Jump to ContentJump to Main Navigation
Plasmonic Effects in Metal-Semiconductor Nanostructures$

Alexey A. Toropov and Tatiana V. Shubina

Print publication date: 2015

Print ISBN-13: 9780199699315

Published to Oxford Scholarship Online: May 2015

DOI: 10.1093/acprof:oso/9780199699315.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 22 January 2017

(p.324) References

(p.324) References

Plasmonic Effects in Metal-Semiconductor Nanostructures
Oxford University Press

Bibliography references:

Aberra Guebrou, S., Symonds, C., Homeyer, E., Plenet, J.C., Gartstein, Yu. N., Agranovich, V.M., and Bellessa, J. (2012). Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. Phys. Rev. Lett., 108, 066401.

Adachi, S. (2005). Properties of Group IV, III–V and II–VI Semiconductors. Wiley, Chichester.

Adachi, S. (2009). Properties of Semiconductor Alloys: Group IV, III–V and II–VI Semiconductors. Wiley, Chichester.

Adams, A., Rendell, R.W., West, W.P., Broida, H.P., and Hansma, P.K. (1980). Luminescence and nonradiative energy transfer to surfaces. Phys. Rev. B, 21, 5565.

Adams, D.C., Inampudi, S., Ribaudo, T., Slocum, D., Vangala, S., Kuhta, N.A., Goodhue, W.D., Podolskiy, V.A., and Wasserma, D. (2011). Tunneling light through a subwavelength aperture with epsilon-near-zero materials. Phys. Rev. Lett., 107, 133901.

Agarwal, G.S. and Biehs, S.-A. (2013). Highly nonparaxial spin Hall effect and its enhancement by plasmonic structures. Opt. Lett., 38, 4421.

Ahn, D., Chuang, S.L., and Chang, Y.-C. (1988). Valence-band mixing effects on the gain and the refractive index change of quantum-well lasers. J. Appl. Phys., 64, 4056.

Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., and Lukin, M.D. (2007). Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 450, 402.

Akimov, Y.A. and Koh, W.S. (2010). Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology, 21, 235201.

Akopian, N., Lindner, N.H., Poem, E., Berlatzky, Y., Avron, J., Gershoni, D., Gerardot, B.D., and Petroff, P.M. (2006). Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett., 96, 130501.

Alivisatos, A.P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933.

Allen, S.J., Tsui D.C., and Logan, R.A. (1977). Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett., 38, 980.

Alloing, B., Zinoni, C., Zwiller, V., Li, L.H., Monat, C., Gobet, M., Buchs, G., Fiore, A., Pelucchi, E., and Kapon, E. (2005). Growth and characterization of single quantum dots emitting at 1300 nm. Appl. Phys. Lett., 86, 101908.

Alonso-González, P., Nikitin, A.Y., Golmar, F., Centeno, A., Pesquera, A., Vélez, S., Chen, J., Navickaite, G., Koppens, F., Zurutuza, A., Casanova, F., Hueso, L.E., and Hillenbrand, R. (2014). Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science, 344, 1253202.

Altarelli, M. (1986). Band structure, impurities and excitons in superlattices. In Heterojunctions and Semiconductor Superlattices, edited by G. Allan, G. Bastard, N. Boccora, and M. Voos. Springer, Berlin.

Altewischer, E., van Exter, M.P., and Woerdman, J.P. (2002). Plasmon-assisted transmission of entangled photons. Nature, 418, 304.

(p.325) Alù, A., Silveirinha, M.G., Salandrino, A., and Engheta, N. (2007). Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B, 75, 155410.

Amand, T. and Marie, X. (2008). Exciton spin dynamics in semiconductor quantum wells. In Spin Physics in Semiconductors, Springer Series in Solid-State Sciences, Vol. 157, edited by M.I. Dyakonov, p. 55. Springer-Verlag, Berlin.

Amand, T., Marie, X., Le Jeune, P., Brousseau, M., Robart, D., and Barrau, J. (1997). Spin quantum beats of 2D excitons. Phys. Rev. Lett., 78, 1355.

Amos, R.M. and Barnes, W.L. (1997). Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror. Phys. Rev. B, 55, 7249.

André, R., Cibert, J., and Dang, Le Si (1995). Excitonic absorption in CdTe-based piezoelectric quantum wells. Phys. Rev. B, 52, 12013.

Andreani, L.C. (1995). Optical transitions, excitons, and polaritons in bulk and low-dimensional semiconductor structures. In Confined Electrons and Photons, edited by E. Burstein and C. Weisbuch. Plenum Press, New York.

Andreani, L.C. and Bassani, F. (1990). Exchange interaction and polariton effects in quantum-well excitons. Phys. Rev. B, 41, 7536.

Andreani, L.C., Pasquarello, A., and Bassani, F. (1987). Hole subbands in strained GaAs–Ga1−xAlxAs quantum wells: exact solution of the effective-mass equation. Phys. Rev. B, 36, 5887.

Anger, P., Bharadwaj, P., and Novotny, L. (2006). Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 96, 113002.

Anselm, A.I. (1981). Introduction to Semiconductor Theory. Mir, Moscow/Prentice Hall, Englewood Cliffs, NJ.

Asano, S. and Yamamoto, G. (1975). Light scattering by a spheroidal particle. Appl. Opt., 14, 29.

Ashcroft, N.W. and Mermin, N.D. (1976). Solid State Physics. Saunders College Publishing, Philadelphia, PA.

Ashcroft, N.W. and Sturm, K. (1971). Interband absorption and the optical properties of polyvalent metals. Phys. Rev. B, 3, 1898.

Atwater, H.A. and Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nat. Mater., 9, 2006.

Aubry, A., Lei, D.Y., Maier, S.A., and Pendry, J.B. (2010). Broadband plasmonic device concentrating the energy at the nanoscale: the crescent-shaped cylinder. Phys. Rev. B, 82, 125430.

Babinec, T.M., Hausmann, B.J.M., Khan, M., Zhang, Y., Maze, J.R., Hemmer, P.R., and Lončar, M. (2010). A diamond nanowire single-photon source. Nat. Nanotechnol., 5, 195.

Bae, W.K., Brovelli, S., and Klimov, V.I. (2013). Spectroscopic insights into the performance of quantum dot light-emitting diodes. Science, 38, 721.

Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., and Wrachtrup, J. (2009). Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 8, 383.

Baldereschi, A. and Lipari, N.O. (1970). Direct exciton spectrum in diamond and zinc-blende semiconductors. Phys. Rev. Lett., 25, 373.

Baldereschi, A. and Lipari, N.O. (1971). Energy levels of direct excitons in semiconductors with degenerate bands. Phys. Rev. B, 3, 439.

(p.326) Bander, M. and Itzykson, C. (1966a). Group theory and the hydrogen atom. I. Rev. Mod. Phys., 38, 330.

Bander, M. and Itzykson, C. (1966b). Group theory and the hydrogen atom. II. Rev. Mod. Phys., 38, 346.

Barber, P.W., Chang, R.K., Massoudi, H. (1983). Surface-enhanced electric intensities on large silver spheroids. Phys. Rev. Lett., 50, 997.

Banin, U., Bruchez, M., Alivisatos A.P., Ha, T., Weiss, S., and Chemla, D.S. (1999). Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystalls. J. Chem. Phys., 110, 1195.

Barnes, W.L. (1998). Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt., 45, 661.

Barnes, W.L. (1999). Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices. J. Lightwave Technol., 17, 2170.

Barnes, W.L. (2004). Turning the tables on surface plasmons. Nat. Mater., 3, 587.

Barnes, W.L., Dereux, A., and Ebbesen, T.W. (2003). Surface plasmon subwavelength optics. Nature, 424, 824.

Bartel, T.P., Specht, P. Ho,    J.C., and Kisielowski, C. (2007). Phase separation in InxGa1−xN. Phil. Mag., 87, 1983.

Barz, S., Cronenberg, G., Zeilinger, A., and Walther, P. (2010). Heralded generation of entangled photon pairs. Nat. Photonics, 4, 553.

Bastard, G. (1981). Superlattice band structure in the envelope-function approximation. Phys. Rev. B, 24, 5693.

Bastard, G. and Brum, J.A. (1986). Electronic states in semiconductor heterostructures. IEEE J. Quantum Electron., QE-22, 1625.

Bastard, G., Mendez, E.E., Chang, L.L., and Esaki, L. (1982). Exciton binding energy in quantum wells. Phys. Rev. B, 26, 1974.

Bayer, M., Ortner, G., Stern, O., Kuther, A., Gorbunov, A.A., Forchel, A., Hawrylak, P., Fafard, S., Hinzer, K., Reinecke, T.L., Walck, S.N., Reithmaier, J.P., Klopf, F., Schafer, F. (2002). Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B, 65, 195315.

Bechstedt, F. and Enderlein, R. (1988). Interfaces. In Semiconductor Surfaces and Interfaces, Ch. 4, p. 311. Academie Verlag, Berlin.

Belacel, C., Habert, B., Bigourdan, F., Marquier, F., Hugonin, J.-P., de Vasconcellos, S.M., Lafosse, X., Coolen, L., Schwob, C., Javaux, C., Dubertret, B., Greffet, J.-J., Senellart, P., and Maitre, A. (2013). Controlling spontaneous emission with plasmonic optical patch antennas. Nano Lett., 13, 1516.

Belkin, M.A., Wang, Q.J., Pflügl, C., Belyanin, A., Khanna, S.P., Davies, A.G., Linfield, E.H., and Capasso, F. (2009). High-temperature operation of terahertz quantum cascade laser sources. IEEE J. Sel. Top. Quantum Electron., 15, 952.

Bell, G.R., McConville, C.F., and Jones, T.S. (1996). Plasmon excitations and accumulation layers in heavily doped InAs(001). Phys. Rev. B, 54, 2654.

Bell, J.S. (1964). On the Einstein–Podolsky–Rosen paradox, Physics, 1, 195.

Bellessa, J., Bonnand, C., Plenet, J.C., and Mugnier, J. (2004). Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett., 93, 036404.

Bennett, A.J., Unitt, D.C., Atkinson, P., Ritchie, D.A., Shields, A.J. (2005). High performance single photon sources from photolithographically defined pillar microcavities. Opt. Express, 13, 50.

(p.327) Bennett, C.H. and Brassard, G. (1984). Quantum cryptography: public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, p. 175.

Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., and Wooters, W.K. (1993). Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett., 70, 1895.

Benson, O., Santori, C., Pelton, M., and Yamamoto, Y. (2000). Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett., 84, 2513.

Bergman, D.J. and Stockman, M.I. (2003). Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett., 90, 027402.

Berestetskii, V.B., Lifshitz, E.M., and Pitaevskii, L.P. (1999). Quantum Electrodynamics. Oxford: Butterworth-Heinemann.

Berry, M.V. (1987). The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 34, 1401.

Berini, P. and De Leon, I. (2012). Surface plasmon polariton amplifiers and lasers. Nat. Photonics, 6, 16.

Bernardini, F., Fiorentini, V., and Vanderbilt, D. (1997). Spontaneous polarization and piezoelectric constants of III–V nitrides. Phys. Rev. B, 56, R10024.

Berrier, A., Albella, P., Poyli, M.A., Ulbricht, R., Bonn, M., Aizpurua, J., Gómez Rivas, J. (2012). Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators. Opt. Express, 20, 5052.

Bethe, H.A. and Salpeter, E.E. (1957). Quantum Mechanics of One- and Two-Electron Atoms. Springer, Berlin.

Bharadwaj, P. and Novotny, L. (2011). Robustness of quantum dot power-law blinking. Nano Lett., 11, 2137.

Biagioni, P., Huang, J.-S., Duò, L., Finazzi, M., and Hecht, B. (2009). Cross resonant optical antenna. Phys Rev Lett., 102, 256801.

Biagioni, P., Huang, J.-S., and Hecht, B. (2012). Nanoantennas for visible and infrared radiation. Rep. Prog. Phys., 75, 024402.

Bimberg, D., Grundmann, M., and Ledentsov, N.N. (1999). Quantum Dot Heterostructures. Wiley, Chichester.

Bir, G.L. and Pikus, G.E. (1974). Symmetry and Strain-Induced Effects in Semiconductors. Wiley, New York.

Birman, J.L. (1959). Some selection rules for band–band transitions in wurtzite structure. Phys. Rev., 114, 1490.

Birowosuto, M.D., Sumikura, H., Matsuo, S., Taniyama, H., van Veldhoven, P.J., Nötzel, R., Notomi, M. (2012). Fast Purcell-enhanced single photon source in 1550-nm telecom band from a resonant dot-cavity coupling. Sci. Rep., 2, 321.

Blackwood, E., Snelling, M.J., Harley, R.T., Andrews, S.R., and Foxon, C.T.B. (1994). Exchange interaction of excitons in GaAs heterostructures. Phys. Rev. B, 50, 14246.

Blanco, L.A. and Garcıá de Abajo, F.J. (2004). Spontaneous light emission in complex nanostructures. Phys. Rev. B, 69, 205414.

Bliokh, K.Y., Gorodetski, Y., Kleiner, V., and Hasman, E. (2008). Coriolis effect in optics: unified geometric phase and spin-Hall effect. Phys. Rev. Lett., 101, 030404.

Blome, P.G., Wenderoth, M., Hübner, M., Ulbrich, R.G., Porsche, J., and Scholz, F. (2000). Temperature-dependent linewidth of single InP/GaxIn1−xP quantum dots: interaction with surrounding charge configurations. Phys. Rev. B, 61, 8382.

(p.328) Bohm, D. and Aharonov, Y. (1957). Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky, Phys. Rev., 108, 1070.

Bohr, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 48, 696.

Bohren, C. and Huffman, D. (1983). Absorption and Scattering of Light by Small Particles. Wiley, New York.

Böhrer, J., Krost, A., Wolf, T., and Bimberg, D. (1993). Band offsets and transitivity of In1−xGaxAs/In1−yAlyAs/InP heterostructures. Phys. Rev. B, 47, 6439.

Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Commun., 146, 351.

Bonnand, C., Bellessa, J., and Plenet, J.C. (2006). Properties of surface plasmons strongly coupled to excitons in an organic semiconductor near a metallic surface. Phys. Rev. B, 73, 245330.

Born, M. and Wolf, E. (1999). Principles of Optics, 7th ed. Cambridge University Press, New York.

Borselli, M., Johnson, T.J., and Painter, O. (2005). Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. Opt. Express, 13, 1515.

Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.-Y., and Ebbesen, T.W. (2006). Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 440, 508.

Bradeley, C.J. and Cracknell, A.P. (1972). The Mathematical Theory of Symmetry in Solids. Clarendon Press, Oxford.

Briegel, H.-J., Dür W., Cirac, J.I., and Zoller, P. (1998). Quantum repeaters: the role of imperfect local operations in quantum communication, Phys. Rev. Lett., 81, 5932.

Broido, D.A. and Sham, L.J. (1985). Effective masses of holes at GaAs–AlGaAs heterojunctions. Phys. Rev. B, 31, 888.

Broido, D.A. and Sham, L.J. (1986). Valence-band coupling and Fano-resonance effects on the excitonic spectrum in undoped quantum wells. Phys. Rev. B, 34, 3917.

Brongersma, M.L., Hartman, J.W., and Atwater, H.A. (2000). Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B, 62, R16356.

Brown, E.R., Bacher, A., Driscoll, D., Hanson, M., Kadow, C., and Gossard, A.C. (2003). Evidence for a strong surface-plasmon resonance on ErAs nanoparticles in GaAs. Phys. Rev. Lett. 90, 077403.

Brunner, K., Bockelmann, U., Abstreiter, G., Walther, M., Böhm, G., Tränkle, G., and Weimann, G. (1992). Photoluminescence from a single GaAs/AlGaAs quantum dot. Phys. Rev. Lett., 69, 3216.

Brus, L.E. (1984). Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys., 80, 4403.

Buchler, B.C., Kalkbrenner, T., Hettich, C., and Sandoghdar, V. (2005). Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. Phys. Rev. Lett., 95, 063003.

Buckley, S., Rivoire, K., and Vučković, J. (2012). Engineered quantum dot single-photon sources. Rep. Prog. Phys., 75, 126503.

Bulu, I., Babinec, T., Hausmann, B., Choy, J.T., and Lončar, M. (2011). Plasmonic resonators for enhanced diamond NV-center single photon sources. Opt. Express, 19, 5268.

(p.329) Burke, J.J., Stegeman, G.I., and Tamir, T. (1986). Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B, 33, 5186.

Burstein, E. (1954). Anomalous optical absorption limit in InSb. Phys. Rev., 93, 632.

Butté, R. and Grandjean, N. (2008). Effects of polarization in optoelectronic quantum structures. In Polarization Effects in Semiconductors, edited by C. Wood and D. Jena. Springer, New York.

Bykhovski, A., Gelmont, B., and Shur, M.S. (1993). The influence of the strain-induced electric field on the charge distribution in GaN–AlN–GaN SIS structure, J. Appl. Phys., 74, 6734.

Cade, N.I., Gotoh, H., Kamada, H., Nakano, H., Anantathanasarn, S., and Nötzel, R. (2006). Optical characteristics of single InAs/InGaAsP/InP (100) quantum dots emitting at 1.55 µm. Appl. Phys. Lett., 89, 181113.

Cai, B., Jia, B., Shi, Z., and Gu, M. (2013). Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells, Appl. Phys. Lett., 102, 093107.

Calander, N. and Willander, M. (2002). Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids. J. Appl. Phys., 92, 4878.

Casella, R.C. (1959). Symmetry of wurtzite. Phys. Rev., 114, 1514.

Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., and Geim, A.K. (2009). The electronic properties of graphene. Rev. Mod. Phys., 81, 109.

Chance, R.R., Prock, A., and Silbey, R. (1978). Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys., 37, 1.

Chang, C.S. and Chuang, S.L. (1995). Modeling of strained quantum-well lasers with spin–orbit coupling. IEEE J. Sel. Top. Quantum Electron., 1, 218.

Chang, D.E., Sorensen, A.S., Hemmer, P.R., and Lukin, M.D. (2006). Quantum optics with surface plasmons. Phys. Rev. Lett., 97, 053002.

Chang, D.E., Sørensen, A.S., Hemmer, P.R., and Lukin, M.D. (2007a). Strong coupling of single emitters to surface plasmons. Phys. Rev. B, 76, 035420.

Chang, D.E., Sørensen, A.S., Demler, E.A., and Lukin, M.D. (2007b). A single-photon transistor using nanoscale surface plasmons. Nat. Phys., 3, 807.

Chang, J.H., Song, J.S., Godo, K., Yao, T., Shen, M.Y., and Goto, T. (2001). ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices. Appl. Phys. Lett., 78, 566.

Chao, C.Y.-P. and Chuang, S.L. (1992). Spin–orbit coupling effects on the valence-band structure of strained semiconductor quantum wells. Phys. Rev. B, 46, 4110.

Chaplik, A.V. (1980). Amplification of two-dimensional plasma waves in superlattices. JETP Lett., 32, 509 [transl. Sov Piz’ma Zh. Eksp. Teor. Fiz. 32, 529 (1980)].

Chau, K.J., Johnson, M., and Elezzabi, A.Y. (2007). Electron-spin-dependent terahertz light transport in spintronic–plasmonic media. Phys. Rev. Lett., 98, 133901.

Chen, C.F., Park, C.H., Boudouris, B.W., Horng, J., Geng, B., Girit, C., Zettl, A., Crommie, M.F., Segalman, R.A., Louie, S.G., Wang, F. (2011). Controlling inelastic light scattering quantum pathways in graphene. Nature, 471, 617.

Chen, F., Cartwright, A.N., Lu, H., and Schaff, W.J. (2003). Time-resolved spectroscopy of recombination and relaxation dynamics in InN. Appl. Phys. Lett., 83, 4984.

Chen, H.-S., Chen, C.-F., Kuo, Y., Chou, W.-H., Shen, C.-H., Jung, Y.-L., Kiang, Y.-W., and Yang, C.C. (2013a). Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN. Appl. Phys. Lett., 102, 041108.

(p.330) Chen, J., Badioli, M., Alonso-González, P., Thongrattanasiri, S., Huth, F., Osmond, J., Spasenović, M., Centeno, A., Pesquera, A., Godignon, P., Elorza, A.Z., Camara, N., García de Abajo, F.J., Hillenbrand, R., and Koppens, F.H.L. (2012a). Optical nano-imaging of gate-tunable graphene plasmons. Nature, 487, 77.

Chen, O., Zhao, J., Chauhan, V.P., Cui, J., Wong, C., Harris, D.K., Wei, H., Han, H.-S., Fukumura, D., Jain, R.K., and Bawendi, G. (2013b). Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater., 12, 445.

Chen, X., Agio, M., and Sandoghdar, V. (2012b). Metallo-dielectric hybrid antennas for ultrastrong enhancement of spontaneous emission. Phys. Rev. Lett., 108, 233001.

Chen, Y.F., Vela, J., Htoon, H., Casson, J.L., Werder, D.J., Bussian, D.A., Klimov, V.I., and Hollingsworth, J.A. (2008). “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc., 130, 5026.

Cheng, M.-T., Liu, S.-D., and Wang Q.-Q. (2008). Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorods. Appl. Phys. Lett., 92, 162107.

Chelikowsky, J.R. and Cohen, M.L. (1976). Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys. Rev. B, 14, 556.

Choy, J.T., Hausmann, B.J.M., Babinec, T.M., Bulu, I., Khan, M., Maletinsky, P., Yacoby, A., and Lončar, M. (2011). Enhanced single-photon emission from a diamond–silver aperture. Nat. Photonics, 5, 738.

Christensen, N.E. and Seraphyn, B.O. (1971). Relativistic band calculation and the optical properties of gold. Phys. Rev. B, 4, 3321.

Chuang, S.L. (1991). Efficient band-structure calculations of strained quantum wells. Phys. Rev. B, 43, 9649.

Chuang, S.L. (1995). Physics of Optoelectronic Devices, 1st ed. Wiley, New York.

Chuang, S.L. (1996). Optical gain of strained wurtzite GaN quantum-well lasers. IEEE J. Quantum Electron., 32, 1791.

Chuang, S.L. (2009). Physics of Photonic Devices, 2nd ed. Wiley, Hoboken, NJ.

Chuang, S.L. and Chang, C.S. (1996). k · p method for strained wurtzite semiconductors. Phys. Rev. B, 54, 2491.

Chuang, S.L. and Chang, C.S. (1997). A band-structure model of strained quantum-well wurtzite semiconductors. Semicond. Sci. Technol., 12, 252.

Claudon, J., Bleuse, J., Malik, N.S., Bazin, M., Jaffrennou, P., Gregersen, N., Sauvan, C., Lalanne, P., and Gérard, J.-M. (2010). A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics, 4, 174.

Cohen, M.L. and Chelikowsky J. (1988). Electronic Structure and Optical Properties of Semiconductors. Springer Series in Solid-State Sciences, Vol. 75, edited by M. Cardona. Springer-Verlag, Berlin.

Cohen, R.W., Cody, G.D., Coutts, M.D., and Abeles, B. (1973). Optical properties of granular silver and gold films, Phys. Rev. B, 8, 3689.

Crooker, S.A., Barrick, T., Hollingsworth, J.A., and Klimov, V.I. (2003). Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett., 82, 2793.

Curto, A.G., Volpe, G., Taminiau, T.H., Kreuzer, M.P., Quidant, R., van Hulst, N.F. (2010). Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 329, 930.

(p.331) Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G. (1997). (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B, 101, 9463.

Dekel, E., Gershoni, D., Ehrenfreund, E., Spector, D., Garcia, J.M., and Petroff, P.M. (1998). Multiexciton spectroscopy of a single self-assembled quantum dot. Phys. Rev. Lett., 80, 4991.

De Leon, I. and Berini, P. (2012). Amplification and lasing with surface plasmon polaritons. In Plasmonics and Plasmonic Metamaterials Analysis and Applications. Scientific Series in Nanoscience and Nanotechnology, Vol. 4, edited by G. Shvets and I. Tsukerman, p. 101. World Scientific Publishing, Singapore.

De Leon, N.P., Shields, B.J., Yu, C.L., Englund, D.E., Akimov, A.V., Lukin, M.D., and Park, H. (2012). Tailoring light–matter interaction with a nanoscale plasmon resonator. Phys. Rev. Lett., 108, 226803.

De Mello Donegá, C., Bode, M., and Meijerink, A. (2006). Size and temperature dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B, 74, 085320.

Deshpande, S., Das, A., and Bhattacharya, P. (2013a). Blue single photon emission up to 200 K from an InGaN quantum dot in AlGaN nanowire. Appl. Phys. Lett., 102, 161114.

Deshpande, S., Junseok, H. Das, A., and Bhattacharya, P. (2013b). Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN Nanowire. Nat. Commun., 4, 1675.

Di Martino, G., Sonnefraud, Y., Kéna-Cohen, S., Tame, M., Özdemir, Ş K., Kim, M.S., and Maier, S.A. (2012). Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Lett., 12, 2504.

Dietze, D., Unterrainer, K., and Darmo J. (2013). Role of geometry for strong coupling in active terahertz metamaterials. Phys. Rev. B, 87, 075324.

Ding, K., Hill, M.T., Liu, Z.C., Yin, L.J., van Veldhoven, P.J., and Ning, C.Z. (2013). Record performance of electrical injection subwavelength metallic-cavity semiconductor lasers at room temperature. Appl. Phys. Lett., 98, 231108.

Ding, K., Liu, Z., Yin, L., Wang, H., Liu, R., Hill, M.T., Marell, M.J.H., van Veldhoven, P.J., Nötzel, R., and Ning, C.Z. (2011). Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K. Appl. Phys. Lett., 98, 231108.

Dintinger, J., Klein, S., Bustos, F.,. Barnes, W.L, and Ebbesen, T.W. (2005). Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B, 71, 035424.

Ditlbacher, H., Hohenau, A., Wagner, D., Kreibig, U., Rogers, M., Hofer, F., Aussenegg, F.R., Krenn, J.R. (2005). Silver nanowires as surface plasmon resonators. Phys Rev Lett., 95, 257403.

Drexhage, K.H. (1970). Influence of a dielectric interface on fluorescence decay time. J. Lumin.,1–2, 693.

Drexhage, K.H. (1974). Interaction of Light with Monomolecular Dye Layers, In Progress in Optics, Vol. XII, edited by E. Wolf, p.163. North Holland, Amsterdam.

Drexhage, K.H., Kuhn, H., and Scäfer, F.P. (1968). Variation of fluorescence decay time of a molecule in front of a mirror. Ber. Bunsenges. Phys. Chem., 72, 329.

Dresselhaus, G. (1955). Spin–orbit coupling effects in zinc blende structures. Phys. Rev., 100, 580.

Dubinov, A.A., Aleshkin, V.Y., Mitin, V., Otsuji, T., and Ryzhii, V. (2011). Terahertz surface plasmons in optically pumped graphene structures. J. Phys. Condens. Matter, 23, 145302.

(p.332) Dulkeith, E., Morteani A.C., Niedereichholz, T., Klar, T.A., and Feldmann, J., Levi, S.A., van Veggel, F.C.J.M., Reinhoudt, D.N., Möller M., and Gittins, D.I. (2002). Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects Phys. Rev. Lett., 89, 203002.

Dunbar, R.B., Pfadler, T., and Schmidt-Mende, L. (2012). Highly absorbing solar cells: a survey of plasmonic nanostructures. Opt. Express, 20, A177.

Dyakonov, M.I. (ed.) (2008). Spin Physics in Semiconductors. Springer Series in Solid-State Sciences, Vol. 157. Springer-Verlag, Berlin.

Dyakonov, M.I. and Perel, V.I. (1971). Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A, 35, 459.

Dyakonov, M.I. and Shur, M.S. (1993). Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett., 71, 2465.

Dyakonova, N., El Fatimy, A., Łusakowski, J., Knap, W., Dyakonov, M.I., Poisson, M.-A., Morvan, E., Bollaert, S., Shchepetov, A., Roelens, Y., Gaquiere, C., Theron, D., and Cappy, A. (2006). Room-temperature terahertz emission from nanometer field-effect transistor. Appl. Phys. Lett., 88, 141906.

Eagen, C.F., Weber, W.H., McCarthy, S.L., and Terhune, R.W. (1980). Time-dependent decay of surface plasmon-coupled molecular fluorescence. Chem. Phys. Lett., 75, 274.

Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T.P., and Wolff, A. (1998). Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667.

Edwards, B., Alù, A., Young, M.E., Silveirinha, M., and Engheta, N. (2008). Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett., 100, 033903.

Edwards, G., Valadares, E.C., and Sheard, F.W. (1994). Hole subband states of GaAs/AlxGa1−xAs quantum wells within the 6 × 6 Luttinger model. Phys. Rev. B, 50, 8493.

Efetov, D.K. and Kim, P. (2010). Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett., 105, 256805.

Efros, Al.L. (1992). Luminescence polarization of CdSe microcrystals. Phys. Rev. B, 46, 7448.

Efros, Al.L. (2008). Nanocrystals: almost always bright. Nat. Mater., 7, 612.

Efros, Al.L. (2010). Fine structure and polarization properties of band-edge excitons in semiconductor nanocrystals. In Nanocrystal Quantum Dots, edited by V.I. Klimov, 2nd ed., p. 97. CRC Press, Boca Raton, FL.

Efros, Al.L. and Efros, A.L. (1982). Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond., 16, 772.

Efros, Al.L. and Rodina, A.V. (1993). Band-edge absorption and luminescence of nonspherical nanometer-size crystals. Phys. Rev. B, 47, 10005.

Efros, Al.L. and Rosen, M. (1997). Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett., 78, 1110.

Efros, A.L. and Shklovskii, B.L. (1989). Electronic Properties of Doped Semiconductors. Springer, Heidelberg.

Efros, Al.L., Rosen, M., Kuno, M., Nirmal, M., Norris, D.J., and Bawendi, M. (1996). Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B, 54, 4843.

(p.333) Ehrenreich, H. and Philipp, H.R. (1962). Optical properties of Ag and Cu. Phys. Rev., 128, 1622.

Ehrenreich, H., Philipp, H.R., and Segall, B. (1963). Optical properties of Al. Phys. Rev., 132, 1918.

Einstein, A. (1917). Zur Quantentheorie der Strahlung, Phys. Z., 18, 121.

Einstein, A., Podolsky, B., and Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47, 777.

Eisaman, M.D., Fan, J., Migdall, A., and Polyakov, S.V. (2011). Invited review article: single-photon sources and detectors. Rev. Sci. Instrum., 82, 071101.

Ekert, A.K. (1991). Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67, 661.

Ekimov, A.I. and Onushchenko, A.A. (1981). Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett., 34, 345.

Elliott, R.J. (1957). Intensity of optical absorption by excitons. Phys. Rev., 108, 1384.

Emani, N.K., Chung, T.-F., Ni, X., Kildishev, A.V., Chen, Y.P., and Boltasseva, A. (2012). Electrically tunable damping of plasmonic resonances with grapheme. Nano Lett., 12, 5202.

Empedocles, S.A. and Bawendi, M.G. (1997). Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science, 278, 2114.

Empedocles, S.A., Norris, D.J., and Bawendi, M.G. (1996). Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett., 77, 3873.

Enoch, S. and Bonod N. (eds.) (2012). Plasmonics: From Basics to Advanced topics. Springer Series in Optical Sciences, Vol. 167. Springer, Heidelberg.

Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N., and Vincent, P. (2002). A metamaterial for directive emission. Phys. Rev. Lett., 89, 213902.

Esteban, R., Teperik, T.V., and Greffet, J.J. (2010). Optical patch antennas for single photon emission using surface plasmon resonances. Phys. Rev. Lett., 104, 026802.

Etchegoin, P.G., Le Ru, E.C., and Meyer, M.J. (2006). An analytic model for the optical properties of gold. J. Chem. Phys., 125, 164705.

Etchegoin, P.G., Le Ru, E.C., and Meyer, M.J. (2007). Erratum: “An analytic model for the optical properties of gold” [J. Chem. Phys. 125, 164705 (2006)]. J. Chem. Phys., 127, 189901.

Faist, J., Capasso, F., Sivco, D.L., Hutchinson, A.L., and Cho, A.Y. (1994). Quantum cascade laser. Science, 264, 553.

Falicov, L.M. (1966). Group Theory and its Physical Applications. University of Chicago Press, Chicago.

Falk, A.L., Koppens, F.H.L., Yu, C.L., Kang, K., de Leon Snapp, N., Akimov, A.V., Jo, M.-H., Lukin, M.D., and Park, H. (2009). Near-field electrical detection of optical plasmons and single-plasmon sources. Nat. Phys., 5, 475.

Falkovsky, L.A. and Pershoguba, S.S. (2007). Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B, 76, 153410.

Falkovsky, L.A. and Varlamov, A.A. (2007). Space–time dispersion of graphene conductivity. Eur. Phys. J. B, 56, 281.

Fano, U. (1941). The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am., 31, 213.

Farrow, T., See, P., Bennett, A.J., Ward, M.B., Atkinson, P., Cooper, K., Ellis, D.J.P., Unitt, D.C., Ritchie, D.A., and Shields, A.J. (2008). Single-photon emitting diode based on a quantum dot in a micro-pillar. Nanotechnology, 19, 345401.

Fasel, S., Robin, F., Moreno, E., Erni, D., Gisin, N., and Zbinden, H. (2005). Energy–time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett., 94, 110501.

(p.334) Fathololoumi, S., Dupont, E., Chan, C.W.I., Wasilewski, Z.R., Laframboise, S.R., Ban, D., Mátyás, A., Jirauschek, C., Hu, Q., and Liu, H.C. (2012). Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling. Opt. Express, 20, 3866.

Fedorov, F.I. (1955). To the theory of total reflection. Dokl. Akad. Nauk SSSR, 105, 465.

Fedorych, O., Kruse, C., Ruban, A., Hommel, D., Bacher, G., and Kűmmel, T. (2012). Room temperature single photon emission from an epitaxially grown quantum dot. Appl. Phys. Lett., 100, 061114.

Fedutik, Y., Temnov, V.V., Schöps, O., and Woggon, U. (2007). Exciton–plasmon–photon conversion in plasmonic nanostructures. Phys. Rev. Lett., 99, 136802.

Fernández-Domínguez, A.I., Wiener, A., García-Vidal, F.J., Maier, S.A., Pendry, J.B. (2012a). Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys. Rev. Lett., 108, 106802.

Fernández-Domínguez, A.I., Luo, Y., Wiener, A., Pendry, J.B., Maier, S.A. (2012b). Theory of three-dimensional nanocrescent light harvesters. Nano Lett., 12, 5946.

Ferry, V.E., Polman, A., and Atwater, H.A. (2011). Modeling light trapping in nanostructured solar cells. ACS Nano, 5, 10055.

Fei, Z., Rodin, A.S., Andreev, G.O., Bao, W., McLeod, A.S., Wagner, M., Zhang, L.M., Zhao, Z., Thiemens, M. Dominguez, G., Fogler, M.M., Castro Neto, A.H., Lau, C.N., Keilmann, F., and Basov, D.N. (2012). Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487, 82.

Fleischmann, M., Hendra, P.J., and McQuillan, A.J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 26, 163.

Flissikowski, T., Hundt, A., Lowisch, M., Rabe, M., and Henneberger, F. (2001). Photon beats from a single semiconductor quantum dot. Phys. Rev. Lett., 86, 3172.

Fock, V.A. (1965). Electromagnetic Diffraction and Propagation Problems. Pergamon, New York.

Fomenko, V. and Nesbitt, D.J. (2008). Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression. Nano Lett., 8, 287.

Ford, G.W. and Weber, W.H. (1984). Electromagnetic interactions of molecules with metal surfaces, Phys. Rep., 113, 195.

Franson, J.D. (1989). Bell inequality for position and time. Phys. Rev. Lett., 62, 2205.

Frantsuzov, P., Kuno, M., Jankó, B., and Marcus, R.A. (2008). Universal emission intermittency in quantum dots, nanorods and nanowires. Nat. Phys., 4, 519.

Freedman, S.J. and Clauser, J.F. (1972). Experimental test of local hidden-variable theories. Phys. Rev. Lett., 28, 938.

Frenkel J.I. (1931). On the transformation of light into heat in solids. II. Phys. Rev., 37, 1276.

Frey, H.G., Witt, S., Felderer, K., and Guckenberger, R. (2004). High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. Phys. Rev. Lett., 93, 200801.

Galland, C., Ghosh, Y., Steinbrück, A., Sykora, M., Hollingsworth, J.A., Klimov, V.I., Htoon, H. (2011). Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature, 479, 203.

Gammon, D., Snow, E.S., Shanabrook, B.V., Katzer, D.S., Park, D. (1996). Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett., 76, 3005.

Gan, C.H. and Nash G.R. (2013). Broadband and efficient plasmonic control in the near-infrared and visible via strong interference of surface plasmon polaritons. Opt. Lett. 38, 4453.

(p.335) Gan, Q., Bartoli, F.J., and Kafafi, Z.H. (2013). Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Adv. Mater., 25, 2377.

Gan, X., Mak, K.F., Gao, Y., You, Y., Hatami, F., Hone, J., Heinz, T.F., and Englund, D. (2012). Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett., 12, 5626.

Gaponenko, S.V. (2010). Introduction to Nanophotonics. Cambridge University Press, New York.

Garcia, N., Ponizovskaya, E.V., and Xiao, J.Q. (2002). Zero permittivity materials: band gaps at the visible. Appl. Phys. Lett., 80, 1120.

García de Abajo, F.J. (2010). Optical excitations in electron microscopy. Rev. Mod. Phys., 82, 209.

García de Abajo, F.J. (2013). Graphene nanophotonics. Science, 339, 917.

Gasiorowicz, S. (1996). Quantum Physics, 2nd ed. John Wiley & Sons, New York.

Gather, M.C. (2012). A rocky road to plasmonic lasers. Nat. Photonics, 6, 708.

Gazzano, O., de Vasconcellos, S.M., Gauthron, K., Symonds, C., Bloch, J., Voisin, P., Bellessa, J., Lemaître, A., and Senellart, P. (2011). Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. Phys. Rev. Lett., 107, 247402.

Gazzano, O., de Vasconcellos, S.M., Gauthron, K., Symonds, C., Voisin, P., Bellessa, J., Lemaître, A., and Senellart, P. (2012). Single photon source using confined Tamm plasmon modes. Appl. Phys. Lett., 100, 232111.

Gérard, J.-M. and Gayral, B., (1999). Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol., 17, 2089.

Gérard, J.-M., Sermage, B., Gayral, B., Legrand, B., Costard, E., and Thierry-Mieg, V. (1998). Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett., 81, 1110.

Gerbshtein, Yu.M., Merkulov, I.A., and Mirlin, D.N. (1976). Energy transfer from luminescence centers to surface plasmons. JETP Lett., 22, 35.

Gersten, J. and Nitzan, A. (1981). Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys., 75, 1139.

Gersten, J.I. and Tzoar, N. (1974). Many-body effects in Auger deexcitation of atoms near solids. Phys. Rev. B, 9, 4038.

Gerton, J.M., Wade, L.A., Lessard, G.A., Ma, Z., and Quake, S.R. (2004). Tip-enhanced fluorescence microscopy at 10 nanometer resolution Phys. Rev. Lett., 93, 180801.

Gilchrist, A., Resch, K.J., White, A.G. (2007). Source of triggered entangled photon pairs? Nature, 445, E4.

Glass, A.M., Liao, P.F., Bergman, J.G., and Olson, D.H., (1980). Interaction of metal particles with adsorbed dye molecules: absorption and luminescence. Opt. Lett., 5, 368.

Glass, N.E., Maradudin, A.A., and Celli, V. (1983). Theory of surface-polariton resonances and field enhancements in light scattering from bigratings. J. Opt. Soc. Am., 73, 1240.

Goldhahn, R., Shokhovets, S., Cimalla, V., Spiess, L., Ecke, G., Ambacher, O., Furthmьller, J., Bechstedt, F., Lu, H., and Schaff, W.J. (2003). Dielectric function of “narrow” band gap InN. MRS Symp. Proc., 743, L5.9.1.

Golovashkin, A.I., Levchenko, I.S., Motulevich, G.P., and Shubin, A.A. (1967). Optical properties of indium. Sov. Phys. JEPT, 24, 1093 [transl. Zh. Eksp. Teor. Fis. 51, 1622 (1967)].

(p.336) Gómez, D.E., Vernon, K.C., Mulvaney, P., and Davis, T.J. (2010a). Surface plasmon mediated strong exciton–photon coupling in semiconductor nanocrystals. Nano Lett., 10, 274.

Gómez, D.E., Vernon, K.C., Mulvaney, P., and Davis, T.J. (2010b). Coherent superposition of exciton states in quantum dots induced by surface plasmons. Appl. Phys. Lett. 96, 073108.

Gómez Rivas, J., Janke, C., Bolivar, P.H. and Kurz, H. (2005). Transmission of THz radiation through InSb gratings of subwavelength apertures. Opt. Express, 13, 847.

Gómez Rivas, J., Kuttge, M., Kurz, H., Haring Bolivar, P., and Sánchez-Gil, J.A. (2006). Low-frequency active surface plasmon optics on semiconductors. Appl. Phys. Lett., 88, 082106.

Gontijo, I., Boroditsky, M., Yablonovitch, E., Keller, S., Mishra, U.K., and DenBaars, S.P. (1999). Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Phys. Rev. B, 60, 564.

Goos, F. and Hänchen, H. (1947). Ein neuer und fundamentaler Versuch zur Totalreflexion, Ann. Phys., 436, 333.

Gorodetski, Y., Niv, A., Kleiner, V., and Hasman, E. (2008). Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett., 101, 043903.

Govorov, A.O., Lee, J., and Kotov, N.A. (2007). Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles. Phys. Rev. B, 76, 125308.

Goy, P., Raymond, J.M., Gross, M., and S. Haroche. (1983). Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett., 50, 1903.

Gramotnev, D.K. and Pile, D.F.P. (2004). Single-mode subwavelength waveguide with channel plasmon polaritons in triangular grooves on a metal surface. Appl. Phys. Lett. 85, 6323.

Green, M.A. and Pillai, S. (2012). Harnessing plasmonics for solar cells. Nat. Photonics, 6, 130.

Greffet, J.-J., Carminati, R., Joulain, K., Milet, J.-P., Mainguy, S., and Chen, Y. (2002). Coherent emission of light by thermal sources. Nature, 416, 61.

Greffet, J.J., Laroche, M. and Marquier, F. (2010). Impedance of a nanoantenna and a single quantum emitter. Phys. Rev. Lett., 105, 117701.

Grigorenko, A.N., Polini, M., and Novoselov, K.S. (2012). Graphene plasmonics. Nat. Photonics, 6, 749.

Gross E.F., Permogorov, S.A., and Razbirin, B.S. (1971). Annihilation of excitons and exciton–phonon interaction. Sov. Phys. Usp., 14, 104 [transl. Usp. Fiz. Nauk 103, 431].

Grundmann, M. and Bimberg, D. (1988). Anisotropy effects on excitonic properties in realistic quantum wells. Phys. Rev. B, 38, R13486.

Grundmann, M., Christen, J., Ledentsov, N.N., Böhrer, J., Bimberg, D. Ruvimov S.S., Werner, P., Richter, U., Gösele, U., Heydenreich, J., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Kop’ev, P.S., and Alferov, Zh. I. (1995a). Ultranarrow luminescence lines from single quantum dots. Phys. Rev. Lett., 74, 4043.

Grundmann, M., Stier, O., and Bimberg, D. (1995b). InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B, 52, 11969.

Gueroui, Z. and Libchaber, A. (2004). Single-molecule measurements of gold-quenched quantum dots. Phys. Rev. Lett., 93, 166108.

(p.337) Gunshor, R.L., Kolodziejski, L.A., Otsuka, N., Chang, S.K., and Nurmikko, A.V. (1986). (100) and (111) oriented superlattices of (Cd,Mn)Te on (100)GaAs. J. Vac. Sci. Technol. A, 4, 2117.

Gusynin, V.P., Sharapov, S.G., and Carbotte J.P. (2006). Unusual microwave response of dirac quasiparticles in graphene. Phys. Rev. Lett., 96, 256802.

Guzelian, A.A., Banin, U., Kadavanich, A.V., Peng, X., and Alivisatos, A.P. (1996). Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett., 69, 1432.

Hagemann, H.J., Gudat, W., and Kunz, C. (1975). Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J. Opt. Soc. Am., 65, 742.

Hahn, T. (ed.) (1983). International Tables for Crystallography, Vol. A: Space Group Symmetry. Reidel, Dordrecht.

Hamann, H.F., Kuno, M., Gallagher, A., and Nesbitt, D.J. (2001). Molecular fluorescence in the vicinity of a nanoscopic probe. J. Chem. Phys., 114, 8596.

Hanbury Brown, R. and Twiss, R.Q. (1956). A test of a new type of stellar interferometer on Sirius. Nature, 178, 1046.

Hargart, F., Kessler, C.A., Schwarzbäck, T., Koroknay, E., Weidenfeld, S., Jetter, M., and Michler, P. (2013). Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter. Appl. Phys. Lett., 102, 011126.

Harrison, W.A. (1966). Parallel-band effects in interband optical absorption. Phys. Rev., 147, 467.

Harrison, W.A. (1973). Bond-orbital model and the properties of tetrahedrally coordinated solids. Phys. Rev. B, 8, 4487.

Hasselbeck, M.P., Schlie, L.A., and Stalnaker, D. (2004). Coherent plasmons in InSb. Appl. Phys. Lett., 85, 6116.

Haug, H. and Koch, S.W. (1990). Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, Singapore.

He, Y.-M., He, Y., Wei, Y.-J., Wu, D., Atatüre, M., Schneider, C., Höfling, S., Kamp, M., Lu, C.-Y., and Pan, J.-W. (2013). On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol., 8, 213.

Hecker, N.E., Höpfel, R.A., and Sawaki, N. (1998). Enhanced light emission from a single quantum well located near a metal coated surface. Physica E, 2, 98.

Hecker, N.E., Höpfel, R.A., Sawaki, N., Maier, T., and Strasser, G. (1999). Surface plasmon-enhanced photoluminescence from a single quantum well. Appl. Phys. Lett., 75, 1577.

Heeg, S., Fernandez-Garcia, R., Oikonomou, A., Schedin, F., Narula, R., Maier, S.A., Vijayaraghavan, A., and Reich, S. (2013). Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene. Nano Lett., 13, 301.

Heine, V. (1960). Group Theory in Quantum Mechanics. Pergamon Press, Oxford.

Hergert, W. and Wriedt, T. (eds.) (2012). The Mie Theory, Basics and Applications. Springer Series in Optical Sciences, Vol. 169. Springer-Verlag, Berlin.

Henry, C.H. (1980). Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys., 51, 4494.

Hermosa, N., Nugrowati, A.M., Aiello, A., and Woerdman, J.P. (2011). Spin Hall effect of light in metallic reflection. Opt. Lett., 36, 3200.

(p.338) Hess, O., Pendry, J.B., Maier, S.A., Oulton, R.F., Hamm, J.M., and Tsakmakidis, K.L. (2012). Active nanoplasmonic metamaterials. Nat. Mater., 11, 573.

Hill, M.T. (2012). Metallic and plasmonic nano-lasers. In Advances in Semiconductor Lasers. Series on Semiconductors and Semimetals, Vol. 86, edited by J.J. Coleman, A.C. Bryce, and C. Jagadish, p. 335. Elsevier, Amsterdam.

Hill, M.T., Marell, M., Leong, E.S.P., Smalbrugge, B., Zhu, Y.C., Sun, M.H., Veldhoven, P.J.V., Geluk E.J., Karouta, F., Oei, Y.S., Nötzel, R., Ning, C.Z., and Smit, M.K. (2009). Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express, 17, 11107.

Hill, M.T., Oei, Y.-S., Smalbrugge, B., Zhu, Y., de Vries, T., van Veldhoven, P.J., van Otten, F.W.M., Eijkemans, T.J., Turkiewicz, J.P., de Waardt, H., Geluk, E.J., Kwon, S.H., Lee, Y.H., Nötzel, R., and Smit, M.K. (2007). Lasing in metallic-coated nanocavities. Nat. Photonics, 1, 589.

Hines, M.A. and Guyot-Sionnest, P.J. (1998). Bright UV–blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B, 102, 3655.

Hobson, P.A., Barnes, W.L., Lidzey, D.G., Gehring, G.A., Whittaker, D.M., Skolnick, M.S., and Walker, S. (2002). Strong exciton–photon coupling in a low-Q all-metal mirror microcavity. Appl. Phys. Lett. 81, 3519.

Högele, A., Seidl, S., Kroner, M., Karrai, K., Warburton, R.J., Gerardot, B.D., and Petroff, P.M. (2004). Voltage-controlled optics of a quantum dot. Phys. Rev. Lett., 93, 217401.

Hohng, S. and Ha, T. (2004). Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc., 126, 1324.

Hollingsworth, J.A. and Klimov, V.I. (2010). “Soft” chemical synthesis and manipulation of semiconductor nanocrystals. In Nanocrystal Quantum Dots, edited by V.I. Klimov, 2nd ed., p. 1. CRC Press, Boca Raton, FL.

Holmes M.J., Choi K., Kako S., Arita M., and Arakawa Y. (2014). Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett., 14, 982.

Hong, S.-H., Cho, C.-Y., Lee, S.-J., Yim, S.-Y., Lim, W., Kim, S.-T., and Park, S.-J. (2013). Localized surface plasmon-enhanced near-ultraviolet emission from InGaN/GaN light-emitting diodes using silver and platinum nanoparticles. Opt. Express, 21, 3138.

Höpfel, R.A., Vass, E., and Gornik, E. (1982).Thermal excitation of two-dimensional plasma oscillations. Phys. Rev. Lett., 49, 1667.

Hopfield, J.J. (1960). Fine structure in the optical absorption edge of anisotropic crystals. J. Phys. Chem. Solids, 15, 97.

Hopfield, J.J. and Thomas, D.G. (1963). Theoretical and experimental effects of spatial dispersion on the optical properties of crystals. Phys. Rev., 132, 563.

Huang, F.M., Festy, F., and Richards, D. (2005). Tip-enhanced fluorescence imaging of quantum dots. Appl. Phys. Lett., 87, 183101.

Huang, J., Tung, K.H.P., Deng L., Xiang, N., Dong, J., Danner, A.J., and Teng, J. (2013). Surface plasmon enhanced photoluminescence in gold capped InGaAs quantum well nanodisk array. Opt. Mater. Express, 3, 2003.

Hümmer, T., García-Vidal, F.J., Martín-Moreno, L., and Zueco, D. (2013). Weak and strong coupling regimes in plasmonic QED. Phys. Rev. B., 87, 115419.

Hwang, E.H. and Das Sarma, S. (2007). Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B, 75, 205418.

Imbert, C. (1972). Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam. Phys. Rev. D, 5, 787.

(p.339) Ivanov, S., Toropov, A., Sorokin, S., Shubina, T., Lebedev, A., Kop’ev, P., Alferov, Zh., Lugauer, H.-J., Reuscher, G., Keim, M., Fischer, F., Waag, A., and Landwehr, G. (1998). ZnSe-based blue-green lasers with a short-period superlattice waveguide. Appl. Phys. Lett., 73, 2104.

Ivchenko, E.L. (1982). Spatial dispersion effects in the exciton resonance region. In Excitons, edited by E.I. Rashba and M.D. Sturge, p. 141. North Holland, Amsterdam.

Ivchenko, E.L. (2004). Optical Spectroscopy of Semiconductor Nanostructures. Springer, Berlin.

Ivchenko, E.L. and Pikus, G.E. (1997). Superlattices and Other Heterostructures. Springer Series in Solid-State Sciences, Vol. 110, 2nd edn. Springer-Verlag, Berlin.

Ivchenko, E.L., Kaminski, A.Y., and Aleiner, I.L. (1993). Exchange splitting of excitonic levels in types I and II superlattices. JETP, 77, 609.

Ivchenko, E.L., Toropov, A.A., and Voisin, P. (1998). Interface optical anisotropy in a heterostructure with different cations and anions. Phys. Solid State, 40, 1748.

Jackson, J.D. (1999). Classical Electrodynamics, 3rd ed. John Wiley & Sons, New York.

Jarjour, A.F., Taylor, R.A., Oliver, R.A., Kappers, M.J., Humphreys, C.J., and Tahraoui, A. (2007). Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot. Appl. Phys. Lett., 91, 052101.

Javaux, C., Mahler, B., Dubertret, B., Shabaev, A., Rodina, A.V., Efros, Al.L., Yakovlev, D. R., Liu, F., Bayer, M., Camps, G., Biadala, L., Buil, S., Quelin, X., and Hermier, J.-P. (2013). Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nat. Nanotechnol., 8, 206.

Jenkins, D.W. and Dow, J.D. (1989). Electronic structures and doping of InN, InxGa1−xN, and InxAl1−xN. Phys. Rev. B, 39, 3317.

John, S. (2012). Why trap light? Nat. Mater., 11, 997.

Johnson, P.B. and Christy, R.W. (1972). Optical constants of the noble metals. Phys. Rev. B, 6, 4370.

Johnson, P.B. and Christy, R.W. (1974). Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B, 9, 5056.

Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Ron Shen, Y., and Wang, F. (2011). Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 6, 630.

Jun, Y.C., Reno. J., Ribaudo. T., Shaner. E., Greffet. J.-J., Vassant. S., Marquier. F., Sinclair, M., and Brener, I. (2013). Epsilon-near-zero strong coupling in metamaterial–semiconductor hybrid structures. Nano Lett., 13, 5391.

Juska, G., Dimastrodonato, V., Mereni, L.O., Gocalinska, A., and Pelucchi, E. (2013). Towards quantum-dot arrays of entangled photon emitters. Nat. Photonics, 7, 527.

Kako, S., Santori, C., Hoshino, K., Götzinger, S., Yamamoto, Y., and Arakawa, Y. (2006). A gallium nitride single-photon source operating at 200 K. Nat. Mater., 5, 887.

Kalden, J., Tessarek, C., Sebald, K., Figge, S., Kruse, C., Hommel, D., and Gutowski, J., (2010). Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K. Nanotechnology, 21, 015204.

Kaliteevski, M., Iorsh, I., Brand, S., Abram, R.A., Chamberlain, J.M., Kavokin, A.V., and Shelykh, I.A. (2007). Tamm plasmon polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B, 76, 165415.

Kamada, H., Gotoh, H., Temmyo, J., Takagahara, T., and Ando, H. (2001). Exciton Rabi oscillation in a single quantum dot. Phys. Rev. Lett., 87, 246401.

(p.340) Kane, E.O. (1957). Band structure of indium antimonide. Phys. Chem. Solids, 1, 249.

Kane, E.O. (1966). The k·p method. In Semiconductors and Semimetals, Vol. 1, edited by R.K.Willardson and A.C. Beer, p. 75. Academic Press, New York.

Kao, C.C. and Conwell, E.M. (1976). Surface plasmon dispersion of semiconductors with depletion or accumulation layers. Phys. Rev. B, 14, 2464.

Kavokin, A.V., Baumberg, J.J., Malpuech, G., and Laussy, F.P. (2007). Microcavities. Oxford University Press, Oxford.

Kavokin, A.V., Shelykh, I.A., and Malpuech G. (2005). Lossless interface modes at the boundary between two periodic dielectric structures. Phys. Rev. B, 72, 233102.

Kauranen, M. and Zayats, A.V. (2012). Nonlinear plasmonics. Nat. Photonics, 6, 737.

Kaygorodov, V.A., Sedova, I.V., Sorokin, S.V., Sitnikova, A.A., Nekrutkina, O.V., Shubina, T.V., Toropov, A.A., Sorokin, V.S., and Ivanov S.V. (2002). Molecular beam epitaxy of low-strained CdSe/CdMgSe heterostructures on InAs(001) substrates. Phys. Stat. Sol. B, 229, 19.

Kazarinov, R.F. and Suris, R.A. (1971). Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semicond., 5, 707. [transl. Fiz. Tekh. Poluprovod. 5, 797 (1971)].

Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem., 107, 668.

Kessler, J. (1985). Polarized Electrons. Springer Series on Atomic, Optical, and Plasma Physics, Vol. 1. Springer, Berlin.

Khajavikhan, M., Simic, A, Katz, M, Lee, J.H., Slutsky, B., Mizrahi, A., Lomakin, V., and Fainman, Y. (2012). Thresholdless nanoscale coaxial lasers. Nature, 482, 204.

Khon, E., Mereshchenko, A., Tarnovsky, A.N, Acharya, K., Klinkova, A., Hewa-Kasakarage, N.N., Nemitz I., and Zamkov, M. (2011). Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites. Nano Lett., 11, 1792.

Kim, B.-H., Cho, C.-H., Mun, J.-S., Kwon, M.-K., Park, T.-Y., Kim, J. S., Byeon, C.C., Lee, J., and Park, S.-J. (2008). Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons. Adv. Mater., 20, 3100.

Kim, J., Son, H., Cho, D.J., Geng, B., Regan, W., Shi, S., Kim, K., Zettl, A., Shen, Y.-R., and Wang, F. (2012). Electrical control of optical plasmon resonance with graphene. Nano Lett. 12, 5598.

Kim, Y.S., Leung, P.T., and George, T.F. (1988). Classical decay rates for molecules in the presence of a spherical surface: a complete treatment. Surf. Sci., 195, 1.

Kinkhabwala, A., Yu, Z., Fan, S., Avlasevich, Yu., Müllen, K., and Moerner, W.E. (2009). Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics, 3, 654.

Kirtley, J., Theis, T.N., and Tsang, J.C. (1981). Light emission from tunnel junctions on gratings. Phys. Rev. B, 24, 5650.

Kitaev, Yu.E. and Tronc, P. (2001). Exact symmetries of electron states and optical selection rules in wurtzite-based nanostructures. Phys. Rev. B, 64, 205312.

Kitson, S.C., Barnes, W.L., and Sambles, J.R. (1996). Full photonic band gap for surface modes in the visible. Phys. Rev. Lett., 77, 2670.

Kittel, C. (1963). Quantum Theory of Solids. Wiley, New York.

Kittel, C. (1996). Introduction to Solid State Physics, 7th edn. Wiley, New York.

Kleppner, D. (1981). Inhibited spontaneous emission. Phys. Rev. Lett., 47, 233.

(p.341) Klingshirn, C., Fallert, J., Zhou, H., Sartor, J., Thiele, C., Maier-Flaig, F., Schneider, D., and Kalt, H. (2010). 65 years of ZnO research – old and very recent results. Phys. Stat. Sol. B, 247, 1424.

Knap, W., Lusakowski, J., Parenty, T., Bollaert, S., Cappy, A., Popov, V.V., and Shur, M.S. (2004). Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors. Appl. Phys. Lett., 84, 2331.

Knox, R.S. (1963). Theory of Excitons. Academic Press, New York.

Knox, R.S. and Gold, A. (1964). Symmetry in the Solid State. W.A. Benjamin, Inc., New York.

Kochereshko, V.P., Mikhailov, G.V., and Ural’tsev, I.N. (1983). Effects of magnetic field inversion on polaritons. Sov. Phys. Solid State, 25, 439 [transl. Fiz. Tverd. Tela (Leningrad), 25, 769 (1983)].

Köhler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A., Iotti, R.C., and Rossi, F. (2002). Terahertz semiconductor heterostructure laser. Nature, 417, 156.

Kolesov, R., Grotz, B., Balasubramanian, G., Stöhr, R.J., Nicolet, A.A.L., Hemmer, P.R., Jelezko, F., and Wrachtrup, J. (2009). Wave–particle duality of single surface plasmon polaritons. Nat. Phys., 5, 470.

Komissarova, T.A., Shakhov, M.A., Jmerik, V.N., Shubina, T.V., Parfeniev, R.V., Ivanov, S.V., Wang, X., and Yoshikawa, A. (2009). Abnormal magnetic-field dependence of Hall coefficient in InN epilayers. Appl. Phys. Lett., 95, 012107.

Konda, R.B., Mundle, R., Mustafa, H., Bamiduro, O., Pradhan, A.K., Roy, U.N., Cui, Y. and Burger, A. (2007). Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes. Appl. Phys. Lett., 91, 191111.

Koppens, F.H.L., Chang, D.E., and García de Abajo, F.J. (2011). Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett., 11, 3370.

Koster, G.F. (1957). Space groups and their representations. In Solid State Physics, Vol. 5, edited by F. Seitz and D. Turnbull, p. 173. Academic Press, New York.

Koster, G.F., Dimmock, J.O., Wheeler, R.G., and Statz, H. (1963). Properties of the Thirty-Two Point Groups. MIT, Cambridge, MA.

Koyama, R.Y., Smith, N.V., and Spicer, W.E. (1973). Optical properties of indium. Phys. Rev. B, 8, 2426.

Kramer, A., Trabesinger, W., Hecht, B., and Wild, U.P. (2002). Optical near-field enhancement at a metal tip probed by a single fluorophore. Appl. Phys. Lett., 80, 1652.

Krasavin, A.V., Vo, T.P., Dickson, W., Bolger, P.M., and Zayats, A.V. (2011). All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain. Nano Lett., 11, 2231.

Krasheninnikov, M.V. and Chaplik, A.V. (1980). Instabilities of two-dimensional plasma waves. Sov. Phys. JETP, 52, 279 [transl. Zh. Eksp. Teor. Fiz. 79, 555 (1980)].

Krauss, T.D. and Peterson, J.J. (2012). Quantum dots: a charge for blinking. Nat. Mater., 11, 14.

Krebs, O. and Voisin P. (1996). Giant optical anisotropy of semiconductor heterostructures with no common atom and the quantum-confined Pockels effect. Phys. Rev. Lett., 77, 1829.

Kreibig, U. and Vollmer, M. (1995). Optical Properties of Metal Clusters. Springer, Berlin.

Kretschmann, E. (1971). Die bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen. Z. Phys., 241, 313.

(p.342) Kühn, S., Håkanson, U., Rogobete, L., and Sandoghdar, V. (2006). Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett., 97, 017402.

Kulakovskii, V.D., Bacher, G., Weigand, R., Kummell, T., Forchel, A., Borovitskaya, E., Leonardi, K., and Hommel, D. (1999). Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots. Phys. Rev. Lett., 82, 1780.

Kumar, S., Chan, C.W.I., Hu, Q., and Reno, J.L. (2011). A 1.8-THz quantum cascade laser operating significantly above the temperature of ω‎/kB. Nat. Phys., 7, 166.

Kumar, S., Hu, Q., and Reno, J.L. (2009). 186 K operation of terahertz quantum-cascade lasers based on a diagonal design. Appl. Phys. Lett., 94, 131105.

Kumar, S., Huck, A., and Andersen, U.L. (2013). Efficient coupling of a single diamond color center to propagating plasmonic gap modes. Nano Lett., 13, 1221.

Kuno, M., Fromm, D.P., Hamann, H.F., Gallagher, A., and Nesbitt, D.J. (2001). “On”/“off” fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys., 115, 1028.

Kurtsiefer, C., Mayer, S., Zarda, P., and Weinfurter, H. (2000). Stable solid-state source of single photons. Phys. Rev. Lett., 85, 290.

Kuwata, H., Tamaru, H., Esumi, K., and Miyano, K. (2003). Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation. Appl. Phys. Lett., 83, 4625.

Kwiat, P.G., Mattle, K., Weinfurter, H., and Zeilinger, A. (1995). New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett., 75, 4337.

Kwon, M.-K., Kim, J.-Y., Kim, B.-H., Park, I.-K., Cho, C.-Y., Byeon, C. C., and Park, S.-J. (2008). Surface-plasmon-enhanced light-emitting diodes. Adv. Mater., 20, 1253.

Labeau, O., Tamarat, P., and Lounis, B. (2003). Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett., 90, 257404.

Lal, N.N., Zhou H., Hawkeye, M., Sinha, J.K., Bartlett, P.N., Amaratunga, G.A.J., and Baumberg, J.J. (2012). Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates. Phys. Rev. B, 85, 245318.

Lambe, J. and McCarthy, S.J. (1976). Light emission from inelastic electron tunneling. Phys. Rev. Lett., 37, 923.

Lambrecht, W.R.L., Rodina, A.V., Limpijumnong, S., Segall, B., and Meyer, B.K. (2002). Valence-band ordering and magneto-optic exciton fine structure in ZnO. Phys. Rev. B, 65, 075207.

Lampert, M.A. (1958). Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys. Rev. Lett., 1, 450.

Landau, L.D. and Lifshitz, E.M. (1977). Quantum Mechanics, 3rd edn. Pergamon, Oxford.

Landau, L.D. and Lifshitz, E.M. (1984). Electrodynamics of Continuous Media, 2nd edn. Pergamon, Oxford.

Landin, L., Miller, M.S., Pistol, M.-E., Pryor, C.E., and Samuelson, L. (1998). Optical studies of individual InAs quantum dots in GaAs: few-particle effects. Science, 280, 262.

Laskowski, R. and Christensen, N.E. (2006). Ab initio calculation of excitons in ZnO. Phys. Rev. B, 73, 045201.

Lee, D., Zucker, J.E., Johnson, A.M., Feldman, R.D., and Austin R.F. (1990). Room-temperature excitonic saturation in CdZnTe/ZnTe quantum wells. Appl. Phys. Lett. 57, 1132.

(p.343) Lee, J.-Y. and Peumans, P. (2010). The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. Opt. Express, 18, 10078.

Lee, S.-Y., Lee, I.-M., Park, J., Oh, S., Lee, W., Kim, K.-Y., and Lee, B. (2012). Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons. Phys. Rev. Lett., 108, 213907.

Lecante, J., Ballu, Y., and Newns, D.M. (1977). Electron–surface plasmon scattering using a parabolic nontouching trajectory. Phys. Rev. Lett., 38, 36.

Le Ru, E. and Etchegoin, P. (2009). Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects. Elsevier, Amsterdam.

Leung, P.T., Kim, Y.S., and George, T.F. (1989). Decay of molecules at corrugated thin metal films. Phys. Rev. B, 39, 9888.

Leyder, C., Romanelli, M., Karr, J.P., Giacobino, E., Liew, T.C.H., Glazov, M.M., Kavokin, A.V., Malpuech, G., and Bramati, A. (2007). Observation of the optical spin Hall effect. Nat. Phys., 3, 628.

Leymarie, J., Monier, C., Vasson, A., Vasson, A.-M., Leroux, M., Courboulès, B., Grandjean, N., Deparis, C., and Massies, J. (1995). Optical investigations in (In,Ga)As/GaAs quantum wells grown by metal–organic molecular beam epitaxy, Phys. Rev. B, 51, 13274.

Li, D. and Stockman, M.I. (2013). Electric spaser in the extreme quantum limit. Phys. Rev. Lett., 110, 106803.

Li, L., Li, T., Wang, S.M., Zhang, C., and Zhu, S.N. (2011). Plasmonic Airy beam generated by in-plane diffraction. Phys. Rev. Lett., 107, 126804.

Li, M., Sun, F.G., Wagoner, G.A., Alexander, M., and Zhang, X.-C. (1995). Measurement and analysis of terahertz radiation from bulk semiconductors. Appl. Phys. Lett., 67, 25.

Li, M.-Z., Li, L., Zhang, X.-S., and Xu, J.-P. (2013). The slow light in the closed-packed face-centered cubic photonic crystal: characteristics and application design. Opt. Quantum Electron., 45, 1107.

Li, Z.Q., Henriksen, E.A., Jian, Z., Hao, Z., Martin, M.C., Kim, P., Stormer, H.L., Basov, D.N. (2008). Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys., 4, 532.

Lidzey, D.G., Bradley, D.D.C., Virgili, T., Armitage, A., Skolnick, M.S., and Walker, S. (1999). Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett., 82, 3316.

Lin, J., Mueller, J.P.B., Wang, Q., Yuan, G., Antoniou, N., Yuan, X.-C., and Capasso, F. (2013). Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331.

Link, S. and El-Sayed, M.A. (2003). Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem., 54, 331.

Lisyansky, A.A., Nechepurenko, I.A., Dorofeenko, A.V., Vinogradov, A.P., and Pukhov, A.A. (2011). Channel spaser: coherent excitation of one-dimensional plasmons from quantum dots located along a linear channel. Phys. Rev. B, 84, 153409.

Liu, W., Miroshnichenko, A.E, Neshev, D.N., and Kivshar, Y.S. (2012). Broadband unidirectional scattering by magneto-electric core–shell nanoparticles. ACS Nano, 6, 5489.

Llopis, A., Lin, J. Pereira, S.M.S., Trindade, T., Martins, M.A., Watson, I.M., Krokhin, A.A., and Neogi, A. (2013). Electrostatic mechanism of strong enhancement of light emitted by semiconductor quantum wells. Phys. Rev. B, 87, 201304(R).

(p.344) Losurdo, M., Bruno, G., Kim, T.-H., Choi, S., and Brown, A. (2006). Study of the dielectric function of hexagonal InN: impact of indium clusters and of native oxide. Appl. Phys. Lett., 88, 121928.

Loudon, R. (2000). The Quantum Theory of Light, 3rd edn. Oxford University Press, Oxford.

Lounis, B. and Moerner, W.E. (2000). Single photons on demand from a single molecule at room temperature. Nature, 407, 491.

Low, T. and Avouris, P. (2014). Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 8, 1086.

Löwdin, P.O. (1951). A note on the quantum-mechanical perturbation theory. J. Chem. Phys., 19, 1396.

Lozano, G., Louwers, D.J., Rodríguez, S.R.K., Murai, S., Jansen, O.T.A., Verschuuren, M.A., and Gómez Rivas J. (2013). Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light Sci Appl., 2, e66.

Lozykowski H.J. and Shastri, V.K. (1991). Excitonic and Raman properties of ZnSe/Zn1−xCdxSe strained-layer quantum wells. J. Appl. Phys. 69, 3235.

Lu, Y.-J., Kim, J., Chen, H.-Y., Wu, C., Dabidian, N., Sanders, C.E., Wang, C.-Y., Lu, M.-Y., Li, B.-H., Qiu, X., Chang, W.-H., Chen, L.-J., Shvets, G., Shih, C.-K., and Gwo, S. (2012). Plasmonic nanolaser using epitaxially grown silver film. Science, 337, 450.

Luque, A. (2011). Will we exceed 50% efficiency in photovoltaics? J. Appl. Phys. 110, 031301.

Luttinger, J.M. (1956). Quantum theory of cyclotron resonance in semiconductors: general theory. Phys. Rev. B, 102, 1030.

Luttinger, J.M. and Kohn, W. (1955). Motion of electrons and holes in perturbed periodic fields. Phys. Rev., 97, 869.

Ma, R.M., Oulton, R.F., Sorger, V.J., Bartal, G., and Zhang, X. (2011). Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater., 10, 110.

Ma, X.-S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R. and Zeilinger, A. (2012). Quantum teleportation over 143 kilometres using active feed-forward. Nature, 489, 269.

Maas, R., Parsons, J., Engheta, N., and Polman, A. (2013). Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photonics, 7, 907.

MacDonald, K.F. and Zheludev, N.I. (2010). Active plasmonics: current status. Laser Photonics Rev., 4, 562.

Madelung, O. (1964). Physics of III–V Compounds. John Wiley & Sons, New York.

Mahboob, I., Veal, T.D., McConville, C.F., Lu, H., and Schaff, W.J. (2004). Intrinsic electron accumulation at clean InN surfaces. Phys. Rev. Lett., 92, 036804.

Mahler, B., Spinicelli, P., Buil, S., Quelin, X., Hermier, J.-P., and Dubertret, B. (2008). Towards non-blinking colloidal quantum dots. Nat. Mater., 7, 659.

Maialle, M.Z., de Andrada e Silva, E.A., and Sham, L.J. (1993). Exciton spin dynamics in quantum wells. Phys. Rev. B, 47, 15776.

Maier, S.A. (2007). Plasmonics: Fundamentals and Applications. Springer-Verlag, Berlin.

Maier, S.A. and Atwater, H.A. (2005). Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys., 98, 011101.

Mak, K.F., Sfeir, M.Y., Wu, Y., Lui, C.H., Misewich, J.A., and Heinz, T.F. (2008). Measurement of the optical conductivity of graphene. Phys. Rev. Lett., 101, 196405.

(p.345) Marie, X., Urbaszek, B., Krebs, O., and Amand, T. (2008). Exciton spin dynamics in semiconductor quantum dots. In Spin Physics in Semiconductors, Springer Series in Solid-State Sciences, Vol. 157, edited by M.I. Dyakonov, p. 91. Springer-Verlag, Berlin.

Marty, R., Mlayah., A, Arbouet, A., Girard, C., and Tripathy, S. (2013). Plasphonics: local hybridization of plasmons and phonons. Opt. Express, 21, 4551.

Marzin, J.-Y., Gérard, J.-M., Izraël, A., Barrier, D., and Bastard, G. (1994). Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett., 73, 716.

Masuo, S., Naiki, H., Machida, S., and Itaya, A. (2009). Photon statistics in enhanced fluorescence from a single CdSe/ZnS quantum dot in the vicinity of silver nanoparticles. Appl. Phys. Lett., 95, 193106.

Matthews, J.W. and Blakeslee, A.S. (1974). Defects in epitaxial multilayers. I. Misfit dislocations. J. Cryst. Growth, 27, 118.

Maksymov, I.S., Miroshnichenko, A.E., and Kivshar, Y.S. (2012). Plasmonic nanoantennas for efficient control of polarization-entangled photon pairs. Phys. Rev. A., 86, 011801(R).

Maxwell-Garnett, J.C. (1904). Colours in metal glasses and in metallic films. Phil. Trans. R. Soc. London, A, 203, 385.

McAlister, A.J. and Stern, E.A. (1963). Plasma resonance absorption in thin metal films. Phys. Rev., 132, 1599.

Meier, F. and Zakharchenya, B.P. (eds.) (1984). Optical Orientation. North Holland, Amsterdam.

Meier, M. and Wokaun, A. (1983). Enhanced fields on large metal particles: dynamic depolarization. Opt. Lett., 8, 581.

Merano, M., Aiello, A., ‘t Hooft, G.W., van Exter, M.P., Eliel, E.R., and Woerdman, J.P. (2007). Observation of Goos–Hänchen shifts in metallic reflection. Opt. Express, 15, 15928.

Mertens, H., Koenderink, A.F., Polman, A. (2007). Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model. Phys. Rev. B, 76, 115123.

Mertens, H., Verhoeven, J., Polman, A., and Tichelaar, F.D. (2004). Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon. Appl. Phys. Lett., 85, 1317.

Meziani, Y.M., Handa, H., Knap, W., Otsuji, T., Sano, E., Popov, V.V., Tsymbalov, G.M., Coquillat, D., and Teppe, F. (2008). Room temperature terahertz emission from grating coupled two-dimensional plasmons. Appl. Phys. Lett., 92, 201108.

Meziani, Y.M., Otsuji, T., Hanabe, M., Ishibashi, T., and Uno, T. (2007). Room temperature generation of terahertz radiation from a grating-bicoupled plasmon-resonant emitter: size effect. Appl. Phys. Lett., 90, 061105.

Michler, P. (ed.) (2009). Single Semiconductor Quantum Dots. Nanoscience and Nanotechnology Series, Springer-Verlag, Berlin.

Michler, P., Imamoğlu, A., Mason, M.D., Carson, P.J., Strouse, G.F., and Buratto, S.K. (2000a). Quantum correlation among photons from a single quantum dot at room temperature. Nature, 406, 968.

Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P.M., Zhang, L., Hu, E., and Imamoğlu, A. (2000b). A quantum dot single-photon turnstile device. Science, 290, 2282.

(p.346) Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 25, 377.

Mikhailov, S.A. and Ziegler, K. (2007). New electromagnetic mode in graphene. Phys. Rev. Lett., 99, 016803.

Miller, D.A.B., Chemla, D.S., Damen, T.C., Gossard, A.C., Wiegmann, W., Wood, T.H., and Burrus, C.A. (1985a). Electric field dependence of optical absorption near the band gap of quantum-well structures. Phys. Rev. B, 32, 1043.

Miller, R.C., Gossard, A.C., Sanders, G.D., Chang, Y.-C., and Schulman, J.N. (1985b). New evidence of extensive valence-band mixing in GaAs quantum wells through excitation photoluminescence studies. Phys. Rev B, 32, R8452.

Miller, S.C. and Love, W.F. (1967). Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups. Pruett, Boulder, CO.

Min, B., Ostby, E., Sorger, V., Ulin-Avila, E., Yang, L., Zhang, X., and Vahala, K. (2009). High-Q surface plasmon polariton whispering-gallery microcavity. Nature, 457, 455.

Mireles, F. and Ulloa, S.E. (1999). Ordered Hamiltonian and matching conditions for heterojunctions with wurtzite symmetry: GaN/AlxGa1−xN quantum wells. Phys. Rev. B, 60, 13659.

Mireles, F. and Ulloa, S.E. (2000). Strain and crystallographic orientation effects on the valence subbands of wurtzite quantum wells. Phys. Rev. B, 62, 2562.

Mizrahi, A., Lomakin, V., Slutsky, B.A., Nezhad, M.P., Feng, L., and Fainman, Y. (2008). Low threshold gain metal coated laser nanoresonators. Opt. Lett., 33, 1261.

Mizuochi, N., Makino, T., Kato, H., Takeuchi, D., Ogura, M., Okushi, H., Nothaft, M., Neumann, P., Gali, A., Jelezko, F., Wrachtrup, J., and Yamasaki, S. (2012). Electrically driven single-photon source at room temperature in diamond. Nat. Photonics, 6, 299.

Mohan, A., Felici, M., Gallo, P., Dwir, B., Rudra, A., Faist, J., and Kapon, E. (2010). Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nat. Photonics, 4, 302.

Mönch, W. (2001). Semiconductor Surfaces and Interfaces. Series on Surface Science, 3rd edn. Springer-Verlag, Berlin.

Monemar, B., Paskov, P.P., Bergman, J.P., Toropov, A.A., and Shubina, T.V. (2007). Recent developments in the III-nitride materials. Phys. Stat. Sol. B, 244, 1759.

Monemar, B., Paskov, P.P., Bergman, J.P., Toropov, A.A., Shubina, T.V., Malinauskas, T., and Usui, A. (2008). Recombination of free and bound excitons in GaN. Phys. Stat. Sol. B, 245, 1723.

Mooradian, A. and Wright, G.B. (1966). Observation of the interaction of plasmons with longitudinal optical phonons in GaAs. Phys. Rev. Lett., 16, 999.

Morawitz, H. and Philpott, M.K. (1974). Coupling of an excited molecule to surface plasmons. Phys. Rev. B, 10, 4863.

Moreau, E., Robert, I., Gérard, J.M., Abram, I., Manin, L., and Thierry-Mieg, V. (2001). Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett., 79, 2865.

Moreland, J., Adams, A., and Hansma, P.K. (1982). Efficiency of light emission from surface plasmons. Phys. Rev. B, 25, 2297.

Moreno, E., García-Vidal, F.J., Erni, D., Cirac, J.I., and Martín-Moreno, L. (2004). Theory of plasmon-assisted transmission of entangled photons. Phys. Rev. Lett., 92, 236801.

Moskovits, M. (1985). Surface-enhanced spectroscopy. Rev. Mod. Phys., 57, 783.

Mott, N.F. (1938). Conduction in polar crystals. II. The conduction band and ultra-violet absorption of alkali-halide crystals. Trans. Faraday Soc., 34, 500.

(p.347) Muller, A., Fang, W., Lawall, J., and Solomon G.S. (2009). Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect. Phys. Rev. Lett., 103, 217402.

Munárriz, J., Malyshev, A.V., Malyshev, V.A., and Knoester, J. (2013). Optical nanoantennas with tunable radiation patterns. Nano Lett., 13, 444.

Murray, C.B., Norris, D.J., and Bawendi, M.G. (1993). Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc., 115, 8706.

Naik, G.V., Shalaev, V.M., and Boltasseva, A. (2013). Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25, 3264.

Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320, 1308.

Nakamura, S. and Fasol, G. (1997). The Blue Laser Diode – GaN-based Light Emitters and Lasers. Springer-Verlag, Heidelberg.

Nakayama, K., Tanabe, K., and Atwater, H.A. (2008). Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett., 93, 121904.

Neogi, A., Lee, C.-W., Everitt, H.O., Kuroda, T., Tackeuchi, A., Yablonvitch, E. (2002). Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B, 66, 153305.

Nezhad, M.P., Simic, A., Bondarenko, O., Slutsky, B., Mizrahi, A., Feng, L., Lomakin, V., and Fainman, Y. (2010). Room-temperature subwavelength metallo-dielectric lasers. Nat. Photonics, 4, 395.

Nielsen, M. and Chuang, I. (2000). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.

Nirmal, M., Dabbousi, B.O., Bawendi M.G., Macklin, J.J., Trautman, J.K., Harris, T.D., and Brus, L.E. (1996). Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 383, 802.

Nirmal, M., Norris, D.J., Kuno, M., Bawendi, M.G., Efros, Al.L., and Rosen, M. (1995). Observation of the “dark exciton” in CdSe quantum dots. Phys. Rev. Lett., 75, 3728.

Noda, S., Fujita, M., and Asano, T. (2007). Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics, 1, 449.

Noginov, M.A., Gu, L., Livenere, J., Zhu, G., Pradhan, A.K., Mundle, R., Bahoura, M., Barnakov, Yu.A., and Podolskiy, V.A. (2011). Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl. Phys. Lett., 99, 021101.

Noginov, M.A., Zhu, G., Belgrave, A.M., Bakker, R., Shalaev, V.M., Narimanov, E.E., Stout, S., Herz, E., Suteewong, T., and Wiesner, U. (2009). Demonstration of a spaser-based nanolaser. Nature, 460, 1110.

Nölleke, C., Neuzner, A., Reiserer, A., Hahn, C., Rempe, G., Ritter, S. (2013). Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett., 110, 140403.

Nolte, D.D. (1994). Optical scattering and absorption by metal nanoclusters in GaAs. J. Appl. Phys., 76, 3740.

Norris, D.J. (2010). Electronic structure in semiconductor nanocrystals: optical experiment. In Nanocrystal Quantum Dots, edited by V.I. Klimov, 2nd edn., p. 63. CRC Press, Boca Raton, FL.

Norris, D.J. and Bawendi, M.G. (1996). Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B, 53, 16338.

(p.348) Norris, D.J., Efros, Al.L., Rosen, M., and Bawendi, M.G. (1996). Size dependence of exciton fine structure in CdSe quantum dots. Phys. Rev. B, 53, 16347.

Novikov, I.V. and Maradudin, A.A. (2002). Channel polaritons. Phys. Rev. B, 66, 035403.

Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., and Kim, K. (2012). A roadmap for graphene. Nature, 490, 192.

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva I.V., and Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666.

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197.

Novotny, L. (2007). The history of near-field optics. In Progress in Optics, Vol. 50, edited by E. Wolf, p. 137. Elsevier, Amsterdam.

Novotny, L. and Hecht B. (2012). Principles of Nano-Optics, 2nd ed. Cambridge University Press, Cambridge.

Novotny, L. and Stranick, S.J. (2006). Near-field optical microscopy and spectroscopy with pointed probes. Annu. Rev. Phys. Chem., 57, 303.

Novotny, L. and van Hulst, N. (2011). Antennas for light. Nat. Photonics, 5, 83.

Nye, J.F. (1979). Physical Properties of Crystals, their Representation by Tensors and Matrices. Oxford University Press, Oxford.

Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., and Segawa, Y. (1998). MgxZn1−xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett., 72, 2466.

Okamoto, K. (2010). Surface plasmon-enhanced solid-state light-emitting devices. In Nanoscale Photonics and Optoelectronics. Lecture Notes in Nanoscale Science and Technology, Vol. 9, edited by Z.M. Wang and A. Neogi, p. 27. Springer Science+Business Media, New York.

Okamoto, K., Niki, I., Narukawa, Y., Mukai, T., Kawakami, Y., and Scherer, A. (2005). Surface plasmon-enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl. Phys. Lett., 87, 071102.

Okamoto, K., Niki, I., Shvartser, A., Narukawa, Y., Mukai, T., and Scherer, A. (2004). Surface plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater., 3, 601.

Okuyama, H., Kishita, Y., and Ishibashi, A. (1998). Quaternary alloy Zn1−xMgxSySe1−y. Phys. Rev. B, 57, 2257.

Onoda, M., Murakami, S., and Nagaosa, N. (2004). Hall effect of light. Phys. Rev. Lett., 93, 083901.

Osborn, J.A. (1945). Demagnetizing factors of the general ellipsoid. Phys. Rev., 67, 351.

Otsuji, T. (2011). Terahertz emission, detection and modulation using two-dimensional plasmons in high-electron-mobility transistors featured by a dual-grating-gate structure. PIERS Online, 7, 1.

Otto, A. (1968). Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys., 216, 398.

Oulton, R.F., Sorger, V.J., Zentgraf, T., Ma, R.-M., Gladden, C., Dai, L., Bartal, G., and Zhang, X. (2009). Plasmon lasers at deep subwavelength scale. Nature, 461, 629.

Ozbay E. (2006). Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311, 189.

(p.349) Pahud, C., Isabella, O., Naqavi, A., Haug, F.-J., Zeman, M., Herzig, H.P., and Ballif, C. (2013) Plasmonic silicon solar cells: impact of material quality and geometry, Opt. Express, 21, A786.

Palanchoke, U., Jovanov, V., Kurz, H., Dewan, R, Magnus, P., Stiebig, H., and Knipp, D. (2013). Influence of back contact roughness on light trapping and plasmonic losses of randomly textured amorphous silicon thin film solar cells. Appl. Phys. Lett., 102, 083501.

Palik, E.D. (1985). Handbook of Optical Constants of Solids. Academic, San Diego.

Palik, E.D. (ed.) (1998). Handbook of Optical Constants of Solids. Academic Press, London.

Palomaki, T.A., Teufel, J.D., Simmonds, R.W., and Lehnert, K.W. (2013). Entangling mechanical motion with microwave fields. Science, 342, 710.

Pankove, J. (1971). Optical Processes in Semiconductors. Dover, New York.

Parfenyev, V.M. and Vergeles, S.S. (2012). Intensity-dependent frequency shift in surface plasmon amplification by stimulated emission of radiation. Phys. Rev. A, 86, 043824.

Park, S.-H. and Chuang, S.L. (1999). Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Phys. Rev. B, 59, 4725.

Park, Y.C., Litton, C.W., Collins, T.C., and Reynolds, D.C. (1966). Exciton spectrum of ZnO. Phys. Rev., 143, 512.

Parmenter, R. (1955). Symmetry properties of the energy bands of the zinc blende structure. Phys. Rev., 100, 573.

Paz-Soldan, D., Lee, A., Thon, S.M., Adachi, M.M., Dong, H., Maraghechi, P., Yuan, M., Labelle, A.J., Hoogland, S., Liu, K., Kumacheva, E., and Sargent, E.H. (2013). Jointly tuned plasmonic−excitonic photovoltaics using nanoshells. Nano Lett., 13, 1502.

Pearton, S. (ed.) (2012). GaN and ZnO-based Materials and Devices. Springer Series in Materials Science, Vol. 156. Springer-Verlag, Berlin.

Pellegrini, V., Atanasov, R., Tredicucci, A., Beltram, F., Amzu-lini, C., Sorba, L., Vanzetti, L., and Franciosi, A. (1995). Excitonic properties of Zn1−xCdxSe/ZnSe strained quantum wells. Phys. Rev. B, 51, 5171.

Pekar, S.I. (1958). The theory of electromagnetic waves in a crystal in which excitons are produced. Soviet Phys. JETP, 6, 785 [transl. Zh. Experim. Teor. Fiz., 33, 1022 (1957)].

Pendry, J.B. and Maier, S.A. (2011). Comment on “Spaser action, loss compensation, and stability in plasmonic systems with gain”. Phys. Rev. Lett., 107, 259703.

Pendry, J.B., Martín-Moreno, L., and Garcia-Vidal, F.J. (2004). Mimicking surface plasmons with structured surfaces. Science, 305, 847.

People, R. and Bean, J.C. (1985). Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures. Appl. Phys. Lett., 47, 322.

Peres, N.M.R. (2010). The transport properties of graphene: an introduction. Rev. Mod. Phys., 82, 2673.

Persson, B.N.J. and Liebsch, A. (1983). Optical properties of two-dimensional systems of randomly distributed particles. Phys. Rev. B, 28, 4247.

Petroff, P.M. (2011). Semiconductor self-assembled quantum dots: present status and future trends. Adv. Mater., 23, 2372.

Peyla, P., Wasiela, A., d’Aubigné, Y. Merle, Ashenford, D.E., and Lunn, B. (1993). Anisotropy of the Zeeman effect in CdTe/Cd1−xMnxTe multiple quantum wells. Phys. Rev. B, 47, 3783.

Pidgeon, C.R. (1980). Free carrier optical properties of semiconductors. In Handbook on Semiconductors, Vol. 2, edited by M. Balkanski. North Holland, Amsterdam.

(p.350) Pietryga, J.M., Schaller, R.D., Werder, D., Stewart, M.H., Klimov, V.I., and Hollingsworth, J.A. (2004). Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc., 126, 11752.

Pillai, S., Catchpole, K.R., Trupke, T., and Green, M.A. (2007). Surface plasmon-enhanced silicon solar cells. J. Appl. Phys., 101, 093105.

Pikus, G.E. (1962a). A new method of calculation of the energy spectrum of current carriers in semiconductors. I. Case when the spin–orbit interaction is not taken into account. Sov. Phys. JETP, 14, 898 [transl. Zh. Eksp. Teor. Fiz., 41, 1258 (1961)].

Pikus, G.E. (1962b). A new method for calculating the energy spectrum of current carriers in semiconductors. II. Spin–orbit coupling is taken into account. Sov. Phys. JETP, 14, 1075 [transl. Zh. Eksp. Teor. Fiz., 41, 1507 (1961)].

Pines, D. and Bohm, D. (1952). A collective description of electron interactions: II. Collective vs. individual particle aspects of the interactions. Phys. Rev., 85, 338.

Plotz, G., Simon, H., and Tucciarone, J. (1979). Enhanced total reflection with surface plasmons. J. Opt. Soc. Am., 69, 419.

Pockrand, I., Brillante, A., and Möbius, D. (1980). Nonradiative decay of excited molecules near a metal surface. Chem. Phys. Lett., 69, 499.

Polman, A. and Atwater, H.A. (2012). Photonic design principles for ultra-high efficiency photovoltaics. Nat. Mater., 11, 174.

Popov, V.V., Polischuk, O.V., Davoyan, A.R., Ryzhii, V., Otsuji, T. and Shur, M.S. (2012). Plasmonic terahertz lasing in an array of graphene nanocavities. Phys. Rev. B, 86, 195437.

Popov, V.V., Tsymbalov, G.M., and Shur, M.S. (2008). Plasma wave instability and amplification of terahertz radiation in field-effect-transistor arrays. J. Phys.: Condens. Matter, 20, 384208.

Pradhan, A.K., Holloway T., Mundle, R., Dondapati, H., and Bahoura, M. (2012). Energy harvesting in semiconductor–insulator–semiconductor junctions through excitation of surface plasmon polaritons. Appl. Phys. Lett., 100, 061127.

Prasad, P. (2004). Nanophotonics. John Wiley & Sons, New York.

Press, D., Gtzinger, S., Reitzenstein, S., Hofmann, C., Lffler, A., Kamp, M., Forchel, A., and Yamamoto, Y. (2007). Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime. Phys. Rev. Lett., 98, 117402.

Pryce, I.M., Koleske, D.D., Fischer, A.J., and Atwater, H.A. (2010). Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl. Phys. Lett., 96, 153501.

Purcell, E.M. (1946). Spontaneous emission probabilities at radio frequencies. Phys. Rev., 69, 681.

Raether, H. (1982). Surface plasmons and roughness. In Surface Polaritons, edited by V.M. Agranovich and D.L. Mills, p. 331. North Holland, Amsterdam.

Raether, H. (1988). Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, Vol. 11. Springer Verlag, Berlin.

(p.351) Rashba, E.I. (1959). Symmetry of energy bands in wurzite-type crystals. I. Symmetry of bands neglecting the spin–orbit interaction. Sov. Phys. Solid State, 1, 368 [transl. Fiz. Tverd. Tela (Leningrad), 1, 407 (1959)].

Rashba, E.I. and Gurgenishvilli, G.E. (1962). For theory of band edge absorption in semiconductors. Sov. Phys. Solid State 4, 759 [transl. Fiz. Tverd. Tela (Leningrad), 4, 1029, (1962)].

Rashba, E.I. and Sheka, V.I. (1959). Symmetry of energy bands in wurzite-type crystals. II. Symmetry of bands taking into account the spin interactions. Fiz. Tverd. Tela (Leningrad), 1 (Special issue), 162 (in Russian).

Rashba, E.I. and Sturge, M.D. (eds.) (1982). Excitons. North Holland, Amsterdam.

Razeghi, M. and Henini, M. (2004). Optoelectronic Devices: III–Nitrides. Elsevier, Oxford.

Reed, J.C., Zhu, H., Zhu, A.Y., Li, C., and Cubukcu, E. (2012). Graphene-enabled silver nanoantenna sensors. Nano Lett., 12, 4090.

Reif, F. (1965). Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York.

Ren, G.B., Liu, Y.M., and Blood, P. (1999). Valence-band structure of wurtzite GaN including the spin–orbit interaction. Appl. Phys. Lett., 74, 1117.

Renard, R.H. (1964). Total reflection: a new evaluation of the Goos–Hänchen shift. J. Opt. Soc. Am., 54, 1190.

Rewitz, C., Keitzl, T., Tuchscherer, P., Huang, J., Geisler, P., Razinskas, G., Hecht, B., and Brixner, T. (2012). Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry. Nano Lett., 12, 45.

Rhodes, C., Franzen, S., Maria, J.-P., Losego, M., Leonard, D.N., Laughlin, B., Duscher, G., and Weibel, S.J. (2006). Surface plasmon resonance in conducting metal oxides. J. Appl. Phys., 100, 054905.

Rice, A., Jin, Y., Ma, X.F., Zhang, X.‐C., Bliss, D., Larkin, J., and Alexander, M. (1994). Terahertz optical rectification from 〈110〉 zinc‐blende crystals. Appl. Phys. Lett., 64, 1324.

Ritchie, G. and Burstein, E. (1981). Luminescence of dye molecules adsorbed at a Ag surface. Phys. Rev. B, 24, 4843.

Ritchie, R.H. (1957). Plasma losses by fast electrons in thin films. Phys. Rev., 106, 874.

Rodríguez-Fortuño, F.J., Marino, G., Ginzburg, P., O’Connor, D., Martínez, A., Wurtz, G.A., and Zayats, A.V. (2013). Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science, 340, 328.

Rombach-Riegraf. V., Oswald, P., Bienert, R., Petersen, J., Domingo, M.P., Pardo, J., Gräber, P., and Galvez, E.M. (2012). Blinking effect and the use of quantum dots in single molecule spectroscopy. Biochem. Biophys. Res. Commun., 430, 260.

Rothenhäusler, B. and Knoll, W. (1988). Surface-plasmon microscopy. Nature 332, 615.

Ruppin, R. (1982). Decay of an excited molecule near a small metal sphere. J. Chem. Phys., 76, 1681.

Russell, K.J. and Hu, E.L. (2010). Gap-mode plasmonic nanocavity. Appl. Phys. Lett., 97, 163115.

Russell, K.J., Liu, T., Cui, S., and Hu, E.L. (2012). Large spontaneous emission enhancement in plasmonic nanocavities. Nat. Photonics, 6, 459.

Ryzhii, V. (2006). Terahertz plasma waves in gated graphene heterostructures. Jpn. J. Appl. Phys., 45, L923.

Ryzhii, V., Sattou, A., and Otsuji, T. (2007). Plasma waves in two-dimensional electron–hole system in gated graphene heterostructures. J. Appl. Phys., 101, 024509.

Sadofev, S., Kalusniak, S., Puls, J., Schäfer, P., and Henneberger, F. (2006). Visible band-gap ZnCdO heterostructures grown by molecular beam epitaxy. Appl. Phys. Lett., 89, 201907.

Salandrino, A. and Christodoulides, D.N. (2010). Airy plasmon: a nondiffracting surface wave. Opt. Lett., 35, 2082.

Salihoglu, O., Balci, S., and Kocabas, C. (2012). Plasmon polaritons on graphene–metal surface and their use in biosensors. Appl. Phys. Lett.,100, 213110.

(p.352) Sanders, G.D. and Chang, Y.-C. (1985). Effect of band hybridization on exciton states in GaAs–AlxGa1−xAs quantum wells. Phys. Rev. B, 32, R5517.

Santori, C., Fattal, D., Vučković, J., Solomon, G.S., and Yamamoto, Y. (2002). Indistinguishable photons from a single-photon device. Nature, 419, 594.

Santori, C., Fattal, D., and Yamamoto, Y. (2010). Single-photon Devices and Applications. Willy-VCH, Weinheim.

Schell, A.W., Kewes. G., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Benson, O., and Aichele, T. (2011). Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. Opt. Express, 19, 7914.

Schiff, L.I. (1969). Quantum Mechanics. McGraw-Hill, New York.

Schneider, C., Höfling, S., and Forchel, A. (2012). Growth of III–V semiconductor quantum dots. In Quantum Dots: Optics, Electron Transport and Future Applications, edited by A. Tartakovskii, p. 3. Cambridge University Press, Cambridge.

Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., and Brongersma, M.L. (2010). Plasmonics for extreme light concentration and manipulation. Nat. Mater., 9, 193.

Sebald, K., Michler, P., Passow. T., Hommel, D., Bacher, G., and Forchel, A. (2002). Single-photon emission of CdSe quantum dots at temperatures up to 200 K. Appl. Phys. Lett., 81, 2920.

Seidel, J., Grafstrom, S., and Eng, L. (2005). Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett., 94, 177401.

Senellart P. (2012). Deterministic light–matter coupling with single quantum dots. In Quantum Dots: Optics, Electron Transport and Future Applications, edited by A. Tartakovskii, p. 137. Cambridge University Press, Cambridge.

Service, R.R. (2010). Ever-smaller lasers pave the way for data highways made of light. Science, 328, 810.

Shalaev, V.M. and Kawata S. (eds.) (2007). Nanophotonics with Surface Plasmons. Elsevier, Amsterdam.

Shelykh, I.A., Kaliteevskii, M., Kavokin, A.V., Brand, S., Abram, R.A., Chamberlain, J.M., and Malpuech, G. (2007). Interface plasmonic states at the boundary between a metal and a dielectric Bragg mirror. Phys. Stat. Sol. A, 204, 522.

Shen, K.-C., Chen, C.-Y., Chen, H.-L., Huang, C.-F., Kiang, Y.-W., Yang, C. C., and Yang Y.-J. (2008). Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating. Appl. Phys. Lett., 93, 231111.

Shields, A.J. (2007). Semiconductor quantum light sources. Nat. Photonics, 1, 215.

Shields, A.J., Stevenson, R.M., and Young, R.J. (2009). Entangled photon generation by quantum dots. In Single Semiconductor Quantum Dots, edited by P. Michler, Nanoscience and Nanotechnology Series. Springer-Verlag, Berlin.

Shigemori, S., Nakamura, A., Ishihara, J., Aoki, T., and Temmyo, J. (2004). Zn1−xCdxO film growth using remote plasma-enhanced metalorganic chemical vapor deposition. Jpn. J. Appl. Phys., 43, L1088.

Shih, Y.H. and Alley, C.O. (1988). New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett., 61, 2921.

Shiles, E., Sasaki, T., Inokuti, M., and Smith, D.Y. (1980). Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: applications to aluminum. Phys. Rev. B, 22, 1612.

(p.353) Shimizu, K.T. and Bawendi, M.G. (2010). Optical dynamics in single semiconductor quantum dots. In Nanocrystal Quantum Dots, edited by V.I. Klimov, 2nd edn., p. 215. CRC Press, Boca Raton, FL.

Shimizu, K.T., Neuhauser, R.G., Leatherdale, C.A., Empedocles, S.A., Woo, W.K., and Bawendi, M.G. (2001). Blinking statistics in single semiconductor nanocrystal quantum dots. Phys. Rev. B, 63, 205316.

Shimizu, K.T., Woo, W.K., Fisher, B.R., Eisler, H.J., and Bawendi, M.G. (2002). Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett., 89 117401.

Shinada, M. and Sugano, S. (1966). Interband optical transitions in extremely anisotropic semiconductors. I: Bound and unbound exciton absorption. J. Phys. Soc. Jpn., 21, 1936.

Shinozuka, Y. and Matsuura, M. (1983). Wannier exciton in quantum wells. Phys. Rev. B, 28, R4878.

Shitrit, N., Bretne, I., Gorodetski, Y., Kleiner, V., and Hasman, E. (2011). Optical spin Hall effects in plasmonic chains. Nano Lett., 11, 2038.

Shockley, W. and Queisser, H.J. (1961). Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys., 32, 510.

Shubina, T.V., Andrianov, A.V., Zakhar’in, A.O., Jmerik, V.N., Soshnikov, I.P., Komissarova, T.A., Usikova, A.A., Kop’ev, P.S., Ivanov, S.V., Shalygin, V.A., Sofronov, A.N., Firsov, D.A., Vorob’ev, L.E., Gippius, N.A., Leymarie, J., Wang, X., and Yoshikawa, A. (2010a). Terahertz electroluminescence of surface plasmons from nanostructured InN layers. Appl. Phys. Lett., 96, 183106.

Shubina, T.V., Gippius, N.A., Shalygin, V.A., Andrianov, A.V., and Ivanov, S.V. (2011a). Terahertz radiation due to random grating coupled surface plasmon polaritons. Phys. Rev. B, 83, 165312.

Shubina, T.V., Glazov, M.M., Gippius, N.A., Toropov, A.A., Lagarde, D., Disseix, P., Leymarie, J., Gil, B., Pozina, G., Bergman, J.P., and Monemar, B. (2011b). Delay and distortion of slow light pulses by excitons in ZnO. Phys. Rev. B, 84, 075202.

Shubina, T.V., Glazov, M.M., Ivanov, S.V., Vasson, A., Leymarie, J., Monemar, B., Araki, T., Naoi, H., and Nanishi, Y. (2007). Effects of non-stoichiometry and compensation on fundamental parameters of heavily-doped InN. Phys. Stat. Sol. C, 4, 2474.

Shubina, T.V., Glazov, M.M., Toropov, A.A., Gippius, N.A., Vasson, A., Leymarie, J., Kavokin, A., Usui, A., Bergman, J.P., Pozina, G., and Monemar, B. (2008). Resonant light delay in GaN with ballistic and diffusive propagation. Phys. Rev. Lett., 100, 087402.

Shubina, T.V., Ivanov, S.V., Jmerik, V.N., Solnyshkov, D.D., Vekshin, V.A., Kop’ev, P.S., Vasson, A., Leymarie, J., Kavokin, A., Amano, H., Shimono, K., Kasic, A., and Monemar, B. (2004a). Mie resonances, infrared emission, and the band gap of InN. Phys. Rev. Lett. 92, 117407; Erratum. (2005). ibid, 95, 209901.

Shubina T.V., Ivanov, S.V., Jmerik, V.N., Kop’ev, P.S., Vasson, A., Leymarie, J., Kavokin, A., Amano, H., Gil, B., Briot, O., and Monemar, B. (2004b). Reply to Comment of F. Bechstedt et al. on “Mie resonances, infrared emission, and the band gap of InN”. Phys. Rev. Lett., 93, 269702.

Shubina, T.V., Ivanov, S.V., Jmerik, V.N., Glazov, M.M., Kalvarskii, A.P., Tkachman, M.G., Vasson, A., Leymarie, J., Kavokin, A., Amano, H., Akasaki, I., Butcher, K.S.A., Guo, Q., Monemar B., and Kop’ev, P.S. (2005). Optical properties of InN with stoichiometry violation and indium clustering. Phys. Stat. Sol. A, 202, 377.

(p.354) Shubina, T.V., Kosobukin, V.A., Komissarova, T.A., Jmerik, V.N., Semenov, A.N., Meltser, B.Ya., Kop’ev, P.S., Ivanov, S.V., Vasson, A., Leymarie, J., Gippius, N.A., Araki, T., Akagi, T., and Nanishi, Y. (2009). Inconsistency of basic optical processes in plasmonic nanocomposites. Phys. Rev. B., 79, 153105.

Shubina, T.V., Toropov, A.A., Jmerik, V.N., Kuritsyn, D.I., Gavrilenko, L.V., Krasil’nik, Z.F., Araki, T., Nanishi, Y., Gil, B., Govorov, A.O., and Ivanov, S.V. (2010b). Plasmon-induced Purcell effect in InN/In metal–semiconductor nanocomposites. Phys. Rev. B, 82, 073304.

Shvets, G. and Tsukerman, I. (eds.) (2012). Plasmonics and Plasmonic Metamaterials: Analysis and Applications, World Scientific Series in Nanoscience and Nanotechnology, Vol. 4. World Scientific, Singapore.

Silveirinha, M. and Engheta, N. (2006). Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials. Phys. Rev. Lett., 97, 157403.

Sirenko, A.A., Ruf, T., Cardona, M., Yakovlev, D.R., Ossau, W., Waag, A., and G. Landwehr. (1997). Electron and hole g factors measured by spin-flip Raman scattering in CdTe/Cd1−xMgxTe single quantum wells. Phys. Rev. B, 56, 2114.

Sirenko,Yu.M., Jeon, J.-B., Kim, K.W., Littlejohn, M.A., and Stroscio, M.A. (1996). Envelope-function formalism for valence bands in wurtzite quantum wells. Phys. Rev. B, 53, 1997.

Slaughter, L.S., Willingham, B.A., Chang, W.-S., Chester, M.H, Ogden, N., and Link, S. (2012). Toward plasmonic polymers. Nano Lett., 12, 3967.

Solomon, G.S., Pelton, M., and Yamamoto, Y. (2000). Modification of spontaneous emission of a single quantum dot. Phys. Stat. Sol. A, 178, 341.

Solomon, G.S., Pelton, M., and Yamamoto, Y. (2001). Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. Phys. Rev. Lett., 86, 3903.

Sommerfeld, A. (1909). Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Ann. Phys., 28, 665.

Sommerfeld, A. (1949). Partial Differential Equations in Physics, Ch. VI. Academic Press, New York.

Song, J.-H., Atay, T., Shi, S., Urabe, H., and Nurmikko, A.V. (2005). Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. Nano Lett., 5, 1557.

Spitzer, W.G., Kleinman, D., and Walsh, D. (1959). Infrared properties of hexagonal silicon carbide. Phys. Rev., 113, 127.

Stanley, R.P., Hegarty, J., Feldmann, J., and Austin, R.F. (1988). Exciton line broadening in CdxZn1−xTe/ZnTe multiple quantum wells, Appl. Phys. Lett., 53, 1417.

Stanley, R.P., Hegarty, J., Fisher, R., Feldmann, J., Gobel, E.O., Feldman, R.D., and Austin, R.F. (1990). Dynamics of free exciton luminescence in CdxZn1−xTe/ZnTe quantum wells. J. Cryst. Growth, 101, 683.

Stenzel, O., Stendal, A., Voigtsberger, K., and von Borczykowski, C. (1995). Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters. Sol. Energy Mater. Sol. Cells, 37, 337.

Stern, F. (1967). Polarizability of a two-dimensional electron gas. Phys. Rev. Lett., 18, 546.

Stevenson, R.M., Thompson, R.M., Shields, A.J., Farrer, I., Kardynal, B.E., Ritchie, D.A., and Pepper, M. (2002). Quantum dots as a photon source for passive quantum key encoding. Phys. Rev. B, 66, 08130(R).

Stevenson, R.M., Young, R.J., See, P., Gevaux, D.G., Cooper, K., Atkinson, P., Farrer, I., Ritchie, D.A., and Shields, A.J. (2006a). Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Phys. Rev. B, 73, 033306.

(p.355) Stevenson, R.M., Young, R.J., Atkinson, P., Cooper, K., Ritchie, D.A., and Shields, A.J. (2006b). A semiconductor source of triggered entangled photon pairs. Nature, 439, 179.

Stevenson, R.M., Young, R.J., Atkinson, P., Cooper, K., Ritchie, D.A., and Shields, A.J. (2007). Reply to “Source of triggered entangled photon pairs?” by A. Gilchrist, K.J. Resch, and A.G. White. Nature, 445, E4.

Stier, O. (2002). Theory of the electronic and optical properties of InGaAs/GaAs quantum dots. In Nano-Optoelectronics, Concepts, Physics and Devices, edited by M. Grundmann, p. 167. Springer Series NanoScience and Technology. Springer-Verlag, Berlin.

Stockman, M.I. (2011). Spaser action, loss compensation, and stability in plasmonic systems with gain. Phys. Rev. Lett., 106, 156802.

Stratton, J.A. (1941). Electromagnetic Theory, 1st ed. McGraw-Hill, New York.

Strauf, S., Hennessy, K., Rakher, M.T., Choi,Y.-S., Badolato, A., Andreani, L.C., Hu, E.L., Petroff, P.M., and Bouwmeester, D. (2006). Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett., 96, 127404.

Stringfellow, G.B. (2010). Microstructures produced during the epitaxial growth of InGaN alloys. J. Cryst. Growth, 312, 735.

Stuart, H.R. and Hall, D.G. (1996). Absorption enhancement in silicon-on-insulator waveguides using metalisland films. Appl. Phys. Lett., 69, 2327.

Sudarkin, A.N. and Demkovich, P.A. (1988). Excitation of surface electromagnetic wave on the boundary of a metal with an amplified medium. Sov. Phys. Tech. Phys., 34, 764.

Sugawara, Y., Kelf, T.A., Baumberg, J.J., Abdelsalam, M.E., and Bartlett, P.N. (2006). Strong coupling between localized plasmons and organic excitons in metal nanovoids. Phys. Rev. Lett., 97, 266808.

Suzuki, M., Uenoyama, T., and Yanase, A. (1995). First-principles calculations of effective-mass parameters of AlN and GaN. Phys. Rev. B, 52, 8132.

Symonds, C., Bellessa, J., Plenet J.-C., Cambril, E., Miard, A., Ferlazzo, L., and Lemaître, A. (2010). Exciton/plasmon mixing in metal–semiconductor heterostructures. Superlattices Microstruct., 47, 50.

Takahashi, Y. and Tatsuma, T. (2011). Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Appl. Phys. Lett., 99, 182110.

Taminiau, T., Stefani, F.D., Segerink, F.B., and van Hulst, N.F. (2008), Optical antennas direct single-molecule emission. Nat. Photonics, 2, 234.

Tartakovskii, A. (ed.) (2012). Quantum Dots: Optics, Electron Transport and Future Applications. Cambridge University Press, Cambridge.

Tassin, P., Koschny, T., Kafesaki, M., and Soukoulis, C.M. (2012). A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photonics, 6, 259.

Temnov, V.V. and Woggon, U. (2012). Nanoplasmonics with colloidal quantum dots. In Quantum Dots: Optics, Electron transport and Future Applications, edited by A. Tartakovskii, Ch. 11. Cambridge University Press, Cambridge.

Theis, T.N., Kirtley, J.R., DiMaria, D.J., and Dong, D.W. (1983). Light emission from electron-injector structures. Phys. Rev. Lett., 50, 750.

Thomas, D.G. (1960). The exciton spectrum of zinc oxide. J. Phys. Chem. Solids, 15, 86.

Thongrattanasiri, S., Silveiro, I., and García de Abajo, F.J. (2012). Plasmons in electrostatically doped graphene. Appl. Phys. Lett., 100, 201105.

Tocci, M.D., Scalora, M., Bloemer, M.J., Dowling, J.P., and Bowden, C.M. (1996). Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures. Phys. Rev. A, 53, 2799.

(p.356) Toropov, A.A., Ivchenko, E.L., Krebs, O., Cortez, S., Voisin, P., and Gentner, J.L. (2000). Excitonic contributions to the quantum-confined Pockels effect. Phys. Rev. B, 63, 035302.

Toropov, A.A., Shubina, T.V., Belyaev, K.G., Ivanov, S.V., Kop’ev, P.S., Ogawa, Y., and Minami, F. (2011). Enhancement of excitonic emission in semiconductor heterostructures due to resonant coupling to multipole plasmon modes in a gold particle. Phys. Rev. B, 84, 085323.

Toropov, A.A., Shubina, T.V., Jmerik, V.N., Ivanov, S.V., Ogawa, Y., and Minami, F. (2009). Optically enhanced emission of localized excitons in InxGa1−xN films by coupling to plasmons in a gold nanoparticle. Phys. Rev. Lett., 103, 037403.

Toyazawa Y. (2003). Optical Processes in Solids. Cambridge University Press, New York.

Traviss, D., Bruck, R., Mills, B., Abb, M., and Muskens, O.L. (2013). Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime. Appl. Phys. Lett., 102, 121112.

Tsidilkovski, I.M. (1982). Band Structure of Semiconductors. Pergamon, Oxford.

Ulrich, S.M., Strauf, S., Michler, P., Bacher, G., and Forchel, A. (2003). Triggered polarization-correlated photon pairs from a single CdSe quantum dot. Appl. Phys. Lett., 83, 1848.

Unold, T., Mueller, K., Lienau, C., Elsaesser, T., and Wieck, A.D. (2004). Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations. Phys. Rev. Lett., 92, 157401.

Unterrainer, K., Colombelli, R., Gmachl, C., Capasso, F., Hwang, H.Y., Sergent, A.M., Sivco, D.L., and Cho, A.Y. (2002). Quantum cascade lasers with double metal–semiconductor waveguide resonators. Appl. Phys. Lett., 80, 3060.

Urbańczyk, A., Hamhuis, G.J., and Nötzel, R. (2010). Coupling of single InGaAs quantum dots to the plasmon resonance of a metal nanocrystal. Appl. Phys. Lett., 97, 043105.

Urbaszek, B., Warburton, R.J., Karrai, K., Gerardot, B.D., Petroff, P.M., and Garcia, J.M. (2003). Fine structure of highly charged excitons in semiconductor quantum dots. Phys. Rev. Lett., 90, 247403.

Vafek, O. (2006). Thermoplasma polariton within scaling theory of single-layer graphene. Phys. Rev. Lett., 97, 266406.

Vahala, K.J. (2003). Optical microcavities. Nature, 424, 839.

Vahala, K.J. (ed.) (2004). Optical Microcavities. Advanced Series in Applied Physics, Vol. 5. World Scientific, Singapore.

Van de Hulst, H.C. (1981). Light Scattering by Small Particles. Dover Publications, Mineola, NY.

Van de Walle, C.G. (1989). Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B, 39, 1871.

Van de Walle, C.G. and Martin, R.M. (1986). Theoretical calculations of semiconductor heterojunction discontinuities. J. Vac. Sci. Technol. B, 4, 1055.

Van de Walle, C.G. and Martin, R.M. (1987). Theoretical study of band offsets at semiconductor interfaces. Phys. Rev. B, 35, 8154.

Van de Walle, C.G., Shahzad, K., and Olego, D.J. (1988). Strained layer interfaces between II–VI compound semiconductors. J. Vac. Sci. Technol. B, 6, 1350.

Van der Pol, B. and Bremmer, H. (1937). The diffraction of electromagnetic waves from an electrical point source round a finitely conducting sphere, with applications to radiotelegraphy and the theory of the rainbow. Phil. Mag. Ser. 7, 24, 141.

(p.357) Varró, S., Kroó, N., Oszetzky, D., Nagy, A., and Czitrovszky, A. (2011). Hanbury Brown–Twiss type correlations with surface plasmon light. J. Mod. Opt., 58, 2049.

Vasa, P., Pomraenke, R., Schwieger, S., Mazur, Yu.I., Kunets, Vas., Srinivasan, P., Johnson, E., Kihm, J.E., Kim, D.S., Runge, E., Salamo, G., and Lienau, C. (2008). Coherent exciton–surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures. Phys. Rev. Lett., 101, 116801.

Vasa, P., Wang. W., Pomraenke, R., Lammers, M., Maiuri, M., Manzoni, C., Cerullo, G., and Lienau, C. (2013). Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photonics, 7, 128.

Vesseur, E.J.R. and Polman, A. (2011). Plasmonic whispering gallery cavities as optical nanoantennas. Nano Lett., 11, 5524.

Vesseur, E.J.R., de Abajo, F.J.G., and Polman, A. (2010). Broadband Purcell enhancement in plasmonic ring cavities. Phys. Rev. B, 82, 165419.

Vion, C., Spinicelli, P., Coolen, L., Schwob, C., Frigerio, J.-M., Hermier, J.-P., and Maître, A. (2010). Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface. Opt. Express, 18, 7440.

Vogl, P., Hjalmarsons, H.P., and Dow, J.D. (1983). A semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids, 44, 365.

Voshchinnikov, N.V. and Farafonov, V.G. (1993). Optical properties of spheroidal particles. Astrophys. Space Sci., 204, 19.

Vurgaftman, I. and Meyer, J.R. (2003). Band parameters for nitrogen-containing semiconductors. J. Appl. Phys., 94, 3675.

Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R. (2001). Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys., 89, 5816.

Waag, A., Fisher, F., Litz, T., Kuhn-Heinrich, B., Zehnder, U., Ossau, W., Spahn, W., Heinke, H., and Landwehr, G. (1994). Wide gap Cd1−xMgxTe: molecular beam epitaxial growth and characterization. J. Cryst. Growth, 138, 155.

Walls, D.F. and Milburn, G.J. (1994). Quantum Optics. Springer, Berlin.

Wang, F. and Shen, Y.R. (2006). General properties of local plasmons in metal nanostructures. Phys. Rev. Lett., 97, 206806.

Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M., Ron Shen, Y. (2008). Gate-variable optical transitions in graphene. Science, 320, 206.

Wang, X., Belyanin, A.A., Crooker, S.A., Mittleman, D.M., and Kono, J. (2010). Interference-induced terahertz transparency in a semiconductor magneto-plasma. Nat. Phys., 6, 126.

Wang, X., Ren, X., Kahen, K., Hahn, M.A., Rajeswaran, M., Maccagnano-Zacher, S., Silcox, J., Cragg, G.E., Efros, Al. L., and Krauss, T.D. (2009). Non-blinking semiconductor nanocrystals. Nature, 459, 686.

Wannier, G.H. (1937). The structure of electronic excitation levels in insulating crystals. Phys. Rev., 52, 191.

Warmack, R.J., Becker, R.S., Anderson, V.E., Ritchie, R.H., Chu, Y.T., Little, J., and Ferrell, T.L. (1984). Surface-plasmon excitation during aloof scattering of low-energy electrons in micropores in a thin metal foil. Phys. Rev. B, 29, 4375.

Weber, W.H. and Eagen, C.F. (1979). Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal. Opt. Lett., 4, 236.

Weitz, D.A., Garoff, S., Gersten, J.I., and Nitzan, A. (1983). The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules absorbed on a rough silver surface. J. Chem. Phys., 78, 5324.

(p.358) Wenham, S. (2012). Towards highly efficient solar cells. Nat. Photonics, 6, 136.

Wessel, J. (1985). Surface-enhanced optical microscopy. J. Opt. Soc. Am. B, 2, 1538.

Westphalen, M., Kreibig, U., Rostalski, J., Lüth, H., and Meissner, D. (2000). Metal cluster enhanced organic solar cells. Sol. Energy Mater. Sol. Cells, 61, 97.

White, C.W. and Tolk, N.H. (1971). Optical radiation from low-energy ion–surface collisions. Phys. Rev. Lett., 26, 486.

Williams, G.M., Cullis, A.G., Whitehouse, C.R., Ashenford, D.E., and Lunn, B. (1989). Structure of CdTe–Cd1−xMnxTe multiple quantum wells grown on (001) InSb substrates by molecular beam epitaxy. Appl. Phys. Lett., 55, 1303.

Wilke, I., Ding, Y.J., and Shubina, T. (2012). Optically- and electrically-stimulated terahertz radiation emission from indium nitride. J. Infrared Millimeter Terahertz Waves, 33, 559.

Winkler, R. (2003). Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems. Springer Tracts in Modern Physics, Vol. 191. Springer-Verlag, Berlin.

Wokaun, A., Gordon, J.P., and Liao, P.F. (1982). Radiation damping in surface-enhanced Raman scattering. Phys. Rev. Lett., 48, 957.

Wokaun, A., Lutz, H.-P., King, A.P., and Ernst, R.R. (1983). Energy transfer in surface enhanced luminescence. J. Chem. Phys., 79, 509.

Wood, C. and Jena, D. (eds.) (2008). Polarization Effects in Semiconductors From Ab Initio Theory to Device Applications. Springer, New York.

Wood, R.W. (1902). On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag., 4, 396.

Worthing, P.T., Amos, R.M., and Barnes, W.L. (1999). Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror. Phys. Rev. A, 59, 865.

Wu, X., Gray, S.K., and Pelton, M. (2010a). Quantum-dot-induced transparency in a nanoscale plasmonic resonator. Opt. Express, 18, 23633.

Wu, X., Sun, Y., and Pelton, M. (2009). Recombination rates for single colloidal quantum dots near a smooth metal film. Phys. Chem. Chem. Phys., 11, 5867.

Wu, X.-W., Gong, M., Dong, C.-H., Cui, J.-M., Yang, Y., Sun, F.-W., Guo, G.-C., and Han, Z.-F. (2010b). Anti-bunching and luminescence blinking suppression from plasmon-interacted single CdSe/ZnS quantum dot. Opt. Express, 18, 6340.

Wuestner, S., Pusch, A., Tsakmakidis, K.L., Hamm, J.M., and Hess, O. (2011). Comment on “Spaser action, loss compensation, and stability in plasmonic systems with gain”. Phys. Rev. Lett., 107, 259701.

Xie, C., Mu, C., Cox, J.R., and Gertona, J.M. (2006). Tip-enhanced fluorescence microscopy of high-density samples. Appl. Phys. Lett., 89, 143117.

Yablonovitch, E. (1982). Statistical ray optics. J. Opt. Soc. Am., 72, 899.

Yablonovitch, E. (1987). Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059.

Yan, H., Li, Z., Li, X., Zhu, W., Avouris, P., and Xia, F. (2012). Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett., 12, 3766.

Yan, H., Low, T., Zhu, W., Wu, Y., Freitag, M., Li, X., Guinea, F., Avouris, P., and Xia, F. (2013). Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics, 7, 394.

Yang, F., Sambles, J.R., and Bradberry, G.W. (1991). Long-range surface modes supported by thin films. Phys. Rev. B, 44, 5855.

(p.359) Yang, X., Hu, C., Deng, H., Rosenmann D., Czaplewski, D.A., and Gao, J. (2013). Experimental demonstration of near-infrared epsilon-near-zero multilayer metamaterial slabs. Opt. Express, 21, 23631.

Yao, T. and Hong S.-K. (eds.) (2009). Oxide and Nitride Semiconductors. Springer Series on Advances in Materials Research, Vol. 12. Springer, Berlin.

Yao, Y., Hoffman, A.J., and Gmachl, C.F. (2012). Mid-infrared quantum cascade lasers. Nat. Photonics, 6, 432.

Yao, Y., Kats, M.A., Genevet, P., Yu, N., Song, Y., Kong, J., and Capasso, F. (2013). Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett., 13, 1257.

Yariv, A. (1989). Quantum Electronics, 3rd edn. Wiley, New York.

Ye, M. and Searson, P.C. (2011). Blinking in quantum dots: the origin of the grey state and power law statistics. Phys. Rev. B, 84, 125317.

Yin, J., Ren, J.-G., Lu, H., Cao, Y., Yong, H.-L., Wu, Y.-P., Liu, C., Liao, S.-K., Zhou, F., Jiang, Y., Cai, X.-D., Xu, P., Pan, G.-S., Jia, J.-J., Huang, Y.-M., Yin, H., Wang, J.-Y., Chen, Y.-A., Peng, C.-Z., and Pan, J.-W. (2012). Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 488, 185.

Yin, J., Yue, C., Zang, Y., Chiu, C.-H., Li, J., Kuo, H.-C., Wu, Z., Li, J., Fanga, Y., and Chena, C. (2013). Effect of the surface plasmon–exciton coupling and charge transfer process on the photoluminescence of metal–semiconductor nanostructures. Nanoscale, 5, 4436.

Yoffe, A.D. (2001). Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys., 50, 1.

Young, R.J, Stevenson, RM., Atkinson, P., Cooper, K., Ritchie, D.A., and Shields, A.J. (2006). Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys., 8, 29.

Young, R.J., Stevenson, R.M., Shields, A.J., Atkinson, P., Cooper, K., Ritchie, D.A., Groom, K.M., Tartakovskii, A.I., and Skolnick, M.S. (2005). Inversion of exciton level splitting in quantum dots. Phys. Rev. B, 72, 113305.

Yu, N. and Capasso, F. (2012). Wavefront engineering of quantum cascade lasers using plasmonics. In Plasmonics and Plasmonic Metamaterials: Analysis and Applications, World Scientific Series in Nanoscience and Nanotechnology, Vol. 4, edited by G. Shvets and I. Tsukerman, Ch. 5. World Scientific, Singapore.

Yu, N., Blanchard, R., Fan, J., Edamura, T., Yamanishi, M., Kan, H., and Capasso, F. (2008a). Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators. Appl. Phys. Lett., 93, 181101.

Yu, N., Fan, J., Wang, Q.J., Pflügl, C., Diehl, L., Edamura, T., Yamanishi, M., Kan, H., and Capasso, F. (2008b). Small-divergence semiconductor lasers by plasmonic collimation. Nat. Photonics, 2, 564.

Yu, N., Kats, M.A., Pflügl, C., Geiser, M., Wang, Q.J., Belkin, M.A., Capasso, F., Fischer, M., Wittmann, A., Faist, J., Edamura, T., Furuta, S., Yamanishi, M., and Kan, H. (2009). Multi-beam multi-wavelength semiconductor lasers. Appl. Phys. Lett., 95, 161108.

Yu, N., Wang, Q.J., Kats, M.A., Fan, J.A., Khanna, S.P., Li, L., Davies, A.G., Linfield, E.H., and Capasso, F. (2010). Designer spoof surface plasmon structures collimate terahertz laser beams. Nat. Mater., 9, 730.

Yu, P.Y. and Cardona, M. (2010). Fundamentals of Semiconductors: Physics and Materials Properties, 4th edn. Springer-Verlag, Berlin.

(p.360) Yuan, C.T., Yu, P., and Tanga, J. (2009). Blinking suppression of colloidal CdSe/ZnS quantum dots by coupling to silver nanoprisms. Appl. Phys. Lett., 94, 243108.

Yuan, Z., Kardynal, B.E., Stevenson, R.M., Shields, A.J., Lobo, C.J., Cooper, K., Beattie, N.S., Ritchie, D.A., Pepper, M. (2002). Electrically driven single-photon source. Science, 295, 102.

Young, R.J., Stevenson, R.M., Atkinson, P., Cooper, K., Ritchie, D.A., and Shields, A.J., (2006). Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys., 8, 29.

Zaniewski, A.M., Schriver, M., Lee, J.G., Crommie, M.F., and Zettl, A. (2013). Electronic and optical properties of metal nanoparticle-filled graphene sandwiches. Appl. Phys. Lett., 102, 023108.

Zenneck, J. (1907). Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann. Phys., 23, 846.

Zhang, H., Zhu, J., Zhu, Z., Jin, Y., Li, Q., and Jin, G. (2013). Surface plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating. Opt. Express, 21, 13492.

Zhang, J., Tang, Y., Lee, K., and Ouyang, M. (2010). Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature, 466, 91.

Zhang, P., Wang, S., Liu, Y., Yin, X., Lu, C., Chen, Z., and Zhang, X. (2011). Plasmonic Airy beams with dynamically controlled trajectories. Opt. Lett., 36, 3191.

Zhang X.-C., Hu, B.B., Darrow J.T., and Auston, D.H. (1990). Generation of femtosecond electromagnetic pulses from semiconductor surfaces. Appl. Phys. Lett., 56, 1011.

Zhao, J., Nair, G., Fisher, B.R., and Bawendi, M.G. (2010). Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking. Phys. Rev. Lett., 104, 157403.

Zhu, W., Rukhlenko, I.D., and Premaratne, M. (2013). Application of zero-index metamaterials for surface plasmon guiding. Appl. Phys. Lett., 102, 011910.

Zinoni, C., Alloing, B., Monat, C., Zwiller, V., Li, L.H., Fiore, A., Lunghi, L., Gerardino, A., de Riedmatten, H., Zbinden, H., and Gisin, N. (2006). Time-resolved and antibunching experiments on single quantum dots at 1300 nm. Appl. Phys. Lett., 88, 131102.

Ziolkowski, R.W. (2004). Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E, 70, 046608.

Zrenner, A., Butov, L.V., Hagn, M., Abstreiter, G., Böhm, G., and Weimann, G. (1994). Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures. Phys. Rev. Lett., 72, 3382.

Zwiller, V., Blom, H., Jonsson, P., Panev, N., Jeppesen, S., Tsegaye, T., Goobar, E., Pistol, M.-E., Samuelson, L., and Björk, G. (2001). Single quantum dots emit single photons at a time: antibunching experiments. Appl. Phys. Lett., 78, 2476.