by adenosine 3’,5’ monophosphate in adult visual cortex Proc Roy Soc B 296 1507–16 [8.2.7h]

Imbert M, Buisseret P (1975) Receptive field characteristics and phasic properties of visual cortical cells in kittens reared with or without visual experience Exp Brain Res 22 25–36 [8.1.1c]

Inchingolo P, Accardo A, Pozzo SD, et al. (1996) Cyclopean and disconjugate adaptive recovery from post-saccadic drift in strabismic children before and after surgery Vis Res 36 2897–913 [10.2.2e]

Indow T, Watanabe T (1984) Parallel–alleys and distance–alleys on horopter plane in the dark Perception 13 165–82 [4.7.2]

Ingelstam E, Ragnarsson S (1972) Eye refraction examined by aid of speckle pattern produced by coherent light Vis Res 12 411–20 [9.2.4b]

Ingram RM, Walker C (1979) Refraction as a means of predicting squint or amblyopia in preschool siblings of children known to have these defects Br J Ophthal 63 238–42 [7.3.1]

Innocenti GM (1981) Growth and reshaping of axons in the establishment of visual callosal connections Science 212 827–7 [6.4.6d]

Innocenti GM, Frost DO (1979) Effects of visual experience on the maturation of the efferent system to the corpus callosum Nature 280 231–3 [6.4.6d, 8.2.3b]

Innocenti GM, Frost DO (1980) The postnatal development of visual callosal connections in the absence of visual experience or of the eyes Exp Brain Res 39 365–75 [6.4.6d, 8.1.1b]

Innocenti GM, Frost DO, Illes J (1985) Maturation of visual callosal connections in visually deprived kittens: a challenging critical period J Neurosci 5 255–67 [8.2.3b]

Inoue Y, Takemura A, Kawano K, et al. (1998) Dependence of short-latency ocular following and associated activity in the medial superior temporal area (MST) on ocular vergence Exp Brain Res 121 135–44 [10.9.2]

Inouye T (1909) Visual disturbances following gunshot wounds of the cortical visual area Translated by M Glickstein and M Fahle Brain 2000, 123 Supplement1–101 [2.6.2]

Iny K, Heynen AJ, Sklar E, Bear MF (2006) Bidirectional modifications of visual acuity induced by monocular deprivation in juvenile and adult rats J Neurosci 26 7368–74 [8.2.7b]

Irving EL, Robertson KM (1991) Monocular components of the fixation disparity curve Optom Vis Sci 68 117–29 [10.2.4d]

Irving EL, Robertson KM (1996) Influences of monocular image degradation on the monocular components of fixation disparity Ophthal Physiol Opt 16 329–35 [10.2.4d]

Isley MR, Rogers-Ramachandran DC, Shinkman PG (1990) Interocular torsional disparity and visual cortical development in the cat J Neurophysiol 64 1352–60 [7.5]

Issa NP, Trachtenberg JT, Chapman B, et al. (1999) The critical period for ocular dominance plasticity in the Ferret’s visual cortex J Neurosci 19 6965–78 [8.3.1a]

Issa NP, Trepel C, Stryker MP (2000) Spatial frequency maps in cat visual cortex J Neurosci 20 8504–14 [5.7.1]

Ito M, Gillbert CD (1999) Attention modulates contextual influences in the primary visual cortex of alert monkeys Neuron 22 593–604 [5.9.3a]

Ito M, Sanides D, Creutzfeldt OD (1977) A study of binocular convergence in cat visual cortex neurons Exp Brain Res 28 21–35 [5.7.2b]

Ito M, Tamura H, Fujita I, Tanaka K (1995) Size and position invariance of neuronal responses in monkey inferotemporal cortex J Neurophysiol 73 218–29 [5.8.3b]

(p.591) Ito M, Westheimer G, and Gilbert CD (1998) Attention and perceptual learning modulates contextual influences on visual perception Neuron 20 1191–7 [5.6.8]

Ittelson WH, Ames A (1950) Accommodation convergence and their relation to apparent distance J Psychol 30 43–62 [10.3.2b]

Ivanoff A (1949) Focusing wave-length for white light J Opt Soc Am 39 718 [9.8.2a]

Ivashina AI (1981) Aniseikonia for near vision with unilateral aphakia corrected by intraocular lenses Ann Ophthal 13 1309–11 [9.9.1c]

Ivins JP, Porrill J, Frisby JP (1999) Instability of torsion during smooth asymmetric vergence Vis Res 39 993–1009 [10.7.4]

Ivins WM (1973) On the rationalization of sight Da Capo Press, New York [2.9.3]

Iwai Y, Fagiolini M, Obata K, Hensch TK (2003) Rapid critical period induction by tonic inhibition in visual cortex J Neurosci 23 6695–702 [8.2.7d]

Jablonka E, Lamb MJ (2005) Evolution in four dimensions Boston, MA, MIT Press [6.6.1a]

Jacobs DS, Blakemore C (1988) Factors limiting the postnatal development of visual acuity in the monkey Vis Res 28 947–58 [7.2.1d]

Jacobs RJ, Smith G, Chan CDC (1989) Effect of defocus on blur thresholds and on thresholds of perceived change in blur: comparison of source and observer methods Optom Vis Sci 66 545–53 [9.6.3]

Jacobson LD, Gaska JP, Chen HW, Pollen DA (1993) Structural testing of multi-input linear-nonlinear cascade models for cells in macaque striate cortex Vis Res 33 609–29 [5.6.4c]

Jacobson M, Gaze RM (1965) Selection of appropriate tectal connections by regenerating optic nerve fibers in adult goldfish Exp Neurol 13 418–30 [6.7.3a]

Jacobson SG, Mohindra I, Held R (1981) Age of onset of amblyopia in infants with esotropia Doc Ophthal 30 210–23 [8.3.3]

Jacobson SG, Mohindra I, Held R (1982) Visual acuity in infants with ocular diseases Am J Ophthal 93 198–209 [7.2.1b]

Jagadeesh B, Gray CM, Ferster D (1992) Visually evoked oscillations of membrane potential in cells of visual cortex Science 257 552–4 [4.3.4c]

Jagadeesh B, Wheat HS, Kontsevich LL, et al. (1997) Direction selectivity of synaptic potentials in simple cells of the cat visual cortex J Neurophysiol 78 2772–89 [5.6.4c]

Jainta S, Hoorman J, Jaschinski W (2007) Objective and subjective measures of vergence step responses Vis Res 47 3238–46 [10.2.4b]

James TW, Crescitelli F, Loew ER, McFarland WN (1992) The eyespot of Euglena gracilis: a microspectrophotometric study Vis Res 32 1583–91 [6.1.2]

Jampel RS (1960) Convergence divergence pupillary reactions and accommodation of the eyes from faradic stimulation of the macaque brain J Comp Neurol 115 371–400 [10.10.3, 9.2.3]

Jampel RS (1967) Multiple motor systems in the extraocular muscles of man Invest Ophthal 6 288–93 [10.10.1, 10.10.2a]

Jampolsky A (1955) Characteristics of suppression in strabismus Arch Ophthal 54 683–96 [8.5.2, 10.2.2a]

Jampolsky A (1956) Esotropia and convergent fixation disparity of small degree: differential diagnosis and management Am J Ophthal 41 825–33 [10.2.4f]

Jampolsky A (1962) Management of exodeviations. In Strabismus. Symposium of the New Orleans Academy of Ophthalmology Mosby, St. Louis [10.2.4f]

Jampolsky A, Flom BC, Freid AN (1957) Fixation disparity in relation to heterophoria Am J Ophthal 43 97–106 [10.2.4e]

Janssen P, Vogels R, Orban GA (2000a) Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex Science 288 2054–6 [5.8.3b]

Jarvis CR, Xiong ZG, Plant JR, et al. (1997) Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons J Neurophysiol 78, 2363–71 [6.5.1c]

Jaschinski W (1997) Fixation disparity and accommodation as a function of viewing distance and prism load Ophthal Physiol Opt 17 327–39 [10.2.4e, 10.2.5b]

Jaschinski W (1998) Fixation disparity at different viewing distances and the preferred viewing distance in a laboratory near-vision task Ophthal Physiol Opt 18 30–39 [10.2.4e]

Jaschinski W (2001a) Methods for measuring the proximity-fixation-disparity curve Ophthal Physiol Opt 21 368–75 [10.2.4a]

Jaschinski W (2001b) Fixation disparity and accommodation for stimuli closer and more distant than oculomotor tonic positions Vis Res 41 923–33 [10.2.4e]

Jaschinski W, Koitcheva V, Heuer H (1998) Fixation disparity accommodation dark vergence and dark focus during inclined gaze Ophthal Physiol Opt 18 351–9 [10.2.4]

Jaschinski W, Bröde P, Griefahn B (1999) Fixation disparity and nonius bias Vis Res 39 669–77 [10.2.4b]

Jaschinski W, Jainta S, Hoormann J, Walper N (2007) Objective vs subjective measurements of dark vergence Ophthal Physiol Opt 27 85–92 [10.2.1, 10.2.4b]

Jaschinski W, Svede A, Jainta S (2008) Relation between fixation disparity and the asymmetry between convergent and divergent disparity step responses Vis Res 48 253–63 [10.2.4c]

Jaschinski-Kruza W (1990) Effects of stimulus distance on measurements of dark convergence Ophthal Physiol Opt 10 273–51 [10.2.1]

Jaschinski-Kruza W (1993) Fixation disparity at different viewing distances of a visual display unit Ophthal Physiol Opt 13 27–34 [10.2.4a]

Jaschinski–Kruza W (1994) Dark vergence in relation to fixation disparity at different luminance and blur levels Vis Res 34 1197–204 [10.2.4e]

Jaworski J, Kapitein LC, Gouveia SM, et al. (2009) Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity Neuron 61 85–100 [6.4.4f]

Jazayeri M, Movshon JA (2006) Optimal representation of sensory information by neural populations Nat Neurosci 9 690–6 [4.3.1b]

Jeffery G (1984) Retinal ganglion cell death and terminal field retraction in the developing rodent visual system Devel Brain Res 13 81–96 [6.3.4b]

Jeffery G (1989) Shifting retinal maps in the development of the lateral geniculate nucleus Devel Brain Res 46 187–96 [6.3.5a]

Jeffery G (1990) The topographic relationship between shifting binocular maps in the developing dorsal lateral geniculate nucleus Exp Brain Res 82 408–16 [6.3.4b, 6.3.5a]

Jeffery G (2001) Architecture of the optic chiasm and the mechanisms that sculpt its development Physiol Rev 81 1393–414 [6.3.4b]

Jeffery G, Perry VH (1982) Evidence for ganglion cell death during development of the ipsilateral retinal projection in the rat Devel Brain Res 2 176–80 [6.3.3b, 8.2.6a]

Jeffery G, Cowey A, Kuypers HG (1981) Bifurcating retinal ganglion cell axons in the rat, demonstrated by retrograde double labelling Exp Brain Res 44 34–40 [5.3.4]

Jeffery G, Harman A, Flügge G (1998) First evidence of diversity in eutherian chiasmatic architecture: tree shrews, like marsupials, have spatially segregated crossed and uncrossed chiasmatic pathways J Comp Neurol 390 183–93 [6.3.4a]

Jennings JAM, Charman WN (1981) Off–axis image quality in the human eye Vis Res 21 445–55 [9.1.3c]

Jennings WW, Vanet P (1952) New direct-vision stereo-projection screen J Motion Pict Televis Engin 59 22–7 [2.11.4]

Jensen RJ, Devoe RD (1983) Comparisons of directionally sensitive with other ganglion cells of the turtle retina: intracellular recording and staining J Comp Neurol 217 271–87 [5.6.4a]

Jepson A, Richards W, Knill DC (1996) Model structure and reliable inference. In Perception as Bayesian inference (ed DC Knill, W Richards) pp 63–92 Cambridge, Cambridge University Press [3.6]

Jia H, Rochefort NL, Chen X, Konnerth A (2010) Dendritic organization of sensory input to cortical neurons in vivo Nature 464 1307 [5.6.2b]

Jiang BC (1995) Parameters of accommodative and vergence systems and the development of late-onset myopia Invest Ophthal Vis Sci 36 1737–42 [6.3.1c, 10.4.1]

(p.592) Jiang BC (1996) Accommodative vergence is driven by the phasic component of the accommodative controller Vis Res 36 97–102 [10.4.3a]

Jiang BC (1997) Integration of a sensory component into the accommodation model reveals differences between emmetropia and late-onset myopia Invest Ophthal Vis Sci 38 1511–6 [9.6.2a]

Jiang BC, Woessner WM (1996) Dark focus and dark vergence: an experimental verification of the configuration of the dual-interactive feedback model Ophthal Physiol Opt 16 342–7 [10.4.3a]

Jiang BC, Gish KW, Leibowitz HW (1991) Effect of luminance on the relation between accommodation and convergence Optom Vis Sci 68 220–5 [9.3.1]

Jiménez JR, Olivares JL, Pérez-Ocón F, del Barco LJ (2000) Associated phoria in relation to stereopsis with random-dot stereograms Optom Vis Sci 77 47–50 [10.2.4g]

Jin DZ, Dragoi V, Sur M, Seung HS (2005) Tilt aftereffect and adaptation-induced changes in orientation tuning in visual cortex J Neurophysiol 94 4038–4050- [5.6.2a]

Johansson CB, Momma S, Clarke DL, et al. (1999) Identification of a neural stem cell in the adult mammalian central nervous system Cell 96 25–34 [6.4.2d]

Johansson G (1973) Visual perception of biological motion and a model for its analysis Percept Psychophys 14 201–11 [4.5.2e]

Johansson RS, Birznieks (2004) First spikes in ensembles of human tactile afferents code complex spatial events Nat Neurosci 7 170–7 [4.3.3c]

Johnson B, Beck LF (1941) The development of space perception: I. Stereoscopic vision in preschool children J Genet Psychol 58 247–54v [7.4.1d]

Johnson CA (1976) Effects of luminance and stimulus distance on accommodation and visual resolution J Opt Soc Am 66 138–42 [9.3.1, 9.6.4d]

Johnson CA, Post RB, Chalupa LM, Lee TJ (1982) Monocular deprivation in humans: a study of identical twins Invest Ophthal Vis Sci 23 135–8 [8.2.3f]

Johnson JS, Olshausen BA (2005) The recognition of partially visible natural objects in the presence and absence of their occluders Vis Res 45 3262–76 [4.5.2c]

Johnson RR, Burkhalter A (1997) A polysynaptic feedback circuit in rat visual cortex J Neurosci 17 7129–40 [5.5.1b]

Johnston JC, Pashler H (1990) Close binding of identity and location in visual feature perception J Exp Psychol HPP 16 843–56 [4.5.4a]

Jones DG, van Sluyters RC, Murphy KM (1991) A computational model for the overall pattern of ocular dominance J Neurosci 11 3794–808 [5.7.2c]

Jones HE, Wang W, Sillito AM (2002) Spatial organization and magnitude of orientation contrast interactions in primate V1 J Neurophysiol 88 2796–808 [5.6.7a]

Jones JP, Palmer LA (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex J Neurophysiol 58 1233–58 [4.4.2, 5.5.3]

Jones KR, Berkeley MA (1983) Loss of temporal sensitivity in dorsal lateral geniculate nucleus and area 18 of the cat following monocular deprivation J Neurophysiol 49 254–68 [8.2.3c]

Jones KR, Kalil RE, Spear PD (1984a) Effects of strabismus on responsivity spatial resolution and contrast sensitivity of cat lateral geniculate neurons J Neurophysiol 52 538–52 [8.2.2c]

Jones KR, Spear PD, Tong L (1984b) Critical periods for effects of monocular deprivation: differences between striate and extrastriate cortex J Neurosci 4 2543–52 [8.3.1a]

Jones LS (1996) Integrins: possible functions in the adult CNS TINS 19 68–72 [6.4.3b]

Jones R (1977) Anomalies of disparity detection in the human visual system J Physiol 294 621–40 [10.5.3]

Jones R (1980) Fusional vergence: sustained and transient components Am J Optom Physiol Opt 57 640–4 [10.5.10c, 10.5.9b]

Jones R, Kerr KE (1971) Motor responses to conflicting asymmetrical vergence stimulus information Am J Optom Am Acad Optom 48 989–1000 [10.5.10c]

Jones R, Kerr KE (1972) Vergence eye movements to pairs of disparity stimuli with shape selection cues Vis Res 12 1425–30 [10.5.10c]

Jones R, Stephens GL (1989) Horizontal fusional amplitudes Invest Ophthal Vis Sci 30 1638–42 [10.5.3, 10.5.4b]

Jones TA, Greenough WT (2002) Behavioural experience-dependent plasticity of glial-neuronal interactions In The tripartite synapse (ed A Volterra, PJ Magistretti, PG Haydon) pp 248–65 Oxford University Press, Oxford [5.5.1f]

Joseph JS, Chun MM, Nakayama K (1997) Attentional requirements in a ‘preattentive’ feature search task Nature 387 805–7 [4.8.1a]

Jouen F, Lepecq JC, Gapenne O, Bertenthal BI (2000) Optic flow sensitivity in neonates Infant Behav Devel 23 271–84 [7.2.3b]

Jourdain P, Fukunaga K, Muller D (2003) Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation J Neurosci 23 10645–49 [6.4.3f, 6.5.1a]

Joynson RB (1971) Michotte’s experimental methods Brit J Psychol 62 293–302 [4.6.3g]

Judd CH (1907) Photographic records of convergence and divergence Psychol Rev Psychol Monogr 8 370–423 [10.2.4]

Judge AW (1950) Stereoscopic photography Chapman Hall, London [2.11.3]

Judge SJ (1985) Can current models of accommodation and vergence control account for the discrepancies between AC/A measurements made by the fixation disparity and phoria methods Vis Res 25 1999–2001 [10.4.1]

Judge SJ (1987) Optically–induced changes in tonic vergence and AC/A ratio in normal monkeys and monkeys with lesions of the flocculus and ventral paraflocculus Exp Brain Res 66 1–9 [10.4.1]

Judge SJ (1988) Do target angular size-change and blur cues interact linearly in the control of human accommodation? Vis Res 28 263–8 [9.5]

Judge SJ (1991) Vergence In Vision and visual dysfunction Vol 8 Eye movements (ed RHS Carpenter) pp 157–72 MacMillan, London [10.1.3b]

Judge SJ (2006) Reflection makes sense of rotation of the eyes Vis Res 46 3862–6 [10.1.2]

Judge SJ, Cumming BG (1986) Neurons in monkey midbrain with activity related to vergence eye movement and accommodation J Neurophysiol 55 915–30 [9.2.3, 10.10.2c, 10.10.2e]

Judge SJ, Miles FA (1985) Changes in the coupling between accommodation and vergence eye movements induced in human subjects by altering the effective interocular distance Perception 14 617–29 [10.4.1]

Julesz B (1971) Foundations of cyclopean perception University of Chicago Press, Chicago [1.3, 4.5.8b]

Julesz B, Bergen JR (1983) Textons the fundamental elements on preattentive vision and perception of texture Bell System Technical Journal 62 1619–45 [4.8.1a]

Jung R (1961) Neural integration in the visual cortex and its significance for visual information In Sensory integration (ed W Rosenblith) pp 627–74 MIT Press, New York [3.1.1a]

Kaas JH, Guillery RW, Allman JM (1972) Some principles of organization in the dorsal lateral geniculate nucleus Brain Behav Evol 6 253–99 [5.2.1]

Kaas JH, Harting JK, Guillery RW (1974) Representation of the compete retina in the contralateral superior colliculus of some animals Brain Res 65 343–6 [5.3.1]

Kaas JH, Lin CS, Casagrande VA (1976) The relay of ipsilateral and contralateral retinal inputs from the lateral geniculate nucleus to striate cortex in the owl monkey: a transneuronal transport study Brain Res 106 371–8 [5.7.2f]

Kaas JH, Krubitzer LA, Chino YM, et al. (1990) Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina Science 248 229–31 [5.5.6c]

Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity Brain Res Rev 23 237–56 [6.6.1c]

(p.593) Kaczmarek L, Kossut M, Skangiel-Kramska J (1997) Glutamate receptors in cortical plasticity: molecular and cellular biology Physiol Rev 77 217–55 [5.5.2c, 6.6.3]

Kagan I, Gur M, Snodderly M (2002) Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings J Neurophysiol 88 2557–74 [5.5.3]

Kahn DM, Krubnitzer L (2002) Massive cross-modality cortical plasticity and the emergence of a new cortical area in developmentally blind mammals Proc Natl Acad Sci 99 11429–34 [8.1.4b]

Kahn JI, Foster DH (1981) Visual comparison of rotated and reflected random-dot patterns as a function of their positional symmetry and separation in the field Quart J Exp Psychol 33A 155–66 [4.6.3e]

Kalarickal GJ, Marshall JA (1999) Models of receptive-field dynamics in visual cortex Vis Neurosci 16 1055–81 [5.5.6c]

Kalil RE (1980) A quantitative study of the effects of monocular enucleation and deprivation on cell growth in the dorsal lateral geniculate nucleus of the cat J Comp Neurol 189 483–527 [8.2.2a]

Kalil RE (1990) The influence of action potentials on the development of the central visual pathway in mammals J Exp Biol 153 291–76 [6.3.5b]

Kalil RE, Spear PD, Langsetmo A (1984) Response properties of striate cortex neurons in cats raised with divergent or convergent strabismus J Neurophysiol 52 514–37 [8.4.2a]

Kaminska B, Kaczmarek L, Chaudhuri A (1996) Visual stimulation regulates the expression of transcription factors and modulates the composition of AP-1 in visual cortex J Neurosci 16 3968–78 [6.6.1c]

Kaminska B, Kaczmareki L, Chaudhuri A (1997) Activity-dependent regulation of cytochrome b gene expression in monkey visual cortex J Comp Neurol 379 271–82 [8.2.4b]

Kandler K, Katz LC (1998) Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication J Neurosci 18 1419–27 [6.6.2]

Kang H, Schuman (1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus Science 267 1658–62 [6.5.1c]

Kang H, Schuman (1996) A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity Science 273 1402–6 [6.4.4f]

Kang K, Shelly M, Sompolinsky H (2003) Mexican hats and pinwheels in visual cortex Proc Natl Acad Sci 100 2848–53 [5.7.1]

Kanold PO, Shatz CJ (2006) Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity Neuron 51 627–38 [6.4.4d, 8.2.7d]

Kanold PO, Kara P, Reid RC, Shatz CJ (2003) Role of subplate neurons in functional maturation of visual cortical columns Science 301 521–5 [6.4.5c]

Kapadia MK, Gilbert CD, Westheimer G (1994) A quantitative measure for short–term cortical plasticity in human vision J Neurosci 14 451–7 [5.5.6c]

Kapadia MK, Ito M, Gilbert CD, Westheimer G (1995) Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys Neuron 15 843–56 [5.6.7b, 5.9.3a]

Kapadia MK, Westheimer G, Gilbert CD (2000) Spatial distribution of contextual interactions in primary visual cortex and in visual perception J Neurophysiol 84 2048–62 [5.6.7b]

Kaplan D, Glass L (1995) Understanding nonlinear dynamics Springer, New York [3.5]

Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells with high and low contrast sensitivity Proc Natl Acad Sci 83 2755–7 [5.2.1]

Kaplan E, Purpura K, Shapley RM (1987) Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus J Physiol 391 267–88 [5.2.2b]

Kapoula Z, Hain TC, Zee DS, Robinson DA (1987) Adaptive changes in post–saccadic drift induced by patching one eye Vis Res 27 1299–307 [10.8.2b]

Kapoula Z, Optican LM, Robinson DA (1990) Retinal image motion alone does not control disconjugate postsaccadic eye drift J Neurophysiol 63 1000–9 [10.8.3b]

Kapoula Z, Eggert T, Bucci MP (1995) Immediate saccade amplitude disconjugacy induced by unequal images Vis Res 35 3505–18 [10.8.2b]

Kapoula Z, Eggert T, Bucci MP (1996a) Disconjugate adaptation of the vertical oculomotor system Vis Res 36 2735–45 [10.8.3b]

Kapoula Z, Bucci MP, Eggert T, Zamfirescu F (1996b) Fast disconjugate adaptations of saccades in microstrabismic subjects Vis Res 36 103–8 [10.8.3b]

Kapoula Z, Bucci MP, Eggert T, Garraud L (1997) Impairment of the binocular coordination of saccades in strabismus Vis Res 37 2757–66 [10.8.2b]

Kapoula Z, Bucci MP, Lavigne-Tomps F, Zamfirescu F (1998) Disconjugate memory-guided saccades to disparate targets: evidence for 3D sensitivity Exp Brain Res 122 413–23 [10.8.3b]

Kapoula Z, Bernotas M, Haslwanter T (1999) Listing’s plane rotation with convergence: role of disparity, accommodation, and depth perception Exp Brain Res 129 175–86 [10.1.2d]

Kapoula Z, Bucci MP, Bernotas M, Zamfirescu F (2000) Motor execution is necessary to memorize disparity Exp Brain Res 131 500–10 [10.8.3b]

Kapral R, Showalter K (1995) Chemical waves and patterns Kluwer Norwell MA [5.7.1]

Kara P, Reinagel P, Reid RC (2000) Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons Neuron 27 635–46 [4.3.1b]

Karmarker UR, Najarian MT, Buonomano DV (2002) Mechanisms and significance of spike-timing dependent plasticity Biol Cybern 87 373–82 [6.5.1a, 6.5.2]

Karnath HO (2001) New insights into the functions of the superior temporal cortex Nat Rev Neurosci 2 569–76 [5.8.4d]

Karnath HO, Ferber S, Himmelbach M (2001) Spatial awareness is a function of the temporal not the posterior parietal lobe Nature 411 950–3 [5.8.4d]

Kasamatsu T (1991) Adrenergic regulation of visuocortical plasticity: a role of the locus coeruleus system Prog Brain Res 88 599–616 [8.2.7h]

Kasamatsu T, Pettigrew JD (1979) Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6–hydroxydopamine J Comp Neurol 185 139–61 [8.2.7h]

Kasamatsu T, Pettigrew JD, Ary M (1979) Restoration of visual cortical plasticity by local microperfusion of norepinephrine J Comp Neurol 185 163–82 [8.2.7h]

Kasamatsu T, Pettigrew JD, Ary M (1981) Cortical recovery from effects of monocular deprivation: acceleration with norepinephrine and suppression with 6-hydroxydopamine J Neurophysiol 45 254–66 [8.2.7h]

Kasamatsu T, Watabe K, Heggelund P, Schöller E (1985) Plasticity in cat visual cortex restored by electrical stimulation of the locus coeruleus Neurosci Res 2 365–86 [8.2.7h]

Kasamatsu T, Kitano M, Sutter EE, Norcia AM (1998a) Lack of lateral inhibitory interactions in visual cortex of monocularly deprived cats Vis Res 38 1–12 [8.2.3c]

Kasamatsu T, Imamura K, Mataga N, et al. (1998b) Roles of N-methyl-D-aspartate receptors in ocular dominance plasticity in developing visual cortex: re-evaluation Neuroscience 82 687–700 [8.2.7e]

Kasamatsu T, Polat U, Pettet MW, Norcia AM (2001) Collinear facilitation promotes reliability of single-cell responses in cat striate cortex Exp Brain Res 138 2, 163–72 [5.6.7b]

Kaschube M, Wolf F, Giesel T, Löwel S (2002) Genetic influence on quantitative features of neocortical architecture J Neurosci 22 7206–17 [5.7.1]

Kasthurirangan S, Vilupuru AS, Glasser A (2003) Amplitude dependent accommodative dynamics in humans Vis Res 43 2945–56 [9.7.2c]

Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex Ann Rev Neurosci 23 315–41 [4.8.3d]

(p.594) Kastner S, Nothdurft H, Pigarev IN (1996) Neuronal correlates of pop-out in cat striate cortex Vis Res 37 371–6 [5.6.7a]

Kastner S, de Weerd P, Desimone R, Ungerleider LG (1998) Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI Science 282 108–11 [5.9.2c]

Kastner S, Pinsk MA, et al. (1999) Increased activity in human visual cortex during directed attention I n the absence of visual stimulation Neuron 22 751–61 [5.9.2c]

Katagiri H, Fagiolini M, Hensch TK (2007) Optimization of somatic inhibition at critical period onset in mouse visual cortex Neuron 53 805–12 [8.2.7d]

Kato H, Bishop PO, Orban GA (1981) Binocular interaction on monocularly discharged lateral geniculate and striate neurons in the cat J Neurophysiol 46 932–51 [5.2.2a, 5.7.2e]

Katz LC, Callaway EM (1992) Development of local circuits in mammalian visual cortex Ann Rev Neurosci 15 31–56 [6.4.3d]

Katz LC, Gilbert CD, Wiesel TN (1989) Local circuits and ocular dominance columns in monkey striate cortex J Neurosci 9 1389–99 [5.5.5]

Katz LM, Levi DM, Bedell HE (1984) Central and peripheral contrast sensitivity in amblyopia with varying field size Doc Ophthal 58 351–73 [8.4.2a]

Katz PS, Frost WN (1996) Intrinsic neuromodulation: altering neuronal circuits from within TINS 19 54–61 [4.2.2]

Kaufmann R, Maland J, Yonas A (1981) Sensitivity of 5- and 7-month-old infants to pictorial depth information J Exp Child Psychol 32 162–8 [7.4.1e]

Kaufmann-Hayoz R, Kaufmann F, Stucki M (1986) Kinetic contours in infants’ visual perception Child Devel 57 292–9 [7.4.2b]

Kawabata N, Yamagami K, Noaki M (1978) Visual fixation points and depth perception Vis Res 18 853–4 [4.5.9d]

Kawamura S, Sprague JM, Niimi K (1974) Corticofugal projections from the visual cortices to the thalamus, pretectum, and superior colliculus in the cat J Comp Neurol 158 339–62 [8.2.2f]

Kawano K, Inoue Y, Takemura A, Miles FA (1994) Effect of disparity in the peripheral field on short-latency ocular following responses Vis Neurosci 11 833–7 [10.9.2]

Kaye M, Mitchell DE, Cynader M (1982) Depth perception eye alignment and cortical ocular dominance of dark–reared cats Devel Brain Res 2 37–53 [8.2.3d]

Kayser MS, McClelland AC, Hughes EG, Dalva MB (2006) Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors J Neurosci 26 12152–164 [6.4.4b, 6.5.3]

Kayser M.S, Nolt MJ, Dalva MB (2008) EphB receptors couple dendritic filopodia motility to synapse formation Neuron 58 56–69 [6.4.4b]

Keele KD (1955) Leonardo da Vinci on vision Proc R Soc Med 48 384–90 [2.4.2, 2.9.4, 2.10.3a]

Keenan JM, Willshaw HE (1992) Outcome of strabismus surgery in congenital esotropia Br J Ophthal 76 342–5 [10.2.2e]

Keesey TU (1960) Effects of involuntary eye movements on visual acuity J Opt Soc Am 50 769–74 [10.1.1]

Keller EL (1973) Accommodative vergence in the alert monkey Motor unit analysis Vis Res 13 1565–75 [10.10.2b]

Keller EL (1989) The cerebellum In The neurobiology of saccadic eye movements (ed RH Wurtz, ME Goldberg) pp 391–411 Elsevier, Amsterdam [10.10.2d]

Keller EL, Robinson DA (1972) Abducens unit behaviour in the monkey during vergence eye movements Vis Res 12 369–82 [10.10.1, 10.10.2b]

Kelley WVD (1924) Stereoscopic pictures Tr Soc Motion Pict Engin 17 149–52 [2.11.4]

Kellman PJ (1984) Perception of three-dimensional form by human infants Percept Psychophys 36 353–8 [7.4.2c]

Kellman PJ, Short KR (1987) Development of three-dimensional form perception J Exp Psychol: HPP 13 545–57 [7.4.2c]

Kelly JE, Mihashi T, Howland HC (2004) Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye J Vis 4 262–71 [9.1.4]

Kelly SA, Chino YM, Cotter SA, Knuth J (1997) Orientation anisotropy and strabismus Vis Res 37 151–63 [8.4.2b]

Kemp M (1978) Science, non-science and nonsense: the interpretation of Brunelleschi’s perspective Art History 1 134–61 [2.9.2]

Kemp M (1990) The science of art Yale University Press, New Haven CT [2.9.3, 2.9.5]

Kemp M (2004) Leonardo Oxford University Press, Oxford [2.4.2]

Kennedy H, Bullier J (1985) A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey J Neurosci 5 2815–30 [5.5.4a]

Kennedy H, Bullier J, Dehay C (1985) Cytochrome oxidase activity in the striate cortex and lateral geniculate nucleus of the newborn and adult macaque monkey Exp Brain Res 61 204–9 [6.7.1]

Kennedy H, Dehay C, Bullier J (1986) Organization of the callosal connections of visual areas V1 and V2 in the macaque monkey J Comp Neurol 277 398–415 [5.3.5]

Kennedy H, Meissirel C, Dehay C (1991) Callosal pathways and their compliancy to general rules governing the organization of corticocortical connectivity In Neuroanatomy of the visual pathways and their development (ed B Dreher, SR Robinson) pp 327–59 CRC Press, Boston [5.3.5]

Kenyon RV, Ciuffreda KJ, Stark L (1978) Binocular eye movements during accommodative vergence Vis Res 18 545–55 [10.8.2a]

Kenyon RV, Ciuffreda KJ, Stark L (1980a) Dynamic vergence eye movements in strabismus and amblyopia: symmetric vergence Invest Ophthal Vis Sci 19 60–74 [10.4.1]

Kenyon RV, Ciuffreda KJ, Stark L (1980b) Unequal saccades during vergence Am J Optom Physiol Opt 57 586–94 [10.8.2a, 10.8.2c]

Kenyon RV, Ciuffreda KJ, Stark L (1981) Dynamic vergence eye movements in strabismus and amblyopia: asymmetric vergence Br J Ophthal 65 167–76 [8.4.5c]

Kepees A, van Rossum MCW, Song S, Tegner J (2002) Spike-timing-dependent plasticity: common themes and divergent vistas Biol Cybern 87 446–58 [4.3.4f, 6.5.2]

Kepler J (1604) Ad vitellionem paralipomena Marnium and Haer, Frankfurt. Available in English translation by WH Donahue, Green Lion Press, Santa Fe, New Mexico, 2000 [2.5.4]

Kepler J (1611) Dioptrice Vindelicorum, Augsburg [2.5.4]

Kerr KE (1998) Anomalous correspondence—the cause or consequence of strabismus Optom Vis Sci 75 17–22 [10.2.2d]

Kerschensteiner D, Wong ROL (2008) A precisely timed asynchronous pattern of ON and OFF retinal ganglion cell activity during propagation of retinal waves Neuron 58 851–8 [6.3.2b]

Kersten D, Legge GE (1983) Convergence accommodation J Opt Soc Am 73 332–8 [10.4.2]

Kertesz AE (1972) The effect of stimulus complexity on human cyclofusional response Vis Res 12 699–704 [10.7.1, 10.7.2d]

Kertesz AE (1981) Effect of stimulus size on fusion and vergence J Opt Soc Am 71 289–93 [10.5.3, 10.6.1]

Kertesz AE, Lee HJ (1987) Comparison of simultaneously obtained objective and subjective measurements of fixation disparity Am J Optom Physiol Opt 64 734–8 [10.2.4d]

Kertesz AE, Sullivan MJ (1978) The effect of stimulus size on human cyclofusional response Vis Res 18 567–71 [10.7.1, 10.7.2d, 10.7.5b]

Kertesz AE, Hampton DR, Sabrin HW (1983) The unreliability of nonius line estimates of vertical fusional vergence performance Vis Res 23 295–97 [10.6.1]

Keuroghlian AS, Knudsen EI (2007) Adaaptive auditory plasticity in developing and adult animals Prog Neurobiol 82 109–121 [7.7]

Khaleefa O (1999) Who is the founder of psychophysics and experimental psychology Am J Islamic Soc Sci 16 1–26 [2.2.4d]

Khibnik LA, Cho KKA, Bear MF (2010) Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex Neuron 66 493–9 [8.2.7c]

Kiani R, Esteky H, Mirpour K, Tanaka K (2007) Object category structure in response patterns of neuronal population in monkey inferior temporal cortex J Neurophysiol 97 4296–4309 [5.8.3b]

Kidd T, Bland KS, Goodman CS (1999) Slit is the midline repellent for the Robo receptor in Drosophila Cell 96 785–94 [6.3.4b]

(p.595) Kielland A, Bochorichvili G, Corson J, et al. (2009) Activity patterns govern synaptic-specific AMPA receptor trafficking between deliverable and synaptic pools Neuron 62 84–101 [5.2.2a, 6.4.4f]

Kim DS, Bonhoeffer T (1994) Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex Nature 370 370–2 [8.3.1c]

Kim DS, Duong RQ, Kim SG (2000) High resolution mapping of isoorientation columns by fMRI Nat Neurosci 3 164–8 [5.4.3f]

Kim E, Sheng M (2004) PDZ domain proteins of synapses Nat Neurosci 5 771–81 [5.5.2b]

Kim JN, Shadlen MN (1998) Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque Nat Neurosci 2 176–85 [5.8.4f]

Kimura F, Nishigori A, Shirokawa T, Tsumoto T (1989) Long–term potentiation and N–methyl–D–aspartate receptors in the visual cortex of young rats J Physiol 414 125–44 [6.5.1a]

Kind PC, Mitchell DE, Ahmed B, et al. (2002) Correlated binocular activity guides recovery from monocular deprivation Nature 416 430–3 [8.3.1b]

King CW (1973) The gnostics and their remains Wizards Bookshelf, Minneapolis [2.4.1]

King SM, Cowey A (1992) Defensive responses to looming visual stimuli in monkeys with unilateral striate cortex ablation Neuropsychologia 30 1017–27 [5.5.4b, 5.9.1]

King SM, Azzopardi P, Cowey A, et al. (1996) The role of light scatter in the residual visual sensitivity of patients with complete cerebral hemispherectomy Vis Neurosci 13 1–13 [5.5.7]

King WM, Zhou W (1995) Initiation of disjunctive smooth pursuit in monkeys: evidence that Hering’s law of equal innervation in not obeyed by the smooth pursuit system Vis Res 35 3389–400 [10.8.1b]

King WM, Zhou W, Tomlinson RD, et al. (1994) Eye position signals in the abducens and oculomotor nuclei of monkeys during ocular convergence J Vestib Res 4 401–8 [10.10.2a]

King-Smith PE, Grigsby SS, Vingrys AJ, et al. (1994) Efficient and unbiased modification of the QUEST threshold method: theory, simulations, experimental evaluation and practical implementation Vis Res 34 885–912.Kingdom FAA (1997) Simultaneous contrast: the legacies of Hering and Helmholtz Perception 29 673–7 [3.1.1c]

Kingdom FAA (1997) Simultaneous contrast and the legacies of Hering and Helmholtz Perception 29 673–7 [2.8.1]

Kiorpes L (1992) Effect of strabismus on the development of vernier acuity and grating acuity in monkeys Vis Neurosci 9 253–9 [8.4.2a]

Kiorpes L, Boothe RG (1980) The time course for the development of strabismus amblyopia in infant monkeys (Macaca nemestrena) Invest Ophthal Vis Sci 19 841–5 [8.4.6a]

Kiorpes L, Wallman J (1995) Does experimentally-induced myopia cause hyperopia in monkeys? Vis Res 35 1289–97 [6.3.1c]

Kiorpes L, Boothe RG, Hendrickson AE, et al. (1987) Effects of early unilateral blur on the macaque’s visual system. I. Behavioral observations J Neurosci 7 1318–26 [8.4.1]

Kiorpes L, Kipper DC, Movshon JA (1993) Contrast sensitivity and vernier acuity in amblyopic monkeys Vis Res 33 2301–11 [8.4.2a]

Kiorpes L, Walton PJ, O’Toole LP, et al. (1996) Effects of early-onset strabismus on pursuit eye movements and on neuronal responses in area MT of macaque monkeys J Neurosci 16 6537–53 [8.4.5c]

Kiorpes L, Kiper DC, O’Keefe LP, et al. (1998) Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia J Neurosci 18 6411–27 [8.2.4a]

Kiorpes L, Tang C, Movshon JA (1999) Factors limiting contrast sensitivity in experimentally amblyopic macaque monkeys Vis Res 39 4152–60 [8.4.1]

Kiper DC (1994) Spatial phase discrimination in monkeys with experimental strabismus Vis Res 34 437–47 [8.4.3]

Kiper DC, Gegenfurtner KR, Movshon JA (1996) Cortical oscillatory responses do not affect visual segmentation Vis Res 36 539–44 [4.3.4d]

Kirby MA, Steineke TC (1992) Morphogenesis of retinal ganglion cells during formation of the fovea in the Rhesus macaque Vis Neurosci 9 603–16 [6.3.2a]

Kirk DL, Levick WR, Cleland BG, Wässle H (1976a) Crossed and uncrossed representation of the visual field by brisk–sustained and brisk–transient cat retinal ganglion cells Vis Res 16 225–31 [5.3.4]

Kirk DL, Levick WR, Cleland BG (1976b) The crossed or uncrossed destination of axons of sluggish–concentric and non–concentric cat retinal ganglion cells with an overall synthesis of the visual field representation Vis Res 16 233–6 [5.3.4]

Kirkwood A, Bear MF (1994a) Homosynaptic long-term depression in the visual cortex J Neurosci 14 3404–12 [6.5.1a]

Kirkwood A, Bear MF (1994b) Hebbian synapses in visual cortex J Neurosci 14 1634–45 [6.6.3]

Kirkwood A, Dudek SM, Gold JT, et al. (1993) Common forms of synaptic plasticity in the hippocampus and neocortex in vitro Science 290 1518–21 [6.6.3]

Kirkwood A Lee HK, Bear MF (1995) Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience Nature 375 328–31 [6.6.3]

Kirkwood A, Rioult MG, Bear MF (1996) Experience-dependent modification of synaptic plasticity in visual cortex Nature 381 529–8 [6.5.1a]

Kirsten C (1986) Dokumente einer Freundschaft. Briefwechsel zwischen Hermann von Helmholtz und Emil du Bois-Reymond 1846–1894. Akademie Verlag, Berlin [2.8.4]

Kitaoji H, Toyama K (1987) Preservation of position and motion stereopsis in strabismic subjects Invest Ophthal Vis Sci 28 1290–67 [8.5.1]

Kitazaki M, Shimojo S (1996) ‘Generic-view principle’ for three-dimensional-motion perception: optics and inverse optics of a moving straight bar Perception 25 797–814 [4.5.9e]

Klein R (1961) Pomponius Gauricus on perspective Art Bulletin 43 211–30 [2.9.2]

Klein SA, Levi DM (1985) Hyperacuity thresholds of 1.0 second: theoretical predictions and empirical validation J Opt Soc Am A 2 1170–90 [3.1.4a, 3.1.4b, 4.4.3, 4.9.1]

Klein SA, Levi DM (1986) Local multipoles for measuring contrast and phase sensitivity Invest Ophthal Vis Sci 27 (Abs) 225 [4.4.3]

Klein SA, Casson E, Carney T (1990) Vernier acuity as line and dipole detection Vis Res 30 1703–19 [4.4.3]

Kleinschmidt A, Bear MF, Singer W (1987) Blockade of “NMDA” receptors disrupts experience dependent plasticity of kitten striate cortex Science 238 355–7 [8.2.2d]

Kleinschmidt A, Büchel C, Zeki S, Frackowiak RSJ (1998) Human brain activity during spontaneously reversing perception of ambiguous figures Proc R Soc B 295 2727–33 [4.5.9g]

Klier EM, Meng H, Angelaki DE (2006) Three-dimensional kinematics at the level of the oculomotor plant J Neurosci 6 2732–7 [10.1.2e]

Klooswijk AIJ (1991) The first stereo photo Stereo World May-June 6–11 [2.11.3]

Knapp H (1869) The influence of specacles on the optical constants and visual acuity of the eye Arch Ophthal Otol 1 377 [9.9.1b]

Knierim JJ, Van Essen DC (1992) Neuronal responses to static texture patterns in area V1 of the alert monkey J Neurophysiol 67 961–80 [5.5.6c, 5.6.7a, 5.6.7c]

Knill DC (2003) Mixture models and the probabilistic structure of depth cues Vis Res 43 831–54 [3.6]

Knill DC, Richards W (1996) Perception as Bayesian inference Cambridge, Cambridge University Press [3.6]

Knorr WR (1992) When circles don’t look like circles: An optical theorem in Euclid and Pappus Arch Hist Exact Sci 44 287–328 [2.9.1]

Knott GW, Holtmaat A, Wilbrecht L, et al. (2006) Spine growth precedes synapse formation in the adult neocortex in vivo Nat Neurosci 9 1117–24 [6.4.4a]

Kobatake E, Tanaka K (1994) Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex J Neurophysiol 71 856–67 [5.8.3b]

(p.596) Kobatake E, Wang G, Tanaka K (1998) Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys J Neurophysiol 80 324–30 [5.8.3b]

Koch C, Poggio T (1992) Multiplying with synapses and neurones In Single neuron computation (ed T McKenna, J Davis, SF Zornetzer) pp 315–45 Academic Press, New York [4.4.4]

Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry Hum Neurobiol 4 219–27 [4.8.3d]

Koch C, Marroquin J, Yuille A (1986) Analog “neuronal” networks in early vision Proc Natl Acad Sci 83 4293–7 [4.2.2]

Kodaka Y. Sheliga BM, FitzGibbon EJ, Miles FA (2007) The vergence eye movements induced by radial optic flow: Some fundamental properties of the underlying local-motion detectors Vis Res 37–2660 [10.3.2d]

Koenderink JJ (1982) Different concepts of “ray” in optics: link between resolving power and radiometry Am J Physics 50 1012–15 [2.1.3b]

Koenderink JJ (1990) Solid shape MIT Press, Cambridge Mass [3.2.6a, 3.7.5]

Koenderink JJ, van Doorn AJ, Lappin JS (2000) Direct measurement of the curvature of visual space Perception 29 69–79 [4.7.2]

Koenderink JJ, van Doorn AJ, Kappers AM, Lappin JS (2002) Large-scale visual frontoparallels under full-cue conditions Perception 31 1467–75 [4.7.2]

Koenderink JJ, van Doorn AJ, Kappers AML, Doumen MJA, Todd JT (2008) Exocentric pointing in depth Vis Res 48 716–23 [4.7.2]

Koenigsberger L (1902) Hermann von Helmholtz. F Vieweg und Sohn, Braunschweig [2.8.1]

Koestler A (1960) The Watershead. A biography of Johannes Kepler Doubleday, New York [2.5.4]

Koffka K (1935) Principles of Gestalt psychology Harcourt Brace, New York [4.5.10a, 4.5.2b, 4.5.9e]

Koh LH, Charman WN (1998a) Accommodation to perceived depth in stereotests Ophthal Physiol Opt 18 279–84 [9.5]

Koh LH, Charman WN (1998b) Accommodative responses to anisoaccommodative targets Ophthal Physiol Opt 18 254–62 [9.7.3a]

Kohara K, Kitamura A, Adachi N, et al. (2003) Inhibitory but not excitatory cortical neurons require presynaptic brain-derived neurotrophic factor for dendritic development, as revealed by chimera cell culture J Neurosci 23 6123–31 [6.4.7b]

Köhler W (1940) Dynamics in psychology Grove, New York [4.5.9c]

Köhler W, Wallach H (1944) Figural aftereffects: an investigation of visual processes Proc Am Philos Soc 88 299–357 [4.2.9a]

Kohly RP, Regan D (2000) Coincidence detectors: visual processing of a pair of lines and implications for shape discrimination Vis Res 40 2291–306 [4.5.2c, 4.5.2d]

Kohly RP, Regan D (2002a) Fast long-range interactions in the early processing of luminance-defined form Vis Res 42 49–63 [5.5.6c]

Kohly RP, Regan D (2002b) Fast long-range interactions in the early processing of motion-defined form and of combinations of motion-defined, luminance-defined, and cyclopean form Vis Res 42 969–80 [5.5.6c]

Kohn A (2007) Visual adaptation: physiology, mechanisms, and functional benefits J Neurophysiol 97 3155–64 [5.1.4f, 5.6.3]

Kohn A, Smith MA (2005) Stimulus dependence of neuronal correlation in primary visual cortex of the macaque J Neurosci 25 3661–73 [4.3.4b]

Kohonen T (1995) Self organization maps and associative memory New York, Springer [6.7.2f]

Kohonen T (2001) Self organization maps New York, Springer [5.7.1]

Köhr G, et al. (2003) Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction J Neurosci 26 10791–9 [6.6.3]

Kojic L, Dyck RH, Douglas RM, et al. (2000) Columnar distribution of serotonin-dependent plasticity within kitten striate cortex Proc Natl Acad Sci 97 1841–4 [6.7.2c]

Koken PW, Erkelens CJ (1993) Simultaneous hand tracking does not affect human vergence pursuit Exp Brain Res 96 494–500 [10.5.7]

Koketsu D, Mikami A, Miyamoto Y, Hisatsune T (2003) Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys J Neurosci 23 937–42 [6.4.2d]

Kolata GB (1977) Catastrophe theory: the Emperor has no clothes Science 196 287 [3.5]

Kolb H (1970) Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi–impregnated cells Philos Tr R Soc B 258 291–83 [5.1.3, 5.1.4c]

Kolpak A, Zhang J, Boa ZZ (2005) Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration J Neurosci 25 3432–41 [6.3.3a]

Komatsu H, Wurtz RH (1988a) Relation of cortical areas MT and MST to pursuit eye-movements. I. Localization and visual properties of neurons J Neurophysiol 60 621–44 [5.8.4c]

Komatsu H, Wurtz RH (1988b) Relation of cortical areas MT and MST to pursuit eye-movements. III. Interaction with full-field visual stimulation J Neurophysiol 60 621–44 [5.8.4c]

Komatsu Y, Yoshimura Y (2004) Long-term modification at visual cortical synapses In Excitatory-inhibitory balance: synapses, circuits, systems (Ed TK Hensch, M Fagiolini) pp 75–87. Plenum, New York [6.5.1a]

Kommerell G (1996) The relationship between infantile strabismus and latent nystagmus Eye 10 274–81 [8.4.5c]

Kommerell G, Mehdorn E (1982) Is an optokinetic defect the cause of congenital and latent nystagmus? In Functional basis of ocular motility disorders (ed G Lennerstrand DS Zee, EL Keller) pp 159–67 Pergamon, New York [10.2.2c]

Kommerell G, Olivier D, Theopold H (1976) Adaptive programming of phasic and tonic components in saccadic eye movements Investigations in patients with abducens palsy Invest Ophthal 15 657–60 [10.8.3d]

Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNC stem cells Science 289 1754–6 [6.4.5a]

König P, Schillen TB (1991) Stimulus–dependent assembly formation of oscillatory responses: I Synchronization Neural Comput 3 155–66 [4.3.4g]

König P, Engel AK, Löwel S, Singer W (1993) Squint affects synchronization of oscillatory responses in cat visual cortex Eur J Neurosci 5 501–8 [8.2.3a]

König P, Engel AK, Roelfsema PR, Singer W (1995) How precise is neuronal synchronization? Neural Comput 7 469–85 [4.3.4b]

Kontsevich LL, Tyler CW (1999) Bayesian adaptive estimation of psychometric slope and threshold Vis Res 39 2729–37 [3.1.1c]

Kooi FL, Toet A, Tripathy SP, Levi DM (1994) The effect of similarity and attention on contour interaction in peripheral vision Spat Vis 8 255–79 [5.6.7a]

Kopec CD, Real E, Kessels HW, Malinow R (2007) GluR1 links structural and functional plasticity at excitatory synapses J Neurosci 27 13706–18 [6.5.1a]

Korenberg MJ, Hunter IW (1986) The identification of nonlinear biological systems: LNL cascade models Biol Cybern 55 125–34 [3.4]

Kori AA, Schmid-Priscoveanu A, Straumann D (2001) Vertical divergence and counterroll eye movements evoked by whole-body position steps about the roll axis of the head in humans J Neurophysiol 85 671–8 [10.6.2]

Korn H, Faber DS (1991) Quantal analysis and synaptic efficiency in the CNS TINS 14 439–45 [5.5.2b]

Kornack DR, Radic P (1995) Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages Neuron 15 311–21 [6.4.5b]

Kornack DR, Rakic P (2001) Cell proliferation without neurogenesis in adult primate neocortex Science 294 2127–30 [6.4.2d]

Korr H, Schmitz C (1999) Facts and fictions regarding post-natal neurogenesis in the developing human cerebral cortex J Theor Biol 200 291–7 [6.4.2d]

Korsching S (1993) The neurotrophic factor: a reexamination J Neurosci 13 2739–48 [6.3.3b, 6.4.3d]

(p.597) Kossel A, Löwel S, Bolz J (1995) Relationships between dendritic fields and functional architecture in striate cortex of normal and visually deprived cats J Neurosci 15 3913–29 [8.2.7g]

Kothe AC, Lovasik JV, Campbell MCW (1987) Variation of dark focus of accommodation with laser speckle exposure duration Ophthal Physiol Opt 7 143–8 [9.2.4b]

Kotulak JC, Morse SE (1995) The effect of perceived distance on accommodation under binocular steady-state conditions Vis Res 35 791–5 [9.5]

Kotulak JC, Schor CM (1986a) The dissociability of accommodation from vergence in the dark Invest Ophthal Vis Sci 27 544–51 [10.4]

Kotulak JC, Schor CM (1986b) Temporal variations in accommodation during steady-state conditions J Opt Soc Am A 3 223–7 [9.7.1a]

Kotulak JC, Schor CM (1986c) The accommodative response to subthreshold blur and to perceptual fading during the Troxler phenomenon Perception 15 7–15 [9.7.1a]

Kotulak JC, Schor CM (1986d) A computational model of the error detector of human visual accommodation Biol Cybern 54 189–94 [9.8.1]

Kotulak JC, Schor CM (1987) The effects of optical vergence, contrast, and luminance on the accommodative response to spatially bandpass filtered targets Vis Res 27 1797–806 [9.6.4c]

Kotulak JC, Morse SE, Billock VA (1995) Red-green opponent channel mediation of control of human ocular accommodation J Physiol 482 697–703 [9.8.2b, 9.8.2d]

Kourtzi Z, Kanwisher N (2000) Cortical regions involved in perceiving object shape J Neurosci 20 3310–18 [5.8.3c]

Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex Science 293 1506–9 [5.8.3c]

Kouyama N, Marshak DW (1992) Bipolar cells specific for blue cones in the macaque retina J Neurosci 12 1233–52 [5.1.3]

Kovács G, Vogels R, Orban GA (1995) Selectivity of macaque inferior temporal neurons for partially occluded shapes J Neurosci 15 1984–97 [4.5.2b]

Kovács I (2000) Human development of perceptual organization Vis Res 40 1301–10 [7.2.2]

Kovács I, Polat U, Pennefather PM, et al. (2000) A new test of contour integration deficits in patients with a history of disrupted binocular experience during visual development Vis Res 40 1775–83 [8.4.3c]

Kovalchuk Y, Hanse E, Kafitz KW, Konnerth A (2002) Postsynaptic induction of BDNF-mediated long-term potentiation Science 295 1729–34 [6.5.1c]

Kozma P, Kiorpes L (2003) Contour integration in amblyopic monkeys Vis Neurosci 20 577–88 [8.4.3d]

Kragha IKOK (1989) Measurement of amplitude of accommodation Ophthal Physiol Opt 9 342–3 [7.3.1, 9.2.2b]

Kran BS, Ciuffreda KJ (1988) Noncongruent stimuli and tonic adaptation Am J Optom Physiol Opt 65 703–9 [10.2.5b]

Kratz KE, Lehmkuhle S (1983) Spatial contrast sensitivity of monocularly deprived cats after removal of the non–deprived eye Behav Brain Res 7 291–6 [8.4.2a]

Kratz KE, Spear PD, Smith DC (1976) Postcritical–period reversal of effects of monocular deprivation on striate cortex cells of the cat J Neurophysiol 39 501–11 [8.2.3e]

Kratz KE, Mangel SC, Lehmkuhle S, Murray S (1979) Retinal x- and y- cells in monocularly lid-sutured cats: normality of spatial and temporal properties Brain Res 172 545–51 [8.2.1]

Krautheimer R, Krautheimer-Hess T (1982) Lorenzo Ghiberti Princeton University Press, Princeton, NJ [2.9.3]

Kreiman G, Koch C, Fried I (2000) Category-specific visual responses of single neurons in the human medial temporal lobe Nat Neurosci 3 946–53 [5.8.3c, 5.9.3c]

Kreiter AK, Singer W (1996) Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey J Neurosci 16 2381–96 [4.3.4c]

Krekling S (1973) Comments on cyclofusional eye movements Graefes Arch klin exp Ophthal 188 231–8 [10.7.1]

Kremenitzer JP, Vaughan HG, Kurzberg D, Dowling K (1979) Smooth-pursuit eye movements in the newborn infant Child Devel 50 442–8 [7.3.4]

Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex TINS 27 392–8 [6.4.5b]

Krimsky E (1972) The corneal light reflex Charles Thomas Springfield Illinois [10.2.3b]

Krishnan VV, Stark L (1983) Model of the disparity vergence system In Vergence eye movements: Basic and clinical aspects (ed MC Schor, KJ Ciuffreda) pp 349–72 Butterworth, Boston [10.5.11]

Krishnan VV, Farazian F, Stark L (1973a) An analysis of latencies and prediction in the fusional vergence system Int J Optom 50 933–9 [10.5.7]

Krishnan VV, Phillips S, Stark L (1973b) Frequency analysis of accommodation accommodative vergence and disparity vergence Vis Res 13 1545–54 [10.5.7, 10.5.9a]

Krishnan VV, Shirachi D, Stark L (1977) Dynamic measures of vergence accommodation Am J Optom Physiol Opt 54 470–3 [9.2.4c]

Kritzer MF, Cowey A, Somogyi P (1992) Patterns of inter- and intralaminar GABAergic connections distinguish striate (V1) and extrastriate (V2 V4) visual cortices and their functionally specialized subdivisions in the rhesus monkey J Neurosci 12 4545–64 [5.5.1e, 5.5.6b]

Krommenhoek KP, Van Gisbergen JAM (1994) Evidence for nonretinal feedback in combined version-vergence movements Exp Brain Res 102 95–109 [10.10.3]

Krubitzer LA, Kaas JH (1990) Cortical connections of MT in four species of primates: areal modular and retinotopic patterns Vis Neurosci 5 165–204 [5.8.4]

Krug K, Akerman CJ, Thompson ID (2001) Responses of neurons in neonatal cortex and thalamus to patterned visual stimulation through the naturally closed lids J Neurophysiol 85 1436 43 [6.6.4a]

Krüger K, Kiefer W, Groh A, et al. (1993) The role of the lateral suprasylvian visual cortex of the cat in object–background interactions: permanent deficits following lesions Exp Brain Res 97 40–60 [5.8.4b]

Kruger K, Tam AS, Lu C, Sretavan DW (1998) Retinal ganglion cell axon progression from the optic chiasm to initiate optic tract development requires cell autonomous function of GAP-43 J Neurosci 18 5692–705 [6.3.4b]

Kruger PB (1979) Infra-red recording retinoscope for monitoring accommodation Am J Optom Physiol Opt 60 80–7 [9.2.4d]

Kruger PB, Pola J (1985) Changing target size is a stimulus for accommodation J Opt Soc Am 2 1832–5 [9.5]

Kruger PB, Pola J (1986) Stimuli for accommodation: blur chromatic aberration and size Vis Res 26 957–71 [9.5, 9.8.2c]

Kruger PB, Pola J (1987) Dioptric and non-dioptric stimuli for accommodation: target size alone and with blur and chromatic aberration Vis Res 27 555–67 [9.5]

Kruger PB, Pola J (1989) Accommodation to size and blur changing in counterphase Optom Vis Sci 66 455–8 [9.5]

Kruger PB, Mathews S, Aggarwala KR, Sanchez N (1993) Chromatic aberration and ocular focus: Fincham revisited Vis Res 33 1397–1411 [9.8.2d]

Kruger PB, Nowbotsing S, Aggarwala KR, Mathews S (1995a) Small amounts of chromatic aberration influence dynamic accommodation Optom Vis Sci 72 656–66 [9.8.2d]

Kruger PB, Mathews S, Aggarwala KR, et al. (1995b) Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image Vis Res 35 2715–29 [9.8.2d]

Kruger PB, Aggarwala KR, Bean S, Mathews S (1997a) Accommodation to stationary and moving targets Optom Vis Sci 74 505–10 [9.8.2b]

Kruger PB, Mathews S, Katz M, et al. (1997b) Accommodation without feedback suggests directional signals specify ocular focus Vis Res 37 2511–29 [9.8.2d, 9.8.3]

Kruger PB, López-Gil N, Stark LR (2001) Accommodation and the Stiles-Crawford effect Ophthal Physiol Opt 21 339–51 [9.8.3]

(p.598) Kruger PB, Stark LR, Nguyen HN (2004) Small foveal targets for studies of accommodation and the Stiles-Crawford effect Vis Res 44 2757–67 [9.8.3]

Kruger PB, Rucker FJ, et al. (2005) Accommodation with and without short-wavelength-sensitive cones and chromatic aberration Vis Res 45 1265–74 [9.8.2d]

Krumholz DM, Fox RS, Ciuffreda KJ (1986) Short-term changes in tonic accommodation Invest Ophthal Vis Sci 27 552–7 [9.3.1]

Kubová Z, Kuba M, Juran J, Blakemore C (1996) Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses Vis Res 36 181–90 [8.2.4a, 8.4.4c]

Kubovy M (1986) The psychology of perspective and Renaissance art Cambridge University Press, Cambridge [2.9.3]

Kubovy M, Hocombe AO, Wagemens J (1998) On the lawfulness of grouping by proximity Cog Psychol 35 71–98 [4.5.10a]

Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina J Neurophysiol 16 37–68 [5.1.4a]

Kuhl PK (2004) Early language acquisition: cracking the speech code Nat Rev Neurosci 5 831–43 [7.7]

Kühne W, Ewald CA (1877) Untersuchungen über den Sehpurpur Untersuchungen physologisches Institut, Universitåt Heidelberg 1 139–218 [2.6.1]

Kujala T, Huotilainen M, Sinkkonen J, et al. (1995) Visual cortex activation in blind humans during sound discrimination Neurosci Let 183 143–6 [8.1.4b]

Kulikowski JJ (1980) Processing of patterns by simple cells in the cat visual cortex Neurosci Lett Supplement S95 [4.4.1c]

Kuljis RO, Rakic P (1990) Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors Proc Natl Acad Sci 87 5303–6 [6.7.1]

Kumagami T, Zhang B, Smith EL, Chino YM (2000) Effect of onset age of strabismus on the binocular response properties of neurons in the monkey visual cortex Invest Ophthal Vis Sci 41 948–54 [8.3.2]

Kumar AN, Han YH, Garbutt S, Leigh RJ (2002) Properties of anticipatory vergence responses Invest Ophthal Vis Sci 43 2626–32 [10.5.7]

Kumar AN, Han Y, Dell’osso LF, et al. (2005) Directional asymmetry during combined saccade-vergence movements J Neurophysiol 93 2797–808 [10.8.2a]

Kumar SS, Huguenard JR (2003) Pathway-specific differences in subunit composition of synaptic NMDA receptors on pyramidal neurons in neocortex J Neurosci 5 10074–83 [5.5.2c]

Kunishima N, Shimada Y, Tsuji Y, et al. (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor Nature 407, 971–7 [5.5.2d]

Künnapas TM (1959) The vertical-horizontal illusion in artificial fields J Psychol 47 41–8 [3.1.1h]

Kuntz A, Richens CA, Casey CA (1946) Reflex control of the ciliary muscle J Neurophysiol 9 445- 51 [9.2.3]

Kuppermann BD, Kasamatsu T (1983) Changes in geniculate cell size following brief monocular blockade of retinal activity in kittens Nature 306 465–8 [8.2.2a]

Kuppermann BD, Kasamatsu T (1984) Enhanced binocular interaction in the visual cortex of normal kittens subjected to intracortical norepinephrine perfusion Brain Res 302 91–9 [8.2.7h]

Kurata K, Tanji J (1988) Premotor cortex neurons in macaques: activity before distal and proximal forelimb movements J Neurosci 6 403–11 [5.8.4g]

Lachica EA, Beck, PD, Casagrande VA (1992) Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III Proc Natl Acad Sci 89 3566–70 [5.5.5, 5.6.6]

Lagae L, Raiguel S, Orban GA (1993) Speed and direction selectivity of macaque middle temporal neurons J Neurophysiol 69 19–39 [5.8.4]

Lagae L, Maes H, Raiguel S, et al. (1994) Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST J Neurophysiol 71 1597–29 [5.8.4c]

Lagréze WD, Sireteanu R (1991) Two–dimensional spatial distortions in human strabismic amblyopia Vis Res 31 1271–88 [8.4.3]

Lakshminarayanan V, Enoch JM, Knowles RA (1993) Residual aniseikonia among patients fitted with one or two intraocular lenses (pseudophakic corrections) Optom Vis Sci 70 107–10 [9.9.1c]

Lam AKC, Chau ASY, Lam WY, et al. (1996) Effects of naturally occurring visual acuity differences between two eyes in stereoacuity Ophthal Physiol Opt 16 189–95 [7.6.4]

Lam DMK, Shatz CJ (1991) Development of the visual system MIT Press, Cambridge MA [7.6.4]

Lam K, Sefton AJ, Bennett MR (1982) Loss of axons from the optic nerve of the rat during early postnatal development Devel Brain Res 3 487–91 [6.3.3b]

Lamb TD (1987) Sources of noise in photoreceptor transduction J Opt Soc Am A 4 2295–300 [5.1.5]

Lamb TD, Collin SP, Pugh EN (2007) Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup Nat Rev Neurosci 8 960–75 [6.1.3]

Lambot MA, Depasse F, Noel JC, Vanderhaeghen P (2005) Mapping labels in the human developing visual system and the evolution of binocular vision J Neurosci 25 7232–37 [6.3.5a]

Lamme VAF (1995) The neurophysiology of figure-ground segregation in primary visual cortex J Neurosci 15 1605–15 [4.8.3d, 5.6.7c, 5.9.3a]

Lamme VAF, Spekreijse H (1998) Neuronal synchrony does not represent texture segregation Nature 396 362–6 [4.3.4c]

Lamme VAF, van Dijk BW, Spekreijse H (1993) Organization of texture segregation processing in primate visual cortex Vis Neurosci 10 781–90 [4.3.5]

Lancaster WB (1938) Aniseikonia Arch Ophthal 20 907–12 [9.9.1a]

Land MF (1965) Image formation by a concave reflector in the eye of the scallop, Pecten maximus J Physiol 179 138–53 [6.1.3]

Land MF (1981) Optics and vision in invertebrates In Handbook of sensory physiology Vol VII 6B (ed H.J. Atrum) pp 471–92 Springer, Berlin [6.1.3]

Land MF, Nilsson DE (2002) Animal eyes Oxford University Press, New York [6.1.1, 6.1.4]

Land PW, Lund RD (1979) Development of the rat’s uncrossed retinotectal pathway and its relation to plasticity studies Science 205 698–700 [6.3.5a]

Landi S, Ciucci F, Maffei L, et al. (2009) Setting the pace for retinal development: environmental enrichment acts Through insulin-like growth factor 1 and brain-derived neurotrophic factor J Neurosci 29 10809–19 [6.4.4b]

Landisman CE, Ts’o DY (2002) Color processing in macaque striate cortex: relationship to ocular dominance, cytochrome oxidase, and orientation J Neurophysiol 10 312–637 [5.6.6]

Laplace PS (1812) Théorie analytiique des probabilités courcier, Paris [3.6]

Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers Nature 398 338–41 [4.2.2, 5.5.1b]

Larsen JS (1971) The sagittal growth of the eye IV Ultrasonic measurement of the axial length of the eye from birth to puberty Acta Ophthal 49 873–86 [6.3.1a]

Larsen RS, Corlew RJ, Henson MA, et al. (2011) NR3A-containing NMDRs promote neurotransmitter release and spike timing-dependent plasticity Nat Nurosci 14 338–45 [6.5.3]

Larson WL (1982) A technique to measure accommodative convergence heterophoria and the AC/A during single binocular vision Am J Optom Physiol Opt 59 111–15 [10.4.1]

Larson WL (1983) A stereoacuity test for detecting aniseikonia Binoc Vis 45 172–5 [9.9.2b]

Larson-Prior LJ, Ulinski PS, Slater NT (1991) Excitatory amino acid receptor-mediated transmission in geniculocortical and intracortical pathways within visual cortex J Neurophysiol 66 293–306 [5.5.2c]

Larsson J, Heeger DJ (2006) Two retinotopic visual areas in human lateral occipital cortex J Neurosci 26 13128–42 [5.8.3c]

Larsson J, Amunts K, Gulyás B, et al. (2002) Perceptual segregation of overlapping shapes activates posterior extrastriate visual cortex in man Exp Brain Res 143 1–10 [5.8.3a]

(p.599) Lassonde M, Sauerwein HC, Lepore F (1995) Extent and limits of callosal plasticity: presence of disconnection symptoms in callosal agenesis Neuropsychologia 33 989–1007 [5.3.5]

Latta R (1904) Notes on a case of successful operation for congenital cataract in an adult Brit J Psychol 6 135–5v [8.1.3]

Lau E (1921) Neue Untersuchungen über das Tiefen- und Ebenensehen Z Sinnesphysiol 53 1–35 [10.2.4]

Lauritzen TZ, Miller KD (2003) Different roles for simple-cell and complex-cell inhibition in V1 J Neurosci 23 10201–13 [5.6.2b]

Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex J Neurosci 15 7881–8 [6.4.5b]

Law MI, Constantine-Paton M (1980) Right and left eye bands in frogs with unilateral tectal ablations Proc Natl Acad Sci 77 2314–18 [6.7.3b]

Law MI, Constantine-Paton M (1981) Anatomy and physiology of experimentally produced striped tecta J Neurosci 1 741–59 [6.7.3c]

Lawden MC, Hess RF, Campbell FW (1982) The discrimination of spatial phase relationships in amblyopia Vis Res 22 1005–16 [8.4.3]

Lawler KA, Cowey A (1986) The effects of pretectal and superior collicular lesions on binocular vision Exp Brain Res 63 402–8 [10.10.2e]

Lawrence NS, Ross TJ, Hoffmannn R, et al. (2003) Multiple neuronal networks mediate sustained attention J Cog Neurosci 15 1028–38 [5.9.1]

Le Clerc S (1679) Discours touchant de point de veue dans lequel il est prouvé que les chose qu’on voit distinctement ne sont veues que d’un oeil Jolly, Paris [2.10.3e]

Le Conte J (1864) On some phenomena of binocular vision Am J Sci and Arts Vol. 47, No. 140 [10.7.1]

Le Conte J (1881) Sight Kegan Paul, London [10.7.2b]

Le Goff J (1993) Intellectuals in the Middle Ages Blackwells, Cambridge Mass [2.3.1]

Ledgeway T, Robert HF, Geisler WS (2005) Grouping local orientation and direction signals to extract spatial contours: Empirical tests of “association field” models of contour integration Vis Res 45 2511–22 [4.5.2b]

Lee BB (1996) Receptive field structure in the primate retina Vis Res 36 631–44 [5.1.4c]

Lee D, Malpeli JG (1994) Global form and singularity: modeling the blind spot’s role in lateral geniculate morphogenesis Science 293 1292–4 [5.2.1]

Lee D, Malpeli JG (1998) Effects of saccades on the activity of neurons in the cat lateral geniculate nucleus J Neurophysiol 79 922–36 [10.3.1]

Lee JH, Stark LR, Cohen S, Kruger PB (1999) Accommodation to static chromatic simulations of blurred retinal images Ophthal Physiol Opt 19 223–35 [9.8.2b]

Lee SH, Blake R (1999) Visual form created solely from temporal structure Science 284 1165–8 [4.3.4d]

Lee SY, Isenberg SJ (2003) The relationship between stereopsis and visual acuity after occlusion therapy for amblyopia Ophthalmology 110 2088–92 [8.4.6b]

Lee TS, Nguyen M (2001) Dynamics of subjective contour formation in the early visual cortex Proc Natl Acad Sci 98 1907–11 [5.6.7b]

Lee TS, Mumford D, Romero R, Lamme VAF (1998) The role of the primary visual cortex in higher level vision Vis Res 38 2429–54 [4.5.4a, 5.6.7c]

Lee TS, Yang CF, Romero RD, Mumford D (2002) Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency Nat Neurosci 5 589–97 [5.6.7a]

Lee WCA, Nedivi E (2002) Extended plasticity of visual cortex in dark-reared animals may result from prolonged expression of cpg15-like genes J Neurosci 22 1807–15 [8.2.7f]

Leeman F (1976) Hidden images Abrams, New York [2.9.5]

Leeuwenhoek A van (1675) Microscopical observations from Mr. Leewenhoek, concerning the optick nerve Philos Tr R Soc 9 378–80 [2.6.1]

Leff G (1967) Heresy in the late middle ages Barnes and Noble, New York [2.4.1]

Legge GE, Mullen KT, Woo GC, Campbell FW (1987) Tolerance to visual defocus J Opt Soc Am A 4 851–63 [9.6.4c, 9.6.4e]

Leguire LE, Rogers GL, Bremer DL (1991) Visual-evoked response binocular summation in normal and strabismic infants Invest Ophthal Vis Sci 32 129–33 [7.6.3]

Lehky SR, Sereno AB (2007) Comparison of shape encoding in primate dorsal and ventral visual pathways J Neurophysiol 97 307–19 [5.8.5a]

Lehky SR, Sejnowski TJ, Desimone R (1992) Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns J Neurosci 12 3568–81 [3.4]

Lehmkuhle SW, Kratz KE, Mangel SC, Sherman SM (1980) Effects of early monocular lid suture on spatial and temporal sensitivity of neurons in dorsal lateral geniculate nucleus of the cat J Neurophysiol 43 542–56 [8.2.2c]

Lehmkuhle SW, Kratz KE, Sherman SM (1982) Spatial and temporal sensitivity of normal and amblyopic cats J Neurophysiol 48 372–87 [8.4.6a]

Lehmkuhle SW, Sherman SM, Kratz KE (1984) Spatial contrast sensitivity of dark–reared cats with striate cortex lesions J Neurosci 4 2719–27 [8.1.1b]

Leibowitz H, Owens DA (1975) Night myopia and the intermediate dark focus of accommodation J Opt Soc Am 65 1121–8 [9.3.1]

Leicester J (1968) Projection of the vertical meridian to cerebral cortex of the cat J Neurophysiol 31 371–82 [5.3.4]

Leigh RJ, Maas EF, Grossman GE, Robinson DA (1989) Visual cancellation of the torsional vestibulo–ocular reflex in humans Exp Brain Res 75 221–6 [10.7.1]

Lein ES, Shatz CJ (2000) Rapid regulation of brain-derived neurotrophic factor MRNA within eye–specific circuits during ocular dominance column formation J Neurosci 20 1470–83 [6.6.1c, 6.7.2d, 8.2.7f]

Lein ES, Finney EM, McQuillen PS, Shatz CJ (1999) Subplate neuron ablation alters neurotrophin expression and ocular dominance column formation Proc Natl Acad Sci 96 13491–5 [6.4.5c]

Lein ES, Hohn A, Shatz CJ (2000) Dynamic regulation of BDNF and NT-3 expression during visual system development J Comp Neurol 420 1–18 [6.4.7b]

Leinonen L, Hyvärinen J, Nyman G, Linnankoski I (1979) Functional properties of neurons in lateral part of association area 7 in awake monkeys Exp Brain Res 34 299–320 [5.8.4e]

Lejeune A (1956) L’Optique de Claude Ptolémée (Latin version translated from Arabic by the Emir Eugène of Sicile) University of Louvain, Louvain [2.1.3d]

Lejeune A (1989) L’Optique de Claude Ptolémée dans la version latine d’apres l’arabe de l’emir Eugene de Sicile With a translation in French. Brill, Leiden [2.1.3d]

Lemij HG, Collewijn H (1991a) Long–term nonconjugate adaptation of human saccades to anisometropic spectacles Vis Res 31 1939–54 [10.8.3b]

Lemij HG, Collewijn H (1991b) Short–term nonconjugate adaptation of human saccades to anisometropic spectacles Vis Res 31 1955–66 [10.8.3b]

Lemij HG, Collewijn H (1992) Nonconjugate adaptation of human saccades to anisometropic spectacles: meridian–specificity Vis Res 32 453–64 [10.8.3b]

Lemke G (2001) Glial control of neuronal development Ann Rev Neurosci 24 87–105 [6.4.4c]

Lennerstrand G, Noorden GK von, Campos EC (1988) Strabismus and amblyopia Plenum, New York [10.2.2d]

Lennie P (1998) Single units and visual cortical organization Perception 27 889–935 [5.8.1]

Lennie P, Haake PW, Williams DR (1991) The design of chromatically opponent receptive fields In Computational models of visual processing (ed MS Landy, JA Movshon) pp 71–82 MIT Press, Cambridge MA [5.1.4c]

Leonard CM, Rolls ET, Wilson FAW, Baylis GC (1985) Neurons in the amygdala of the monkey with responses selective for faces Behav Brain Res 15 159–76 [5.8.3c]

(p.600) Leonards U, Singer W, Fahle M (1996) The influence of temporal phase differences on texture segmentation Vis Res 36 2989–97 [4.3.4d]

Leopold DA, Wilke M (2005) Neuroimaging: seeing the trees for the forest Curr Biol 15 R766–8 [5.4.3f]

Leopold DA, Wilke M, Maier A, Logothetis NK (2002) Stable perception of visually ambiguous patterns Nat Neurosci 5 605–9 [4.5.9c]

Lepore F, Ptito M, Jasper HH (1986) Two hemispheres one brain: functions of the corpus callosum Alan R. Loss, New York [5.3.5]

Lerma J (2003) Roles and rules of kainate receptors in synaptic transmission Nat Rev Neurosci 4 481–95 [5.5.2f]

Leske DA, Holmes JM (2004) Maximum angle of horizontal strabismus consistent with true stereopsis J AAPOS 8 28–34 [10.2.2b]

Lessard N, Paré M, Leporé F, Lassonde M (1998) Early-blind human subjects localize sound sources better than sighted subjects Nature 395 278–80 [8.1.4b]

Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex Nature 417 645–49 [6.4.2a]

Letourneau PC, Condic ML, Snow DM (1994) Interactions of developing neurons with the extracellular matrix J Neurosci 14 915–28 [6.4.3b]

Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity depend on dendritic synapse location J Neurosci 26 10420–9 [6.5.2]

Leuba G, Garey LJ (1987) Evolution of neuronal numerical density in the developing and aging human visual cortex Hum Neurobiol 6 11–18 [6.4.2a]

Leung KM, van Horck FPG, Lin AC, et al. (2006) Asymmetrical B-actin translation in growth cones mediates attractive turning to netrin-1 Nat Neurosci 9 1247–56 [6.4.3e]

LeVay S (1986) Synaptic organization of claustral and geniculate afferents to the visual cortex of the cat J Neurosci 6 3564–75 [5.5.4b]

LeVay S, Ferster D (1977) Relay cell classes in the lateral geniculate nucleus of the cat and the effects of visual deprivation J Comp Neurol 172 563–84 [8.2.2b]

LeVay S, Gilbert CD (1976) Laminar patterns of geniculocortical projection in the cat Brain Res 113 1–19 [8.4.6a]

LeVay S, Voigt T (1988) Ocular dominance and disparity coding in cat visual cortex Vis Neurosci 1 395–414 [5.7.2c]

LeVay S, Hubel DH, Wiesel TN (1975) The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain J Comp Neurol 159 559–75 [5.7.2a]

LeVay S, Stryker MP, Shatz CJ (1978) Ocular dominance columns and their development in layer IV of the cat’s visual cortex: a quantitative study J Comp Neurol 179 223–44 [6.7.1]

LeVay S, Wiesel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys J Comp Neurol 191 1–51 [6.7.1, 6.7.2d, 8.1.1d, 8.2.4b, 8.3.2]

LeVay S, Connolly M, Houde J, Van Essen DC (1985) The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey J Neurosci 5 486–501 [5.7.2c, 7.2.4]

Leventhal AG, Ault SJ, Vitek DJ (1988) The nasotemporal division in primate retina: the neural basis of macular sparing and splitting Science 270 66–7 [5.3.3, 5.3.4, 4.2.6c]

Leventhal AG, Wang Y, Schmolesky MT, Zhou Y (1998) Neural correlates of boundary perception Vis Neurosci 15 1107–18 [4.2.6c]

Levi DM (1991) Spatial vision in amblyopia In Vision and visual dysfunction Vol 10 Spatial vision (ed D Regan) pp 212–38 CRC Press, Boca Raton [8.4.1,]

Levi DM, Klein S (1982a) Hyperacuity and amblyopia Nature 298 298–9 [8.4.2a]

Levi DM, Klein S (1982b) Differences in vernier discrimination for gratings between strabismic and anisometropic amblyopes Invest Ophthal Vis Sci 23 389–407 [8.4.2a]

Levi DM, Klein S (1983) Spatial localization in normal and amblyopic vision Vis Res 23 1005–17 [8.4.2a]

Levi DM, Klein S (1985) Vernier acuity, crowding and amblyopia Vis Res 25 979–91 [8.2.3f, 8.4.2a]

Levi DM, Klein S (1990) Equivalent intrinsic blur in amblyopia Vis Res 30 1995–2022 [8.4.2a]

Levi DM, Li RW (2009) Perceptual learning as a potential treatment for amblyopia: a mini-review Vis Res 49 2535–49 [8.4.6c]

Levi DM, Saarinen J (2004) Perception of mirror symmetry in amblyopic vision Vis Res 44 2475–82 [8.4.3d]

Levi DM, Sharma V (1998) Integration of local orientation in strabismic amblyopia Vis Res 38 775–81 [8.4.3d]

Levi DM, Harwerth R, Manny RE (1979) Suprathreshold spatial frequency detection and binocular interaction in strabismic and anisometropic amblyopia Invest Ophthal Vis Sci 18 714–25 [8.5.1]

Levi DM, Klein S, Aitsebaomo AP (1984) Detection and discrimination of the direction of motion in central and peripheral vision of normal and amblyopic observers Vis Res 27 789–800 [8.4.4c]

Levi DM, Klein S, Aitsebaomo AP (1985) Vernier acuity crowding and cortical magnification Vis Res 25 963–77 [4.8.3b, 5.5.4c]

Levi DM, Klein SA, Yap YL (1987) Positional uncertainty in peripheral and amblyopic vision Vis Res 27 581–97 [8.4.3a]

Levi DM, Klein SA, Wang H (1994a) Discrimination of position and contrast in amblyopic and peripheral vision Vis Res 34 3293–313 [8.4.2a]

Levi DM, Waugh SJ, Beard BL (1994b) Spatial scale shifts in amblyopia Vis Res 34 3315–33 [8.4.2a]

Levi DM, Polat U, Hu YS (1997) Improvement in vernier acuity in adults with amblyopia Invest Ophthal Vis Sci 38 1493–1509 [8.4.6c]

Levi DM, Klein SA, Sharma V (1999) Position jitter and undersampling in pattern perception Vis Res 39 445–65 [8.4.3d]

Levi DM, Klein SA, Sharma V, Nguyen L (2000) Detecting disorder in spatial vision Vis Res 40 2307–27 [8.4.3c]

Levi DM, Hariharan S, Klein SA (2002) Suppressive and facilitatory spatial interactions in amblyopic vision Vis Res 42 1379–94 [8.4.3b]

Levi DM, Klein SA, Chen I (2008) What limits performance in the amblyopic visual system: Seeing signals in noise with an amblyopic brain J Vis 8 Article 1 [8.4.3c]

Levi DM, McKee SP, Movshon JA (2011) Visual defects in anisometropia Vis Res 51 48–57 [8.4.1]

Levi L, Zee DS, Hain TC (1987) Disjunctive and disconjugate saccades during symmetrical vergence Invest Ophthal Vis Sci 28 (Abs) 332 [10.8.2c]

Levick WR, Thibos LN (1982) Analysis of orientation bias in the cat retina J Physiol 329 243–61 [5.6.2a]

Levick WR, Kirk DL, Wagner HG (1981) Neurophysiological tracing of a projection from temporal retina to contralateral visual cortex of cat Vis Res 21 1677–9 [5.3.4]

Levick WR, Thibos LN, Cohn TE, et al. (1983) Performance of cat retinal ganglion cells at low light levels J Gen Physiol 82 405–26 [5.1.5]

Levine MJ, Dombeck DA, Kasischke KA, et al. (2004) In vivo multiphoton microscopy of deep brain tissue J Neurophysiol 91 1908–12 [5.4.1b]

Levine RL, Jacobson M (1975) Discontinuous mapping of retina onto tectum innervated by both eyes Brain Res 98 172–6 [6.7.3b]

Levitt FB, Van Sluyters RC (1982) The sensitivity period for strabismus in the kitten Devel Brain Res 3 323–7 [8.3.1a]

Levitt H (1971) Transformed up-down methods in psychoacoustics J Acoust Soc Am 49 467–77 [3.1.1c]

Levitt JB, Lund JS (1997) Contrast dependence of contextual effects in primate visual cortex Nature 387 73–6 [5.5.6c]

Levitt JB, Kiper DC, Movshon A (1994) Receptive fields and functional architecture of macaque V2 J Neurophysiol 71 2517–42 [5.8.2a]

Levitt JB, Yoshioka T, Lund JS (1995) Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey Exp Brain Res 104 419–30 [5.5.4b, 5.8.2a, 5.9.1]

Levitt JB, Schumer RA, Sherman SM, et al. (2001) Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys J Neurophysiol 85 2111–29 [5.2.2b]

Levitt P, Moore RY (1979) Development of the noradrenergic innervation of neocortex Brain Res 162 273–59 [5.5.2g, 5.9.1, 8.2.7h]

Levitt P, Barbe MF, Eagleson KL (1997) Patterning and specification of the cerebral cortex Ann Rev Neurosci 20 1–27 [6.4.2c]

(p.601) Levy WB, Baxter RA (1996) Energy efficient neural codes Neural Comput 8 531–43 [4.2.6b]

Lewin GR, Barde YA (1996) Physiology of the neurotrophins Ann Rev Neurosci 19 289–317 [6.4.3d]

Lewis J (1996) Neurogenic genes and vertebrate neurogenesis Curr Opin Neurobiol 6 3–10 [6.4.2b]

Lewis JW, Olavarria JF (1995) Two rules for callosal connectivity in striate cortex of the rat J Comp Neurol 361 119–37 [5.3.5]

Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing in the parietal lobe of the macaque monkey J Comp Neurol 428 112–37 [5.8.4e]

Lewis RF, Clendaniel RA, Zee DS (2003) Vergence-dependent adaptation of the vestibulo-ocular reflex Exp Brain Res 152 335–40 [10.9.1]

Lewis TL, Maurer D (1992) The development of the temporal and nasal visual fields during infancy Vis Res 32 903–11 [7.2.4]

Lewis TL, Maurer D, Chung JYY, et al. (2000) The development of symmetrical OKN in infants: quantification based on OKN acuity for nasalward versus temporalward motion Vis Res 40 445–53 [7.2.3c, 7.3.4]

Lewis TL, Ellemberg D, Maurer D, et al. (2002) Sensitivity to global form in glass patterns after early visual deprivation in humans Vis Res 42 939–48 [8.4.4c]

Li B, Peterson MR, Freeman RD (2003) Oblique effect: a neural basis in the visual cortex J Neurophysiol 90 204–17 [5.6.2a]

Li RW, Levi DM, Klein SA (2004) Perceptual learning improves efficiency by retuning the decision ‘template’ for position discrimination Nat Neurosci 7 178–83 [4.9.2c]

Li RW, Klein SA, Levi DM (2008) Prolonged perceptual learning of positional acuity in adult amblyopia: Perceptual template retuning dynamics J Neurosci 28 14223–29 [8.4.6c]

Li S, Zhang C, Takemori H, et al. (2009) TORC1 regulates activity-dependent CREB-target gene transcription and dendritic growth of developing cortical neurons J Neurosci 29 2334–43 [6.6.1c]

Li W, Thier P, Wehrhahn C (2000) Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys J Neurophysiol 83 941–54 [5.5.6c]

Li W, Piëch V, Gilbert CD (2006) Contour saliency in primary visual cortex Neuron 50 951–62 [5.6.7b]

Li W, Piëch V, Gilbert CD (2008) Learning to link visual contours Neuron 57 442–51 [5.6.8]

Liang J, Williams DR (1997) Aberrations and retinal image quality of the normal human eye J Opt Soc Am 14 2873–83 [9.1.3c]

Liao DS, Mower AF, Neve RL, et al. (2002) Different mechanisms for loss and recovery of binocularity in the visual cortex J Neurosci 22 9015–23 [8.2.7f]

Liao DS, Krahe TE, Prusky GT, et al. (2004) Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity J Neurophysiol 92 2113–21 [8.3.1a]

Lie I, Opheim A (1990) Long-term stability of prism correction of heterophorics and heterotropics; a 5 year follow-up J Am Optom Assoc 61 491–8 [10.2.5a]

Lilien J, Arregui C, Li H, Balsamo J (1999) The juxtamembrane domain of cadherin regulates integrin-mediated adhesion and neurite outgrowth J Neurosci Res 58 727–34 [6.4.3b]

Lin B, Wang W, Masland H (2004) Retinal ganglion cell type. Size, and spacing can be specified independent of homotypic dendritic contacts Neuron 43 475–85 [6.3.2a]

Lin CH, Forscher P (1995) Growth cone advance is inversely proportional to retrograde F-actin flow Neuron 14, 763–71 [6.4.3a]

Lin JY, Murray SO, Boynton GH (2009) Capture of attention to threatening stimuli without perceptual awareness Curr Biol 19 1118–22 [4.8.4, 5.9.1]

Lindberg DC (1971) Alkindi’s critique of Euclid’s theory of vision Isis 62 469–89 [2.2.4b]

Lindberg DC (1976) Theories of vision from Al–Kindi to Kepler University of Chicago Press, Chicago [2.10.5, 2.2.4c, 2.4.2]

Lindberg DC (1978) The intromission-extramission controversy in Islamic visual theory: Alkindi versus Avicenna In Studies in perception (ed PK Machamer, RG Turnbull) pp 136–59 Ohio University Press, Columbus Ohio [2.1.4, 2.2.4b]

Lindberg DC (1983) Studies in the history of medieval optics Valorium, London [2.3.1, 2.4.2, 2.5.3]

Lindsay RM, Wiegand SJ, Alter CA, DiStefano PS (1994) Neurotrophic factors: from molecules to man TINS 17 182–90 [6.4.3d]

Lines CR, Milner AD (1983) Nasotemporal overlap in the human retina investigated by means of simple reaction time to lateral light flash Exp Brain Res 50 166–72 [5.3.5]

Linksz A (1952) Physiology of the eye Vol II Vision Grune and Stratton, New York [5.3.4]

Linsker R (1986) From basic network principles to neural architecture: emergence of orientation columns Proc Natl Acad Sci 83 8779–83 [5.7.1]

Lisman JE (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory Proc Natl Acad Sci 86 9574–8 [6.5.1a]

Lisman JE (1997) Bursts as a unit of neural information: making unreliable synapses reliable TINS 20 38–43 [4.3.2]

Lisman JE, Spruston N (2005) Postsynaptic depolarization requirements for LTP and LTD: A critique of spike timing-dependent plasticity Nat Neurosci 8 839–841 [6.5.2]

Lisman JE, Zhabotinsky AM (2001) A model of synaptic memory: a CAMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly Neuron 31 191–201 [6.5.1a]

Lister R, Pelizzola M, Dowen RH, et al. (2009) Human DNA methylomes at base resolution show widespread epigenomic differences Nature 462 315–322 [6.6.1a]

Litovsky RY, Clifton RK (1992) Use of sound-pressure level in auditory distance discrimination by 6-month-old infants and adults J Acoust Soc Am 92 794–801 [7.7]

Little AMG (1971) Roman perspective painting and the ancient stage Star Press, Kennebunk Maine [2.9.1]

Liu L, van Hulle MM (1998) Modeling the surround of MT cells and their selectivity for surface orientation in depth specified by motion Neural Comput 10 295–312 [5.8.4b]

Liu L, Stevenson SB, Schor CM (1998) Vergence eye movements elicited by stimuli without corresponding features Perception 27 7–20 [10.3.2b]

Liu Y, Meiri KF, Cynader MS, Gu Q (1996) Nerve growth factor induced modification of presynaptic elements in adult visual cortex in vivo Brain Res 732 36–42 [6.4.7b, 8.2.7f]

Livet J, Weissman TA, Kag H, et al. (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system Nature 450 56–63 [5.4.2a]

Livingstone MS (1996) Ocular dominance columns in New World monkeys J Neurosci 16 2086–96 [5.7.2f]

Livingstone MS (1998) Mechanisms of direction selectivity in macaque V1 Neuron 20 509–26 [5.6.4a]

Livingstone MS, Hubel DH (1981) Effects of sleep and arousal on the processing of visual information Nature 291 554–61 [5.2.2d, 5.9.1]

Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex J Neurosci 4 309–56 [5.5.6a, 5.6.6]

Livingstone MS, Hubel DH (1987) Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey J Neurosci 7 3371–7 [5.8.2a]

Livingstone MS, Hubel DH (1988) Segregation of form, color movement and depth: anatomy physiology and perception Science 270 740–9 [5.8.5b]

Livingstone MS, Nori S, Freeman DC, Hubel DH (1995) Stereopsis and binocularity in the squirrel monkey Vis Res 35 345–54 [5.7.2f]

Livneh Y, Feinstein N, Klein M, Mizrahi A (2009) Sensory input enhances synaptogenesis of adult-born neurons J Neurosci 29 86–97 [6.4.2d]

Ljubinkovic R (1964) Medieval art in Yugoslavia. The church of the Apostles in the partriarchate of Pec Publishing House Jugoslavija, Beograd, Yugoslavia [2.9.2]

(p.602) Llinás R, Grace AA, Yarom Y (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 40 to 50 Hz frequency range Proc Natl Acad Sci 88 897–901 [4.3.4a]

Lo DC, McAllister AK, Katz LC (1994) Neuronal transfection in brain slices using particle-mediated gene transfer Neuro n 13 1263–8 [5.4.2a]

Lockett A (1913) The evolution of the modern stereoscope Sci Am Supplement Number 76 276–9 [2.11.2b]

Lodovichi C, Berardi N, Pizzorusso T, Maffei L (2000) Effects of neurotrophins on cortical plasticity: same or different? J Neurosci 20 2155–65 [6.7.2d]

Loeser JD, Alvord EC (1968) Clinicopathological correlations in agenesis of the corpus callosum Neurology 18 745–56 [6.4.6d]

Logan DJ, Duffy CJ (2006) Cortical area MSTd combines visual cues to represent 3-D self-movement Cereb Cortex 16 1494–1507 [5.8.4c]

Logothetis NK (2008) What we can do and what we cannot do with fMRI Nature 453 869–78 [5.4.3f]

Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal Ann Rev Physiol 66 735–69 [5.4.3f]

Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex of monkeys Curr Biol 5 552–63 [5.8.3b]

Lohmann C, Bonhoeffer T (2008) A role for local calcium signaling in rapid synaptic partner selection by dendritic filopodia Neuron 59 253–60 [6.4.4a]

Lom B, Cohen-Cory S (1999) Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendrites and axonal arborization in vivo J Neurosci 19 9928–38 [6.4.7b]

Lomo T (2003) The discovery of long-term potentiation Phil Trans Roy Soc B 358 617–20 [6.5.1a]

London R, Wick BC (1982) Changes in angle lambda during growth: theory and clinical applications Am J Optom Physiol Opt 59 568–72 [7.3.3]

Long GM, Toppino TC (2004) Enduring interest in perceptual ambiguity: alternating views of reversible figures Psychol Bull 130 748–68 [4.5.9f]

Longuet–Higgins HC (1981) A computer algorithm for reconstructing a scene from two projections Nature 293 133–5 [3.6]

Loomis JM, Collins CC (1978) Sensitivity to shifts of a point stimulus: an instance of tactile hyperacuity Percept Psychophys 27 487–92 [3.1.4a]

López-Bendito, Luján R, Shigemoto R, et al. (3003) Blockade of GABAB receptors alters the tangential migration of cortical neurons Cereb Cortex 13 932–42 [6.4.5b]

Löpping B, Weale RA (1965) Changes in corneal curvature following ocular convergence Vis Res 5 207–15 [10.4.2]

Lorente de Nó R (1949) Cerebral cortex: architecture intracortical connections motor projections In Physiology of the nervous system 3rd edn (ed JF Fulton) Chap 15 Oxford University Press, London [5.7]

Losonczy A, Makara JK, Magee JC (2008) Comparmentalized dendritic plasticity and input feature storage in neurons Nature 452 436–42 [6.5.5]

Lotmar W (1976) A theoretical model for the eye of new–born infants Graefes Arch klin exp Ophthal 198 179–85 [6.3.1a]

Lotze H (1852) Medicinische Psychologie Weidmann, Leipzig. Part translation in Herrnstein and Boring (1965) [2.8.3]

Löwel S (1994) Ocular dominance column development: strabismus changes the spacing of adjacent columns in cat visual cortex J Neurosci 14 7451–68 [5.7.2c, 8.2.3a]

Löwel S, Singer W (1987) The pattern of ocular dominance columns in flat-mounts of the cat visual cortex Exp Brain Res 68 661–6 [5.7.2c]

Löwel S, Singer W (1992) Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity Science 255 209–12 [8.2.3a]

Löwel S, Bischof HJ, Leutenecker B, Singer W (1988) Topographic relations between ocular dominance and orientation columns in the cat striate cortex Exp Brain Res 71 33–46 [5.7.2c, 8.2.3]

Lu B (2003) Pro-region of neurotrophins: role in synaptic modulation Neuron 39 735–8 [6.4.3d]

Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas V1 V2 and V4 of macaque visual cortex J Neurophysiol 77 27–42 [5.9.2c, 5.9.3c]

Ludlam WM, Wittenberg S, Giglio EJ, Rosenberg R (1968) Accommodative responses to small changes in dioptric stimulation Am J Optom Arch Am Acad Optom 45 483–506 [9.7.1a]

Ludvigh E, McKinnon P (1966) Relative effectivity of foveal and parafoveal stimuli in eliciting fusion movements of small amplitude Arch Ophthal 76 443–9 [10.5.6]

Ludvigh E, McKinnon P (1968) Dependence of the amplitude of fusional convergence movements on the velocity of the eliciting stimulus Invest Ophthal 7 347–52 [10.5.8a]

Ludvigh E, McKinnon P, Zaitzeff L (1964) Temporal course of the relaxation of binocular duction (fusion) movements Arch Ophthal 71 389–399 [10.2.5]

Ludvigh E, McKinnon P, Zaitzeff L (1965) Relative effectivity of foveal and parafoveal stimuli in eliciting fusion movements Arch Ophthal 73 115–21 [10.5.5a]

Lueck CJ, Hamlyn P, Crawford TJ, et al. (1991) A case of ocular tilt reaction and torsional nystagmus due to direct stimulation of the midbrain in man Brain 114 2069–79 [10.10.4]

Luhmann HJ, Millán LM, Singer W (1986) Development of horizontal intrinsic connections in the cat striate cortex Exp Brain Res 63 443–8 [6.4.6b]

Luk KC, Kennedy TE, Sadikot AF (2003) Glutamate promotes proliferation of striatal neuronal progenitors by an NMDA receptor-mediated mechanism J Neurosci 23 2239–50 [6.4.5b]

Lund JS, Boothe RG (1975) Interlaminar connections and pyramidal neuron organization in the visual cortex area 17 of the macaque monkey J Comp Neurol 159 305–34 [5.2.2a]

Lund JS, Boothe RG, Lund RD (1977) Development of neurons in the visual cortex of the monkey (Macaca nemestrina): a Golgi study from fetal day 127 to postnatal maturity J Comp Neurol 176 149–88 [6.4.5c]

Lund RD, Mitchell DE (1979a) Plasticity of visual callosal projections Soc Neurosci Symp 4 142–52 [6.4.6d, 8.2.3b]

Lund RD, Mitchell DE (1979b) Asymmetry in the callosal connections of strabismic cats Brain Res 167 176–9 [8.2.3b]

Lund RD, Mustari MJ (1977) Development of the geniculocortical pathway in rats J Comp Neurol 173 289–305 [6.4.5c]

Lund RD, Cunningham TJ, Lund JS (1973) Modified optic projections after unilateral eye removal in young rats Brain Behav Evol 8 51–72 [8.2.6a]

Lund RD, Mitchell DE, Henry GH (1978) Squint-induced modification of callosal connections in cats Brain Res 144 169–72 [6.4.6d]

Luneburg RK (1947) Mathematical analysis of binocular vision Edwards, Ann Arbor Michigan [4.7.2]

Luneburg PK (1950) The metric of binocular visual space J Op Soc Am 40 627–42 [4.7.2]

Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity Ann Rev Cell Dev Biol 18 601–35 [6.4.3b]

Luskin MB, Shatz CJ (1985) Neurogenesis of the cat’s primary visual cortex J Comp Neurol 272 611–31 [6.4.5a]

Luu CD, Green JF, Abel L (2000) Vertical fixation disparity curve and the effects of vergence training in a normal young adult population Optom Vis Sci 77 663–9 [10.2.5a, 10.6.1]

Lyford GL, Yamagata K, Kaufmann WE, et al. (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites Neuron 14 433–45 [5.4.3a, 6.6.1c]

Lynch JC, Mountcastle VB, Talbot WH, Yin TCT (1977) Parietal lobe mechanisms for directed visual attention J Neurophysiol 40 362–89 [5.9.2b]

Lynch LE (1941) The doctrine of divine ideas and illumination in Robert Grosseteste, bishop of Lincoln Medieval Studies 3 161–73 [2.3.1]

Lynes JA (1980) Brunelleschi’s perspectives reconsidered Perception 9 87–99 [2.9.3]

(p.603) Lyon DC, Kaas JH (2001) Connectional and architectonic evidence for dorsal and ventral V3, and dorsomedial area in marmoset monkeys J Neurosci 21 249–61 [5.8.2b]

Ma, L, Harada, T, Harada C, et al. (2002) Neurotrophin-3 is required for appropriate establishment of thalamocortical connections Neuron 36 623–34 [6.4.3d, 6.4.5c]

Macaluso E, Frith CD, Driver J (2002) Crossmodal spatial influences of touch on extrastriate visual areas take current gaze direction into account Neuron 34 647–58 [5.8.6]

MacCurdy E (1954) The notebooks of Leonardo da Vinci George Braziller, New York [2.4.2]

MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of transmitter release Ann Rev Neurosci 22 443–85 [5.5.2f, 6.5.3]

MacDougall CD (1983) Superstition and the press Prometheus Books, Buffalo New York [2.4.1]

Mach E (1929) The principles of physical optics An historical and philosophical treatment (Translated by JS, Anderson, AFA Young) Methuen, London [2.10.1]

MacKay DM (1961) Interactive processes in visual perception In Sensory communication (ed WA Rosenblith) pp 339–355 Wiley, New York [4.7.1]

Mackeben M, Nakayama K (1993) Express attentional shifts Vis Res 33 85–90 [4.8.1b]

Mackensen G (1958) Reaktionszeitmessungen bei Amblyopie Graefes Arch klin exp Ophthal 159 636–42 [8.4.4a]

Mackworth AK (1973) Interpreting pictures of polyhedral scenes Artif Intell 4 121–37 [4.5.10a]

Macmillan NA, Creelman CD (1991) Detection theory: a users guide Cambridge University Press, New York [3.1.1d]

MacNeil MA, Masland RH (1998) Extreme diversity among amacrine cells: implications for function Neuron 20 971–82 [5.1.3]

Macy A, Ohzawa I, Freeman RD (1982) A quantitative study of the classification and stability of ocular dominance in the cat’s visual cortex Exp Brain Res 48 401–8 [5.7.2d]

Maddox EE (1893) The clinical use of prisms and the decentering of lenses John Wright, Bristol England [10.1.3b, 10.2.3c, 10.4.1]

Maeda M, Sato M, Ohmura T, et al. (1999) Binocular depth-from-motion in infantile and late-onset esotropia patients with poor stereopsis Invest Ophthal Vis Sci 40 3031–6 [8.4.4c]

Maffei L, Fiorentini A (1976) Monocular deprivation in kittens impairs spatial resolution of geniculate neurones Nature 294 754–5 [8.2.2c]

Maffei L, Berardi N, Domenici L, et al. (1992) Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats J Neurosci 12 4651–62 [8.2.7f]

Maffei L, Nataraj K, Nelson SB, Turrigiano GG (2006) Potentiation of cortical inhibition by visual deprivation Nature 443 81–9 [8.2.7a]

Magee JC, Johnston D (1997) A synaptically controlled associative signal for Hebbian plasticity in hippocampal neurons Science 275 209–13 [4.2.1]

Magnin M, Cooper HM, Mick G (1989) Retinohypothalamic pathway: a breach in the law of Newton-Müller-Budden Brain Res 488 390–7 [5.3.3]

Magoon EH, Robb RM (1981) Development of myelin in human optic nerve and tract Arch Ophthal 99 655–9 [6.3.3c]

Maier A, Wilke M, Logothetis NK, Leopold DA (2003) Perception of temporally interleaved ambiguous patterns Curr Biol 13 1076–85 []

Maini PK, Baker RE, Chuong CM (2006) The Turing model comes of molecular age Science 314 1397–8 [5.7.1]

Majdan M, Shatz CJ (2006) Effects of visual experience on activity-dependent gene regulation in cortex Nat Neurosci 9 650–9 [6.6.1c]

Majewska A, Sur M (2003) Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation Proc Natl Acad Sci 100 16024–9 [6.4.4f]

Malach R, Van Sluyters RC (1989) Strabismus does not prevent recovery from monocular deprivation: a challenge for simple Hebbian models of synaptic modification Vision Neurosci 3 297–73 [8.2.5a]

Malach R, Ebert R, Van Sluyters RC (1984) Recovery from effects of brief monocular deprivation in the kitten J Neurophysiol 51 538–51 [8.3.1a]

Malach R, Amir Y, Harel M, Grinvald A (1993) Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex Proc Natl Acad Sci 90 10469–73 [5.5.6a]

Malach R, Reppas JB, Benson RR, et al. (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex Proc Natl Acad Sci 92 8135–9 [5.8.3c]

Maldonado PE, Gödecke I, Gray CM, Bonhoeffer T (1997) Orientation selectivity in pinwheel centres in cat striate cortex Science 276 1551–5 [5.7.1]

Malebranche N (1674) De la recherche de la verité Pralard, Paris [2.10.3e, 2.5.4]

Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity Science 283 1923 [6.4.4f]

Malgaroli A, Ting AE, Wendland B, et al. (1995) Presynaptic components of long-term potentiation visualized at individual hippocampal synapses Science 298 1627–8 [4.3.4f, 6.5.3]

Mallett RFJ (1964) The investigation of heterophoria at near and a new fixation disparity technique The Optician 148 547–551 574–81 [10.2.4a]

Mallot HA, Roll A, Arndt PA (1996) Disparity-evoked vergence is driven by interocular correlation Vis Res 36 2925–37 [10.5.5b]

Malmstrom FW, Randle RJ (1976) Effects of visual imagery on the accommodation response Percept Psychophys 19 450–3 [9.4]

Malpeli JG, Baker FH (1975) The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta J Comp Neurol 161 569–94 [5.2.1]

Malpeli JG, Schiller PH, Colby CL (1981) Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae J Neurophysiol 46 1102–9 [5.5.3, 3]

Malpeli JG, Lee D, Baker FH (1996) Laminar and retinotopic organization of the macaque lateral geniculate nucleus: magnocellular and parvocellular functions J Comp Neurol 375 363–77 [5.2.1]

Mamassian P, Landy M, Maloney LT (2001) Bayesian modelling of visual perception In Probabilistic models of the brain: perception and neural function (ed RPN Rao, BA Olshausen, MS Lewicki) pp 13–36 MIT Press, Cambridge MA [3.6]

Manas L (1958) The effect of visual training upon the ACA ratio Am J Optom Arch Am Acad Optom 35 428–37 [10.4.1]

Mandelbaum J (1960) An accommodation phenomenon Arch Ophthal 63 923–6 [9.6.1]

Mandolesi G, Menna E, Harauzov A, et al. (2005) A role for retinal brain-derived neurotrophic factor in ocular dominance plasticity Curr Biol 15 2119–24 [8.2.1, 8.2.7f]

Mangel SC, Wilson JR, Sherman SM (1983) Development of neuronal response properties in the cat dorsal lateral geniculate nucleus during monocular deprivation J Neurophysiol 50 270–64 [8.2.2b]

Mann I (1964) The development of the human eye Grune and Stratton, New York [7.6.4]

Manning KA, Riggs LA (1984) Vergence eye movements and visual suppression Vis Res 27 521–29 [10.3.1]

Manny RE (1980) Monocular vergence movements produced by external visual feedback Am J Optom Physiol Opt 57 236–44 [10.8.1a]

Manny RE (1992) Orientation selectivity of 3-month-old infants Vis Res 32 1817–28 [7.2.2]

Manny RE, Fern KD (1990) Motion coherence in infants Vis Res 30 1319–29 [7.2.3c]

Manny RE, Klein SA (1985) A three alternative tracking paradigm to measure vernier acuity of older infants Vis Res 25 1275–52 [7.2.1c]

(p.604) Manny RE, Levi DM (1982) Psychophysical investigations of the temporal modulation sensitivity function in amblyopia: spatiotemporal interactions Invest Ophthal Vis Sci 22 525–34 [8.4.4b]

Mansouri B, Thompson B, Hess RF (2008) Measurement of suprathreshold binocular interactions in amblyopia Vis Res 48 2775–84 [8.4.2a]

Marcelja S (1980) Mathematical description of the responses of simple cortical cells J Opt Soc Am 70 1297–1300 [4.4.1c]

Marchiafava PL (1966) Binocular reciprocal interaction upon optic fiber endings in the lateral geniculate nucleus of the rat Brain Res 2 188–92 [5.2.3a]

Marcos S, Navarro R (1997) Determination of the foveal cone spacing by ocular speckle interferometry: limiting factors and acuity predictions J Opt Soc Am A 14 731–40 [9.1.5]

Marcos S, Moreno E, Navarro R (1999) The depth-of-field of the human eye from objective and subjective measurements Vis Res 39 2039–49 [9.6.4e, 9.6.4g]

Marcus DS, van Essen DC (2002) Scene segmentation and attention in primate cortical areas V1 and V2 J Neurophysiol 88 2648–58 [5.6.7a]

Marcus RC, Mason CA (1995) The first retinal axon growth in the mouse optic chiasm: axon patterning and the cellular environment J Neurosci 15 6389–402 [6.3.4a]

Marcus RC, Blazeski R, Godement P, Mason CA (1995) Retinal axon divergence in the optic chiasm: uncrossed axons diverge from crossed axons within a midline glial specialization J Neurosci 15 3716–29 [6.3.4a]

Marcus RC, Gale NW, Morrison ME, et al. (1996) Eph family receptors and their ligands distribute in opposite gradients in the developing mouse retina Devel Biol 180 786–9 [6.3.2a]

Marcus RC, Shimamura K, Sretavan D, et al. (1999) Domains of regulatory gene expression and the developing optic chiasm: correspondence with retinal axon paths and candidate signaling cells J Comp Neurol 403 346–58 [6.3.4b]

Mareschal I, Baker CL (1998) A cortical locus for the processing of contrast-defined contours Nat Neurosci 1 150–4 [5.6.3, 5.8.2a]

Marey EJM (1895) Le mouvement (Translated by E Pritchard) Appleton, New York 1972 [2.11.4]

Margrie TW, Meyer AH, Caputi A, et al. (2003) Targeted whole-cell recordings in the mammalian brain in vivo Neuron 39 911–18 [5.4.2c]

Maric D, Liu QY, Maric I, et al. (2001) GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABAA autoreceptor/Cl- channels J Neurosci 21 2343–60 [6.4.4d]

Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficiency by coincidence of postsynaptic APs and EPSPs Science 275 213–15 [6.5.2]

Markram H, Toledo-Rodrguez M, Wang, Y, et al. (2004) Interneurons of the neocortical inhibitory system Nat Neurosci 5 793–807 [5.5.1e]

Marmarelis PZ, Marmarelis VZ (1978) Analysis of physiological systems; the white noise approach Plenum, New York [3.4]

Marr D (1977) Analysis of occluding contour Proc Roy Soc B 197 441–75 [4.5.10a]

Marr D (1982) Vision Freeman San Francisco [3.2.1, 4.2.6a, 4.4.3]

Marran L, Schor CM (1998) Lens induced aniso-accommodation Vis Res 38 3601–19 [9.7.3a]

Marran L, Schor CM (1999) The effect of target proximity on the aniso-accommodative response Ophthal Physiol Opt 19 376–92 [9.7.3a]

Marrocco RT, McClurkin JW (1979) Binocular interaction in the lateral geniculate nucleus of the monkey Brain Res 168 633–7 [5.2.2a, 5.2.3b]

Marrocco RT, McClurkin JW, Alkirc MT (1996) The influence of the visual cortex on the spatiotemporal response properties of lateral geniculate nucleus cells Brain Res 737 110–18 [5.2.2b]

Marrs GS, Green SH, Dailey ME (2001) Rapid formation and remodelling of postsynaptic densities in developing dendrites Nat Neurosci 4 1006–13 [6.4.4a, 6.4.4f]

Marshall WF (2002) Order and disorder in the nucleus Curr Biol 12 R185–92 [5.4.2a]

Marshall WH, Talbot SA (1940) Recovery cycle of the lateral geniculate of the nembutalized cat Am J Physiol 129 P417–18 [5.2.3a]

Marshall WH, Talbot SA (1942) Recent evidence for neurological mechanisms in vision leading to a general theory of sensory acuity Biological Symposium 7 117–64 [10.1.1]

Martens TG, Ogle KN (1959) Observations on accommodative convergence Am J Ophthal 47 455–63 [10.4.1]

Martenson C, Stone K, Reedy M, Sheetz M (1993) Fast axonal transport is required for growth cone advance Nature 366 66–9 [6.4.3a]

Martin H, Guthoff R, Terwee T, Schmitz K-P (2005) Comparison of the accommodation theories of Colman and of Helmholtz by finite element simulations Vis Res 45 2910–15 [9.2.2b]

Martin PR (1986) The projection of different retinal ganglion cell classes to the dorsal lateral geniculate nucleus in the hooded rat Exp Brain Res 62 77–88 [5.3.1]

Martínez A, Anllo-Vento L, Sereno MI, et al. (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention Nat Neurosci 2 364–9 [5.9.2a]

Martinez V, Sarter M (2004) Lateralized attentional functions of cortical cholinergic inputs Behav Neurosci 118 984–91 [5.9.1]

Maske R, Yamane S, Bishop PO (1984) Binocular simple cells for local stereopsis: a comparison of receptive field organizations for the two eyes Vis Res 27 1921–9 [5.7.2b]

Masland RH, Raviola E (2000) Confronting complexity: strategies for understanding the microcircuity of the retina Ann Rev Neurosci 23 279–84 [5.4.2a]

Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks Science 296 910–13 [6.4.3e]

Mason AJS, Braddick OJ, Wattam-Bell J (2003) Motion coherence thresholds in infants—different tasks identify at least two distinct motion systems Vis Res 43 1149–57 [7.2.3c]

Mason CA, Wang LC (1997) Growth cone form is behavior-specific and consequently position-specific along the retinal axon pathway J Neurosci 17 1086–100 [6.4.3a]

Massaro DW (1988) Ambiguity in perception and experimentation J Exp Psychol Gen 117 417–21 [4.5.7c]

Masson GS, Busettini CM, Miles FA (1997) Vergence eye movements in response to binocular disparity without depth perception Nature 389 283–6 [10.5.10c]

Masson GS, Yang DS, Miles FA (2002) Version and vergence eye movements in humans open-loop dynamics determined by monocular rather than binocular image speed Vis Res 42 2853–67 [10.5.1]

Mastai ML d’Otrange (1976) Illusion in art Secker and Warburg, London [2.9.5]

Mastronarde DN (1983) Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X– and Y–cells J Neurophysiol 49 303–27 [5.1.4a]

Mataga N, Mizuguchi Y, Hensch TK (2004) Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator Neuron 44 1031–41 [8.2.7g]

Mateeff S, Yakimoff N, Hohnsbein J, et al. (1991) Selective directional sensitivity in visual motion perception Vis Res 31 131–8 [8.4.4d]

Mather G (1997) The use of image blur as a depth cue Perception 26 1147–58 [9.6.3]

Mathews PJ, Jercog PE, Rinzel J, et al. (2010) Control of submillisecond synaptic timing in binaural coincidence detectors by KV1 channels Nat Neurosci 13 601–11 [4.3.3a]

Mathews S, Kruger PB (1994) Spatiotemporal transfer function of human accommodation Vis Res 34 1965–80 [9.7.2b]

Matin E (1974) Saccadic suppression: a review and an analysis Psychol Bull 81 899–917 [10.3.1]

Matsubara J, Cynader M, Swindale NV, Stryker MP (1985) Intrinsic projections within visual cortex: evidence for orientation–specific local connections Proc Natl Acad Sci 82 935–9 [5.5.6b]

Matthews G, Fuchs P (2010) The diverse roles of ribbon synapses in sensory neurotransmission Nat Rev Neurosci 11 812–22 [5.1.3]

(p.605) Matthews N, Rojewski A, Cox J (2005) The time course of the oblique effect in orientation judgments J Vis 5 202–14 [4.9.1]

Matthews PB (1988) Proprioceptors and their contribution to somatosensory mapping: complex messages require complex processing Can J Physiol Pharmacol 66 430–8 [4.5.6]

Matthiessen L (1882) Uber die Beziehungen, welche zwischen dem Brechungsindex des Kerncentrales der Krystallinse und den Dimensionen des Auges bestehen Pflügers Arch ges Physiol 27 510–23. [6.1.3, 9.2.2b]

Mattingley JB, Davis G, Driver J (1997) Preattentive filling-in of visual surfaces in parietal extinction Science 275 671–4 [4.5.2b]

Maturana HR, Frenk S (1963) Directional movement and horizontal edge detectors in the pigeon retina Science 142 977–9 [5.6.4a]

Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog J Gen Physiol 43 129–75 [5.6.4a]

Mauch DH, Nägler K, Schumacher S, et al. (2001) CNS synaptogenesis promoted by glial-derived cholesterol Science 294 1354–7 [6.4.4c]

Maude N (1978) Stereo photography, its inception rise and fall Br J Photog Annual [2.11.3]

Maunsell JHR, Cook EP (2002) The role of attention in visual processing Phil Trans Roy Soc B 357 1063–72 [5.9.2a]

Maunsell JHR, McAdams CJ (2000) Effects of attention on neuronal response properties in visual cerebral cortex In The new cognitive neurosciences (ed MS Gazzaniga) pp 315–27 MIT Press, Cambridge MA [5.9.2c]

Maunsell JHR, Van Essen DC (1983a) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey J Neurosci 3 2563–86 [5.8.1]

Maunsell JHR, Van Essen DC (1983b) Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity J Neurophysiol 49 1148–67 [5.8.4b, 5.8.5b]

Maunsell JHR, Van Essen DC (1987) Topographic organization of the middle temporal visual area in the macaque monkey: representational biases and the relationship to callosal connections and myeloarchitectonic boundaries J Comp Neurol 296 535–55 [5.3.5, 5.8.4b]

Maunsell JHR, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey J Neurosci 10 3323–34 [5.8.4b, 5.8.5a]

Maunsell JHR, Ghose GM, Assad JA, et al. (1999) Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys Vis Neurosci 16 1–14 [5.2.1]

Maurer D, Martello M (1980) The discrimination of orientation by young infants Vis Res 20 201–4 [7.2.2]

Maurer D, Lewis TL, Brent HP, Levin AV (1999) Rapid improvement in the acuity of infants after visual input Science, 286 108–10 [7.2.1b]

Maxeiner S, Krüger O, Schilling K, et al. (2003) Spatiotemporal transcription of connexin45 during brain development results in neuronal expression in adult mice Neurosci 119 689–700 [5.5.2a, 6.4.3f]

Maxwell GF, Lemij HG, Collewijn H (1995) Conjugacy of saccades in deep amblyopia Invest Ophthal Vis Sci 36 2514–22 [8.4.5b]

Maxwell JS, King WM (1992) Dynamics and efficacy of saccadefacilitated vergence eye movements in monkeys J Neurophysiol 68 1278–59 [10.8.2c]

Maxwell JS, Schor CM (1994) Mechanisms of vertical phoria adaptation revealed by time–course and two–dimensional spatiotopic maps Vis Res 34 2741–51 [10.2.6b, 10.2.6c]

Maxwell JS, Schor CM (1996) Adaptation of vertical eye alignment in relation to head tilt Vis Res 36 1195–6 [10.2.6c]

Maxwell JS, Schor CM (1997) Head-position-dependent adaptation of noncomitant vertical skew Vis Res 37 441–6 [10.2.6c]

Maxwell JS, Schor CM (1999) Adaptation of torsional eye alignment in relation to head roll Vis Res 39 4192–9 [10.2.5c]

Maxwell JS, Schor CM (2004) Symmetrical horizontal vergence contributes to the asymmetrical pursuit of targets in depth Vis Res 44 3015–24 [10.8.2a]

Maxwell JS, Schor CM (2006) The coordination of binocular eye movements: vertical and torsional alignment Vis Res 46 3537–48 [10.6.3d]

Maxwell JS, Graf EW, Schor CM (2001) Adaptation of torsional eye alignment in relation to smooth pursuit and saccades Vis Res 41 3735–49 [10.2.5c, 10.7.5c]

May MT (1968) Galen. On the usefulness of parts of the human body Cornell University Press, Ithaca NY [2.1.3f]

Mayer DL, Dobson V (1982) Visual acuity development in infants and young children as assessed by operant preferential looking Vis Res 22 1141–51 [7.2.1b]

Mays LE (1984) Neural control of vergence eye movements: convergence and divergence neurons in midbrain J Neurophysiol 51 1091–108 [10.10.2c]

Mays LE, Porter JD (1984) Neural control of vergence eye movements: activity of abducens and oculomotor neurons J Neurophysiol 52 743–61 [10.10.2b]

Mays LE, Porter JD, Gamlin PDR, Tello CA (1986) Neural control of vergence eye movements: neurons encoding vergence velocity J Neurophysiol 56 1007–21 [10.10.2c, 10.5.8b]

Mays LE, Zhang Y, Thorstad MH, Gamlin PDR (1991) Trochlear unit activity during ocular convergence J Neurophysiol 65 1484–91 [10.10.2b]

Mazer JA, Vinje WE, McDermott J, et al. (2002) Spatial frequency and orientation tuning dynamics in area V1 Pro Natl Acad Sci 99 1645–50 [5.6.2c, 5.6.4b]

McAdams CJ, Maunsell JHR (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4 J Neurosci 19 431–41 [5.9.2a, 5.9.2c]

McAdams CJ, Maunsell JHR (2000) Attention to both space and feature modulates neuronal responses in macaque area V4 J Neurophysiol 83 1751–5 [5.9.3d]

McAllister AK (2007) Dynamic aspects of CNS synapse formation Ann Rev Neurosci 30 425–50 [5.5.2, 6.4.4f]

McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex Neuron 15 791–803 [6.4.7b]

McAllister AK, Katz LC, Lo DC (1997) Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth Neuron 18 767–78 [6.4.7b]

McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity Ann Rev Neurosci 22 295–318 [6.4.3d]

McArthur DJ (1982) Computer vision and perceptual psychology Psychol Bull 92 283–309 [4.5.10c]

McBrien NA, Millodot M (1986) The effect of refractive error on the accommodative response gradient Ophthal Physiol Opt 6 145–9 [9.6.2a]

McBrien NA, Millodot M (1987) The relationship between tonic accommodation and refractive error Invest Ophthal Vis Sci 28 997–1004 [9.3.1]

McCandless JW, Schor CM, Maxwell JS (1996) A cross-coupling model of vertical vergence adaptation IEEE Tr Biomed Engin 43 27–34 [10.2.6b]

McClung JR, Allman BL, Dimitrova DM, Goldberg SJ (2006) Extraocular connective tissues: a role in human eye movements? Invest Ophthal Vis Sc i 47 202–5 [10.1.2e]

McClurkin JW, Optican LM (1996) Primate striate and prestriate cortical neurons during discrimination. I. Simultaneous temporal encoding of information about color and pattern J Neurophysiol 75 481–95 [4.3.5]

McClurkin JW, Optican LM, Richmond BJ (1994) Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons Vis Neurosci 11 601–17 [5.2.3a]

McColl SL, Ziegler L, Hess RF (2000) Stereodeficient subjects demonstrate non-linear stereopsis Vis Res 40 1167 77 [8.5.1]

McCollough C (1965) Colour adaptation of edge–detectors in the human visual system Science 149 1115–16 [4.2.9c]

McConkie GW, Zola D (1979) Is visual information integrated across successive fixations in reading? Percept Psychophys 25 221–4 [4.3.3b]

(p.606) McConnell SK (1995a) Constructing the cerebral cortex: neurogenesis and fate determination Neuron 15 761–8 [6.4.5b]

McConnell SK (1995b) Strategies for the generation of neuronal diversity in the developing central nervous system J Neurosci 15 6987–8 [6.4.5b]

McConnell SK, Kaznowski CE (1991) Cell cycle dependence of laminar determination in developing neocortex Science 254 282–5 [6.4.5b]

McConnell SK, Ghosh A, Shatz CJ (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex Science 275 978–2 [6.4.5c]

McConnell SK, Ghosh A, Shatz CJ (1994) Subplate pioneers and the formation of descending connections from cerebral cortex J Neurosci 14 1892–1907 [6.4.5c]

McCormack G, Fisher SK (1996) The source of disparity vergence innervation determines prism adaptation Ophthal Physiol Opt 16 73–82 [10.2.5a]

McCormack G, Fisher SK, Wolf K (1991) Retinal eccentricity of fusion detail affects vergence adaptation Optom Vis Sci 68 711–17 [10.2.5a]

McCullough RW (1978) The fixation disparity-heterophoria relationship J Am Optom Assoc 49 369–72 [10.2.4e]

McCurry CL, Shepherd J D, Tropea D, et al. (2010) Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation Nat Neurosci 13 450–8 [6.6.1c]

McFarlane S, Pollock NS (2000) A role for voltage-gated potassium channels in the growth of retinal axons in the developing visual system J Neurosci 20 1–20–9 [6.4.3f]

McGehee DS, Role LW (1996) Presynaptic ionotropic receptors Curr Opin Neurobiol 6 342–9 [5.5.2g, 5.9.1]

McGraw PV, Whitaker D, Badcock DR, Skillen J (2003) Neither here nor there: localizing conflicting visual attributes J Vis 3 265–73 [4.2.6c]

McGuire BA, Gilbert CD, Rivlin PK, Wiesel TN (1991) Targets of horizontal connections in macaque primary visual cortex J Comp Neurol 305 370–92 [5.5.6a]

McKay R (1997) Stem cells in the central nervous system Science 276 66–71 [6.4.2d]

McKee MC, Young DA, Kohl P, et al. (1987) Effect of head and eye positions on fixation disparities phoria and ductions at near Am J Optom Physiol Opt 64 909–15 [10.2.4]

McKee SP, Harrad RA (1993) Fusional suppression in normal and stereoanomalous observers Vis Res 33 1645–58 [8.5.2]

McKee SP, Westheimer G (1978) Improvement in vernier acuity with practice Percept Psychophys 24 258–62 [4.9.1]

McKee SP, Klein SA, Teller DY (1985) Statistical properties of forcedchoice psychometric functions: implications of probit analysis Percept Psychophys 37 286–98 [3.1.1e]

McKee SP, Silverman GH, Nakayama K (1986) Precise velocity disparitydiscrimination despite random variations in temporal frequency and contrast Vis Res 29 609–19 [4.2.8c]

McKee SP, Levi DM, Movshon JA (2003) The pattern of visual deficits in amblyopia J Vis 3 380–405 [8.4.1, 8.4.2a]

McKenzie BE, Day RH (1972) Object distance as a determinant of visual fixation in early infancy Science 178 1108–10 [7.4.1a]

McKinney RA, Capagna M, Dürr R, et al. (1999) Miniature synaptic events maintain dendritic spines via AMPA receptor activation Nat Neurosci 2 44–9 [6.4.4f]

McLaughlin D, Shapley R, Shelley M, Wielaard DJ (2000) A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Ca Proc Natl Acad Sci 97 8087–92 [5.7.1]

McLaughlin SC (1967) Parametric adjustment in saccadic eye movements Percept Psychophys 2 359–62 [10.8.3a]

McLaughlin T, Torborg CL, Feller MB, O’Leary DDM (2003) Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development Neuron 40 1147–60 [6.3.2b]

McLean A (1972) Humanism and the rise of science in Tudor England Heinemann, London [2.5.4]

McLean J, Palmer LA (1989) Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat Vis Res 29 675–9 [5.6.4b]

McLean J, Palmer LA (1994) Organization of simple cell responses in the three-dimensional (3-D) frequency domain Vis Neurosci 11 295–306 [5.6.4b]

McLean J, Palmer LA (1998) Plasticity of neuronal response properties in adult cat striate cortex Vis Neurosci 15 177–96 [5.6.8]

McLellan JS, Prieto PM, Marcus S, Burns SA (2006) Effects of interactions among wave aberrations on optical image quality Vis Res 46 3009–16 [9.1.4]

McLeod P, Driver J, Crisp J (1988) Visual search for a conjunction of movement and form is parallel Nature 332 154–55 [4.8.2c]

McLin LN, Schor CM (1988) Voluntary effort as a stimulus to accommodation and vergence Invest Ophthal Vis Sci 29 1739–46 [10.3.1]

McLin LN, Schor CM, Kruger PB (1988) Changing size (looming) as a stimulus to accommodation and vergence Vis Res 28 883–98 [10.3.2d, 9.5]

McQuillen PS, DeFreitas MF, Zada G, Shatz CJ (2002) A novel role for p75NTR in subplate growth cone complexity and visual thalamocortical innervation J Neurosci 22 3580–93 [6.4.3d, 6.4.5c]

Meakin SO, Shooter EM (1992) The nerve growth factor family of receptors TINS 15 323–31 [8.2.7f]

Medendorp WP, Goltz H, Vilis T, Crawford D (2003) Gaze-centered updating of visual space in human parietal cortex J Neurosci 23 6214–14 [5.8.4e]

Medendorp WP, Goltz H, Crawford JD, Vilis T (2005) Integration of target effector information in human posterior parietal cortex for the planning of action J Neurophysiol 93 954–62 [5.8.4e]

Meissirel C, Chalupa LM (1994) Organization of pioneer retinal axons within the optic tract of the rhesus monkey Proc Natl Acad Sci 91 3906–10 [6.3.4a]

Meissirel C, Wikler KC, Chalupa LM, Rakic P (1997) Early divergence of magnocellular and parvocellular functional subsystems in the embryonic primate visual system Proc Natl Acad Sci 94 5900–5 [6.3.5a]

Meister M (1996) Multineuronal codes in retinal signalling Proc Natl Acad Sci 93 609–14 [4.3.4b, 5.6.2b]

Meister M, Wong RO L, Baylor DA, Shatz CJ (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina Science 252 939–43 [6.3.5b]

Mel BW (1994) Information processing in dendritic trees Neural Comput 6 1031–85 [4.2.2]

Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells Nature 463 621–6 [6.4.2b]

Melton CA, Purnell EW, Brecher GA (1955) The effect of sympathetic nerve impulses on the ciliary muscle Am J Ophthal 40 155–162 [9.2.3]

Meltzoff AN, Moore MK (1977) Initiation of facial and manual gestures by human neonates Science 198 75–8 [7.4.2a]

Mendes SW, Henkemeyer M, Liebl DJ (2006) Multiple receptors and B-class ephrins regulate midline crossing of corpus callosum fibres in the developing mousse forebrain J Neurosci 26 882–92 [6.4.6d]

Mendola JD, Dale AM, Fischl B, et al. (1999) The representation of illusory and real contours in human cortical areas revealed by functional magnetic resonance imaging J Neurosci 19 8580–72 [4.5.2b, 5.8.3a]

Menon RS, Ogawa S, Strupp JP, Ugurbil K (1997) Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging J Neurophysiol 77 2780–7 [5.7.2a]

Menon RS, Gati JS, Goodyear BG, et al. (1998a) Spatial and temporal resolution of functional magnetic resonance imaging Biochem Cell Biol 76 560–71 [5.4.3f]

Menon RS, Luknowsky DC, Gati JS (1998b) Mental chronometry using latency-resolved functional MRI Proc Natl Acad Sci 95 10902–7 [5.4.3f]

Merigan WH (1989) Chromatic and achromatic vision of macaques: role of the P pathway J Neurosci 9 776–83 [5.8.5b]

(p.607) Merigan WH (1996) Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques Vis Neurosci 13 51–60 [5.8.3a]

Merigan WH (2000) Cortical area V4 is critical for certain texture discriminations, but this effect is not dependent on attention Vis Neurosci 17 949–58 [5.8.3a]

Merigan WH, Maunsell JHR (1990) Macaque vision after magnocellular lateral geniculate lesions Vis Neurosci 5 347–52 [5.8.5b]

Mershon DH, Amerson TL (1980) Stability of the dark focus of accommodation Invest Ophthal Vis Sci 19 217–221 [9.3.1]

Méry J (1704) Des mouvements de l’iris et par occasion de la partie principale de l’organe de la vue. Hist Acad R Sci 23 277–84 [2.5.4]

Merzenich MM, Kaas JH, Wall J, et al. (1983) Topographic reorganization of somatosensory cortical areas 3B and 1 in adult monkeys following restricted deafferentation Neurosci 8 33–55 [5.5.6c]

Mestre DR, Brouchon M, Ceccaldi M, Poncet M (1992) Perception of optical flow in cortical blindness: a case report Neuropsychologia 30 783–95 [5.5.4b, 5.9.1]

Meyer RL (1982) Tetrodotoxin blocks the formation of ocular dominance columns in goldfish Science 218 589–91 [6.7.3e]

Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture Neuron 15 805–19 [6.3.3b]

Meyerhof M (1926) New light on Hunain Ibn Ishaq and his period Isis 8 685–724 [2.2.4a]

Michael CR (1968) Receptive fields of single optic nerve fibers in a mammal with an all cone retina. II. Directionally selective units J Neurophysiol 31 257–67 [5.6.4a]

Michotte A (1963) La perception de la causalité Louvain: Publications Universitaires de Louvain, English translation, Methuen, London [4.6.3g]

Miesenböck G, Rothman JE (1997) Patterns of synaptic activity in neural networks recorded by light emission from synaptolucins Proc Natl Acad Sci 94 3402–7 [5.4.2b]

Mijovoc P (1966) Medieval art in Yugoslavia . Decani Publishing House Jugoslavija, Beograd, Yugoslavia [2.9.2]

Mikhael S, Nicolle D, Vilis T (1995) Rotation of Listing’s plane by horizontal vertical and oblique prism-induced vergence Vis Res 35 3273–54 [10.1.2d, 10.7.1]

Mikl M, Vendra G, Doyle M, Kliebler (2010) RNA localization in neurite morphogenesis and synaptic regulation: current evidence and novel approaches J Comp Physiol A 196 321–34 [6.6.1b]

Milder DG, Reinecke RD (1983) Phoria adaptation to prisms Arch Ophthal 40 339–42 [10.10.2d]

Miles FA, Judge SJ, Optican LM (1987) Optically induced changes in the couplings between vergence and accommodation J Neurosci 7 2576–89 [10.4.3a]

Miles PW (1948) A comparison of aniseikonic test instruments and prolonged induction of artificial aniseikonia Am J Ophthal 36 687–96 [9.9.3]

Miller CA, Gavin CF, White JA, et al. (2010) Corical methylation maintains remote memory Nat Neurosci 13 664–6

Miller EK, Li L, Desimone R (1993) Activity of neurons in anterior inferior temporal cortex during a short-term memory task J Neurosci 13 1460–78 [5.8.3b]

Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque J Neurosci 16 5154–67 [5.8.3b]

Miller JM (2007) Understanding and misunderstanding extrocular muscle pulleys J Vis 7 1–15 [10.1.2e]

Miller JM, Robins D (1987) Extraocular muscle sideslip and geometry in monkeys Vis Res 27 381–92 [10.1.2e]

Miller JM, Ono H, Steinbach MJ (1980) Additivity of fusional vergence and pursuit eye movements Vis Res 20 43–8 [10.8.2a]

Miller JM, Anstis T, Templeton WB (1981) Saccadic plasticity: parametric adaptive control by retinal feedback J Exp Psychol HPP 7 356–66 [10.8.3a]

Miller JM, Bockisch CJ, Pavlovski DS (2002) Missing lateral rectus force and absence of medial rectus co-contraction in ocular convergence J Neurophysiol 87 2421–33 [10.10.2b]

Miller KD (1994) A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity–dependent competition between on– and offcenter inputs J Neurosci 14 409–41 [6.6.4a]

Miller KD, Erwin E (2001) Effects of monocular deprivation and reverse suture on orientation maps can be explained by activity-instructed development of geniculocortical connections Vis Neurosci 18 821–34 [6.6.4a, 8.1.1c]

Miller KD, Chapman, B, Stryker MP (1989a) Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors Proc Natl Acad Sci 86 5183–7 [6.7.2a, 8.2.7e]

Miller KD, Keller JB, Stryker MP (1989b) Ocular dominance column development: analysis and simulation Science 275 605–15 [6.7.2f]

Miller RJ (1978) Temporal stability of the dark focus of accommodation Am J Optom Physiol Opt 55 447–50 [9.3.1]

Miller RJ (1980) Ocular vergence-induced accommodation and its relation to dark focus Percept Psychophys 28 125–32 [9.4]

Miller S, Yasuda M, Coats JK, et al. (2002) Disruption of dendritic translation of CaMKII impairs stabilization of synaptic plasticity and memory Neuron 36 507–19 [6.5.1a]

Miller WH (1979) Ocular optical filtering In Handbook of sensory physiology (ed A Autrum) Vol VII/6A pp 70–135 Springer, New York [5.1.2a]

Miller WT, Sutton RS, Werbos PJ (1991) Neural networks for control MIT Press, Cambridge MA [3.4]

Milleret C, Houzel JC (2001) Visual interhemispheric transfer to areas 17 and 18 in cats with convergent strabismus Eur J Neurosci 13 137–52 [8.2.3b]

Milleret C, Gary-Bobo E, Buisseret P (1988) Comparative development of cell properties in cortical area 18 of normal and dark-reared kittens Exp Brain Res 71 8–20 [6.6.4a]

Millodot M, Sivak JG (1973) Influence of accommodation on the chromatic aberration of the eye Brit J Physiol Opt 28 169–74 [9.6.4e]

Milner AD (1997) Vision without knowledge Philos Tr R Soc 352 1279–56 [5.8.5b]

Milner AD, Goodale MA (1995) The visual brain in action Oxford University Press, Oxford [5.8.5b]

Milner PM (1974) A model for visual shape recognition Psychol Rev 81 521–35 [4.3.4b]

Ming GL, Song HJ, Berninger S, et al. (1997) cAMP dependent growth cone guidance by netrin-1 Neuron 19 1225–35 [6.4.3c]

Ming JE, Kaupas ME, Roessler E, et al. (2002) Mutations in PATCHED-1, the receptor for SONIC HEDEHOG, are associated with holoprosencephaly Hum Genet 110 297–301 [6.4.2a]

Minken AWH, van Gisbergen JAM (1994) A three-dimensional analysis of vergence movements at various levels of elevation Exp Brain Res 101 331–45 [10.7.4]

Minken AWH, van Gisbergen JAM (1996) Dynamical version-vergence interactions for a binocular implementation of Donder’s law Vis Res 36 853–67 [10.1.2d]

Minken AWH, Gielen CCAM, van Gisbergen JAM (1995) An alternative three-dimensional interpretation of Hering’s equal-innervation law for version and vergence eye movements Vis Res 35 93–102 [10.7.4]

Minsky M (1961) Steps toward artificial intelligence Proceedings of the Institute of Radio Engineering 49 8–30 [4.6.3h]

Minsky M (1975) A framework for representing knowledge In The psychology of computer vision (ed PH Winston) pp McGraw-Hill, New York [4.5.10c]

Minsky M, Papert E (1969) Perceptrons MIT Press, Cambridge, MA [3.7.2d]

Mioche L, Perenin MT (1986) Central and peripheral residual vision in humans with bilateral deprivation amblyopia Exp Brain Res 62 259–72 [8.1.3]

(p.608) Mioche L, Singer W (1989) Chronic recordings from single sites of kitten striate cortex during experience-dependent modifications of receptive-field properties J Neurophysiol 62 185–97 [8.2.3c]

Misantone LJ, Stelzner DJ (1974) Behavioural manifestations of competition of retinal endings for sites in doubly innervated frog optic tectum Exp Neurol 45 364–76 [6.7.3b]

Mishkin M (1982) A memory system in the monkey Philos Tr R Soc B 289 85–95 [5.8.3b]

Missler M, Zhang W, Rohlmann A, et al. (2003) a -neurexins couple Ca2+ channels to synaptic vesicle exocytosis Nature 423 939–48 [6.4.4b]

Mitchell AM, Ellerbrock VJ (1955) Fixation disparity and the maintenance of fusion in the horizontal meridian Am J Optom Arch Am Acad Optom 32 520–34 [10.2.5a]

Mitchell DE (1970) Properties of stimuli eliciting vergence eye movements and stereopsis Vis Res 10 145–62 [10.5.1, 10.5.7, 10.5.8a]

Mitchell DE (1988a) The extent of visual recovery from early monocular or binocular visual deprivation in kittens J Physiol 395 639–60 [8.3.1b, 8.3.1c]

Mitchell DE (1988b) The recovery from early monocular visual deprivation in kittens In Perceptual development in infancy (ed A Yonas) pp 1–34 Erlbaum, Hillsdale N J [8.3.1c, 8.4.6b]

Mitchell DE (1988c) Animal models of human strabismic amblyopia In Advances in neural and behavioral development (ed PG Shinkman) Vol 3 pp 209–69 Ablex, Norwood NJ [8.4.6b]

Mitchell DE (1991) The long–term effectiveness of different regimens of occlusion on recovery from early monocular deprivation in kittens Philos Tr R Soc B 333 51–79 [8.4.6b]

Mitchell DE, Timney B (1982) Behavioural measurement of normal and abnormal development of vision in the cat In Analysis of visual behavior (ed DJ Ingle, MA Goodale, RJW Mansfield) pp 483–523 MIT Press, Cambridge MA [7.6.1c, 8.3.1b]

Mitchell DE, Cynader M, Movshon JA (1977) Recovery from the effects of monocular deprivation J Comp Neurol 176 53–63 [8.3.1c]

Mitchell DE, Howell ER, Keith CG (1983) The effect o minimal occlusion therapy on binocular visual functions in amblyopia Invest Ophthal Vis Sci 24 778–81 [8.4.6b, 8.4.6c]

Mitchell DE, Ruck M, Kaye MG, Kirby S (1984) Immediate and long-term effects on visual acuity of surgically induced strabismus in kittens Exp Brain Res 55 420–30 [8.2.2e, 8.2.3a]

Mitchell DE, Murphy KM, Dzioba HA, Horne JA (1986) Optimization of visual recovery from early monocular deprivation in kittens: implications for occlusion therapy in the treatment of amblyopia Clin Vis Sci 1 173–7 [8.4.6b]

Mitchell DE, Gingras G, Kind PC (2001) Initial recovery of vision after early monocular deprivation in kittens is faster when both eyes are open Proc Natl Acad Sci 98 11662–67 [8.3.1c]

Mitchell DE, Kind PC, Sengpiel F, Murphy K (2003) Brief periods of binocular vision prevent deprivation–induced acuity loss Current Biology 13 1704–8 [8.3.1a]

Mitchell DE, Kennie, J, Schwarzkopf DS, Sengpiel F (2009) Daily mixed visual experience that prevents amblyopia in cats does not always allow the development of good binocular depth perception J Vis 9 (5) Article 22 [8.3.1a]

Mitchison GJ, Crick F (1982) Long axons within the striate cortex: their distribution orientation and patterns of connection Proc Natl Acad Sci 79 3661–5 [5.6.7b]

Mitrofanis J, Guillery RW (1993) New views of the thalamic reticular nucleus in the adult and the developing brain TINS 16 270–5 [6.4.5c]

Miyake S, Awaya S, Miyake K (1981) Aniseikonia in patients with a unilateral artificial lens measured with Aulhorn’s phase difference haploscope J Am Intra–ocular Implant Soc 7 36–9 [9.9.1c]

Miyashita EM, Hevner R, Wasserman KM, et al. (1999) Early neocortical regionalization in the absence of thalamic innervation Science 285 906–9 [6.4.3b]

Miyashita T, Kubik S, Haghighi N, et al. (2009) Rapid activation of plasticity-associated gene transcription in hippocampal neurons provides a mechanism for encoding of one-trial experience J Neurosci 29 898–906 [6.6.1a]

Miyashita Y (1988) Neuronal correlate of visual associative long-term memory in the primate temporal cortex Nature 335 817–20 [5.8.3b]

Mize RR, Marc RE (ed) (1992) GABA in the retina and central visual system Prog Brain Res Vol 90 Elsevier, London [5.2.2a, 5.5.2e]

Mizobe K, Polat U, Pettet MW, Kasamatsu T (2001) Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field Vis Neurosci 18 377–91 [5.5.6c]

Mo Z, Moore AR, Filipovic R, et al. (2007) Human cortical neurons originate from radial glia and neuron-restricted Progenitors J Neurosci 27 4132–45 [6.4.5a]

Mohindra I (1975) A technique for infant vision examination Am J Optom Physiol Opt 52 867–70 [7.3.1]

Mohindra I, Zwaan J, Held R, et al. (1985) Development of acuity and stereopsis in infants with esotropia Ophthal 92 691–7 [8.3.3a]

Mohn G, Van Hof–van Duin J (1986) Development of the binocular and monocular visual fields of human infants during the first year of life Clin Vis Sci 1 51–64 [7.2.4]

Mohn G, Van Hof–van Duin J (1991) Development of spatial vision In Spatial vision (ed D Regan) pp 179–211 CRC Press, Boca Raton [7.2.4]

Mok D, Ro A, Cadera W, et al. (1992) Rotation of Listing’s plane during vergence Vis Res 32 2055–64 [10.1.2d, 10.7.4]

Moller F, Lauren ML, Tygesen J, Sjolie AK (2002) Binocular quantification and characterization of microsaccades Graefe’s Arch Clin Exp Ophthal 240 765–70 [10.8.2b]

Molnár Z, Blakemore C (1999) Development of signals influencing the growth and termination of thalamocortical axons in organotypic culture Exp Neurol 156 363–93 [6.4.5c]

Molnár Z, Adams R, Blakemore C (1998) Mechanisms underlying the early establishment of thalamocortical connections in the rat J Neurosci 18 5723–45 [6.4.5c]

Molnár Z, López-Bendito G, Small J, et al. (2002) Normal development of embryonic thalamocortical connectivity in the absence of evoked synaptic activity J Neurosci 22 10313–23 [6.6.2]

Molyneux W (1692) A treatise of Dioptricks B Tooke, London [2.5.4]

Mon-Williams M, Tresilian JR, Strang NC, et al. (1998) Improving vision: neural compensation for optical defocus Proc R Soc 265 71–7 [9.6.5a]

Montague PR, Gancayco CD, Winn MJ, et al. (1994) Role of NO production in NMDA receptor–mediated neurotransmitter release in cerebral cortex Science 293 973–7 [6.5.3]

Montero VM (1992) A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus Exp Brain Res 86 257–70 [5.2.2a]

Montgomery JM, Madison DV (2004) Discrete synaptic states define a major mechanism of synaptic plasticity TINS 27 744–50 [6.5.1a]

Monyer H, Sprengel R, Schoepfer R, et al. (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes Science 256 1217–22 [5.5.2b]

Moody SA (2000) Cell fate and cell migration in the developing cerebral cortex Academic Press, New York [6.4.5b]

Mooney R, Madison DV, Shatz CJ (1993) Enhancement of transmission at the developing retinogeniculate synapse Neuron 10 815–25 [6.3.5b]

Mooney R, Penn AA, Gallego R, Shatz CJ (1996) Thalamic relay of spontaneous retinal activity prior to vision Neuron 17 863–74 [6.3.5b]

Moore C, Engel SA (2001) Neural responses to perception of volume in the lateral occipital cortex Neuron 29 277–86 [5.8.3c]

Moore RJ, Spear PD, Kim CBY, Xue JT (1992) Binocular processing in the cat’s dorsal lateral geniculate nucleus. III. Spatial frequency orientation and direction sensitivity of nondominant–eye influences Exp Brain Res 89 588–98 [5.2.3a]

Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex Nature 421 370–3 [5.9.2c]

(p.609) Moore T, Fallah M (2004) Microstimulation of the frontal eye field and its effects on covert spatial attention J Neurophysiol 91 152–62 [5.9.2a]

Moores E, Frisby JP, Buckley DE, Fawcett A (1998) Vergence control across saccades in dyslexic adults Ophthal Physiol Opt 18 452–62 [10.2.2c]

Mooser F, Bosking WH, Fitzpatrick D (2004) A morphological basis for orientation tuning in primary visual cortex Nat Neurosci 7 872–9 [5.6.2b]

Moradi F, Shimojo S (2004) Perceptual binding and persistent surface segregation Vis Res 44 2885–99 [4.5.4a]

Morales B, Choi SY, Kirkwood A (2002) Dark rearing alters the development of GABAergic transmission in visual cortex J Neurosci 22 8084–90 [6.4.4d, 8.1.1b, 8.1.4a, 8.3.1b]

Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex Science 229 782–4 [5.9.1, 5.9.3c]

Mordi JA, Ciuffreda KJ (1998) Static aspects of accommodation: age and presbyopia Vis Res 38 1643–53 [9.2.2b]

Mordi JA, Ciuffreda KJ (2004a) Dynamic aspects of accommodation: age and presbyopia Vis Res 44 591–601 [7.3.1]

Mordi JA, Ciuffreda KJ (2004b) Dynamic aspects of accommodation: age and presbyopia. Reply to a letter to the editor Vis Res 44 2315–6 [9.2.2b]

Morgan H, Symmes D (1982) Amazing 3-D Little Brown Co, Boston [2.11.3]

Morgan MJ, Hotopf WHN (1989) Perceived diagonals in grids and lattices Vis Res 29 1005–15 [4.5.2b]

Morgan MJ, Regan D (1987) Opponent models for line interval discrimination: interval and vernier performance compared Vis Res 27 107–18 [4.5.2c, 4.5.2d]

Morgan MW (1944) Accommodation and its relationship to convergence Am J Optom Arch Am Acad Optom 21 183–95 [10.4.1]

Morgan MW (1946) A new theory for the control of accommodation Am J Optom 23 99–110 [9.2.3]

Morgan MW (1968) Accommodation and vergence Am J Optom Arch Am Acad Optom 45 417–53 [10.4.3b, 9.5]

Morgan MW, Olmsted JMD, Watrous W (1940) Sympathetic action in accommodation for far vision Am J Physiol 128 588- [9.2.3]

Mori T, Matsuura K, Zhang B, et al. (2002) Effects of the duration of early strabismus on the binocular responses of neurons in the monkey visual cortex (V1) Invest Ophthal Vis Sci 43 1262–9 [8.2.4a]

Morley JW, Lindsey JW, Judge SJ (1988) Prism–adaptation in a strabismic monkey Clin Vis Sci 3 1–8 [10.2.5]

Morley JW, Judge SJ, Lindsey JW (1992) Role of monkey midbrain near–response neurons in phoria adaptation J Neurophysiol 67 1475–92 [10.10.2c]

Morrison LC (1972) Further studies on the adaptation to artificially–produced aniseikonia Br J Physiol Opt 27 84–101 [9.9.3]

Morrone MC, Burr DC, Fiorentini A (1993) Development of infant contrast sensitivity to chromatic stimuli Vis Res 33 2535–52 [7.2.1e]

Morrone MC, Tosetti M, Montanaro D, et al. (2000) A cortical area that responds specifically to optic flow, revealed by fMRI Nat Neurosci 3,1322–8 [5.8.4b]

Morrongiello BA (1988) Infants’ localization of sounds along the horizontal axis: estimates of minimum audible angle Devel Psychol 24 8–13 [7.7]

Mortensen U (2002) Additive noise, Weibull functions and the approximation of psychometric functions Vis Res 42 2371–93 [3.1.1b]

Moschovakis AK (1995) Are laws that govern behavior embedded in the structure of the CNS? The case of Hering’s law Vis Res 35 3207–16 [10.10.2a, 10.8.1b]

Moschovakis AK, Scudder CA, Highstein SM (1990) A structural basis for Hering’s law: projections to extraocular motoneurons Science 278 1118–19 [10.8.1b]

Moss SJ, Smart TG (2001) Constructing inhibitory synapses Nat Rev Neurosci 2 240–50 [5.5.2e]

Motter BC (1991) Beyond extrastriate cortex: the parietal visual system In Vision and visual disfunction (ed AL Leventhal) Vol IV pp 371–87 MacMillan, London [5.8.4]

Motter BC (1993) Focal attention produces spatially selective processing in visual cortical areas V1 V2 and V4 in the presence of competing stimuli J Neurophysiol 70 909–19 [5.9.3a]

Motter BC (1994) Neural correlates of attentive selection for color or luminance in extrastriate area V4 J Neurosci 14 2178–89 [5.9.3c]

Motter BC, Poggio GF (1984) Binocular fixation in the rhesus monkey: spatial and temporal characteristics Exp Brain Res 54 304–14 [10.5.4a]

Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex J Neurophysiol 20 408–34 [5.7]

Mountcastle VB (1997) The columnar organization of the neocortex Brain 120 701–22 [5.7]

Mountcastle VB (1998) Perceptual neuroscience. The cerebral cortex Harvard University Press, Cambridge, MA [6.4.2d]

Mountcastle VB, Lynch JC, Georgopoulos A et al. (1975) Posterior parietal association cortex of the monkey. Command functions for operations within extrapersonal space J Neurophysiol 38 871–908 [4.5.6, 5.8.4e]

Mounts JRW (2000) Evidence for suppressive mechanisms in attentional selection: feature singletons produce inhibitory surrounds Percept Psychophys 62 969–83 [4.8.3d]

Moutoussis K, Keliris G, Kourtzi Z, Logothetis N (2005) A binocular rivalry study of motion perception in the human brain Vis Res 45 2231–43 [5.8.4b]

Movshon JA (1976) Reversal of the behavioural effects of monocular deprivation in the kitten J Physiol 291 175–87 [8.3.1c]

Movshon JA, Blakemore C (1974) Functional reinnervation in kitten visual cortex Nature 251 504–5 [8.3.1c]

Movshon JA, Dürsteler MR (1977) Effects of brief periods of unilateral eye closure on the kitten’s visual system J Neurophysiol 40 1255–65 [8.2.3d]

Movshon JA, Kiorpes L (1988) Analysis of the development of spatial contrast sensitivity in monkey and human infants J Opt Soc Am A 5 2166–72 [7.2.1a]

Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkey J Neurosci 16 7733–41 [5.8.4b]

Movshon JA, Thompson ID, Tolhurst DJ (1978) Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex J Physiol 283 10l–20 [5.6.3, 5.6.4b]

Movshon JA, Eggers HM, Gizzi MS, et al. (1987) Effects of early unilateral blur of the macaque’s visual system. III. Physiological observations J Neurosci 7 1340–51 [8.2.4b]

Movshon JA, Kiorpes L, Hawken MJ, Cavanaugh JR (2005) Functional maturation of the macaque’s lateral geniculate nucleus J Neurosci 25 2712–22 [6.3.5c]

Mower AF, Liao DS, Nestler EJ, et al. (2002) cAMP/Ca2+ response element binding protein function is essential for ocular dominance plasticity J Neurosci 22 2237–45 [8.2.7f]

Mower GD, Christen WG (1985) Role of visual experience in activating critical period in cat visual cortex J Neurophysiol 53 572–89 [8.3.1b]

Mower GD, Christen WG (1989) Evidence for an enhanced role of GABA inhibition in visual cortical dominance of cats reared with abnormal monocular experience Devel Brain Res 45 211–18 [8.2.7d]

Mower GD, Burchfiel JL, Duffy FH (1981a) The effects of dark rearing on the development and plasticity of the lateral geniculate nucleus Devel Brain Res 1 418–27 [8.1.1a]

Mower GD, Berry D, Burchfiel JL, Duffy FH (1981b) Comparison of the effects of dark-rearing and binocular suture on development and plasticity of cat visual cortex Brain Res 220 255–67 [8.3.1b]

Mower GD, Caplan CJ, Letsou G (1982) Behavioral recovery from binocular deprivation in the cat Behav Brain Res 4 209–15 [8.1.2]

Mower GD Christen WG, Caplan CJ (1983) Very brief exposure eliminates plasticity in the cat visual cortex Science 221 178–80 [8.3.1b]

Mower GD, Caplan CJ, Christen WG, Duffy FH (1985) Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex J Comp Neurol 235 448–66 [8.1.1d]

(p.610) Mrsic-Flogel TD, Hofer SB, Ohki K, et al. (2007) Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity Neuron 54 961–972 [8.2.7a]

Mu Y, Poo M (2006) Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing system Neuron 50 115–25 [6.5.2]

Muckli L, Kriegeskorte N, Lanfermann H, et al. (2002) Apparent motion: event-related functional magnetic resonance imaging of perceptual switches and states J Neurosci 22 RC219 [5.8.4b]

Muckli L, Naumer MJ, Singer W (2009) Bilateral visual field maps in a patient with only one hemisphere Proc Natl Acad Sci 106 13035–9 [6.7.3b]

Mueller BK (1999) Growth cone guidance Ann Rev Neurosci 22 351–88 [6.4.3b]

Muir DW, Field J (1979) Newborn infants orient to sounds Child Devel 50 431–6 [7.7]

Muir DW, Clifton RK, Clarkson MG (1989) The development of a human auditory localization response: A U-shaped function Can J Psychol 43 199–216 [7.7]

Muir-Robinson G, Hwang BJ, Feller MB (2002) Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers J Neurosci 22 5259–64 [6.3.5b]

Müller CM, Best J (1989) Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes Nature 342 427–30 [6.4.4c]

Müller H (1854) über die entoptische Wahrnehmung der Netzhautgefässe insbesondere als Beweismittel für die Lichtperception durch die nach hinten gelegenen Netztzhautelemente Verhandlungen der Physiologischen Medizin Gesellschaft Würzburg 5 411 [2.6.1, 5.1.2a]

Müller J (1829) Zur Vergleichenden Physiologie des Gesichtssinnes des Menschen und der Thiere Cnobloch Leipzig [2.10.4, 10.8.2a,]

Müller J (1843) Elements of physiology Vol 2 pp 1147–8 (Translated by W Baly) Tayler and Walton, London [4.2.4.c, 10.4.1]

Muller JR, Dacheux RF (1997) Alpha ganglion cells of the rabbit retina lose antagonistic surround responses under dark adaptation Vis Neurosci 14 395–401 [5.1.4f]

Müller JR, Metha AB, Krauskopf J, Lennie P (1999) Rapid adaptation in visual cortex to the structure of images Science 285 1405–8 [4.3.1c]

Müller JR, Metha AB, Krauskopf J, Lennie P (2003) Local signals from beyond the receptive fields of striate cortical neurons J Neurophysiol 90 822–31 [5.6.7a]

Munk H (1879) Physiologie der Sehsphäre der Grosshirnrinde Centralblatt für praktische Augenheilkunde 3 255–66 [2.6.2]

Munk MHJ, Roelfsema PR, König P, et al. (1996) Role of reticular activation in the modulation of intracortical synchronization Science 272 271–4 [4.3.4b, 4.3.4e]

Munoz DP, Broughton JR, Goldring JE, Armstrong IT (1998) Age-related performance of human subjects on saccadic eye movement tasks Exp Brain Res 121 391–400 [7.3.5]

Munoz P, Semmlow JL, Yuan, W, Alvarez TL (1999) Short term modification of disparity vergence eye movements Vis Res 39 1695–705 [10.5.8c]

Muntz WRA, Raj U (1984) On the visual system of Nautilus pompilius J exp Biol 109 253–63 [6.1.2]

Murai KK, Nguyen LN, Irie F, et al. (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling Nat Neurosci 6 153–60 [6.4.4c]

Murata A, Gallese V, Luppino G, et al. (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP J Neurophysiol 83 2580–601 [5.8.4e]

Murata K, Cramer H, Bach-y-Rita (1965) Neuronal convergence of noxious, acoustic, and visual stimuli in the visual cortex of the cat J Neurophysio l 28 1223–39 [5.8.6]

Murata T, Shimizu H (1993) Oscillatory binocular system and temporal segmentation of stereoscopic depth surfaces Biol Cyber 68 381–91 [4.3.5]

Murphy CJ, Bellhorn RW, Williams T, et al. (1990) Refractive state, ocular anatomy, and accommodative range of the sea otter (Enhydra lutris) Vis Res 30 23–8 [9.2.2a]

Murphy KM, Mitchell DE (1987) Reduced visual acuity in both eyes of monocularly deprived kittens following a short or long period of reverse occlusion J Neurosci 7 1529–36 [8.4.6b]

Murphy KM, Mitchell DE (1991) Vernier acuity of normal and visually deprived cats Vis Res 31 253–66 [8.4.2a]

Murphy KM, Jones DG, Van Sluyters RC (1995) Cytochrome-oxidase blobs in cat primary visual cortex J Neurosci 15 4196–208 [5.6.6]

Murphy KM, Jones DV, Fenstemaker SB, et al. (1998) Spacing of cytochrome oxidase blobs in visual cortex of normal and strabismic mnkeys Cereb Cortex 8 237–44 [6.7.1]

Murphy PC, Sillito AM (1989) The binocular input to cells in the feline dorsal lateral geniculate nucleus (dLGN) J Physiol 415 393–408 [5.2.3a]

Murphy PC, Duckett SG, Sillito AM (1999) Feedback connections to the lateral geniculate nucleus and cortical response properties Science 286 1552–4 [5.2.2c]

Murray ADN, Calcutt C (1990) The incidence of amblyopia in long-standing untreated infantile esotropia In Strabismus and early ocular motility disorders (ed EC Campos) pp 45–9 MacMillan, London [8.4.6b, 10.2.2e]

Murray SO (2008) The effects of spatial attention in early human visual cortex are stimulus independent J Vis 8 (10) Article 2 [5.9.3a]

Murray SO, Kersten D, Olshausen BA, et al. (2002) Shape perception reduces activity in human primary visual cortex Proc Natl Acad Sci 99 15164–9 [5.6.7c]

Murray SO, Olshausen BA, Woods DL (2003) Processing shape, motion and three-dimensional shape-from-motion in the human cortex Cereb Cortex 13 508–16 [5.8.3c]

Murray SO, Boyaci H, Kersten D (2006) The representation of perceived angular size in human primary visual cortex Nat Neurosci 9 429–34 [5.6.7d]

Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001) Inactivity produces increases in neurotransmitter release and synaptic size Neuron 32 673–82 [6.4.4a, 6.5.4]

Mussap AJ, Levi DM (1999) Orientation-based segmentation in strabismic amblyopia Vis Res 39 411–18 [8.4.3d]

Mussap AJ, Levi DM (2000) Amblyopic deficits in detecting a dotted line in noise Vis Res 40 3297–309 [8.4.3d]

Mustari MJ, Cynader M (1981) Prior strabismus protects kitten cortical neurons from the effects of monocular deprivation Brain Res 211 165–70 [8.3.1b]

Muybridge E (1899) Animals in motion Chapman Hall, London [2.11.4]

Mysore SG, Vogels R, Raiguel SE, Todd JT, Orban GA (2010) The selectivity of neurons in the macaque fundus of the superior temporal area for three-dimensional structure from motion J Neurosci 30 15491–508 [5.8.4b]

Nachmias J, Weber A (1975) Discrimination of simple and complex gratings Vis Res 15 217–23 [4.2.5b]

Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex Nat Rev Neurosci 3 423–32 [6.4.5b]

Nadarajah B, Brunstrom JE, Grutzendler J, Wong ROL (2001) Two modes of radial migration in early development of the cerebral cortex Nat Neurosci 4 143–9 [6.4.5b]

Nadell MC, Knoll HA (1956) The effect of luminance, target configuration and lenses upon the refractive state of the eye Am J Optom Arch Am Acad Optom 33 24–42 [9.6.4d]

Nadler JW, Angelaki DE, DeAngelis GC (2008) A neural representation of depth from motion parallax in macaque visual cortex Nature 452 642–46 [5.8.4b]

Nagappan G, Lu B (2005) Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications TINS 28 464–71 [6.5.1c]

Nagel A (1868) Über das Vorkommen von wahren Rollungen des Auge um die Gesichtslinie Arch für Ophthal 14 228–46 [10.7.5a]

(p.611) Nägerl UV, N, Bonhoeffer T (2010) Imaging living synapses at the nanoscale by STED microscopy J Neurosci 30 9341–6 [5.4.1b]

Nägerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons Neuron 44 759–67 [6.4.4f]

Nakagama H, Tanaka S (2004) Self-organization model of cytochrome oxidase blobs and ocular dominance columns in the primary visual cortex Cereb Cortex 14 376–86 [6.7.2f]

Nakagama H, Tani T, Tanaka S (2006) Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex Neurosci Res 55 370–82 [6.7.2f]

Nakagawa S, Brennan C, Johnson KG, et al. (2000) Ephrin-B regulates the ipsilateral routing of retinal axons at the optic chiasm Neuron 25 599–610 [6.3.4b]

Nakagawa Y, Johnson JE, O’Leary DDM (1999) Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input J Neurosci 15 10877–85 [6.4.3b]

Nakai Y, Kamiguchi H (2002) Migration of nerve growth cones requires detergent-resistant membranes in a spatially defined and substrate-dependent manner J Cell Biol 159 1097–108 [6.4.3b]

Nakamura H, Gattass R, Desimone R, Ungerleider LG (1993) The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques J Neurosci 13 3681–91 [5.8.3a]

Nakamura H, Kuroda T, Wakita M, et al. (2001) From three-dimensional space vision to prehensile hand movements: the lateral intraparietal area links the area V3A and the anterior intraparietal area in macaques J Neurosci 21 8174–87 [5.8.4e]

Nakatsuka C, Zhang B, Watanabe I, et al. (2007) Effects of perceptual learning on local stereopsis and neuronal responses of V1 and V2 in prism-reared monkeys J Neurophysiol 97 2612–26, 2007 [8.2.4a]

Nakayama K (1975) Coordination of extraocular muscles In Basic mechanisms of ocular motility and their clinical implications (ed B Lennerstrand, P Bach–y–Rita) pp 193–208 Pergamon, New York [10.1.2e]

Nakayama K (1978) A new method of determining the primary position of the eye using Listings law Am J Optom Arch Am Acad Optom 55 331–6 [10.1.2d]

Nánez JE (1988) Perception of impending collision in 3-to 6-week-old human infants Infant Behav Devel 11 447–63 [7.4.1c]

Nánez JE, Yonas A (1994) Effects of luminance and texture motion on infant defensive reactions to optical collision Infant Behav Devel 17 165–74 [7.4.1c]

Narasimhan PT, Jacobs RE (1964) Neuroanatomical micromagnetic resonance imaging In Brain Mapping (ed AW Toga, JC Mazziotta) pp 147–59 Academic Press, New York [5.4.3f]

Nassi JJ, Callaway EM (2007) Specialized circuits from primary visual cortex to V2 and area MT Neuron 55 799–807 [5.5.1d, 5.8.4b]

Nassi JJ, David C, Lyon DC, Callaway EM (2006) The parvocellular LGN provides a robust disynaptic input to the visual motion area MT Neuron 50 319–27 [5.8.5a]

Nauhaus I, Benucci A, Carandini M, Ringach (2008) Neuronal selectivity and local map structure in visual cortex Neuron 57 673–9 [5.7.1]

Navarro R (2009) The optical design of the human eye: a critical review J Optom 2 3–18 [9.1.1]

Nawrot M, Frankl M, Joyce L (2008) Concordant eye movements and motion parallax asymmetries in esotropia Vis Res 48 799–808 [8.5.1]

Naya Y, Yoshida M, Miyashita Y (2001) Backward spreading of memory-retrieval signal in the primate temporal cortex Science 291 661–4 [5.8.3c]

Nealey TA, Maunsell JHR (1994) Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex J Neurosci 14 2069–79 [5.8.2a]

Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells Science 293 1768–71 [4.2.2]

Needham J (1962) Science and civilization in China Vol 4 Part 1 Cambridge University Press, London [2.2.2, 2.2.4d, 2.3.2]

Neisser U (1967) Cognitive psychology Appleton–Century–Crofts, New York [4.6.3a, 4.6.3h, 4.8.1, 4.8.2b]

Nelson JI, Frost BJ (1978) Orientation selective inhibition from beyond the classic visual receptive field Brain Res 139 359–65 [5.6.7a]

Nelson JI, Frost BJ (1985) Intracortical facilitation among co–oriented co–axially aligned simple cells in cat striate cortex Exp Brain Res 61 54–61 [4.5.2b, 5.5.6a, 5.6.7b]

Nelson S, Toth L, Sheth B, Sur M (1994) Orientation selectivity of cortical neurons during intracellular blockade of inhibition Science 265 774–7 [5.6.2b]

Neri P, Levi DM (2006) Spatial resolution for feature binding is impaired in peripheral and amblyopic vision J Neurophysiol 96 142–53 [8.4.3d]

Neuenschwander S, Singer W (1996) Long-range synchronization of oscillatory light responses in geniculate nucleus Nature 379 728–33 [4.3.4a, 4.3.4c]

Neves SR, Ram PT, Lyengar R (2002) G protein pathways Science 296 1636 [6.4.3e]

Newell A, Simon HA (1972) Human problem solving Prentice-Hall, Englewood Cliffs, NJ [4.6.3a]

Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission TINS 26 536–42 [5.5.1f]

Newsome WT, Paré EB (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT) J Neurosci 8 2201–11 [5.8.4b]

Newsome WT, Wurtz RH, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs J Neurophysiol 60 604–20 [5.8.4b]

Newton I (1670) In The optical papers of Isaac Newton Vol 1 (Ed AE Shapiro) p. 580, Cambridge University Press [2.5.4]

Newton I (1704) Opticks Smith and Walford, London. 1979 printing, Dover, New York [2.10.3d]

Newton JR, Sikes RW, Skavenski AA (2002) Cross-modal plasticity after monocular enucleation of the adult rabbit Exp Brain Res 144 423–9 [8.2.6c]

Ng AYK, Stone J (1982) The optic nerve of the cat: appearance and loss of axons during normal development Devel Brain Res 5 293–71 [6.3.3b]

Nguyen D, Vedamurthy I, Schor C (2008) Cross-coupling between accommodation and convergence is optimized for a broad range of directions and distances of gaze Vis Res 48 893–903 [10.4.3a]

Nicholas JJ, Heywood CA, Cowey A (1996) Contrast sensitivity in one-eyed subjects Vis Res 36 175–80 [8.2.6b]

Nichols MJ, Newsome WT (2002) Middle temporal visual area microstimulation influences veridical judgments of motion direction J Neurosci 22 9530–40 [5.8.4b]

Nicholson W (1802) Narrative and explanation of the appearance of phantoms and other figures in the exhibition of the phantasmagoria: with remarks on the philosophical use of common occurrences J Nat Philos Arts 1 147–51 [2.11.1b]

Niclou SP, Jia L, Raper JA (2000) Slit2 is a repellent for retinal ganglion cell axons J Neurosci 20 4962–74 [6.4.3c]

Niebur E, Koch C, Rosen C (1993) An oscillation–based model for the neuronal basis of attention Vis Res 33 2798–802 [4.3.4g]

Niell CM, Meyer MP, Smith SJ (2004) In vivo imaging of synaptic formation on a growing dendritic arbor Nat Neurosci 7 254–60 [6.4.4a]

Nielsen KJ, Logothetis NK, Rainer G (2006) Dissociation between local field potentials and spiking activity in macaque Inferior temporal cortex reveals diagnosticity-based encoding of complex objects J Neurosci 26 9639–45 [5.8.3b]

Nikara T, Bishop PO, Pettigrew JD (1968) Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex Exp Brain Res 6 353–72 [5.3.4]

Nilsson DE, Arendt D (2008) Eye evolution: the blurry beginning Curr Biol 18 R1096–8 [6.1.1]

Nilsson DE, Gilsen L, Coates M, et al. (2005) Advanced optics in a jellyfish eye Nature 435 201–5 [6.1.3]

(p.612) Ninio J (2007) Doubts about quantal analysis J Neurophysiol 98 1827–35 [5.5.2b]

Nishimoto S, Ishida T, Ohzawa I (2006) Receptive field properties of neurons in the early visual cortex revealed by local spectral reverse correlation J Neurosci 26 3269–80 [5.4.3b]

Nixon RB, Helveston EM, Miller K, et al. (1985) Incidence of strabismus in neonates Am J Ophthal 100 798–801 [10.2.2d]

Noctor SC, Flint AC, Weissman TA, et al. (2001) Neurons derived from radial glial cells establish units in neocortex Nature 409 714–20 [6.4.5a]

Noctor SC, Flint AC, Weissman TA, et al. (2002) Dividing precursor cells of the embryonic ventricular zone have morphological and molecular characteristics of radial glia J Neurosci 22 3161–73 [6.4.5a]

Noctor SC, Martinez-Cerdeño V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases Nat Neurosci 7 136–44 [6.4.5b]

Noda H, Tamaki Y, Iwama K (1972) Binocular units in the lateral geniculate nucleus of chronic cats Brain Res 41 81–99 [5.2.3a]

Nolt MJ, Kumbhani RD, Palmer LA (2004) Contrast-dependent spatial summation in the lateral geniculate nucleus and retina of the cat J Neurophysiol 92 1708–17 [5.2.2b]

Noorden GK von (1961) Reaction time in normal and amblyopic eyes Arch Ophthal 66 695–701 [8.4.4a]

Noorden GK von (1990) Binocular vision and ocular motility C. V. Mosby Co., St. Louis [10.1.2d]

Noorden GK von, Campos EC (2000) Binocular vision and ocular motility Mosby, St Louis MO [1.3, 10.2.2d, 10.2.2e, 10.5.3]

Noorden GK von, Crawford MLJ (1977) Form deprivation without light deprivation produces the visual deprivation syndrome in Macaca mulatta Brain Res 129 37–44 [8.2.2b]

Noorden GK von, Crawford MLJ (1978) Lid closure and refractive error in macaque monkey Nature 272 53–5 [6.3.1c]

Noorden GK von, Crawford MLJ (1981) Failure to preserve cortical binocularity in strabismic monkeys raised in a unidirectional visual environment Invest Ophthal Vis Sci 20 665–70 [8.2.5a]

Noorden GK von, Crawford MLJ (1992) The lateral geniculate nucleus in human strabismic amblyopia Invest Ophthal Vis Sci 33 2729–32 [8.2.2e]

Noorden GK von, Leffler MB (1966) Visual acuity in strabismic amblyopia under monocular and binocular conditions Arch Ophthal 76 172–7 [8.4.2a]

Noorden GK von, Middleditch PR (1975) Histology of the monkey lateral geniculate nucleus after unilateral lid closure and experimental strabismus: further observations Invest Ophthal 14 674–83 [8.2.2e]

Noorden GK von, Crawford MLJ, Middleditch PR (1977) Effect of lid suture on retinal ganglion cells in Macaca mulatta Brain Res 122 437–44 [8.2.1]

Noppeney U, Friston KJ, Ashburner J, et al. (2005) Early visual deprivation induces structural plasticity in gray and white matter Curr Biol 15 R488–90 [8.1.4a]

Norcia AM (1996) Abnormal motion processing and binocularity: infantile esotropia as a model system for effects of early interruptions of binocularity Eye 10 259–65 [8.4.4d]

Norcia AM, Tyler CW (1985) Spatial frequency sweep VEP: visual acuity during the first year of life Vis Res 25 1399–408 [7.2.1b]

Norcia AM, Tyler CW, Allen D (1986) Electrophysiological assessment of contrast sensitivity in human infants Am J Optom Physiol Opt 63 12–15 [7.2.1a]

Norcia AM, Tyler CW, Hamer RD (1988) High visual contrast sensitivity in the young human infant Invest Ophthal Vis Sci 29 44–9 [7.2.1a]

Norcia AM, Tyler CW, Hamer RD (1990) Development of contrast sensitivity in the human infant Vis Res 30 1475–86 [7.2.1a, 7.2.1b]

Norcia AM, Garcia H, Humphry R, et al. (1991) Anomalous motion VEPs in infants and in infantile esotropia Invest Ophthal Vis Sci 32 436–9 [7.2.3c, 8.4.4d]

Norcia AM, Hamer RD, Jampolsky A, Orel-Bixler D (1995) Plasticity of human motion processing mechanisms following surgery for infantile esotropia Vis Res 35 3279–96 [8.4.4d]

Norling JA (1939) Three-dimensional motion pictures J Soc Motion Pict Engin 33 612–34 [2.11.4]

Norman JF, Dawson TE, Buler AK (2000) The effect of age upon the perception of depth and 3-D shape from differential motion and binocular disparity Perception 29 1335–9 [7.6.4]

Norman JF, Crabtree CE, Herrmann M, et al. (2006) Aging and the perception of 3-D shape from dynamic patterns of binocular disparity Percept Psychophys 68 94–1-1 [7.6.4]

Norman JF, Norman HF, Craft AE, et al. (2008) Stereopsis and aging Vis Res 48 2456–65 [7.6.4]

Norren DV, Vos JJ (1974) Spectral transmission of the human ocular media Vis Res 14 1237–44 [5.1.1]

Norris CR, Kalil K (1991) Guidance of callosal axons by radial glia in the developing cerebral cortex J Neurosci 11 3481–92 [6.4.6d]

North RV, Sethi B, Henson DB (1986) Effects of prolonged forced vergence upon the adaptation system Ophthal Physiol Opt 6 391–6 [10.2.5a]

North RV, Sethi B, Owen K (1990) Prism adaptation and viewing distance Ophthal Physiol Opt 10 81–5 [10.2.5b]

North RV, Henson DB, Smith TJ (1993) Influence of proximal accommodative and disparity stimuli upon the vergence system Ophthal Physiol Opt 13 239–43 [10.3.2c]

Nothdurft HC, Gallant JL, Van Essen DC (1999) Response modulation by texture surround in primate area V1: correlates of “popout” under anesthesia Vis Neurosci 16 15–34 [5.6.7c]

Nothdurft HC, Gallant JL, Van Essen DC (2000) Response profiles to texture border patterns in area V1 Vis Neurosci 17 421–36 [5.6.7a]

Nuzzi G, Franchi A (1983) Binocular interaction in visual–evoked responses: summation facilitation and inhibition in a clinical study of binocular vision Ophthal Res 15 291–82 [7.6.3]

O’Brien B (1951) Vision and resolution in the central retina J Opt Soc Am 41 882–94 [9.1.1, 9.1.5]

O’Connor DH, Fukui MM, Pinsk MA, Kastner S (2002) Attention modulates responses in the human lateral geniculate nucleus Nat Neurosci 5 1203–9 [5.9.2a]

O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions J Cog Neurosci 12 1013–23 [5.9.3c]

O’Craven KM, Rosen BR, Kwong KK, et al. (1997) Voluntary attention modulates fMRI activity in human MT-MST Neuron 18 591–8 [5.9.2b]

O’Dell C, Boothe RG (1997) The development of stereoacuity in infant rhesus monkeys Vis Res 37 2975–84 [6.6.4a, 7.6.1a]

O’Donnell M, Chance RK, Bashaw GJ (2009) Axon growth and guidance: receptor regulation and signal transduction Ann Rev Neurosci 32 383–412 [6.4.3c]

O’Donovan M (1999) The origin of spontaneous activity in developing networks of the vertebrate nervous system Curr Opin Neurobiol 9 94–104 [6.6.2]

O’Herron P, von der Heydt R (2009) Short-term memory for figure-ground organization in the visual cortex Neuron 61 801–9 [5.8.2a]

O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map Clarendon Press, Oxford [5.8.3c]

O’Keefe LP, Berkley MA (1991) Binocular immobilization induced by paralysis of the extraocular muscles of one eye: Evidence for an interocular proprioceptive mechanism J Neurophysiol 66 2022–33 [10.8.1b]

O’Keefe LP, Movshon JA (1998) Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey Vis Neurosci 15 305–17 [5.8.4b]

O’Keefe LP, Levitt JB, Kiper DC, et al. (1998) Functional organization of owl monkey lateral geniculate nucleus and visual cortex J Neurophysiol 80 594–609 [5.5.3]

(p.613) O’Kusky J, Colonnier M (1982) Postnatal changes in the number of neurons and analysis in normal and monocularly deprived animals J Comp Neurol 210 291–306 [5.5.1a, 6.4.5d, 8.2.4b]

O’Leary A, Wallach H (1980) Familiar size and linear perspective as distance cues in stereoscopic depth constancy Percept Psychophys 27 131–5 [4.5.7j]

O’Leary DL (1964) How Greek science passed to the Arabs Routledge and Kegan Paul, London [2.2.3]

O’Malley CD (1964) Andreas Vesalius of Brussels Cambridge University Press, London [2.5.2, 2.5.3]

O’Neill WD, Brodkey JS (1970) A nonlinear servo analysis of the mechanics of accommodation Vis Res 10 375–91 [9.7.2b]

O’Regan JK, Rensink RA, Clark JJ (1999) Change-blindness as a result of mudsplashes Nature 398 34 [4.8.4]

O’Rourke NA, Dailey ME, Smith SJ, McConnell SK (1992) Diverse migratory pathways in the developing cerebral cortex Science 258 299–302 [6.4.5b]

O’Shea WF, Ciuffreda KJ, Fisher SK, et al. (1988) Relation between distance heterophoria and tonic vergence Am J Optom Physiol Opt 65 787–93 [10.2.3c]

Obermayer K, Blasdel GG (1993) Geometry of orientation and ocular dominance columns in monkey striate cortex J Neurosci 13 4114–29 [5.7.1]

Ochs S (2004) A history of nerve functions: from animal spirits to molecular mechanisms Cambridge University Press, Cambridge [2.6.1]

Odom JV, Hoyt CS, Marg E (1981) Effects of natural deprivation and unilateral eye patching on visual acuity of infants and children Arch Ophthal 99 1412–16 [8.4.6b]

Oettermann S (1997) The panorama. History of a mass medium New York, Zone Books [2.11.1d]

Ogawa S, Tank DW, Menon R, et al. (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging Proc Natl Acad Sci 89 5951–5 [5.4.3f]

Ogawa S, Lee TM, Stepnoski R, et al. (2000) An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds Proc Natl Acad Sci 97 11026–31 [5.4.3f]

Ogawa T, Komatsu H (2004) Target selection in area V4 during a multidimensional visual search J Neurosci 24 6371–82 [5.9.3c]

Ogle KN (1939) Relative sizes of ocular images of the two eyes in asymmetrical convergence Arch Ophthal 22 1046–67 [10.6.1]

Ogle KN (1950) Researches in binocular vision W. B. Saunders, Philadelphia [10.2.5a]

Ogle KN (1964) Researches in binocular vision Hafner, New York [1.3, 9.9.2a, 9.9.2b]

Ogle KN, Ellerbrock VJ (1946) Cyclofusional movements Arch Ophthal 36 700–35 [10.7.1, 10.7.5a]

Ogle KN, Prangen A de H (1951) Further considerations of fixation disparity and the binocular fusional processes Am J Ophthal 34 57–72 [10.2.4e]

Ogle KN, Prangen A de H (1953) Observations on vertical divergences and hyperphorias Arch Ophthal 49 313–34 [10.2.4e, 10.2.5a, 10.2.6a, 10.6.1]

Ogle KN, Schwartz JT (1959) Depth of focus of the human eye J Opt Soc Am 49 273–80 [9.6.4a, 9.6.4b]

Ogle KN, Mussey F, Prangen A de H (1949) Fixation disparity and the fusional processes in binocular single vision Am J Ophthal 32 1069–87 [10.2.4e]

Ogle KN, Burian HM, Bannon RE (1958) On the correction of unilateral aphakia with contact lenses Arch Ophthal 59 639–52 [9.9.1c]

Ogle KN, Martens TG, Dyer JA (1967) Oculomotor imbalance in binocular vision and fixation disparity Lea and Febiger, Philadelphia [10.2.4d, 10.2.4e, 10.2.4h, 10.2.5a, 10.4.1]

Ohki K, Chung S, Ch’ng YH, et al. (2005) Functional imaging with cellular resolution reveals precise microarchitecture in visual cortex Nature 433 597–66 [5.4.3a]

Ohki K, Chung S, Kara P, et al. (2006) Highly ordered arrangement of single neurons in orientation pinwheels Nature 442 925–8 [5.7.1]

Ohmi M, Howard IP, Everleigh B (1986) Directional preponderance in human optokinetic nystagmus Exp Brain Res 63 387–94 [8.4.4d]

Ohtsuka K, Nagasaka Y (1999) Divergent axon collaterals from the rostral superior colliculus to the pretectal accommodation-related areas and the omnipause neuron area in the cat J Comp Neurol 413 68–76 [10.10.2e]

Ohtsuki H (1994) Critical period for restoration of normal stereoacuity in acute-onset comitant esotropia Am J Ophthal 118 502–8 [10.2.2e]

Okabe S, Miwa A, Okado H (2001) Spine formation and correlated assembly of presynaptic and postsynaptic molecules J Neurosci 21 6105–14 [6.4.4a]

Okada A, Lansford R, Weimann JM, et al. (1999) Imaging cells in the developing nervous system with retrovirus expressing modified green fluorescent protein Exp Neurol 156 394–406 [6.2]

Okada M, Erickson A, Hendrickson, AE (1994) Light and electron microscopic analysis of synaptic development in Macaca monkey retina as described by immunocytochemical labeling for the synaptic vesicle protein J Comp Neurol 339 535–58 [6.3.2b, 6.3.3a]

Okada Y, Ukai K, Wolffsohn JS, et al. (2006) Target spatial frequency determines the response to conflicting defocus- and convergence-driven accommodative stimuli Vis Res 46 475–84- [10.4.3d]

Okamoto KI, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity Nat Neurosci 7 1104–12 [6.4.4f]

Olavarria JF (1996) Non mirror-symmetric patterns of callosal linkages in areas 17 and 18 in cat visual cortex J Comp Neurol 366 643–55 [5.3.5,]

Olavarria JF (2001) Callosal connections correlate preferentially with ipsilateral cortical domains in cat areas 17 and 18, and with contralateral domains in the 17/18 transition zone J Comp Neurol 433 441 – 57 [5.3.5]

Olavarria JF, Hiroi R (2003) Retinal influences specify cortico-cortical maps by postnatal day six in rats and mice J Comp Neurol 459 156–72 [6.4.6d]

Olavarria JF, Li C-P (1995) Effects of neonatal enucleation on the organization of callosal linkages in striate cortex of the rat J Comp Neurol 361 138–51 [6.4.6d]

Olavarria JF, Van Sluyters RC (1995) Overall pattern of callosal connections in visual cortex of normal and enucleated cats J Comp Neurol 363 161–76 [6.4.6d]

Oliet SHR, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficiency by glial coverage of neurons Science 292, 923–6 [5.5.1f]

Oliver G, Gruss P (1997) Current views on eye development TINS 20 415–21 [6.3.1b]

Olmstead JMD (1944) The role of the autonomic nervous system in accommodation for far and near vision J Nerv Ment Dis 99 794–8 [9.2.3]

Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images Nature 381 607–9 [3.2.6a]

Olson CR (1980) Spatial localization in cats reared with strabismus J Neurophysiol 43 792–806 [8.4.5d]

Olson CR, Freeman RD (1975) Progressive changes in kitten striate cortex during monocular vision J Neurophysiol 38 29–32 [8.2.3d]

Olson CR, Freeman RD (1978a) Eye alignment in kittens J Neurophysiol 41 848–59 [7.3.3]

Olson CR, Freeman RD (1978b) Monocular deprivation and recovery during sensitive period in kittens J Neurophysiol 41 65–74 [8.3.1c]

Olson CR, Freeman RD (1980a) Profile of the sensitivity period for monocular deprivation in kittens Exp Brain Res 39 17–21 [8.3.1a]

Olson CR, Freeman RD (1980b) Cumulative effect of brief daily periods of monocular vision on kittens striate cortex Exp Brain Res 38 53–6 [8.2.3d]

(p.614) Olum V (1956) Developmental differences in the perception of causality Am J Psychol 69 417–23 [4.6.3g]

Ong WJ (1974) Ramus. Method, and the decay of dialogue Octagon Books, New York [2.4.1]

Ono H (1980) Hering’s law of equal innervation and vergence eye movement Am J Optom Physiol Opt 57 578–85 [10.8.1a]

Ono H (1983) The combination of version and vergence In Vergence eye movements: Basic and clinical aspects (ed MC Schor, KJ Ciuffreda) pp 373–400 Butterworth, Boston [10.8.2b]

Ono H, Nakamizo S (1978) Changing fixation in the transverse plane at eye level and Hering’s law of equal innervation Vis Res 18 511–19 [10.8.2a]

Ono H, Tam WJ (1981) Asymmetrical vergence and multiple saccades Vis Res 21 739–43 [10.8.2a]

Ono H, Wade NJ (1985) Resolving discrepant results of the Wheatstone experiment Psychol Res 47 135–42 [2.11.2c]

Ono H, Nakamizo S, Steinbach MJ (1978) Nonadditivity of vergence and saccadic eye movement Vis Res 18 735–39 [10.8.2a]

Oohira A, Zee DS (1992) Disconjugate ocular motor adaptation in rhesus monkey Vis Res 32 489–97 [10.8.3b]

Oohira A, Zee DS, Guyton DL (1991) Disconjugate adaptation to long–standing large–amplitude spectacle–corrected anisometropia Invest Ophthal Vis Sci 32 1693–703 [10.8.3b]

Optican LM (1982) Saccadic dysmetria In Functional basis of ocular motility disorders (ed G Lennerstrand, DS Zee, EL Keller) pp 441–51 Pergamon, New York [10.8.3d]

Optican LM, Robinson DA (1980) Cerebellar–dependent adaptive control of primate saccadic system J Neurophysiol 44 1058–76 [10.8.3d]

Optican LM, Zee DS, Chu FC (1985) Adaptive response to ocular muscle weakness in human pursuit and saccadic eye movements J Neurophysiol 54 110–22 [10.8.3d]

Oram MW, Perrett DI (1996) Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey J Neurophysiol 76 109–29 [5.8.3b, 5.8.5a]

Oram MW, Wiener MC, Lestienne R, Richmond BJ (1999) Stochastic nature of precisely timed spike patterns in visual system neuronal responses J Neurophysiol 81 3021–33 [4.3.5]

Oray S, Majewska A, Sur M (2004) Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation Neuron 44 1021–30 [8.2.7g]

Oray S, Majewska A, Sur M (2006) Effects of synaptic activity on dendritic spine motility of developing cortical layer V pyramidal neurons Cereb Cortex 16 730–41 [6.4.4a]

Orbach HS, Van Essen DC (1993) In vivo tracing of pathways and spatio–temporal activity patterns in rat visual cortex using voltage sensitive dyes Exp Brain Res 94 371–92 [5.4.3a]

Orbach J, Ehrlich D, Heath HA (1963) Reversibility of the Necker cube: I. An examination of the concept of “satiation of orientation” Percept Mot Skills 17 439–58 [4.5.9c]

Orban GA, Kennedy H (1981) The influence of eccentricity on receptive field types and orientation selectivity in areas 17 and 18 of the cat Brain Res 208 203–8 [5.6.2a]

Orban GA, Dupont P, DeBruyn B, et al. (1995) A motion area in human visual cortex Proc Natl Acad Sci 92 993–7 [5.8.4b]

Orban GA, Sunaert S, Todd JT, et al. (1999) Human cortical regions involved in extracting depth from motion Neuron 27 929–40 [5.8.4b]

Osterberg G (1935) Topography of the layer of rods and cones in the human retina Acta Ophthal Supp 6 1–103 [5.1.2a]

Oswald I (1957) After–images from retina and brain Quart J Exp Psychol 9 88–100 [4.5.8a]

Otmakkov N, Tao-Cheng JH, Carpenter S, et al. (2004) Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation J Neurosci 24 9324–31 [6.5.1a]

Otsu Y, Kimura F, Tsumoto T (1995) Hebbian induction of LTP in visual cortex: perforated patch-clamp study in cultured neurons J Neurophysiol 74 2737–44 [6.5.3]

Ott D, Seidman SH, Leigh RJ (1992) The stability of human eye orientation during visual fixation Neurosci Lett 142 183–6 [10.1.1, 10.7.3b]

Ott M (2006) Visual accommodation in vertebrates: mechanisms, physiological response and stimuli J Comp Physiol A 192 97–111 [9.2.2a]

Ouyang Y, Rosenstein A, Kreiman G, et al. (1999) Tetanic stimulation leads to increased accumulation of Ca2+/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons J Neurosci 19 7823–33 [6.4.4f]

Owens DA (1980) A comparison of accommodative responsiveness and contrast sensitivity for sinusoidal gratings Vis Res 20 159–67 [9.6.4c]

Owens DA (1991) Near work, accommodative tonus, and myopia In Refractive anomalies, research and clinical applications (Eds T Grovenor, MC Flom) pp 318–44 New York, Butterworth-Heinemann [9.6.2a]

Owens DA, Leibowitz HW (1980) Accommodation convergence and distance perception in low illumination Am J Optom Physiol Opt 57 540–50 [10.2.1, 10.4.3a]

Owens DA, Leibowitz HW (1983) Perceptual and motor consequences of tonic vergence In Vergence eye movements: Basic and clinical aspects (ed MC Schor, KJ Ciuffreda) pp 25–98 Butterworth, Boston [10.2.1, 10.2.4e]

Owens DA, Tyrrell RA (1992) Lateral phoria at distance: contributions of accommodation Invest Ophthal Vis Sci 33 2733–43 [10.2.3c]

Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition Nat Rev Neurosci 3 715–27 [6.4.4d]

Owens RL, Higgins KE (1983) Long-term stability of the dark focus of accommodation Am J Optom Physiol Opt 60 32–8 [9.3.1]

Owens WC, Hughes WF (1948) Results of surgical treatment of congenital cataract Arch Ophthal 39 339–50 [8.3.3b]

Owsley C (1983) The role of motion in infants’ perception of solid shape Perception 12 707–17 [7.4.2c]

Owsley C, Sloane ME (1990) Vision and aging In Handbook of neuropsychology (ed F Boller, J Grafman) Vol 4 pp 229–49 Elsevier, Amsterdam [7.6.4]

Oyster CW (1999) The human eye Sinauer, Sunderland MA [5.1.1]

Ozaki HS, Iwahashi K, Shimada M (1989) Ipsilateral corticocortical projections of fibers which course within Probst’s longitudinal bundle seen in the brains of mice with congenital absence of the corpus callosum: a study with the horseradish peroxidase technique Brain Res 493 66–73 [6.4.6d]

Ozeki H, Sadakane O, Akasaki T, et al. (2004) Relationship between excitation and inhibition underlying size tuning and contextual response modulation in the cat primary visual cortex J Neurosci 24 1428–38 [5.5.6b]

Pääkkönen AK, Morgan M (1994) Effects of motion on blur discrimination J Opt Soc Am A 11 992–1002 [9.6.3]

Pagano CC, Turvey MT (1995) The inertial tensor as a basis for the perception of limb orientation J Exp Psychol HPP 21 1070–87 [4.5.6]

Page WK, Duffy CJ (1999) MST neuronal responses to heading direction during pursuit eye movements J Neurophysiol 81 596–610 [5.8.4c]

Page WK, Duffy CJ (2003) Heading representation in MST: sensory interactions and population encoding J Neurophysiol 89 1994–2013- [5.8.4c]

Paige GD (1989) The influence of target distance on eye movement responses during vertical linear motion Exp Brain Res 77 585–93 [10.9.2]

Paige GD (1991) Linear vestibulo–ocular (LVOR) and modulation by vergence Acta Otolaryngol 48 282–6 [10.9.2]

Paige GD, Telford L, Seidman SH, Barnes GR (1998) Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement J Neurophysiol 80 2391–404 [10.9.1, 10.9.2]

Pak CW, Flynn KC, Bamburg JR (2008) Actin-binding proteins take the reins in growth cones Nat Rev Neurosci 9 136–47 [6.4.3a]

(p.615) Pak DTS, Sheng M (2003) Targeted protein degradation and synapse remodeling by an inducible protein kinase Science 302 136873 [6.4.4f, 6.5.1a]

Pak W, Hindges R, Lim YS, et al. (2004) Magnitude of binocular vision controlled by Ialet-2 repression of a genetic program that specifies laterality of retinal axon pathfinding Cell 119 567–78 [6.3.4b]

Palanca BJA, DeAngelis GC (2005) Does neuronal synchrony underlie visual feature grouping Neuron 46 333–46 [4.3.4c]

Palecek SP, Loftus JC, Ginsberg MH, et al. (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness Nature 385 537–40 [6.4.3b]

Palma V, Lim DA, Dahmane N, et al. (2005) Sonic hedgehog controls stem cell behavior in the postnatal and adult brain Development 132 335–44 [6.4.5b]

Palmer EA, Noorden GK von (1978) The relationship between fixation disparity and heterophoria Am J Ophthal 86 172–5 [10.2.4e]

Panofsky E (1927) Die Perspektive als symbolische Form Vorträge der Bibliothek Warburg 1925–25 Leipzig and Berlin [2.9.2]

Panofsky E (1940) The Codex Huygens and Leonardo da Vinci’s art theory The Warburg Institute, London, p 106 [2.9.3]

Panofsky E (1971) The life and art of Albrecht Dürer Princeton University Press, Princeton NJ [2.9.3, 3.7.2c]

Pansell T, Sverkersten U, Ygge J (2006) Visual spatial clues enhance ocular torsion response during visual tilt Exp Brain Res 175 567–74 [10.7.1]

Panum PL (1858) Physiologische Untersuchungen über das Sehen mit zwei Augen Schwers, Keil [2.10.3e]

Paolini M, Distler C, Bremmer F, et al. (2000) Response to continuously changing optic flow in area MST J Neurophysiol 84 730–43 [5.8.4c]

Pape HC, Eysel UT (1986) Binocular interactions in the lateral geniculate nucleus of the cat: GABAergic inhibition reduced by dominant afferent activity Exp Brain Res 61 295–71 [5.2.3a]

Park JK, Williams BP, Alberta JA, Stiles CD (1999) Bipotent progenitor cells process conflicting cues for neurons and glia in a hierarchical manner J Neurosci 19 10383–9 [6.4.5a]

Park M, Penick EC, Edwards JG, et al. (2004) Recycling endosomes supply AMPA receptors for LTP Science 305 1972–5 [6.5.1a]

Park M, Salgado JM, Ostroff L, et al. (2006) Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes Neuron 52 817–30 [6.4.4f]

Park RS, Park GE (1933) The center of ocular rotation in the horizontal plane J Physiol 104 545–52 [10.1.2]

Parker A, Hawken M (1985) Capabilities of monkey cortical cells in spatial-resolution tasks J Opt Soc Am A 2 1101–14 [5.6.3]

Parker AJ, Newsome WT (1998) Sense and the single neuron Ann Rev Neurosci 21 227–77 [3.1.1d, 4.3.1a]

Parker J (1858) To make stereoscopic spectacles Photograph J 5 69 [2.11.3]

Parkes L, Lund J, Angelucci A, et al. (2001) Compulsory averaging of crowded orientation signals in human vision Nat Neurosci 4 739–44 [3.1.3c, 4.2.7]

Parks MM (1969) The monofixation syndrome Tr Am Ophthal Soc 67 608–56 [10.2.2b, 10.2.4f]

Parnavelas JG (1999) Glial cell lineages in the rat cerebral cortex Exp Neurol 156 418–29 [6.4.5a]

Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas TINS 23 129–31 [6.4.5b]

Parodi O, Combe P, Ducom JC (1996) Temporal coding in vision: coding by the spike arrival times leads to oscillations in the case of moving targets Biol Cyber 74 497–509 [4.3.4g]

Parra P, Gulyas AI, Miles R (1998) How many subtypes of inhibitory cells in the hippocampus? Neuron 20 983–93 [5.5.2e]

Parrish JZ, Emoto K, Kim MD, Jan YN (2007) Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields Ann Rev Neurosci 30 399–423 [6.4.4a]

Parronchi A (1964) Studi su la prospettiva Aldo Martello, Milan [2.9.3]

Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness Science 292 510–12 [5.9.2b]

Pasik P, Pasik T (1982) Visual functions in monkeys after total removal of visual cerebral cortex Contri Sen Physiol 7 147–200 [5.5.7]

Pass AF, Levi DM (1982) Spatial processing of complex stimuli in the amblyopic visual system Invest Ophthal Vis Sci 23 780–6 [8.4.3]

Passafaro M, Nakagawa T, Sala C, Sheng M (2003) Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluRs Nature 424 677–81 [6.4.4f]

Pasternak T, Tompkins J, Olson CR (1995) The role of striate cortex in visual function of the cat J Neurosci 15 1940–50 [5.1.4b, 5.5.5]

Pasupathy A, Connor CE (1999) Responses to contour features in macaque area V4 J Neurophysiol 82 2790–502 [5.8.3a]

Pasupathy A, Connor CE (2002) Population coding of shape in area V4 Nat Neurosci 5 1332–8 [5.8.3a]

Patel N, Firth AY (2003) Vertical vergence adaptation does improve with practice Optom Vis Sci 80 316–19 [10.2.5a]

Patel SS, Ogmen H, White JM, Jiang BC (1997) Neural network model of short-term horizontal disparity vergence dynamics Vis Res 37 1383–99 [10.5.11]

Patel SS, Jiang BC, White JM, Ogmen H (1999) Nonlinear alteration of transient vergence dynamics after sustained convergence Optom Vis Sci 76 656–63 [10.2.5a]

Patel SS, Jiang B-C, Ogmen H (2001) Vergence dynamics predict fixation disparity Neural Comp 13 1495–25 [10.2.4c]

Patterson R, Fox R (1984a) Stereopsis during continuous head motion Vis Res 27 2001–3 [10.5.4a]

Patterson R, Martin WL (1992) Human stereopsis Hum Factors 34 669–92 [1.3]

Patterson SL, Pittenger C, Morozov A, et al. (2001) Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase Neuron 32 123–40 [6.5.1c]

Pause M, Kunesch E, Binkofski F, Freund HJ (1989) Sensorimotor disturbances in patients with lesions of the parietal cortex Brain 112 1599–625 [5.8.4e]

Payne BR (1990) Representation of the ipsilateral visual field in the transition zone between areas 17 and 18 of the cat’s cerebral cortex Vis Neurosci 4 445–74 [5.3.4]

Payne BR, (1991) Visual-field map in the transcallosal sending zone of area 17 in the cat Vis Neurosci 7 201–19 [5.3.5]

Payne BR, Berman N (1983) Functional organization of neurons in cat striate cortex: variations in preferred orientation and orientation selectivity with receptive-field type ocular dominance and location in the visual-field map J Neurophysiol 49 1051–68 [5.6.2a, 5.7.2b]

Payne BR, Siwek DF (1991) Visual-field map in the callosal recipient zone at the border between areas 17 and 18 in the cat Vis Neurosci 7 221–36 [5.3.5]

Payne BR, Berman N, Murphy EH (1981) A quantitative assessment of eye alignment in cats after corpus callosum transection Exp Brain Res 43 371–6 [10.5.2]

Payne WH (1967) Visual reaction times on a circle about the fovea Science 155 481–82 [7.2.4]

Pearson H, Berman N, Murphy EH (1981) Stroboscopic rearing reduces direction selectivity in rabbit visual cortex Devel Brain Res 1 127–31 [6.6.4b]

Peck CK, Blakemore C (1975) Modification of single neurons in the kitten’s visual cortex after brief periods of monocular visual experience Exp Brain Res 22 57–68 [8.3.1a]

Peiper A (1963) Cerebral function in infancy and childhood Pitman, London [7.4.1c]

Peli E (1983) Normal stereo acuity despite anisometropic-amblyopia J Am Optom Assoc 54 919–21 [8.5.1]

Pelli DG (1990) The quantum efficiency of vision. In Vision: coding and efficiency (ed C Blakemore) pp 3–25 Cambridge University Press [5.1.5]

Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies Spat Vis 10 437–41 [3.1.1a]

Pelli DG, Tillman KA (2008) The uncrowded window of object recognition Nat Neurosci 11 1129–35 [4.8.3a]

(p.616) Pelli DG, Palomares M, Majaj NJ (2004a) Crowding is unlike ordinary masking: distinguishing feature integration from detection J Vis 4 1136–69 [4.8.3a]

Pelli DG, Levi DM, Chung STL (2004b) Using visual noise to characterize amblyopic letter identification J Vis 4 904–20 [8.4.2a]

Peng G, Qiu F, Ginzburg VV, et al. (2000) Forming supramolecular networks from nonoscale rods in binary, phase-separating mixtures Science 288 1802–4 [5.7.1]

Penn AA, Riquelme PA, Feller MB, Shatz CJ (1998) Competition in retinogeniculate pattering driven by spontaneous activity Science 279 2108–12 [6.3.5b]

Penne A, Baraldi P, Fonda S, Ferrar F (1987) Incremental binocular amplitude of the pattern visual evoked potential during the first five months of life: electrophysiological evidence of the development of binocularity Doc Ophthal 65 15–23 [7.6.3]

Penrose R (1979) The topology of ridge systems Ann Hum Genet 42 435–44 [5.7.1]

Penzes P, Beeser A, Chernoff J, et al. (2003) Rapid induction of dendritic spine morphogenesis by trans-synaptic ehrinB-EphB receptor activation of the rho-GEF kalirin Neuron 37 263–74 [6.4.4b]

Perea G, Navarrete M (2009) Tripartite synapses: astrocytes process and control synaptic information TINS 32 421–31 [5.5.1f]

Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains Biophys J 7 419–40 [6.4.6b]

Perlmutter AL, Kertesz AE (1982) Human vertical fusional response under open and closed loop stimulation to predictable and unpredictable disparity presentations IEEE Tr Biomed Engin 29 57–61 [10.6.4]

Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex Exp Brain Res 47 329–42 [5.8.3b]

Perris EE, Clifton RK (1988) Reaching in the dark toward sound as a measure of auditory localization in infants Infant Behav Devel 11 473–91 [7.7]

Perry E, Walker M, Grace J, Perry R (1999) Acetylcholine in mind” a neurotransmitter correlate of consciousness TINS 22 273–8 [5.5.2g, 5.9.1]

Perry VH, Cowey A (1985) The ganglion cell and cone distributions in the monkey’s retina: implications for central magnification factors Vis Res 25 1795–1810 [5.5.4c, 6.3.3b]

Perry VH, Henderson Z, Linden R (1983) Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat J Comp Neurol 219 356–68 [6.3.3b]

Perry VH, Oehler R, Cowey A (1984) Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey Neurosci 12 1101–23 [5.2.1]

Pesudovs K, Brennan NA (1993) Decreased uncorrected vision after a period of distance fixation with spectacle wear Optom Vis Sci 70 528–31 [9.6.5a]

Peters A, Rockland KS (1994) Cerebral cortex Volume 10 Primary visual cortex in primates Plenum, New York [5.5.1a, 5.5.5]

Petersen PH, Zou K, Hwang JK, et al. (2002) Progenitor cell maintenance requires numb and numblike during mouse neurogenesis Nature 419 929–34 [6.4.5b]

Petersen SE, Robinson DL, Currie JN (1989) Influences of lesions of parietal cortex on visual spatial attention in humans Exp Brain Res 76 267–80 [5.9.2b]

Peterson MR, Li B, Freeman RD (2004) The derivation of direction selectivity in the striate cortex J Neurosci 24 3583–91 [5.6.4c]

Peterzell DH, Werner JS, Kaplan PS (1995) Individual differences in contrast sensitivity functions: longitudinal study of 4-, 6-, and 8-month-old human infants Vis Res 35 961–79 [7.2.1a]

Petralia RS, Esteban JA, Wang YX, et al. (1999) Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses Nat Neurosci 2 31–6 [6.5.1a]

Petrig B, Julesz B, Kropfl W, et al. (1981) Development of stereopsis and cortical binocularity in human infants: electrophysiological evidence Science 213 1402–5 [7.6.3]

Petros TJ, Rebsam A, Mason CA (2008) Retinal axon growth at the optic chiasm: to cross or not to cross Ann Rev Neurosci 31 295–315 [6.3.4b]

Petros TJ, Shrestha BR, Mason C (2009) Specificity and sufficiency of EphB1 in driving the ipsilateral retinal projection J Neurosci 29 3463–74 [6.3.4b]

Pettersen L, Yonas A, Fisch RO (1980) The development of blinking in response to impending collision in preterm, full-term, and postterm infants Infant Behav Devel 3 155–65 [7.4.1c]

Pettet MW, Gilbert CD (1992) Dynamic changes in receptive–field size in cat primary visual cortex Proc Natl Acad Sci 89 8366–70 [5.5.6c]

Pettigrew JD (1974) The effect of visual experience on the development of stimulus specificity by kitten cortical neurones J Physiol 237 49–74 [8.1.1c]

Pettigrew JD, Dreher B (1987) Parallel processing of binocular disparity in the cat’s retinogeniculate pathways Proc R Soc B 232 297–321 [5.3.4]

Pettigrew JD, Freeman RD (1973) Visual experience without lines: effect of developing cortical neurons Science 182 599--602 [6.6.4b]

Pettigrew JD, Nikara T, Bishop PO (1968) Binocular interaction on single units in cat striate cortex: simultaneous stimulation by single moving slit with receptive fields in correspondence Exp Brain Res 6 391–410 [2.10.5, 8.1.1c]

Pfeiffenberger C, Yamada J, Feldheim DA (2006) Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system J Neurosci 26 12873–84 [6.4.3c]

Pfrieger FW (2002) The role of glia in the development of synaptic contacts In The tripartite synapse (ed A Volterra, PJ Magistretti, PG Haydon) pp 24–34 Oxford University Press, Oxford [6.4.4c]

Pham TA, Impey S, Storm DR, Stryker, MP (1999) CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period Neuron 22 63–72 [8.2.7f]

Pham TA, Grahan SJ, Suzuki S, et al. (2004) A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB Learning and Memory 11 738–47 [8.2.7f]

Pheiffer CH, Eure SB, Hamilton CB (1956) Reversible figures and eye-movements Am J Psychol 69 452–5 [4.5.9d]

Phillips GC, Wilson HR (1984) Orientation bandwidths of spatial mechanisms measured by masking J Opt Soc Am A 1 229–32 [5.6.2a]

Phillips S, Stark L (1977) Blur: a sufficient accommodative stimulus Doc Ophthal 43 65–89 [9.5]

Philpot BD, Sekhar AK, Shouval HZ, Bear MF (2001) Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex Neuron 29 157–69 [6.6.3]

Philpot BD, Espinosa JS, Bear MF (2003) Evidence for altered NMDA receptor function as a basis for metaplasticity in visual cortex J Neurosci 23 5583–8 [8.1.1b]

Piccolino M, Wade NJ (2006) Editorial essay. Flagging early examples of ambiguity I Perception 35 861–4 [4.5.9a]

Pickwell LD (1972) Hering’s law of equal innervation and the position of the binoculus Vis Res 12 1499–1507 [10.8.2a]

Pickwell LD (1985) The increase in convergence inadequacy with age Ophthal Physiol Opt 5 347–8 [10.5.3, 7.6.4]

Pickwell LD (1989) Binocular vision anomalies Butterworth-Heinemann, Oxford [1.3]

Pickwell LD, Hampshire R (1981) The significance of inadequate convergence Ophthal Physiol Opt 1 13–18 [7.6.4]

Pickwell LD, Gilchrist JM, Hesler J (1988) Comparison of associated heterophoria measurements using the Mallett test for near vision and the Sheedy disparometer Ophthal Physiol Opt 8 19–25 [10.2.4a]

Pigarev IN, Nothdurft HC, Kastner S (2002) Neurons with large bilateral receptive fields in monkey prelunate gyrus Exp Brain Res 136 108–13 [5.8.3a]

(p.617) Pike G, Goddard RS, Suckling JM, et al. (2000) Distinct frequency preferences of different types of rat hippocampus neurones in response to oscillatory currents J Physiol 529 205–13 [4.3.4a]

Pimentel B, Sanz C, Varela-Nieto I, et al. (2000) c-Raf regulates cell survival and retinal ganglion cell morphogenesis during neurogenesis J Neurosci 20 3254–62 [6.4.7b]

Pinheiro PS, Mulle C (2008) Presynaptic glutamate receptors: physiological functions and mechanisms of action Nat Rev Neurosci 9 423–36 [5.5.2f]

Pini A (1993) Chemorepulsion of axons in the developing mammalian central nervous system Science 291 95–9 [6.4.3b]

Pinsk MA, Doniger GM, Kastner S (2004) Push-pull mechanism of selective attention in human extrastriate cortex J Neurophysiol 92 622–9 [4.8.1d]

Pinter RB, Nabet B (1992) Nonlinear vision: Determination of neural receptive fields function and networks CRC Press, London [3.4]

Pirchio M, Spinelli D, Fiorentini A, Maffei L (1978) Infant contrast sensitivity evaluated by evoked potentials Brain Res 141 179–84 [7.2.1a]

Pirenne MH (1952) The scientific basis of Leonardo da Vinci’s theory of perspective Brit J Philos Sci 3 169–85 [2.9.3]

Pirenne MH (1970) Optics, painting and photography Cambridge University Press, Cambridge [2.9.3, 2.9.5]

Pittman RN (1985) Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons Devel Biology 110 91–101 [6.4.3b]

Pizzorosso T, Medini P, Berardi N, et al. (2002) Reactivation of ocular dominance plasticity in the adult visual cortex Science 298 1248–51 [6.4.4b, 8.2.7f]

Plateau JAF (1833) Des illusions sur lesquelles se fonde le petit appareil appelé récemment Phénakistiscope Annales de Chemie et de Physique de Paris 53 304–8 [2.7.1]

Plateau JAF (1849) Troisiemè note sur de nouvelles applications curieuse de la persistance des impressions de la rétine Bull Acad R Sci Bel 16 37–9 [2.11.4]

Platter F (1583) De corporis humani structura et usu König, Basel [2.5.4]

Plug C, Ross HE (1994) The natural moon illusion: a multifactor angular account Perception 23 321–33 [2.2.4d]

Plump AS, Erskine L, Sabatier C, et al. (2002) Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system Neuron 33 219–32 [6.3.4b]

Pobuda M, Erkelens CJ (1993) The relationship between absolute disparity and ocular vergence Biol Cyber 68 221–8 [10.5.8b, 10.5.10d, 10.5.11]

Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey J Neurophysiol 40 1392–405 [5.7.2e]

Poggio GF, Doty RW, Talbot WH (1977) Foveal striate cortex of behaving monkey: single neuron responses to square-wave gratings during fixation J Neurophysiol 40 1369–91 [5.6.2a]

Poggio T, Fahle M, Edelman S (1992) Fast perceptual learning in visual hyperacuity Science 256 1018–21 [4.9.2b]

Pohl W (1973) Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys J Comp Physiol Psychol 82 227–39 [5.8.5b]

Polack A (1923) Le chromatisme de l’oeil Bull Soc Ophthal Paris 35 401–563 [9.8.2a]

Polak NA, Jones R (1990) Dynamic interactions between accommodation and convergence IEEE Tr Biomed Engin 37 1011–14 [10.4.3a, 10.4.3b]

Polat U (1999) Functional architecture of long-range perceptual interactions Spat Vis 12 143–62 [8.4.3d]

Polat U (2004) Improving abnormal spatial vision in adults with amblyopia In Seeing spatial form (eds MRM Jenkin, LR Harris) New York, Oxford University Press pp 391–405 [8.4.6c]

Polat U, Norcia AM (1996) Neurophysiological evidence for contrast dependent long-range facilitation and suppression in the human cortex Vis Res 36 2099–109 [5.6.7b]

Polat U, Sagi D (1993) Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments Vis Res 33 993–9 [5.6.7b]

Polat U, Sagi D (1994) The architecture of perceptual spatial interactions Vis Res 34 73–8 [4.5.2b, 5.6.7b]

Polat U, Sagi D, Norcia AM (1997) Abnormal long-range spatial interactions in amblyopia Vis Res 37 737–44 [8.4.3d]

Polat U, Mizobe K, Pettet MW, et al. (1998) Collinear stimuli regulate visual responses depending on cell’s contrast threshold Nature 391 580–4 [5.6.7b]

Polat U, Ma-Naim T, Belkin M, Sagi D (2004) Improving vision in adult amblyopia by perceptual learning Proc Natl Acad Sci 101 6692–7 [8.4.3b, 8.4.6c]

Polat U, Bonneh Y, Ma-Naim T, et al. (2005) Spatial interactions in amblyopia: effects of stimulus parameters and amblyopic type Vis Res 45 1471–9 [8.4.3b]

Pollack P (1977) The picture history of photography Adams, New York [2.11.3]

Pollen DA (1981) Phase relationships between adjacent simple cells in the visual cortex of the cat Science 212 1409–11 [4.4.2, 5.7.2b]

Pollen DA, Feldon SE (1979) Spatial periodicities of periodic complex cells in the visual cortex cluster at one-half octave intervals Invest Ophthal Vis Sci 18 429–34 [5.6.3]

Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites Nature 404 567–73 [6.4.3c]

Polyak S (1941) The retina University of Chicago Press, Chicago [2.2.4d, 5.1.1]

Polyak S (1957) The vertebrate visual system pp 109–110 University of Chicago Press, Chicago [2.3.2, 2.5.3, 2.6.2, 5.1.1, 6.4.2a,]

Ponce CR, Lomber SG, Born RT (2008) Integrating motion and depth via parallel pathways Nat Neurosci 11 1–8 [5.8.4b]

Poom (2002) Visual binding of luminance, motion and disparity edges Vis Res 42 2577–91 [4.2.6c]

Pope DR, Edwards M, Schor CM (1999) Orientation and luminance polarity tuning of the transient-vergence system Vis Res 39 575–84 [10.5.10c]

Poposcu MV, Polley DB (2010) Monaural deprivation disrupts development of binaural selectivity in auditory midbrain and cortex Neuron 65 718–31 [7.7]

Popiolek-Masajada A, Kasprzak H (2002) Model of the optical system of the human eye during accommodation Ophthal Physiol Opt 22 201–8 [9.2.2b]

Popovic Z, S j östrand J (2001) Resolution, separation of retinal ganglion cells, and cortical magnification in humans Vis Res 41 1313–19 [5.5.4c]

Popple AV, Levi DM (2000) Amblyopes see true alignment where normal observers see illusory tilt Proc Natl Acad Sci 97 11667–72 [8.4.3d]

Popple AV, Smallman HS, Findlay JM (1998) The area of spatial integration for initial horizontal disparity vergence Vis Res 38 319–29 [10.5.5a]

Porrill J, Ivins JP, Frisby JP (1999) The variation of torsion with vergence and elevation Vis Res 39 3934–50 [10.7.4]

Porta GB della (1558) Magiae naturalis English edition of 1658 reprinted by Basic Books, New York 1957 [2.5.1]

Porta GB della (1593) De refractione Optices Parte Carlinum and Pacem Naples [2.5.1]

Porter JD, Baker RS (1992) Prenatal morphogenesis of primate extraocular muscle: neuromuscular junction formation and fiber type differentiation Invest Ophthal Vis Sci 33 657–70 [10.10.1]

Porter JD, Guthrie BL, Sparks DL (1983) Innervation of monkey extraocular muscles: localization of sensory and motor neurons by retrograde transport of horseradish peroxidase J Comp Neurol 218 208–19 [10.10.1]

Portera-Cailliau C, Pan DT, Yuste R (2003) Activity-regulated behavior of early dendritic protrusions: evidence for different types of dendritic filopodia J Neurosci 23 7129–42 [6.4.3a, 6.4.4a]

Porterfield W (1738) An essay concerning the motion of our eyes Edinburgh Medical Essays and Observations 4 127–294 [2.5.4]

(p.618) Porterfield W (1759) A treatise on the eye: The manner and phaenomena of vision A Miller, London [2.10.3e]

Poskanzer K, Needleman LA, Bozdagi O, Huntley GW (2003) N-cadherin regulates ingrowth and laminar targeting of thalamocortical axons J Neurosci 23 2294–305 [6.4.5c]

Posner MI (1980) Orienting of attention Quart J Exp Psychol 32 3–25 [4.8.1b]

Pospichal MW, Florence SL, Kaas JH (1994) The postnatal development of geniculocortical axon arbors in owl monkeys Vis Neurosci 11 71–90 [6.4.5c]

Pouget A, Zhang K, Deneve S, Latham PE (1998) Statistically efficient estimation using population codes Neural Comput 10 373–401 [4.2.5b]

Pouget A, Deneve S, Ducom JC, Latham PE (1999) Narrow versus wide tuning curves: what’s best for a population code? Neural Comput 11 85–90 [4.2.5b]

Pouratian N, Toga AW (2002) Optical imaging based on intrinsic signals In Brain mapping: the methods (ed AW Toga, JC Mazziotta) pp 97–140 Academic Press, New York [5.4.3a]

Pouratian N, Sheth SA, Martin NA, Toga AW (2003) Shedding light on brain mapping: advances in human optical imaging TINS 26 277–82 [5.4.3a]

Pozzo A (1693) Perspectiva pictorum et architectorum First published in Rome in Latin. An English translation appeared in London in 1707, which was reproduced in 1989 by Dover, Mineola, NY [2.9.3]

Pratt KG, Watt AJ, Griffith LC, et al. (2003) Activity-dependent remodelling of presynaptic inputs by postsynaptic expression of activated CaMKII Neuron 39 269–81 [6.5.1a]

Pratt-Johnson JA, Tillson G (1981) Visual results after removal of congenital cataracts before the age of 1 year Can J Ophthal 16 19–21 [8.3.3b]

Pratt-Johnson JA, Tillson G (1983) Sensory results following treatment of infantile esotropia Can J Ophthal 18 175–7 [8.4.6b, 10.2.2e]

Pratt-Johnson JA, Tillson G (1984) Suppression in strabismus—an update Brit J Ophthal 68 174–8 [8.5.2]

Pratt-Johnson JA, Tillson G (1989) Unilateral congenital cataract: binocular status after treatment J Ped Ophthal Strab 29 72–75 [8.1.3]

Pratt-Johnson JA, Wee HS (1969) Suppression associated with exotropia Can J Ophthal 4 136 [10.2.2a]

Predebon J (1994) Convergence responses to monocularly viewed objects: implications for distance perception Perception 23 303–19 [10.3.2b]

Prévost A (1843) Essai sur la theorie de la vision binoculaire Ramboz, Geneva [2.10.4]

Prévost P (1804) Essais de philosophie ou étude de l’esprit humain Paschoud, Geneva [2.10.4]

Price DJ, Blakemore C (1985) The postnatal development of the association projection from visual cortical area 17 to area 18 in the cat J Neurosci 5 2743–52 [6.4.6c]

Price DJ, Ferrer JMR, Blakemore C, Kato N (1994) Postnatal development and plasticity of corticocortical projections from area 17 to area 18 in the cat’s visual cortex J Neurosci 14 2747–62 [6.4.6c]

Priebe NJ, Cassanello CR, Lisberger SG (2003) The neural representation of speed in macaque area MT/V5 J Neurosci 23 5650–61 [5.8.4b]

Priestley J (1772) The history and present state of discoveries relating to vision light and colours Johnson, London [2.2.4d, 2.5.2, 2.5.4]

Prieto PM, Vargas-Martin F, Goelz S, Artal P (2005) Analysis of the performance of the Hartmann-Shack sensor in the human eye J Opt Soc Am A 15 1388–98 [9.1.3c]

Prieto-Diaz J (2000) Strabismus Boston, Butterworth-Heinemann [10.2.2a]

Proffitt DR, Gilden, DL (1989) Understanding natural dynamics J Exp Psychol: HPP 15 284–93 [4.6.3g]

Provine RR, Enoch JM (1975) On voluntary ocular accommodation Percept Psychophys 17 209–12 [9.4]

Provine RR, Westerman JA (1979) Crossing the midline: limits of early eye-hand behavior Child Devel 50 437–41 [7.4.1a]

Przybyszewski AW, Gaska JP, Foote W, Pollen DA (2000) Striate cortex increases contrast gain of macaque LGN neurons Vis Neurosci 17 485–94 [5.2.2b]

Pugh M (1958) Visual distortion in amblyopia Br J Ophthal 42 449–60 [8.4.3, 8.4.3c]

Purves D, Lichtman JW (1985) Principles of neural development Sinauer, Sunderland MA [7.6.4]

Puttermans V, Wenderoth N, Swinnen SP (2005) Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticity J Neurosci 25 4270–8 [4.8.4]

Pylyshyn ZW (1973) What the mind’s eye tells the mind’s brain Psychol Bull 80 1–24 [4.6.3h]

Qadir CA (1990) Philosophy and science in the Islamic world Routledge, London [2.2.4d]

Qiu FT, von der Heydt R (2007) Neural representation of transparent overlay Nat Neurosci 10 283–4 [5.8.2a]

Qiu FT, Sugihara T, von der Heydt R (2007) Figure-ground mechanisms provide structure for selective attention Nat Neurosci 10 1492–9 [5.8.2a]

Quaia C, Optican LM (1998) Commutative saccadic generator is sufficient to control a 3-D ocular plant with pulleys J Neurophysiol 79 3197–215 [10.1.2d]

Quereau J (1954) Some aspect of torsion Arch Ophthal 51 783–8 [10.1.2d]

Quick MW, Boothe RG (1989) Measurement of binocular alignment in normal monkeys and in monkeys with strabismus Invest Ophthal Vis Sci 30 1159–68 [10.2.3b]

Quick MW, Tigges M, Gammon JA, Boothe RG (1989) Early abnormal visual experience induces strabismus in infant monkeys Invest Ophthal Vis Sci 30 1012–17 [10.2.2d]

Quinlan EM, Philpot BD, Huganir RL, Bear MF (1999) Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo Nat Neurosci 2 352–7 [6.6.3]

Quinlan EM, Lebel D, Brosh I, Barkai E (2004) A molecular mechanism for stabilization of learning-induced synaptic modifications Neuron 41 185–92 [6.4.4f, 6.5.1a, 6.6.3]

Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the small eye gene in mice and Ariridia in humans Science 365 785 [6.3.1b]

Radhakrishnan H, Pardhan S, Calver RI, O’Leary DJ (2004a) Unequal reduction in visual acuity with positive and negative defocusing lenses in myopes Optom Vis Sci 81 14–7 [9.6.2a]

Radhakrishnan H, Pardhan S, Calver RI, O’Leary DJ (2004b) Effect of positive and negative defocus on contrast sensitivity in myopes and non-myopes Vis Res 44 1869–78 [9.6.2a]

Radnikow G, Feldmeyer D, Lübke J (2002) Axonal projection, input and output synapses, and synaptic physiology of Cajal-Retzius cells in the developing rat neocortex J Neurosci 22 6908–19 [6.4.5a]

Raff MC, Barres BA, Burne JF, et al. (1993) Programmed cell death and the control of cell survival: lessons from the nervous system Science 292 695–700 [6.3.3b]

Rainey BB (2000) The effect of prism adaptation on the response AC/A ratio Ophthal Physiol Opt 20 199–206 [10.4.1]

Raizada RDS, Grossberg S (2003) Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system Cereb Cortex 13 100–13 [5.8.3c]

Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition Science 183 425–7 [6.4.5a]

Rakic P (1976) Prenatal genesis of connections subserving ocular dominance in the rhesus monkey Nature 291 467–71 [6.3.5a, 6.7.1]

Rakic P (1981) Development of visual centers in the primate brain depends on binocular competition before birth Science 214 928–31 [6.3.5b, 8.2.2a]

Rakik P (1985) Limits of neurogenesis in primates Science 227 1054–6 [6.4.2d]

Rakic P (1988) Specification of cerebral cortical areas Science 271 170–6 [5.7, 6.4.5a, 6.4.5c]

(p.619) Rakic P, Riley KP (1983) Overproduction and elimination of retinal axons in the fetal rhesus monkey Science 219 1441–4 [6.3.3b]

Rakic P, Bourgeois JP, Eckenhoff MF, et al. (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex Science 232 232–5 [6.4.5d]

Rakic P, Suner I, Williams RW (1991) A novel cytoarchitectonic area induced experimentally within the primate visual cortex Proc Natl Acad Sci 88 2083–7 [8.1.4b]

Ramachandran VS, Anstis SM (1983) Perceptual organization in moving patterns Nature 304 529–31 [4.5.9a]

Rambold HA, Miles FA (2008) Human vergence eye movements to oblique disparity stimuli: Evidence for an anisotropy favoring horizontal disparities Vis Res 48 2006–19 [10.6.3c]

Ramdya P, Engert F (2008) Emergence of binocular functional properties in a monocular neural circuit Nat Neurosci 11 1083–90 [6.7.3b]

Ramoa AS, McCormick DA (1994) Enhanced activation of NMDA receptor responses at the immature retinogeniculate synapse J Neurosci 14 2098–105 [6.3.5c]

Ramoa AS, Freeman RD, Macy A (1985) Comparison of response properties of cells in the cat’s visual cortex at high and low luminance levels J Neurophysiol 54 61–72 [5.1.4f, 5.6.2d]

Ramoa AS, Shadlen M, Freeman RD (1987) Dark–reared cats: unresponsive cells become visually responsive with microiontophoresis of an excitatory amino acid Exp Brain Res 65 658–65 [8.1.1b]

Ramoa AS, Paradiso MA, Freeman RD (1988) Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity Exp Brain Res 73 285–96 [8.2.7d]

Ramoa AS, Mower AF, Liao D, Jafri SIA (2001) Suppression of cortical NMDA receptor function prevents development of orientation selectivity in the primary visual cortex J Neurosci 21 4299–309 [6.6.4b, 8.2.7e]

Ramón y Cajal S (1901) Recreaciones estereoscópicas y binoculares La Fotgrapfía 27 41–8 [2.6.1, 2.10.5, 5.3.2, 5.3.4]

Ramón y Cajal S (1911) Histologie du system nerveux de l’homme et des vertébrés A Maloine, Paris [2.6.1]

Ramón y Cajal S (1937) Recollections of my life (Translated by EH Graige) Mem Am Philos Soc 3 [2.6.1]

Ransom–Hogg A, Spillmann L (1980) Perceptive field size in fovea and periphery of the light–and dark–adapted retina Vis Res 20 221–8 [5.5.4c]

Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: functional interpretation of some extra-classical receptive-field effects Nat Neurosci 2 79–87 [4.2.6b, 4.2.6c, 4.3.4f]

Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex Science 276 821–4 [5.8.4f]

Raper JA, Grunewald EB (1990) Temporal retinal growth cones collapse on contact with nasal retinal axons Exp Neurol 109 70–4 [6.3.4a]

Raphan T (1998) Modeling control of eye orientation in three dimensions. I. Role of muscle pulleys in determining saccadic trajectory J Neurophysiol 79 2953–67 [10.1.2e]

Rasengane TA, Allen D, Manny RE (1997) Development of temporal contrast sensitivity in human infants Vis Res 3 7 1747–54 [7.2.3a]

Rash BG, Richards LJ (2001) A role for cingulate pioneering axons in the development of the corpus callosum J Comp Neurol 434 147–57 [6.4.6d]

Rashbass C (1981) Reflections on the control of vergence In Models of oculomotor behavior and control (ed BL Zuber) pp 139–48 CRC Press, Boca Raton [10.5.11]

Rashbass C, Westheimer G (1961a) Disjunctive eye movements J Physiol 159 339–60 [10.5.7, 10.5.8b, 10.5.11, 10.6.4]

Rashbass C, Westheimer G (1961b) Independence of conjugate and disjunctive eye movements J Physiol 159 361–4 [10.8.2a]

Ratcliff G (1965) Mach bands: quantitative studies on neural networks in the retina Holden-Day, San Francisco [2.8.1]

Rathjen S, Löwel S (2000) Early postnatal development of functional ocular dominance columns in cat primary visual cortex Neuroreport 11 2363–7 [6.7.1]

Rathjen S, Schmidt KE, Löwel S (2002) Two-dimensional analysis of the spacing of ocular dominance columns in normally raised and strabismic kittens Exp Brain Res 145 158–65 [8.2.3a]

Rathjen S, Schmidt KE, Löwel S (2003) Postnatal growth and column spacing in cat primary visual cortex Exp Brain Res 149 151–8 [6.7.1]

Rauschecker JP (1991) Mechanisms of visual plasticity: Hebb synapses NMDA receptors and beyond Physiol Rev 71 587–615 [6.6.1c]

Rauschecker JP (1995) Compensatory plasticity and sensory substitution in the cerebral cortex TINS 18 36–43 [8.1.4b]

Rauschecker JP, Singer W (1981) The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses J Physiol 310 215–39 [8.2.3c]

Rauschecker JP, von Grünau MW, Poulin C (1987) Centrifugal organization of direction preferences in the cat’s lateral suprasylvian cortex and its relation to flow field processing J Neurosci 7 943–58 [5.8.4b]

Ray S, Maunsell JHR (2010) Differences in gamma frequencies across visual cortex restict their possible use in computation Neuron 67 885–96 [4.3.4c]

Rayner AW (1966) Aniseikonia and magnification in ophthalmic lenses Problems and solutions Am J Optom Arch Am Acad Optom 43 617–32 [9.9.2b]

Read JCA (2002) A Bayesian model of stereopsis depth and motion direction discrimination Biol Cybern 86 117–36 [3.6]

Reading RW (1983) Binocular vision—foundations and applications Butterworth, London [1.3]

Reading RW (1992) Vergence errors: some hitherto unreported aspects of fixation disparity Optom Vis Sci 69 538–43 [10.2.4d]

Reading RW (1994) Variations in the monocular components of fixation disparity Optom Vis Sci 71 371–6 [10.2.4d]

Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys J Neurosci 13 87–103 [5.6.8]

Reddy GD, Kelleher K, Fink R, Saggau P (2008) Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity Nat Neurosci 11 713–20 [5.4.1b]

Redmond L, Oh SR, Hicks C, et al. (2000) Nuclear Notch1 signaling and the regulation of dendritic development Nat Neurosci 3 30–40 [6.4.7b]

Reed MJ, Steeves JKE, Steinbach MJ, et al. (1996) Contrast letter thresholds in the non-affected eye of strabismic and unilateral eye enucleated subjects Vis Res 36 3011--18 [8.2.6b]

Reed MJ, Steeves JKE, Steinbach MJ, (1997) A comparison of contrast letter thresholds in unilateral eye enucleated subjects and binocular and monocular control subjects Vis Res 37 2465–9 [8.2.6b]

Rees G, Friston K, Koch C (2000a) A direct quantitative relationship between the functional properties of human and macaque V5 Nat Neurosci 3 716–23 [5.8.4b]

Rees D, Backus BT, Heeger DJ (2000b) Activity in primary visual cortex predicts performance in a visual detection task Nat Neurosci 3 940–5 [5.9.2a]

Reese BE, Baker GE (1992) Changes in fiber organization within the chiasmatic region of mammals Vis Neurosci 9 527–33 [6.3.4b]

Reese BE, Guillery RW, Marzi CA, Tassinari G (1991) Position of axons in the cat’s optic tract in relation to their retinal origin and chiasmatic pathway J Comp Neurol 306 539–53 [6.3.3a]

Reese BE, Maynard TM, Hocking DR (1994) Glial domains and axonal reordering in the chiasmatic region of the developing ferret J Comp Neurol 349 303–27 [6.3.4b]

Regal DM (1981) Development of critical flicker frequency in human infants Vis Res 21 549–55 [7.2.3a]

Regal DM, Boothe R, Teller DY, Sackett GP (1976) Visual acuity and visual responsiveness in dark-reared monkeys (Macaca Nemestrina) Vis Res 16 523–30 [8.1.2]

Regan D (1982) Visual information channeling in normal and disordered vision Psychol Rev 89 407–44 [4.2.8c]

(p.620) Regan D (1989) Human brain electrophysiology Evoked potentials and evoked magnetic fields in science and medicine Elsevier, New York [5.4.3c, 5.4.3d]

Regan D (1991a) Vision and visual dysfunction Vol 9 Binocular vision (ed D Regan) MacMillan, London [1.3]

Regan D (1991b) Objects described by colour disparity and motion In Vision and visual dysfunction Vol 10 Spatial vision (ed D Regan) pp 135–78 MacMillan, London [4.5.7c]

Regan D (1991c) Vision and visual dysfunction Vol 10 Spatial vision MacMillan, London [1.3]

Regan D (1999) Human perception of objects Sinauer, New York [4.2.6c, 4.5.7c]

Regan D, Beverley KI (1985) Postadaptation orientation discrimination J Opt Soc Am A 2 147–55 [4.2.8c]

Regan D, Price P (1986) Periodicity in orientation discrimination and the unconfounding of visual information Vis Res 29 1299–302 [3.1.4b]

Regan D, Spekreijse H (1970) Electrophysiological correlate of binocular depth perception in man Nature 225 92–4 [5.4.3c]

Regan D, Erkelens CJ, Collewijn H (1986) Necessary conditions for the perception of motion in depth Invest Ophthal Vis Sci 27 584–97 [10.5.4a]

Regan D, Gray R, Hamstra SJ (1996) Evidence for a neural mechanism that encodes angles Vis Res 36 323–30 [5.5.6c]

Regan MP, Regan D (1988) A frequency domain technique for characterizing nonlinearities in biological systems J Theor Biol 133 293–317 [3.4, 4.4.4]

Regan MP, Regan D (1989) Objective investigation of visual function using a nondestructive zoom–FFT technique for evoked potential analysis Can J Neurol Sci 16 168–79 [3.4]

Reh TA, Constantine-Paton M (1985) Eye-specific segregation requires neural activity in three-eyed Rana pipiens J Neurosci 5 1132–43 [6.7.3c]

Reichardt W (1987) Evaluation of optical motion information by movement detectors J Comp Physiol A 161 533–47 [4.4.4]

Reichardt LF (1992) Neuronal interactions with the extracellular matrix that regulate axon growth In Regeneration and plasticity in the mammalian visual system (ed DMK Lam, GM Garth) pp 59–70 MIT Press, Cambridge MA [6.4.3b]

Reichardt LF (2006) Neurotrophin-regulated signaling pathways Phil Trans Roy Soc B 361 1545–64 24 677–36 [6.4.3d]

Reid CB, Liang I, Walsh C (1995) Systematic widespread clonal organization in cerebral cortex Neuron 15 299–310 [6.4.5b]

Reid RC, Alonso JM (1995) Specificity of monosynaptic connections from thalamus to visual cortex Nature 378 281–4 [5.6.2b]

Reid RC, Shapley RM (1992) Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus Nature 356 716–7 [5.1.4c]

Reid RC, Soodak RE, Shapley RM (1991) Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex J Neurophysiol 66 505–29 [5.6.4c]

Reid RC, Victor JD, Shapley RM (1997) The use of m-sequences in the analysis of visual neurons: linear receptive field properties Vis Neurosci 14 1015–27 [3.4]

Reid SNM (1995) Immunohistochemical study of two phosphoinositidelinked metabotropic glutamate receptors (mGluR1a and mGluR5) in the cat visual cortex before during and after the peak of the critical period for eye-specific connections J Comp Neurol 355 470–7 [6.5.1b]

Reid SNM, Daw NW, Czepita D, et al. (1996a) Inhibition of nitric oxide synthesis does not alter ocular dominance shifts in kitten visual cortex J Physiol 494 511–17 [6.5.3]

Reid SNM, Daw NW, Gregory DS, Flavin H (1996b) cAMP levels increased by activation of metabotropic glutamate receptors correlate with visual plasticity J Neurosci 16 7619–26 [6.7.2b]

Reid SNM, Romano C, Hughes T, Daw NW (1997) Development and sensory-dependent changes of phosphoinositide-linked metabotropic glutamate receptors J Comp Neurol 389 577–83 [6.6.3]

Reid T (1764) An inquiry into the human mind On the principles of common sense Miller Kinnaird and Bell, Edinburgh [2.11.2a, 8.4.1]

Reinagel P, Reid RC (2000) Temporal coding of visual information in the thalamus J Neurosci 20 5392–400 [4.3.5]

Reinagel P, Reid RC (2002) Precise firing events are conserved across neurons J Neurosci 22 6837–41 [4.3.4a]

Reiter HO, Stryker MP (1988) Neural plasticity without postsynaptic action potentials: less active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited Proc Natl Acad Sci 85 3627–37 [8.2.7c]

Reiter HO, Waitzman DM, Stryker MP (1986) Cortical activity blockade prevents ocular dominance plasticity in the kitten visual cortex Exp Brain Res 65 182–8 [8.2.7c]

Remole A (1982) Spatial frequency thresholds versus border enhancement: sensitivity to retinal defocus Am J Optom Physiol Opt 59 135–45 [9.6.1]

Remole A (1983) A new eikonometer: the multimeridional apparent frontoparallel plane Am J Optom Physiol Opt 60 519–29 [9.9.2b]

Remole A (1984) Binocular fixation misalignment measured by border enhancement: a simplified technique Am J Optom Physiol Opt 61 118–27 [10.2.4d]

Remole A (1985) Fixation disparity vs binocular fixation misalignment Am J Optom Physiol Opt 62 25–34 [10.2.4d]

Remole A (1989) Anisophoria and aniseikonia Part 1 The relation between optical anisophoria and aniseikonia Optom Vis Sci 66 659–70 [9.9.1a]

Remole A (1991) The tilting keyboard Clin Exp Optom 74 71–9 [9.9.3]

Remole A (1992) New developments in the application of the multimeridional apparent frontoparallel plane Optom Vis Sci 69 193–207 [9.9.2b]

Remole A, Code SM, Matyas CE, et al. (1986) Objective measurement of binocular fixation misalignment Am J Optom Physiol Opt 63 63–8 [10.2.4d]

Remole A, Code SM, Matyas CE, et al. (1992) Multimeridional apparent frontoparallel plane: relation between stimulus orientation angle and compensatory tilt angle Optom Vis Sci 69 544–9 [9.9.2b]

Remole A, Robertson KM, Johnson BD (1993) The multimeridional apparent frontoparallel plane: introduction of the induced effect Optom Vis Sci 70 792–803 [9.9.2b]

Rensink RA, O’Regan JK, Clark JJ (1997) To see or not to see: the need for attention to perceive changes in scenes Psychol Sci 8 368–73 [4.8.4]

Rentschler I, Hilz R (1985) Amblyopic processing of positional information Part I: Vernier acuity Exp Brain Res 60 270–8 [8.4.3, 8.4.4a]

Represa A, Ben-Ari Y (2005) Trophic actions of GABA on neuronal development TINS 28 278–83 [6.4.5b]

Restani L, Cerri C, Pietrasanta M, et al. (2009) Functional masking of deprived eye responses by callosal input during ocular dominance plasticity Neuron 64 707–18 [8.2.7d]

Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian nervous system Science 255 1707–10 [6.4.2d]

Reynolds JH, Chelazzi L (2004) Attentional modulation of visual processing Ann Rev Neurosci 27 611–47 [4.8.1c]

Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4 J Neurosci 19 1736–53 [5.9.3c]

Rhode B (1993) Larval and adult eyes in Capitella spec. I (Annelida, Polychaeta) J Morphol 17 327–35 [6.1.2]

Richards W (1971) Anomalous stereoscopic depth perception J Opt Soc Am 61 410–14 [10.5.3]

Richmond BJ, Optican LM (1987) Temporal encoding of twodimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveforms J Neurophysiol 57 147–61 [4.3.5]

Richmond BJ, Optican LM (1990) Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. II Information transmission J Neurophysiol 64 370–80 [4.3.5]

(p.621) Richmond BJ, Optican LM, Spitzer H (1990) Temporal encoding of two–dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations J Neurophysiol 64 351–369 [4.3.5]

Richter GMA (1970) Perspective in Greek and Roman art Phaidon, London [2.9.1]

Richter JP (1970) The notebooks of Leonardo da Vinci Dover, New York [2.4.2]

Riddell JL (1853) Notice of a binocular microscope Am J Sci Arts 15 68 [2.11.2a]

Riddell PM, Horwood AM, Houston SM, Turner JE (1999) The response to prism deviations in human infants Curr Biol 9 1050–2 [7.3.6]

Riddle DR, Lo DC, Katz LC (1995) NT-4-mediated rescue of lateral geniculate neurons from effects of monocular deprivation Nature 378 189–91 [8.2.2d, 8.2.7f]

Riedel G (1996) Function of metabotropic glutamate receptors in learning and memory TINS 19 214–23 [5.5.2d, 6.5.1b]

Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex Nat Neurosci 2 1019–25 [4.5.5c]

Riggs LA, Niehl EW (1960) Eye movements recorded during convergence and divergence J Opt Soc Am 50 913–20 [10.5.10a]

Ringach DL (2002) Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex J Neurophysiol 88 455–63 [4.4.2, 5.5.3]

Ringach DL, Hawken MJ, Shapley R (1996) Binocular eye-movements caused by the perception of three-dimensional structure from motion Vis Res 36 1479–92 [10.3.2d]

Ringach DL, Hawken MJ, Shapley R (1997) Dynamics of orientation tuning in macaque primary visual cortex Nature 387 281–4 [5.6.2c]

Ringstedt T, Braisted JE, Brose K, et al. (2000) Slit inhibition of retinal axon growth and its role in retinal axon pathfinding and innervation patterns in the diencephalon J Neurosci 20 4983–91 [6.4.3c]

Ripps H, Chin NB, Siegel IM, Breinen GM (1962) The effect of pupil size on accommodation convergence and the AC/A ratio Invest Ophthal 1 127–35 [10.4.1]

Rittenhouse CD, Shouval HZ, Paradiso MA, Bear MF (1999) Monocular deprivation induces homosynaptic long-term depression in visual cortex Nature 397 347–50 [8.2.7b]

Ritz R, Gerstner W, Fuentes U, van Hemmen JL (1994) A biological motivated and analytically soluble model of collective oscillations in the cortex Biol Cyber 71 349–58 [4.3.4g]

Rivest J, Cavanagh P (1996) Localizing contours defined by more than one attribute Vis Res 36 53–66 [4.2.6c, 4.5.7c]

Rivest J, Boutet I, Intriligator J (1997) Perceptual learning of orientation discrimination by more than one attribute Vis Res 37 273–81 [4.5.7c]

Rizzo M, Nawrot M, Blake R, Damasio A (1992) A human visual disorder resembling area V4 dysfunction in the monkey Neurology 42 1175–80 [5.8.3a]

Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions Exp Brain Res 153 146–57 [5.8.4]

Rizzolatti G, Camarda R, Fogassi L, et al. (1988) Functional organization of inferior area 6 in the macaque monkey Exp Brain Res 71 491–7 [5.8.4g]

Robb RM, Mayer DL, Moore BD (1987) Results of early treatment of unilateral congenital cataracts J Ped Ophthal Strab 27 178–81 [8.3.3b]

Roberts AC, Diez-Garcia J, Rodriguiz RM, et al. (2009) Downregulation of NR3A-containing NMDRs is required for synapse maturation and memory consolidation Neuron 63 342–56 [6.6.3]

Roberts EB, Ramoa AS (1999) Enhanced NR2A subunit expression and decreased NMDA decay time at the onset of ocular dominance plasticity in the ferret J Neurophysiol 81 2587–91 [6.7.2a]

Roberts EB, Meredith MA, Ramoa AS (1998) Suppression of NMDA receptor function using antisense DNA blocks ocular dominance plasticity while preserving visual responses J Neurophysiol 80 1021–32 [8.2.7e]

Roberts N, Westall C (1990) OKN asymmetries in amblyopia and their effect on velocity perception Clinical Visual Science 5 383–9 [8.4.4d]

Robertson RT, Fogolin RP, Tijerina AA, Yu J (1987) Effects of neonatal monocular and binocular enucleation on transient acetylcholinesterase activity in developing rat visual cortex Devel Brain Res 33 185–97 [6.7.2c]

Robinett CC, Straight A, Li G, et al. (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition J Cell Biol 135 1685–700 [5.4.2a]

Robinson A (2006) The last man who knew everything Pi Press, London [2.6.1]

Robinson DA (1963) A method of measuring eye movement using a scleral search coil in a magnetic field IEEE Tr Biomed Engin BME– 10 137–45 [10.7.2d]

Robinson DA (1975) Oculomotor control signals In Basic mechanisms of ocular motility and their clinical implications (ed G Lennerstrand, P Bach–y–Rita) pp 337–92 Pergamon, New York [10.10.1]

Robinson DA (1981) Control of eye movements In Handbook of physiology. The nervous system. motor control pp 1275–320. Williams and Wilkins, Bethesda MD [10.10.1]

Robinson DL, Kertzman C (1995) Covert orienting of attention in macaques. III. Contributions of the superior colliculus J Neurophysiol 74 713–721 [5.9.2a]

Robinson DL, Petersen SE (1992) The pulvinar and visual salience TINS 15 127–32 [5.5.4b, 5.9.1, 5.9.2a]

Robinson DL, Goldberg ME, Stanton GB (1978) Parietal association cortex in the primate: sensory mechanisms and behavioral modifications J Neurophysiol 41 910–32 [5.9.2b]

Robinson DL, Baizer JS, Dow BM (1980) Behavioral enhancement of visual responses of prestriate neurons of the rhesus monkey Invest Ophthal Vis Sci 9 1120–3 [5.9.1, 5.8.4e]

Robinson DL, McClurkin JW, Kertzman C (1990) Orbital position and eye movement influences on visual responses in the pulvinar nuclei of the behaving macaque Exp Brain Res 82 235–46 [5.8.4e]

Robinson DL, Bowman EM, Kertzman C (1995) Covert orienting of attention in macaques. II. Contributions of parietal cortex J Neurophysiol 74 698–712 [5.9.2b]

Robinson JD (2001) Mechanisms of synaptic transmission Oxford University Press, Oxford [2.6.1, 6.4.3d, 6.4.4f]

Robinson SR (1991) Development of the mammalian retina In Neuroanatomy of the visual pathways and their development (ed B Dreher, SR Robinson) pp 69–128 CRC Press, Boston, and in Vision and visual dysfunction (ed JR Cronly-Dillon) Vol 3 pp 69–128 MacMillan, London [6.3.2b, 7.6.4]

Robson JG, Troy JB (1987) Nature of the maintained discharge of Q, X and Y retinal ganglion cells of the cat J Opt Soc Am A 4 23017 [5.1.4e]

Rock I (1965) Adaptation to a minified image Psychonom Sci 2 105–6 [4.5.7h]

Rock I, Mitchener K (1992) Further evidence of failure of reversal of ambiguous figures by uninformed subjects Perception 21 39–45 [4.5.9e]

Rock I, Gopnik A, Hall S (1994) Do young children reverse ambiguous figures? Perception 23 635–44 [4.5.9e]

Rockhill RL, Daly FJ, MacNeil MA, Brown SP, Masland RH (2002) The diversity of ganglion cells in a mammalian retina J Neurosci 22 3831–43 [5.1.4b]

Rockland KS (1985) A reticular pattern of intrinsic connections in primate area V2 (area 18) J Comp Neurol 235 467–78 [5.5.6a]

Rockland KS, Knutson T (2001) Axon collaterals of Meynert cells over large portions of area V1 in the macaque monkey J Comp Neurol 441 134–47 [5.5.6a]

Rockland KS, Lund JS (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex Science 215 1532–4 [5.5.6a, 6.4.6b]

Rockland KS, Lund JS (1983) Intrinsic laminar lattice connections in primate visual cortex J Comp Neurol 216 303–18 [5.5.6a]

(p.622) Rockland KS, Van Hoesen GW (1994) Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey Cereb Cortex 4 300–13 [5.8.5b]

Röder B, Teder-Sälejärvi W, Sterr A, et al. (1999) Improved auditory spatial tuning in blind humans Nature 400 462–6 [8.1.4b]

Rodieck RW (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli Vis Res 5 583–601 [4.4.3]

Rodieck RW (1998) The first steps in seeing Sinauer, Sunderland MA [5.1.4d]

Rodieck RW, Dreher B (1979) Visual suppression from nondominant eye in the lateral geniculate nucleus: a comparison of cat and monkey Exp Brain Res 35 465–77 [5.2.3b]

Rodionova EI, Revishchin AV, Pigarev IN (2004) Distant cortical locations of the upper and lower quadrants of the visual field represented by neurons with elongated and radially oriented receptive fields Exp Brain Res 158 373–7 [5.8.3a]

Rodman HR, CG Gross, CG, Albright TD (1989) Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal J Neurosc i 9 2033–50 [5.5.7]

Rodman HR, CG Gross CG, Albright TD (1990) Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal J Neurosc i 10 1154–64 [5.8.4b]

Rodman HR, Scalaidhe SP, Gross CG (1993) Response properties of neurons in temporal cortical visual areas of infant monkeysJ Neurophysiol 70 1115–36 [6.6.4a]

Rodriguez E, George N, Lachaux JP, et al. (1999) Perception’s shadow: long distance synchronization of human brain activity Nature, 397 430–3 [4.3.4c]

Rodriguez R, Kallenbach U, Singer W, Munk MH (2004) Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex J Neurosci 24 10369–78 [4.3.4a]

Rodriguez-Tébar A, Dechant G, Barde YA (1990) Binding of brain-derived neurotrophic factor to the nerve growth factor receptor Neuron 4 487–92 [6.4.3d]

Roe AW, Ts’o DY (1995) Visual topology in primate V2: multiple representation across functional stripes J Neurosci 15 3689–715 [5.8.2a]

Roe AW, Pallas SL, Kwon YH, Sur M (1992) Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex J Neurosci 12 3651–64 [6.4.2c]

Roelfsema PR, Engel AK, König P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas Nature 385 157–60 [4.3.4e]

Roelfsema PR, Lamme VAF, Spekreijse H (1998) Object-based attention in the primary visual cortex of the macaque monkey Nature 395 376–81 [5.9.3a]

Roelfsema PR, Lamme VAF, Spekreijse H (2004) Synchrony and covariation of firing rates in the primary visual cortex during contour grouping Nat Neurosci 9 982–91 [4.3.4c]

Roelfsema PR, Tolboom M, Khayat PS (2007) Different processing phases for features, figures, and selective attention in the primary visual cortex Neuron 56 785–92 [5.9.3a]

Rogers BJ (1992) The perception and representation of depth and slant in stereoscopic surfaces In Artificial and biological vision systems (ed GA Orban, HH Nagel) pp 271–296 Springer-Verlag, Berlin [10.7.5a]

Rogers BJ, Bradshaw MF (1999) Disparity minimisation, cyclovergence, and the validity of nonius lines as a technique for measuring torsional alignment Perception 28 127–41 [10.7.5a]

Rogers BJ, Howard IP (1991) Differences in the mechanisms used to extract 3–D slant from disparity and motion parallax cues Invest Ophthal Vis Sci 32 (Abs) 695 [10.7.5a]

Rohault J (1671) Traité de Physique Savreux, Paris [2.10.3e, 2.5.4, 2.5.5]

Rohde K, Watson NA (1991) Ultrastructure of pigmented photoreceptors of laval Multicotyle purvis i (Trematoda, Aspidogastrea) Parasitol Res 77 485–90 [6.1.2]

Rolls ET (1992) Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas Philos Tr R Soc B 335 11–21 [4.3.5]

Rolls ET (1994) Brain mechanisms for invariant visual recognition and learning Behav Proc 33 113–38 [4.6.3b]

Rolls ET, Cowey A (1970) Topography of the retina and striate cortex and its relationship to visual acuity in rhesus and squirrel monkeys Exp Brain Res 10 298–310 [5.5.4c]

Rolls ET, Tovee MJ (1995) Sparseness of the neural representation of stimuli in the primate temporal visual cortex J Electrophysiol 73 713–29 [4.6.3b]

Rolls ET, Tovee MJ, Purcell DG, Stewart AL, Azzopardi P (1994) The responses of neurons in the temporal cortex of primates and face identification and detection Exp Brain Res 101 473–84 [5.8.3b]

Rolls ET, Treves A, Tovee MJ (1997) The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex Exp Brain Res 114 149–62 [4.6.3b]

Rolls ET, Treves A, Robertson RG, et al. (1998) Information about spatial view in an ensemble of primate hippocampal cells J Neurophysiol 79 1797–813 [5.8.3c]

Rolls ET, Franco L, Aggelopoulos NC, Jerez JM (2006) Information in the first spike, the order of spikes, and the number of spikes provided by neurons in the inferior temporal visual cortex Vis Res 46 4193–205 [4.3.2, 4.3.3c]

Romano PE, Noorden GK von (1971) Limitations of cover test in detecting strabismus Am J Ophthal 72 10–12 [10.2.3b]

Romano PE, Romano JA, Puklin JE (1975) Stereoacuity development in children with normal binocular single vision Am J Ophthal 79 966–71 [7.6.2 7.6.2]

Ronan CA (1978) The shorter science and civilization in China An abridgement of Joseph Needham’s book Science and civilization in China Vol 2 p 351 Cambridge University Press, Cambridge [2.2.4d, 2.3.2]

Ronchi V (1978) Two thousand years of the struggle between reason and the senses In Science and history (ed E Hilfstein, P Czartoryski, F Grande) pp 61–81 Warsaw, The Polish Academy of Sciences Press [2.3.2]

Roorda A Williams DR (1999) The arrangement of the three cone classes in the living eye Nature 397 520–22 [5.1.2a]

Roorda A, Williams DR (2002) Optical fiber properties of individual human cones J Vis 2 404–12 [5.1.2a]

Roorda A, Campbell MCW, Bobier WR (1997) Slope-based eccentric photorefraction: theoretical analysis of different light source configurations and effects of ocular aberrations J Opt Soc Am A 14 2547–56 [9.2.4d]

Rosa MGP, Tweedale R (2004) Maps of the visual field in the cerebral cortex of primates: functional organization and significance In The primate visual system (Ed JH Kaas, CE Collins) pp 261–88 CRC Press, New York [5.8.1]

Rosa MGP, Gattass R, Fiorani M, Soares JGM (1992) Laminar columnar and topographic aspects of ocular dominance in the primary visual cortex of Cebus monkeys Exp Brain Res 88 279–64 [5.7.2f]

Rosa MGP, Schmid LM, Calford MB (1995) Responsiveness of cat area 17 after monocular inactivation: limitation of topographic plasticity in adult cortex J Physiol 482 589–608 [5.5.6c, 8.2.3c]

Rosar WH (1985) Visual space as physical geometry Perception 14 403–25 [4.7.2]

Rosch E, Mervis CB, Gray W, et al. (1976) Basic objects in natural categories Cog Psychol 8 382–439 [4.6.3a]

Rose A (1948) The sensitivity performance of the human eye on an absolute scale J Opt Soc Am 38 196–208 [5.1.5]

Rose CR, Blum R, Pichler B, et al. (2003) Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells Nature 426 74–8 [6.4.3d]

Rose D (1999) The historical roots of the theories of local sign Perception 28 675–85 [2.8.3, 4.2.4.c]

Rose L, Levinson A (1972) Anisometropia and aniseikonia Am J Optom Arch Am Acad Optom 49 480–4 [9.9.1b]

Rosen E (1956) The invention of eyeglasses J Hist Med Allied Sci 11 13–46; 183–218 [2.3.2]

(p.623) Rosenberg R, Flax N, Brodsky B, Abelman L (1953) Accommodative levels under conditions of asymmetric convergence Am J Optom Arch Am Acad Optom 30 274–54 [9.7.3a]

Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain Psychol Rev 65 386–408 [4.4.4]

Rosenfield M (1997) Tonic vergence and vergence adaptation Optom Vis Sci 74 303–28 [10.2.1, 10.2.5]

Rosenfield M, Abraham-Cohen JA (1999) Blur sensitivity in myopes Optom Vis Sci 76 303–7 [9.6.2a]

Rosenfield M, Ciuffreda KJ (1990) Distance heterophoria and tonic vergence Optom Vis Sci 67 667–9 [10.2.3c]

Rosenfield M, Ciuffreda KJ (1991a) Accommodation responses to conflicting stimuli J Opt Soc Am A 8 422–7 [9.6.1]

Rosenfield M, Ciuffreda KJ (1991b) Effect of surround propinquity on the open-loop accommodative response Invest Ophthal Vis Sci 32 142–7 [9.4]

Rosenfield M, Gilmartin B (1988a) Accommodative adaptation induced by sustained disparity vergence Am J Optom Physiol Opt 65 118–29 [10.4.3a]

Rosenfield M, Gilmartin B (1988b) The effect of vergence adaptation on convergent accommodation Ophthal Physiol Opt 8 172–7 [10.4.3a]

Rosenfield M, Ciuffreda KJ, Ong E, Azim A (1990) Proximal induced accommodation and accommodative adaptation Invest Ophthal Vis Sci 31 1162–7 [9.3.2]

Rosenfield M, Ciuffreda KJ, Hung GK (1991) The linearity of proximally–induced accommodation and vergence Invest Ophthal Vis Sci 32 2985–91 [10.3.2b]

Rosenfield M, Ciuffreda KJ, Hung GK, Gilmartin B (1993) Tonic accommodation: a review. I. Basic aspects Ophthal Physiol Opt 13 296–84 [9.3.1, 2]

Rosenfield M, Ciuffreda KJ, Hung GK, Gilmartin B (1994) Tonic accommodation: a review. II. Accommodative adaptation and clinical aspects Ophthal Physiol Opt 14 295–77 [9.3.1, 9.4]

Rosenfield M, Ciuffreda KJ, Chen HW (1995a) Effect of age on the interaction between the AC/A and CA/C ratios Ophthal Physiol Opt 15 451–5 [10.4.3a]

Rosenfield M, Ciuffreda KJ, Ong E, Super S (1995b) Vergence adaptation and the order of clinical vergence range testing Optom Vis Sci 72 219–223 [10.5.3]

Rosenfield M, Rappon JM, Carrel MF (2000) Vergence adaptation and the clinical AC/A ratio Ophthal Physiol Opt 20 207–11 [10.4.1]

Ross HE (2000) Cleomedes (c. 1st century AD) on the celestial illusion, atmospheric enlargement, and size-distance invariance Perception 29, 863–71 [2.2.4d]

Ross HE, Ross GM (1976) Did Ptolemy understand the moon illusion? Perception 5 377–85 [2.2.4d]

Ross-Dommasch E, Morris E (1990) What are we doing when we occlude infantile esotropes? Am Orthopt J 40 80–7 [8.4.6b]

Rossetti Y, Tadary B, Prablanc C (1994) Optimal contributions of head and eye positions to spatial accuracy in man tested by visually directed pointing Exp Brain Res 97 487–96 [4.5.6]

Rossi AF, Paradiso MA (1999) Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex J Neurosci 19 6145–56 [5.5.6c, 5.6.7a]

Rossi AF, Desimone R, Ungerleider LG (2001) Contextual modulation in primary visual cortex of macaques J Neurosci 21 1698–709 [5.6.7c]

Rossi FM, Pizzorusso T, Porciatti V, et al. (2001) Requirements of the nicotinic acetylcholine receptor beta subunit for the anatomical and functional development of the visual system Proc Natl Acad Sci 98 64553–8 [6.6.2]

Rouse MW, Borsting E, Deland PN (2002) Reliability of binocular vision measurements used in the classification of convergence insufficiency Optom Vis Sci 79 254–64 [10.5.3]

Rouse RO (1952) Color and intensity-time relationship J Opt Soc Am 42 626–30 [4.2.4.b]

Rovamo J, Virsu V (1979) An estimation and application of the human cortical magnification factor Exp Brain Res 37 495–510 [5.5.4c, 7.2.4]

Rovamo J, Virsu V, Laurinen P, Hyvarinen L (1982) Resolution of gratings oriented along and across meridians in peripheral vision Invest Ophthal Vis Sci 23 666–670 [5.6.2a]

Rowe JB, Toni I, Josephs O, et al. (2000) The prefrontal cortex: response selection or maintenance without working memory Science 288 1656–60 [5.8.4f]

Rowe MH (1991) Functional organization of the retina In Neuroanatomy of the visual pathways and their development (ed B Dreher, RS Robinson) pp 1–58 CRC Press, Boston [5.1.3]

Roy K, Kuznicki K, Wu Q, et al. (2004) The Tlx gene regulates the timing of neurogenesis in the cortex J Neurosci 24 8333–45 [6.4.5a]

Rozas C, Frank H, Heynen AJ, et al. (2001) Developmental inhibitory gate controls the relay of activity to the superficial layers of the visual cortex J Neurosci 21 6791–801 [6.4.4d]

Rucci M, Iovin R, Poletti M, Santini F (2007) Miniature eye movements enhance fine spatial detail Nature 447 851–4 [10.1.1]

Rucker FJ, Kruger PB (2001) Isolated short-wavelength sensitive cones can mediate a reflex accommodation response Vis Res 41 911–22 [9.7.2d]

Rucker FJ, Kruger PB (2004) The role of short-wavelength sensitive cones and chromatic aberration in the response to stationary and step accommodation stimuli Vis Res 44 197–208 [9.7.2d]

Rumelhart DE, McClelland JL (1986) Parallel distributed processing MIT Press, Cambridge MA [3.4]

Rumpel S, Hatt H, Gottmann K (1998) Silent synapses in the developing rat cortex: evidence of postsynaptic expression of synaptic plasticity J Neurosci 18 8863–74 [6.5.1a]

Rushton WAH (1961) Peripheral coding in the nervous system In Sensory communication (ed WA Rosenblith) pp 169–82 Wiley, London [4.6.3h]

Rushworth MFS, Paus T, Sipila PK (2001) Attentional systems and the organization of the human parietal cortex J Neurosci 21 5262–71 [5.8.4e]

Rust NC, Schultz SR, Movshon JA (2002) A reciprocal relationship between reliability and responsiveness in developing visual cortical neurons J Neurosci 22 10519–23 [6.6.4a]

Rust NC, Mante V, Simoncelli EP, Movshon JA (2006) How MT cells analyze the motion of visual patterns Nat Neurosci 9 1421–31 [5.8.4b]

Ruthazer ES, Stryker MP (1996) The role of activity in the development of long-range horizontal connections in area 17 of the ferret J Neurosci 16 7253–69 [6.4.6b]

Ruthazer ES, Baker GE, Stryker MP (1999) Development and organization of ocular dominance bands in primary visual cortex of the sable ferret J Comp Neurol 407 151–65 [6.7.1]

Ruthazer ES, Akerman CJ, Cline HT (2003) Control of axon branch dynamics by correlated activity in vivo Science 301 66–70 [6.7.3b]

Rutstein RP (1977) Fixation disparity and stereopsis Am J Optom Physiol Opt 54 550–5 [10.2.5a]

Rutstein RP, Corliss D (1999) Relationship between anisometropia, amblyopia, and binocularity Optom Vis Sci 76 229–33 [8.4.1]

Rutstein RP, Eskridge JB (1984) Stereopsis in small-angle strabismus Am J Optom Physiol Opt 61 491–8 [10.2.2b]

Rutstein RP, Fuhr PS (1992) Efficacy and stability of amblyopia therapy Optom Vis Sci 69 747–54 [8.4.6b]

Ruttum M, Noorden GK von (1983) Adaptation to tilting of the visual environment in cyclotropia Am J Ophthal 96 229–37 [10.7.1]

Rynders MC, Navarro R, Losada MA (1998) Objective measurement of the off-axis longitudinal chromatic aberration in the human eye Vis Res 38 513–22 [9.1.2a]

Saarela TP, Sayim B, Westheimer G, Herzog MH (2009) Global stimulus configuration modulates crowding J Vis 9 (2) Article 5 [4.8.3d]

Saarinen J (1996) Localization and discrimination of “pop-out targets” Vis Res 36 313–16 [4.8.2c]

(p.624) Saarinen J, Levi DM (1995) Perceptual learning in vernier acuity: what is learned? Vis Res 35 519–27 [4.9.1]

Sabatini BL, Regehr WG (1999) Timing of synaptic transmission Ann Rev Physiol 61 521–42 [4.3.3a]

Sabra AI (1966) Ibn al-Haytham’s criticisms of Ptolemy’s Optics J Hist Philos 4 145–49 [2.10.2]

Sabra AI (1978) Sensation and inference in Alhazen’s theory of visual perception In Studies in perception (ed PK Machamer, RG Turnbull) pp 160–84 Ohio State University Press, Columbus Ohio [2.2.4d]

Sabra AI (1987a) Islamic optics In Dictionary of the middle ages (ed JR Strayer) Vol 9 pp 270–7 Scribner, New York [2.2.4d]

Sabra AI (1987b) Psychology versus mathematics: Ptolemy and Alhazen on the moon illusion In Mathematics and its application to science and natural philosophy in the Middle Ages (ed E Grant, JE Murdoch) pp 217–47 Cambridge University Press, London [2.2.4d]

Sabra AI (1989) Form in ibn al-Haytham’s theory of vision Z Gesch Arabi-Islam Wissen 5 115–40 [2.2.4d]

Sabra AI (1996) On seeing the stars. II. Ibn al-Haytham’s “answers” to the “doubts” raised by Ibn Ma’dän Z Gesch Arab-Islam Wissen 10 1–60 [2.2.4d]

Sabra AI, Hogendijk JP (2003) The enterprise of science in Islam: new perspectives MIT Press, Cambridge, Mass [2.2.4d]

Sachs MB, Nachmias J, Robson JG (1971) Spatial-frequency channels in human vision J Opt Soc Am 61 1176–86 [4.2.5b, 4.4.1b]

Sadato N, Pascual-Leone A, Grafman J, et al. (1996) Activation of the primary cortex by Braille reading in blind subjects Nature 380 526–8 [8.1.4b]

Sadato N, Okada T, Honda M, Yonekura Y (2002) Critical period for cross-modal plasticity in blind humans: a functional MRI study NeuroImage 16 389–400 [8.1.4a]

Saenz M, Buracas GT, Boynton GM (2002) Global effects of feature-based attention in human visual cortex Nat Neurosci 5 631–2 [5.9.3d]

Sagi D, Julesz B (1984) Detection versus discrimination of visual orientation Perception 13 619–28 [4.8.2c]

Sahraie A, Weiskrantz L, Barbur JL, et al. (1997) Pattern of neuronal activity associated with conscious and unconscious processing of visual signals Proc Natl Acad Sci 94 9406–11 [4.8.4]

Saida S, Ono H (1984) Interaction between saccade and tracking vergence Vis Res 27 1289–94 [10.8.2a]

Saida S, Ono H, Mapp AP (2001) Closed-loop and open-loop accommodative vergence eye movements Vis Res 41 77–86 [10.8.2a]

Saint-Amour D, Lepore F, Lassonde M, Guillemot JP (2004) Effective binocular integration at the midline requires the corpus callosum Neuropsychologia 42 164–74 [5.3.5]

Saito H, Yukie M, Tanaka K, et al. (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey J Neurosci 6 145–57 [5.8.4c]

Sakai E, Bi H, Maruko I, et al. (2006) Cortical effects of brief daily periods of unrestricted vision during early monocular form deprivation J Neurophysiol 95 2856–65 [8.2.4b]

Sakata H, Shibutani H, Kawano K (1980) Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey J Neurophysiol 43 1654–72 [5.8.4e]

Sakata H, Shibutani H, Kawano K (1983) Functional properties visual tracking neurons in posterior parietal cortex of the monkey J Neurophysiol 49 1364–80 [10.10.3]

Sakata H, Shibutani H, Tsurugai K (1986) Parietal cortical neurons responding to rotary movement of visual stimulus in space Exp Brain Res 61 658–63 [5.8.4c]

Sakata H, Shibutani H, Ito Y, et al. (1994) Functional properties of rotation-sensitive neurons in the posterior parietal association cortex of the monkey Exp Brain Res 101 183–202 [4.5.9g, 5.8.4e, 5.9.3b]

Sakata H, Kusunoki TM, Murata A, Tanaka Y (1997) The parietal association cortex in depth perception and visual control of hand action TINS 20 350–6 [5.8.4e]

Sakata H, Taira M, Kusunoki TM, et al. (1999) Neural representation of three-dimensional features of manipulation objects with stereopsis Exp Brain Res 128 160–9 [5.8.4e]

Sakitt B (1982) Why the cortical magnification factor in rhesus can not be isotropic Vis Res 22 417–21 [5.5.4c]

Sakitt B, Barlow HB (1982) A model for the economic encoding of the visual image in cerebral cortex Biol Cyber 43 97–108 [3.2.6a, 4.4.2]

Saladin JJ, Carr LW (1983) Fusion lock diameter and the forced vergence fixation disparity curve Am J Optom Physiol Opt 60 933–43 [10.2.4g]

Saladin JJ, Sheedy JE (1978) Population study of fixation disparity heterophoria and vergence Am J Optom Physiol Opt 55 744–50 [10.2.4e, 10.2.5b]

Salapatek P, Cohen L (1987) Handbook of infant perception Academic Press, New York [7.6.4]

Sale A, Vetencourt JFM, Medina P, et al. (2007) Environment enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition Nat Neurosci 10 679–81 [8.3.1c]

Salin PA, Bullier J (1995) Corticocortical connections in the visual system: structure and function Physiol Rev 75 107–54 [5.5.1a]

Salinas E, Their P (2000) Gain modulation: a major computational principle of the central nervous system Neuron 27 15–21 [4.4.4]

Salman MS, Sharpe JA, Lillakas L, et al. (2006a) Smooth pursuit eye movements in children Exp Brain Res 169 139–43 [7.3.4]

Salman MS, Sharpe JA, Eizenman M, et al. (2006b) Saccades in children Vis Res 46 1432–9 [7.3.5]

Salzman CD, Murasugi CM, Britten KH, Newsome WT (1992) Microstimulation in visual area MT: effects on direction discrimination performance J Neurosci 12 2331–55 [5.8.4b]

Salvini-Plawen L von, Mayr E (1977) On the evolution of photoreceptors and eyes Evol Biol 10 207–63 [6.1.2]

Samonds JM, Bonds AB (2005) Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex J Neurophysiol 93 223–6 [4.3.2]

Samorajski T, Keefe JR, Ordy JM (1965) Morphogenesis of photoreceptor and retinal ultrastructure in a sub–human primate Vis Res 5 639–48 [6.3.2a]

Sanada K, Tsai LH (2005) G protein Bγ subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors Cell 122 119–31 [6.4.5b]

Sanchez-Camacho C, Rodriguez J, Ruiz JM, et al. (2005) Morphogens as growth cone signalling molecules Brain Res Rev 49 242–52 [6.4.1]

Sanderson KJ, Sherman M (1971) Nasotemporal overlap in visual field projected to lateral geniculate nucleus in the cat J Neurophysiol 34 453–66 [5.3.4]

Sanderson KJ, Darian–Smith I, Bishop PO (1969) Binocular corresponding receptive fields of single units in the cat dorsal lateral geniculate nucleus Vis Res 9 1297–303 [5.2.3a]

Sanderson KJ, Bishop PO, Darian–Smith I (1971) The properties of the binocular receptive fields of lateral geniculate neurons Exp Brain Res 13 178--207 [5.2.3a]

Sandor PS, Frens MA, Henn V (2001) Chameleon eye position obeys Listing’s law Vis Res 41 2245–51 [10.1.2e]

Sanes JR (1989) Extracellular matrix molecules that influence neural development Ann Rev Neurosci 12 491–516 [6.4.3b]

Sankaranaayanan S, Atlluri PP, Ryan TA (3003) Actin has a molecular scaffolding, not propulsive, role in presynaptic function Nat Neurosci 6 127–35 [5.5.2b]

Santiago AP, Rosenbaum AL (1998) Dissociated vertical deviation and head tilts J AAPOS 2 5–11 [10.6.2]

Sarter M, Parikh V (2005) Choline transporters, cholinergic transmission and cognition Nat Rev Neurosci 6 48–56 [5.9.1]

Sáry G, Vogels R, Orban GA (1993) Cue-invariant shape selectivity of macaque inferior temporal neurons Science 260 995–7 [5.8.3b]

Sáry G, Vogels R, Kovács G, Orban GA (1995) Responses of monkey inferior temporal neurons to luminance-, motion-, and texture-defined gratings J Neurophysiol 75 1341–54 [5.8.3b]

Sasaki Y, Nanez JE, Watanabe T (2010) Advances in visual perceptual learning and plasticity Nat Rev 11 53–60 [4.9.1]

Sasaki Y, Cheng H, Smith EL, Chino Y (1998) Effects of early discordant binocular vision on the postnatal development of parvocellular neurons in the monkey lateral geniculate nucleus Exp Brain Res 118 341–51 [8.2.2e]

(p.625) Sasaki Y, Rajimehr R, Woo B, et al. (2006) The radial bias: a different slant on visual orientation sensitivity in human and nonhuman primates Neuron 51 661–70 [5.6.2a]

Satgunam P, Gowrisankaran S, Fogt N (2009) The influence of vergence adaptation on open-loop vergence dynamics Vis Res 49 1795–804 [10.2.5a]

Sato F, Akao T, Kurkin S, et al. (2004) Adaptive changes in vergence eye movements induced by vergence-vestibular interaction training in monkeys Exp Brain Res 156 164–73 [10.9.3]

Sato H, Katsuyama N, Tamura H, et al. (1996) Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque J Physiol 494 757–71 [5.6.2b]

Sato M, Stryker MP (2008) Distinctive features of adult ocular dominance plasticity J Neurosci 28 10278–86 [8.2.3c]

Sato M, Edwards M, Schor CM (2001) Envelope size-tuning for transient disparity vergence Vis Res 41 1695–707 [10.5.10c]

Sato T, Kawamura T, Iwai E (1980) Responsiveness of inferotemporal single units to visual pattern stimuli in monkeys performing discrimination Exp Brain Res 38 313–19 [5.8.3b]

Sauer B, Kammradt G, Krauthausen I, et al. (1983) Qualitative and quantitative development of the visual cortex in man J Comp Neurol 214 441–50 [6.4.2a]

Saul AB, Cynader MS (1989) Adaptation in single units in visual cortex: the tuning of aftereffects in the spatial domain Vis Neurosci 2 593–607 [4.2.9a]

Saunders JB De CM, O’Malley CD (1950) The illustrations from the works of Andreas Vesalius of Brussels World Publishing, New York [2.5.3]

Saunders KJ (1995) Early refractive development in humans Survey Ophthal 40 207–16 [7.3.1]

Sawa M, Ohtsuka K (1994) Lens accommodation evoked by microstimulation of the superior colliculus in the cat Vis Res 34 975–81 [9.2.3]

Sawatari A, Calloway EM (1996) Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex Nature 380 442–6 [5.5.5]

Sawtell NB, Huber KM, Roder JC, Bear MF (1999) Induction of NMDA receptor-dependent long-term depression in visual cortex does not require metabotropic glutamate receptors J Neurophysiol 82 3594–3597 [8.2.7e]

Sawtell NB, Frenkel MY, Philpot BD, et al. (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex Neuron 38 977–85 [8.3.1a]

Sayim B, Westheimer G, Herzog MH (2008) Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity J Vis 8 (8) Article 12 [4.8.3d]

Scammon RE, Wilmer HA (1950) Growth of the components of the human eyeball. II. Comparison of the calculated volumes of the eyes of the newborn and of adults and their components Arch Ophthal 43 620–37 [6.3.1a]

Scanziani M, Malenka RC, Nicoll RA (1996) Role of intercellular interactions in heterosynaptic long-term depression Nature 380 446–50 [4.3.4f, 6.5.1a]

Sceniak MP, Ringach DL, Hawken MJ, Shapley R (1999) Contrast’s effect on spatial summation by macaque V1 neurons Nat Neurosci 2 733–9 [5.5.6c]

Sceniak MP, Hawken MJ, Shapley R (2001) (2001) Visual spatial characterization of macaque V1 neurons J Neurophysiol 85 1873–87 [5.5.6a]

Sceniak MP, Hawken MJ, Shapley R (2002) Contrast-dependent changes in spatial frequency tuning of macaque V1 neurones: effects of a changing receptive field size J Neurophysiol 88 1363–73 [5.6.3]

Schaafsma SJ, Duysens J (1996) Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns J Neurophysiol 76 4056–68 [5.8.4e]

Schaafsma SJ, Duysens J, Gielen CCAM (1997) Responses in ventral intraparietal area of awake macaque monkey to optic flow patterns corresponding to rotation of planes in depth can be explained by translation and expansion effects Vis Neurosci 14 633–46 [5.8.4e]

Schachar RA (2004) Dynamic aspects of accommodation: age and presbyopia Vis Res 44 2313 [9.2.2b]

Schacher RA, Anderson (1995) The mechanism of ciliary muscle function Ann Ophthal 27 126–32 [9.2.2b]

Schachar RA, Cudmore DP, Torti R, et al. (1994) A physical model demonstrating Schachar’s hypothesis of accommodation Ann Ophthal 26 4–9 [9.2.2b]

Schacter DL, Relman E, Uecker A, et al. (1995) Brain regions associated with retrieval of structurally coherent visual information Nature 376 587–90 [5.8.3c]

Schade OH (1956) Optical and photoelectric analog of the eye J Opt Soc Am 46 721–39 [2.7.1, 4.4.1a]

Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern J Neurophysiol 89 3143–54 [4.2.2, 6.4.4f]

Schaeffel F, Diether S (1999) The growing eye: an autofocus system that works on very poor images Vis Res 39 1585–9 [6.3.1c]

Schaeffel F, Howland HC (1988) Mathematical model of emmetropization in the chicken J Opt Soc Am 5 2080–6 [6.3.1c]

Schaeffel F, Howland HC (1991) Properties of the feedback loops controlling eye growth and refractive state in the chicken Vis Res 31 717–34 [6.3.1c]

Schaeffel F, Howland HC (1995) Myopia Vis Res 35 Number 9 Special Issue [6.3.1c]

Schaeffel F, Glasser A, Howland HC (1988) Accommodation refractive error and eye growth in chickens Vis Res 28 639–57 [6.3.1c]

Schaeffel F, Troilo D, Wallman J, Howland HC (1990) Developing eyes that lack accommodation grow to compensate for imposed defocus Vis Neurosci 4 177–83 [6.3.1c]

Schaeffel F, Wilhelm H, Zrenner E (1993) Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors J Physiol 461 301–20 [7.3.1, 9.2.4d, 9.7.2c]

Schaeffel F, Hagel G, Eikermann J, Collett T (1994) Lower-field myopia and astigmatism in amphibians and chickens J Opt Soc Am A 11 48–97 [9.2.2a]

Schall JD, Perry VH, Leventhal AG (1986) Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially Brain Res 368 18–23 [5.2.2c, 5.6.2a]

Schapero M, Levy M (1953) The variation of proximal convergence with change in distance Am J Optom Arch Am Acad Optom 30 403–16 [10.3.2d]

Scharf AND, Barth TK, Imhof A (2009) Establishment of hispone modifications after chromatin assembly Nucleic Acids Res 37 (15) 5032 [6.6.1a]

Scharre JE, Cotter SA, Block SS, Kelly SA (1990) Normative contrast sensitivity data for young children Optom Vis Sci 6 7 829–32 [7.2.1a]

Schechter PB, Murphy EH (1976) Brief monocular visual experience and kitten cortical binocularity Brain Res 109 165–8 [8.2.3d]

Scheetz AJ, Williams RW, Dubin MW (1995) Severity of ganglion cell death during early postnatal development is modulated by both neuronal activity and binocular competition Vis Neurosci 12 605–10 [6.3.3b]

Scheetz AJ, Nairn AC, Constanine-Paton M (2000) NMDA receptor-mediated control of protein synthesis at developing synapses Nat Neurosci 3 211–16 [6.6.1c]

Scheiffele P, Fan J, Choih J, et al. (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons Cell 101 657–69 [6.4.4b]

Scheiman M, Wick B (1994) Clinical management of binocular vision Philadelphia, Lippincott [1.3]

Scheiman M, Gallaway M, Frantz KA, et al. (3003) Nearpoint of convergence: test procedure, target selection, and normative data Optom Vis Sci 80 214–25 [10.5.3]

(p.626) Schein SJ, De Monasterio FM (1987) Mapping of retinal and geniculate neurons onto striate cortex of macaque J Neurosci 7 996–1009 [5.2.2a, 5.3.1, 5.5.4c, 5.6.6]

Scheiner C (1619) Oculus hoc est fundamentum opticum Agricola Innsbruck [2.5.4]

Scheiner C (1630) Rosa Ursina Phaeum Bracciani [2.5.4]

Scherer WJ, Udin SB (1989) N-methyl-D-aspartate antagonists prevent interaction of binocular maps in Xenopus tectum J Neurosci 9 3837–43 [6.7.2a]

Schiff ND, Purpura KP, Victor JD (1999) Gating of local network signals appears as stimulus-dependent activity envelopes in striate cortex J Neurophysiol 82 2182–96 [3.5, 5.4.3c]

Schillen TB, König P (1994) Binding by temporal structure in multiple feature domains of an oscillatory neuronal network Biol Cyber 70 397–405 [4.3.4g]

Schiller PH (1970) The discharge characteristics of single units in the oculomotor and abducens nuclei of the unanesthetized monkey Exp Brain Res 10 347–62 [10.10.2b]

Schiller PH (1992) The on and off channels of the visual system TINS 15 86–92 [5.1.4a]

Schiller PH (1993) The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey Vis Neurosci 10 717–46 [5.8.3a]

Schiller PH, Lee K (1991) The role of the primate extrastriate area V4 in vision Science 251 1251–3 [5.8.3a]

Schiller PH, Finlay BL, Volman SF (1976) Quantitative studies of single cells in monkey striate cortex. II. Orientation specificity and ocular dominance J Neurophysiol 39 1320–33 [5.7.2d]

Schiller PH, Sandell JH, Maunsell HR (1986) Functions of the on and off channels of the visual system Nature 322 827–5 [5.1.4f]

Schiller PH, Logothetis NK, Charles ER (1990) Role of the color-opponent and broad-band channels in vision Vis Neurosci 5 321–46 [5.8.4, 5.8.5a, 5.8.5b]

Schimmelman JG (2002) American photographic patents 1840–1880. The Daguerreotype and wet plate era Carl Mautz Publishing, Nevada City [2.11.3]

Schira MM, Wade AR, Tyler CW (2007) Two-dimensional mapping of the central and parafoveal visuia; field to human visual cortex J Neurophysiol 97 4284–95 [5.5.4d]

Schlack A, Sterbing-D’Angelo SJ, Hartung K, et al. (2005) Multisensory space representations in the macaque ventral intraparietal area J Neurosci 25 4616–25 [5.8.4e]

Schlaggar BL, O’Leary DDM (1991) Potential of visual cortex to develop an array of functional units unique to somatosensory cortex Science 252 1556–60 [6.4.2c]

Schlaggar BL, Fox K, O’Leary DDM (1993) Postsynaptic control of plasticity in developing somatosensory cortex Nature 364 623–6 [6.4.4e]

Schlossman A, Priestley BS (1952) Role of heredity in etiology and treatment of strabismus Arch Ophthal 47 1–20 [10.2.2d]

Schmid KL, Wildsoet CF (1997) Contrast and spatial-frequency requirements for emmetropization in chicks Vis Res 37 2011–21 [6.3.1c]

Schmid KL, Brinkworth DR, Wallace KM, Hess R (2006) The effect of manipulations to target contrast on emmetropization in chick Vis Res 46 1099–101 [6.3.1c]

Schmid LM, Rosa MGP, Calford MB, Ambler JS (1996) Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesions Cereb Cortex 6 388–405 [5.5.6c]

Schmidt KE, Goebel R, Löwel S, Singer W (1997a) The perceptual grouping criterion of collinearity is reflected by anisotropies of connections in the primary visual cortex Eur J Neurosci 9 1083–9 [5.5.6a]

Schmidt KE, Kim DS, Singer W, et al. (1997b) Functional specificity of long-range intrinsic and interhemispheric connections in the visual cortex of strabismic cats J Neurosci 17 5480–92 [8.2.3b]

Schmidt KE, Stephan M, Singer W, Löwel S (2002) Spatial analysis of ocular dominance patterns in monocularly deprived cats Cereb Cortex 12 783–96 [8.2.3c]

Schmidt KE, Singer W, Galuske RAW (2004) Processing deficits in primary cortex of amblyopic cats J Neurophysiol 91 1661–71 [8.2.3a]

Schmielau F, Singer W (1977) The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus Brain Res 120 354–61 [5.2.3a]

Schmolesky MT, Wang Y, Hanes DP, et al. (1998) Signal timing across the macaque visual system J Neurophysiol 79 3272–8 [5.2.1]

Schnapf JL, Nunn BJ, Meister M, Baylor DA (1990) Visual transduction in cones of the monkey Macaca fascicularis J Physiol 427 681–713 [5.1.5]

Schneck ME, Haegerstrom-Portnoy G, Lott LA, Brabyn JA (2000) Ocular contributions to age-related loss in coarse stereopsis Optom Vis Sci 77 531–6 [7.6.4]

Schor CM (1975) A directional impairment of eye movement control in strabismus amblyopia Invest Ophthal Vis Sci 14 692–7 [8.4.5c]

Schor CM (1977) Visual stimuli for strabismic suppression Perception 6 583–93 [8.5.2]

Schor CM (1979a) The influence of rapid prism adaptation upon fixation disparity Vis Res 19 757–65 [10.2.3a, 10.5.11, 10.7.5c]

Schor CM (1979b) The relationship between fusional vergence eye movements and fixation disparity Vis Res 19 1359–67 [10.2.5a]

Schor CM (1983a) Fixation disparity and vergence adaptation In Vergence eye movements: Basic and clinical aspects (ed MC Schor, KJ Ciuffreda) pp 465–516 Butterworth, Boston [10.2.4h, 10.2.5b]

Schor CM (1983b) Subcortical binocular suppression affects the development of latent and optokinetic nystagmus Am J Optom Physiol Opt 60 481–502 [8.4.5c]

Schor CM (1986) The Glen A Adaptive regulation of accommodative vergence and vergence accommodation Am J Optom Physiol Opt 63 587–609 [10.4.3a]

Schor CM (1988) Imbalanced adaptation of accommodation and vergence produces opposite extremes of the AC/A and CA/C ratios Am J Optom Physiol Opt 65 341–48 [10.4.3a]

Schor CM (1992) A dynamic model of cross–coupling between accommodation and convergence: simulations of step and frequency responses Optom Vis Sci 69 258–69 [10.4.3a, 10.4.3b]

Schor CM (1999) The influence of interactions between accommodation and convergence on the lag of accommodation Ophthal Physiol Opt 19 134–50 [10.4.1, 6.3.1c]

Schor CM, Ciuffreda KJ (1983) Vergence eye movements: Basic and clinical aspects Butterworth, Boston [1.3, 10.1.3b]

Schor CM, Hallmark W (1978) Slow control of eye position in strabismic amblyopia Invest Ophthal Vis Sci 17 577–81 [8.4.5b]

Schor CM, Horner D (1989) Adaptive disorders of accommodation and vergence in binocular dysfunction Ophthal Physiol Opt 9 294–8 [10.4.3a]

Schor CM, Kotulak JC (1986) Dynamic interactions between accommodation and convergence are velocity sensitive Vis Res 29 927–42 [10.4.3a, 10.4.3b, 10.5.11]

Schor CM, Levi DM (1980) Disturbances of small–field horizontal and vertical optokinetic nystagmus in amblyopia Invest Ophthal Vis Sci 19 668–83 [10.2.2c, 8.4.4d, 8.4.5c]

Schor CM, McCandless JW (1995a) Distance cues for vertical vergence adaptation Optom Vis Sci 72 478–86 [10.2.6d]

Schor CM, McCandless JW (1995b) An adaptable association between vertical and horizontal vergence Vis Res 35 3519–27 [10.2.6d]

Schor CM, McCandless JW (1997) Context-specific adaptation of vertical vergence to correlates of eye position Vis Res 37 1929–37 [10.2.6c]

Schor CM, Narayan V (1982) Graphical analysis of prism adaptation convergence accommodation and accommodative convergence Am J Optom Physiol Opt 59 774–84 [10.2.4e]

Schor CM, Tsuetaki TK (1987) Fatigue of accommodation and vergence modifies their mutual interactions Invest Ophthal Vis Sci 28 1250–9 [10.4.3a]

Schor CM, Bridgeman B, Tyler CW (1983) Spatial characteristics of static and dynamic stereoacuity in strabismus Invest Ophthal Vis Sci 27 1572–9 [8.5.1]

(p.627) Schor CM, Robertson KM, Wesson M (1986a) Disparity vergence dynamics and fixation disparity Am J Optom Physiol Opt 63 611–18 [10.2.4g]

Schor CM, Kotulak JC, Tsuetaki T (1986b) Adaptation of tonic accommodation reduces accommodative lag and is masked in darkness Invest Ophthal Vis Sci 27 820–7 [9.3.2]

Schor CM, Wesson M, Robertson KM (1986c) Combined effects of spatial frequency and retinal eccentricity upon fixation disparity Am J Optom Physiol Opt 63 619–29 [10.5.8a]

Schor CM, Gleason G, Horner D (1990) Selective nonconjugate binocular adaptation of vertical saccades and pursuits Vis Res 30 1827–44 [10.8.3c]

Schor CM, Alexander J, Cormack L, Stevenson S (1992) Negative feedback control model of proximal convergence and accommodation Ophthal Physiol Opt 12 307–18 [10.3.2a, 10.4.3b]

Schor CM, Gleason G, Maxwell J, Lunn R (1993a) Spatial aspects of vertical phoria adaptation Vis Res 33 73–84 [10.2.6b]

Schor CM, Gleason G, Lunn R (1993b) Interactions between short-term vertical phoria adaptation and nonconjugate adaptation of vertical pursuits Vis Res 33 55–64 [10.2.6c]

Schor CM, Maxwell JS, Stevenson SB (1994) Isovergence surfaces: the conjugacy of vertical eye movements in tertiary positions of gaze Ophthal Physiol Opt 14 279–85 [10.1.3b, 10.2.6a, 10.6.3d]

Schor CM, Fusaro RE, Wilson N, McKee SP (1997) Prediction of early-onset esotropia from components of the infantile squint syndrome Invest Ophthal Vis Sci 38 719–40 [10.2.2e]

Schor CM, Maxwell JS, Graf EW (2001) Plasticity of convergence-dependent variations of cyclovergence with vertical gaze Vis Res 41 3353–69 [10.7.4]

Schoups AA, Vogels R, Qian N, Orban G (1995a) Human perceptual learning to identify the oblique orientation: retinotopy, orientation specificity and monocularlity J Physiol 483 797–810 [4.9.1]

Schoups AA, Elliott RC, Friedman WJ, Black IB (1995b) NGF and BDNF are differentially modulated by visual experience in the developing geniculocortical pathway Devel Brain Res 86 329–34 [6.4.7b, 6.7.2d, 8.1.1b, 8.2.7f]

Schoups AA, Vogels R, Qian N, Orban GA (2001) Practicing orientation identification improves orientation coding in V1 neurons Nature 412 549–5 [5.6.8]

Schrader LA, Perrett SP, Ye L, Friedlander MJ (2004) Substrates for coincidence detection and calcium signalling for induction of synaptic potentiation in the neonatal visual cortex J Neurophysiol 91 2747–64 [6.6.3]

Schreiber KM, Schor CM (2007) A virtual ophthalmotrope illustrating oculomotor coordinate systems and retinal projection geometry J Vis 7 1–14 [10.1.2]

Schröder JH, Fries P, Roelfsema PR, et al. (2002) Ocular dominance in extrastriate cortex of strabismic cats Vis Res 42 29–39 [8.2.3a]

Schroeder CE, Tenke CE, Arezzo JC, Vaughan HG (1990) Binocularity in the lateral geniculate nucleus of the alert monkey Brain Res 521 303–10 [5.2.3b]

Schroeder TL, Rainey BB, Goss DA, Grosvenor TP (1996) Reliability of and comparisons among methods of measuring dissociated phoria Optom Vis Sci 73 389–97 [10.2.3b]

Schuett S, Bonhoeffer T, Hübener M (2009) Pairing-induced changes of orientation maps in cat visual cortex Neuron 32 325–37 [6.5.2]

Schultze M (1866) Zur Anatomie und Physiologie der Retina Arch Mikros Anat Ent 2 165–286 [2.6.1]

Schuman EM, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation Science 254 1503–6 [6.5.3]

Schuster HG, Wagner P (1990) A model for neuronal oscillations in the visual cortex Biol Cyber 64 77–82 [4.3.4g]

Schwann T (1839) Mikroskopische Untersuchungen über die Uberreinstinmmung in der Struktur und dem Wachsthum der Tiere und Pflanzen Eimer, Berlin [2.6.1]

Schwartz EL (1980) Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding Vis Res 20 645–70 [5.5.4d]

Schwartz EL (1983) Cortical mapping and perceptual invariance: a reply to Cavanagh Vis Res 23 831–5 [5.5.4d]

Schwartz TL, Dobson V, Sandstrom DJ, Van Hof–van Duin J (1987) Kinetic perimetry assessment of binocular visual field shape and size in young infants Vis Res 27 2163–75 [6.3.2a, 7.2.4, 7.2.4]

Schwarz U, Miles FA (1991) Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer J Neurophysiol 66 851–64 [10.9.2]

Schwarz W (1993) Coincidence detectors and two–pulse visual temporal integration: new theoretical results and comparison data Biol Cyber 69 173–82 [3.1.2]

Schyns PG, Rodet L (1997) Categorization creates functional features J Exp Psychol Learn Mem Cog 23 681–96 [4.6.3a]

Sclar G, Freeman RD (1982) Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast Exp Brain Res 46 457–61 [5.6.2d]

Sclar G, Ohzawa I, Freeman RD (1986) Binocular summation in normal, monocularly deprived, and strabismic cats: visual evoked potentials Exp Brain Res 62 1–10 [8.4.6a]

Sclar G, Maunsell JHR, Lennie P (1990) Coding of image contrast in central visual pathways of the macaque monkey Vis Res 30 1–10 [5.6.1, 5.8.1]

Scobey RP, Gabor AJ (1989) Orientation discrimination sensitivity of single units in cat primary visual cortex Exp Brain Res 77 398–406 [3.1.4b, 5.6.2a]

Scott AB (1981) Botulinum toxin injection of eye muscles to correct strabismus Tr Am Ophthal Soc 79 734–70 [10.2.2e]

Sefton AJ (1986) The regulation of cell numbers in the developing visual system In Vis Neurosci (ed JD Pettigrew, WR Levick) pp 2145–56 Cambridge University Press, London [6.3.3b]

Seibt J, Schuurmans C, Gradwhol G, et al. (2003) Neurogenin2 specifies the connectivity of thalamic neurons by controlling axon responsiveness to intermediate target cues Neuron 39 439–52 [6.4.3c]

Seidemann A, Schaeffel F (2002) Effects of longitudinal chromatic aberration on accommodation and emmetropization Vis Res 42 2409–17 [9.6.4e]

Sekaran S, Lupi, Jones SL, et al. (2005) Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina Curr Biol 15 1099–1107 [6.3.2b]

Seki M, Naa H, Fukuchi T, et al. (2003) BDNF is upregulated by postnatal development and visual experience: quantitative and immunohisto-chemical analyses of BDNF in the rat retina Invest Ophthal Vis Sci 44 3211–8 [8.1.1a, 8.2.1]

Selfridge O (1959) Pandemonium: a paradigm for learning. In Symposium on the mechanisation of though processes H.M. Stationary Office, London [4.6.2]

Semmlow JL, Heerema D (1979a) The synkinetic interaction of convergence accommodation and accommodative convergence Vis Res 19 1237–42 [10.2.4e]

Semmlow JL, Heerema D (1979b) The role of accommodative convergence at the limits of fusional vergence Invest Ophthal Vis Sci 18 970–6 [10.4.3c]

Semmlow JL, Hung G (1979) Accommodative and fusional components of fixation disparity Invest Ophthal Vis Sci 18 1082–6 [10.2.4e, 10.2.5b]

Semmlow JL, Hung GK (1980) Binocular interactions of vergence components Am J Optom Physiol Opt 57 559–65 [10.2.4e]

Semmlow JL, Hung G (1983) The near response Theories of control In Vergence eye movements: Basic and clinical aspects (ed C Schor, K Ciuffreda) pp 175–95 Butterworth, Boston [10.4]

Semmlow JL, Venkiteswaran N (1976) Dynamic accommodative vergence components in binocular vision Vis Res 16 403–10 [10.4.3b]

Semmlow JL, Wetzel P (1979) Dynamic contributions of the components of binocular vergence J Opt Soc Am 69 639–45 [10.4.1, 10.5.7]

Semmlow JL, Hung G, Ciuffreda KJ (1986) Quantitative assessment of disparity vergence components Invest Ophthal Vis Sci 27 558–64 [10.5.10d, 10.5.11]

(p.628) Semmlow JL, Hung G, Horng JL, Ciuffreda KJ (1993) Initial control component in disparity vergence eye movements Ophthal Physiol Opt 13 48–55 [10.5.9b]

Semmlow JL, Hung G, Horng JL, Ciuffreda KJ (1994) Disparity vergence eye movements exhibit preprogrammed motor control Vis Res 34 335–43 [10.5.11]

Semmlow JL, Yuan W, Alvarez TL (1998) Evidence for separate control of slow version and vergence eye movements: Support for Hering’s Law Vis Res 38 1145–52 [10.8.2a]

Sen DK, Singh B, Shroff NM (1977) Diagnosis and measurement of cyclodeviation Br J Ophthal 61 690–2 [10.7.2c]

Sen MG, Yonas A, Knill DC (2001) Development of infants’ sensitivity to surface contour information for spatial layout Perception 30 167–76 [7.4.1e]

Sengelaub DR, Finlay BL (1981) Early removal of one eye reduces normally occurring cell death in the remaining eye Science 213 573–4 [6.3.3b, 8.2.6a]

Sengpiel F, Blakemore C (1996) The neural basis of suppression and amblyopia in strabismus Eye 10 250–8 [8.5.2]

Sengpiel F, Troilo D, Kind PC, et al. (1996) Functional architecture of area 17 in normal and monocularly deprived marmosets (Callithrix jacchus) Vis Neurosci 13 135–60 [5.7.2f]

Sengpiel F, Sen A, Blakemore C (1997) Characteristics of surround inhibition in cat area 17 Exp Brain Res 116 216–28 [5.5.6b]

Seol GH, Ziburkus J, Huang SY, et al. (2007) Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity Neuron 55 919–29 [6.5.2]

Serafini T, Colamarino SA, Leonardo ED, et al. (1996) Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system Cell 87, 1001–14 [6.4.6d]

Sereno AB, Maunsell JHR (1998) Shape selectivity in primate lateral intraparietal cortex Nature 395 500–3 [5.8.5a]

Sereno MI, Dale AM, Reppas JB, et al. (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging Science 298 889–93 [5.8.1]

Sermasi E, Tropea D, Domenici L (1999) A new form of synaptic plasticity is transiently expressed in the developing rat visual cortex: a modulatory role for visual experience and brain-derived neurotrophic factor Neurosci 91 163–73 [6.6.3]

Sethi B (1986a) Vergence adaptation: a review Doc Ophthal 63 277–63 [10.2.4h]

Sethi B (1986b) Heterophoria: a vergence adaptive position Ophthal Physiol Opt 6 151–6 [10.2.5a]

Sethi B, Henson DB (1984) Adaptive changes with prolonged effect of comitant and noncomitant vergence disparities Am J Optom Physiol Opt 61 506–12 [10.2.6b]

Sethi B, North RV (1987) Vergence adaptive changes with varying magnitudes of prism–induced disparities and fusional amplitudes Am J Optom Physiol Opt 64 293–8 [10.2.5a]

Shadlen MN, Movshon JA (1999) Synchrony unbound: a critical evaluation of the temporal binding hypothesis Neuron 24 67–77 [4.3.4c]

Shafritz KM, Gore JC, Marois R (2002) The role of the parietal cortex in visual feature binding Proc Natl Acad Sci 99 10917–22 [4.3.4e, 5.9.3b]

Shallo-Hoffmann J, Faldon M, Hague S, et al. (1997) Motion detection deficits in infantile esotropia without nystagmus Invest Ophthal Vis Sci 38 219–29 [8.4.4c, 8.4.4d]

Shankle