Jump to ContentJump to Main Navigation
Introduction to Black Hole Physics$

Valeri P. Frolov and Andrei Zelnikov

Print publication date: 2011

Print ISBN-13: 9780199692293

Published to Oxford Scholarship Online: January 2012

DOI: 10.1093/acprof:oso/9780199692293.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 14 December 2017

(p.463) References

(p.463) References

Source:
Introduction to Black Hole Physics
Publisher:
Oxford University Press

Bibliography references:

Abramowitz, M. and Stegun, I. A. (Eds.) (1972). Spheroidal Wave Functions. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, New York: Dover, pp. 751–759.

Aharony, O. et al., (2000). Large N Field Theories, String. Theory and Gravity, Phys. Reports, 323, 183–386.

Arkani-Hamed, N., Dimopoulos, S., Dvali, G. (1998). The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B, 436, 263–272.

Arkani-Hamed, N., Dimopoulos, S., Dvali, G. (1999). Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev., D59, 086004 [21 pp].

Aliev, A.N. and Gal'tsov, D.V. (1989). “Magnetized” black holes, Sov. Phys. Usp., 32, 75–92.

Arnold, V. I., (1989). Mathematical Methods of Classical Mechanics, Graduate Texts in Math., 60, Springer-Verlag, New York and Berlin.

Baade, W. and Zwicky, F. (1934). On Supernovae, Proc. Nat. Acad. Sci., 20, 254–259.

Babelon O., Bernard D., and Talon M. (2006). Introduction to Classical Integrable Systems, Cambridge Univ. Press. Cambridge, United Kingdom.

Barceló, C., Liberati, S., Visser, M. (2005). Analogue Gravity, Living Rev. Relativity, 8, 12. http://www.livingreviews.org/lrr-2005-12.

Bardeen, J.M., (1970). Kerr Metric Black Holes, Nature, 226, 64–65.

Bardeen, J. M. (1973). Timelike and Null Geodesics in the Kerr Metric, In “Black Hole”, eds. C. DeWitt and B. S. DeWitt. Gordon and Breach, New York.

Bardeen, J. M., Carter, B., and Hawking, S. W. (1973). The four laws of black hole mechanics, Commun. Math. Phys., 31, 161–170.

Bardeen, J. and Horowitz, G. T. (1999). Extreme Kerr throat geometry: A vacuum analog of AdS 2 × S 2, Phys. Rev., D60, 104030 [10 pp].

Bardeen, J. M., Press, W. H. (1973). Radiation fields in the Schwarzschild Background, J. Math. Phys., 14, 7–19.

Bardeen, J. M., Press, W. H. and Teukolsky, S. A. (1972). Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation, Astrophys. J., 178, 347–369.

(p.464) Barrow, I. D. and Silk I. (1983). The Left Hand of Creation, Basic Books, New York.

Bekenstein, J. D. (1972). Black holes and the second law, Lett. Nuovo Cim., 4, 737–740.

Bekenstein, J. D. (1973). Black Holes and Entropy, Phys. Rev., D7, 2333–2346.

Bekenstein, J. D. (1974). Generalized second law of thermodynamics in black‐hole physics, Phys. Rev., D9, 3292–3300.

Bekenstein, J. D. (1980). Black Hole Thermodynamics, Phys. Today, 33, 24–31.

Berger, M. (2003). A Panoramic View of Riemannian Geometry, Springer‐Verlag, Berlin‐ Heidelberg‐New York.

Berti, E., Cardoso, V., Casals, M. (2006). Eigenvalues and eigenfunctions of spin‐weighted spheroidal harmonics in four and higher dimensions, Phys. Rev., D73, 024013.

Berti, E., Cardoso, V., and Starinets, A. O. (2009). Quasinormal modes of black holes and black branes, Class. Quantum Grav., 26, 163001, 108pp.

Birrell, N. D., Davies, P. C. W. (1982). Quantum Fields in Curved Space, Cambridge Univ. Press. Cambridge, United Kingdom.

Blandford, R. D., Znajek, R. L. (1977). Electromagnetic extraction of energy from Kerr black holes, Mon. Not. R. Astron. Soc., 179, 433–456.

Bolton, C. T. (1972). Identification of Cygnus X‐1 with HDE 226868, Nature, 235, 271–273.

Bonnor, W. B. (1969). The gravitational field of light, Commun. Math. Phys., 13, 163–174.

Borde, A. (1994). Topology change in classical general relativity, arXiv: 9406053 [gr‐qc].

Burrows, D. N. et al. (2011). Relativistic jet activity from the tidal disruption of a star by a massive black hole, Nature, 476, 421–423.

Callon, H.B (1960). Thermodynamics, John Widey and Sons, New York, pp. 117–121.

Campanella, M., Lousto, C., Zlochower, Y., Merrit, D. (2007). Maximum Gravitational Recoil, Phys. Rev. Lett., 98, 231102, 4pp.

Carlip, S. (2009). Black Hole Thermodynamics and Statistical Mechanics, Lect. Notes Phys., 769, 89–123.

Carr, B. J. et al. (2010). New cosmological constraints on primordial black holes, Phys. Rev., D81, 104019‐1–33.

Cartan E. (1927). Sur la possibilit de plonger un espace Riemannien dans un espace Euclidien, Annal. Soc. Polon. Math., 6, 1–7.

Carter, B. (1968a). Global Structure of the Kerr Family of Gravitational Fields, Phys. Rev., 174, 1559–1571.

Carter, B. (1968b). Hamilton‐Jacobi and Schrodinger separable solutions of Einstein's equations, Commun. Math. Phys., 10, 280–310.

Carter, B. (1971). Axisymmetric Black Hole Has Only Two Degrees of Freedom, Phys. Rev. Lett., 26, 331–333.

Carter, B. (1973). Black hole equilibrium states. Black Holes, proceedings of the 1972 Les Houches Summer School, eds. DeWitt C., and DeWitt, B. S., Gordon and Breach, New York. pp. 57–214.

Carter, B. (1976). Proceedings of the First Marcel Grossmann Meeting on General Relativity, ed. R. Ruffini, R., North‐Holland, Amsterdam.

(p.465) Carter, B. (1979). General Relativity, an Einstein Centenary Survey, eds. Hawking, S.W., Israel, W., Cambridge University Press, Cambridge, pp. 294–369.

Carter, B. (1987). Gravitation in Astrophysics, eds. Carter, B., Hartle, J., Plenum, New York, pp. 63–122.

Carter, B. (1997). Proceedings of the Eighth Marcel Grossmann Meeting on General Relativity, eds. Piran, T., and Ruffini, R., World Scientific, Singapore, pp. 136–165.

Cavaglià, M. (2003). Black hole and brane production in TeV gravity: A Review, Int. J. Mod. Phys. A, 18, 1843–1882.

Chandrasekhar, S. (1931). The maximum mass of ideal white dwarfs, Astrophys. J., 74, 81–82.

Chandrasekhar, S. (1983). The Mathematical Theory of Black Holes, Oxford University Press, New York.

Chen, W., Lu, H., Pope, C.N. (2007). Kerr‐de Sitter black holes with NUT charges, Nucl. Phys. B, 762, 38–54.

Cherepashchuk, A.M. (1996). Masses of black holes in binary stellar systems, Sov. Phys. Usp., 39, 759–780.

Courant, R. (1943). Variational methods for the solution of problems of equilibrium and vibrations, Bull. Am. Math. Soc., 49, 1–23.

Crispino, L. C. B., Higuchi, A., Matsas, G. E. A. (2008). The Unruh effect and its applications, Rev. Mod. Phys., 80, 787–838.

Chrućiel, P. T., Galloway, G. J., Pollack, D. (2010). Mathematical general relativity: A sampler, Bull. Amer. Math. Soc., 47, 567–638.

Connell, P., Frolov, V. P., and Kubiznak, D. (2008). Solving parallel transport equations in the higher‐dimensional Kerr‐NUT‐(A)dS spacetimes, Phys. Rev., D78, 024042, 13pp.

Dafermos, M., Rodnianski, I. (2010). The black hole stability problem for linear scalar perturbations, arXiv:1010.5137. 48 pp.

Debever, R., (1971). On type D expanding solutions of Einstein‐Maxwell equations, Bull. Soc. Math. Belg., 23, 360–376.

DeWitt, B. S. (1975). Quantum field theory in curved spacetime, Phys. Rep., C19, 296–357.

Doukas, J. (2010). Exact constraints on D≤ 10 Myers–Perry black holes, arXiv:1009.6118.

Dowker, J. S., (1977). Quantum field theory on a cone, J. Phys. A: Math. Gen., 10, 115–124.

Dubrovin, B.A., Fomenko, A.T., Novikov, S.P. (1990). Modern Geometry ‐ Methods and Applications, Springer‐Verlag.

Dymnikova, I.G (1986). Motion of particles and photons in the gravitational field of a rotating body (In memory of Vladimir Afanas'evich Ruban), Sov. Phys. Usp., 29, 215–237.

Eardley, D. M., and Giddings, S. B. (2002). Classical black hole production in high‐energy collisions, Phys. Rev., D66, 044011, 7pp.

Eddington, A. S. (1924). A comparison of Whitehead's and Einstein's formulas, Nature, 113, 192.

Einstein, A. and Rosen, N. (1935). The particle problem in the general theory of relativity, Phys. Rev., 48, 73–77.

(p.466) Eisenhart L. P. (1966). Riemannian Geometry, Princeton University Press, Princeton.

Echeverria, F., Klinkhammer, G., and Thorne, K. S. (1991). Billiard balls in wormhole spacetimes with closed timelike curves: Classical theory, Phys. Rev., D44, 1077–1099.

Elvang, H., Figueras, P. (2007). Black Saturn, JHEP, 0705:050.

Emparan, R., Myers, R. C. (2003). Instability of ultra‐spinning black holes, JHEP, 0309:025, 21 pp.

Emparan, R., Reall, H. S. (2002). A rotating black ring in five dimensions, Phys. Rev. Lett., 88, 101101, 4pp.

Emparan, R., Reall, H. S. (2008). Black Holes in Higher Dimensions, Living Rev. Rel. 11, 6, 76 pp. http://www.livingreviews.org/lrr-2008-6.

Finkelstein, D. (1958). Past‐Future Asymmetry of the Gravitational Field of a Point Particle, Phys. Rev., 110, 965–967.

Finster, F., et al. (2009). Linear waves in the Kerr geometry: A mathematical voyage to black hole physics, Bull. Amer. Math. Soc., 46, 635–659.

Flamm, L. (1916). Beitrge zur Einsteinischen Gravitationtheorie, Physikalische Zeitschrift, 17, 448–454.

Flammer, C. (1957). Spheroidal Wave Functions, Stanford Univ. Press, Stanford.

Frauendiener, J.G. (2004). Conformal Infinity, Living Reviews in Relativity, http://relativity.livingreviews.org/open?pubNo=lrr-2004-1.

Friedman, J., Morris, M. S., Novikov, I. D., Echeverria, F., Klinkhammer, G., Thorne, K. S., Yurtsever, U. (1990). Cauchy problem in spacetimes with closed timelike curves. Phys. Rev., D42, 1915–1930.

Friedman, J. L., Schleich, K., Witt, D. M. (1993). Topological Censorship, Phys. Rev. Lett., 71, 1486–1489.

Frolov, V. P. (1976). Black holes and quantum processes in them, Sov. Phys. Usp., 19, 244–262.

Frolov, V. P. (1991a). Vacuum polarization in a locally static multiply connected spacetime and a time‐machine problem, Phys. Rev., D43, 3878–3894.

Frolov, V. P. (1991b). Physical effects in wormholes and the “time machine” problem, Proceedings of the sixth Marcel Grossmann meeting, Sato, H., Nakamura, T., eds., Kyoto, 1233–1245.

Frolov, V., (2006). Embedding of the Kerr‐Newman black hole surface in Euclidean space, Phys. Rev., D73, 064021 [5 pp].

Frolov, V. P., Fursaev, D. V. (2005). Gravitational field of a spinning radiation beam pulse in higher dimensions, Phys. Rev., D71, 104034, 16 pp.

Frolov, V. and Krtouš, P. (2011). Charged particle in higher dimensional weakly charged rotating black hole spacetime, Phys. Rev., D83, 024016, 8 pp.

Frolov, V. P., Krtouš, P., Kubiznák, D. (2007). Separability of Hamilton‐Jacobi and KleinGordon equations in general Kerr‐NUT‐AdS spacetimes, JHEP, 0702:005.

Frolov, V.P., Kubizňák, D. (2007). Hidden Symmetries of Higher Dimensional Rotating Black Holes, Phys. Rev. Lett., 98, 011101.

(p.467) Frolov, V.P., Kubizňák, D. (2008). Higher‐dimensional black holes: hidden symmetries and separation of variables, Class. Quantum Grav., 25, 154005, 22 pp.

Frolov, V. P., Novikov, I. D. (1990). Physical effects in wormholes and time machines, Phys. Rev., D42, 1057–1065.

Frolov, V. and Novikov, I. (1998). Black Hole Physics, Kluwer Academic Publishers, Dordrecht.

Frolov, V.P., Shoom, A.A., (2007). Interior of distorted black holes, phys. Rev., D76, 064037.

Frolov, V.P., Shoom, A.A., (2010). Motion of charged particles near a weakly magnetized Schwarzschild black hole, Phys. Rev., D82, 084034.

Frolov, V. P., Stojkovic, D. (2003). Particle and light motion in a space‐time of a five‐ dimensional rotating black hole. Phys. Rev., D68, 06 4011.

Frolov, V. P., Israel, W., and Zelnikov, A. (2005). Gravitational field of relativistic gyratons, Phys. Rev., D72, 084031, 11 pp.

Fronsdal, C. (1959). Completion and Embedding of the Schwarzschild Solution, Phys. Rev., 116, 778–781.

Fulton, W., (1997). Young tableaux: with applications to representation theory and geometry, Cambridge Monographs on Mathematical Physics, Cambridge.

Gallo, E. (2010). Radio emission and jets from microquasars, Lecture Notes in Physics, 794, 85–113.

Gannon, D. (1976). On the topology of spacelike hypersurfaces, singularities, and black holes, Gen. Rel. Grav., 7, 219–232.

Geroch, R. P. (1967). Topology in general relativity, J. Math. Phys., 8, 782–786.

Gezari, S., et al. (2009). Luminous Thermal Flares from Quiescent Supermassive Black Holes, Astrophys. J., 698, 1367–1379.

Giacconi, R., Gursky, H., Paolini, F. R., and Rossi, B. B. (1962). Evidence for X‐rays from sources outside the solar system, Phys. Rev. Lett., 9, 439–443.

Gibbons, G. W. and Hawking, S. W. (1977). Action integrals and partition functions in quantum gravity, Phys. Rev., D15, 2752–2756.

Giddings, S. B. (2007). High‐energy black hole production, arXiv:0709.1107 [hep‐ph].

Ginzburg, V. L. (1985). Physics and Astrophysics: A Selection of Key Problems, Pergamon Press, Oxford.

Ginzburg, V. L., and Frolov V. P. (1987). Vacuum in a homogeneous gravitational field and excitation of a uniformly accelerated detector, Sov. Phys. Uspekhi, 30, 1073–1095.

Goldberg, J. N., MacFarlane, A. J., Newman, E. T., Rorlich, F., Sudarshan, E. C. G. (1967). J. Math. Phys., 8, 2155–2161.

Gonzaález, J. A., Sperhake, U., Brugmann, B., Hannam, M. and Husa, S., (2007a). Maximum kick from nonspinning black‐hole binary inspiral, Phys. Rev. Lett., 98, 091101. 4 p p.

Gonzaález, J. A., Hannam, M., Sperhake, U., Br ugmann, B., and Husa, S., (2007b). Supermassive Recoil Velocities for Binary Black‐Hole Mergers with Antialigned Spins, Phys. Rev. Lett., 98, 231101. 4 pp.

(p.468) Gou, L., et al. (2009). A Determination of the Spin of the Black Hole Primary in LMC X‐1, Astrophys. J., 701, 1076–1090.

Gregory, R., Laflamme, R. (1993). Black Strings and p‐Branes are Unstable. Phys. Rev. Lett., 70, 2837–2840.

Griffiths, J. B., Podolský, J. (2009). Exact Space‐Times in Einstein's General Relativity, Cambridge Univ. Press, New York.

Guseinov, O. Kh. and Zel'dovich, Ya.B. (1966). Collapsed stars in binary systems. Astron. Zh., 43, 313–315.

Hansen, R.O. (1974). Multipole moments of stationary spacetimes, JMP, 15, 46–52.

Harmark, T., Niarchos, V., and Obers, N. A. (2007). Instabilities of black strings and branes, Class. Quant. Grav., 24, R1‐R90.

Hawking, S. W. (1971). Gravitationally collapsed objects of very low mass, Mon. Not. Roy. Astron. Soc., 152, 75–78.

Hawking, S. W. (1972a). Black holes in general relativity, Commun. Math. Phys., 25, 152–166.

Hawking, S. W. (1972b). The event horizon, Black Holes, Les Houches lectures, eds. DeWitt, C., DeWitt, B. S., Amsterdam, North Holland. pp. 1–55.

Hawking, S. W. (1974). Black Hole Explosions, Nature, 248, 30–31.

Hawking, S. W. (1975). Particle Creation by Black Holes, Commun. Math. Phys., 43, 199–220.

Hawking, S.W., (1992). The chronology protection conjecture, Phys. Rev., D46, 603–611.

Hawking, S. W. and Ellis, G. F. (1973). The Large‐Scale Structure of Spacetime, Cambridge Univ. Press, Cambridge.

Hawking, S. W., Hartle, J. B. (1972). Energy and angular momentum flow into a black hole, Commun. Math. Phys., 27, 283–290.

Healy, J., Herrmann, F., Hinder, I., Shoemaker, D. M., Laguna, P., and Matzner, R. A. (2009). Superkicks in Hyperbolic Encounters of Binary Black Holes, Phys. Rev. Lett., 102, 041101, 4 pp.

Heusler, M. (1996). Black Hole Uniqueness Theorems, Cambridge Univ. Press., Cambridge.

Heusler, M. (1998). Stationary Black Holes: Uniqueness and Beyond, Living Rev. Relativity, 1 (6); http://relativity.livingreviews.org/Articles/lrr-1998-6.

Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., and Collins, R. A. (1968). Observation of a Rapidly Pulsating Radio Source, Nature, 217, 709–713.

Hinder, I. (2010). The current status of binary black hole simulations in numerical relativity, Class. Quant. Grav., 27, 114004, 19 pp.

Hioki, K. and Maeda, Kei‐ichi (2009). Measurement of the Kerr spin parameter by obbservation of a compact object's shadow, Phys. Rev., D80, 024042.

Ho, L. C. (2002). On the relationship between radio emission and black hole mass in galactic nuclei, Astrophys. J., 564, 120–132.

Hochberg, D. and Visser, M. (1997). Geometric structure of the generic static traversable wormhole throat, Phys. Rev., D56, 4745–4755.

(p.469) Houri, T., Oota, T., Yasui, Y. (2009). Closed conformal Killing‐Yano tensor and uniqueness of generalized Kerr‐NUT‐de Sitter spacetime, Class. Quant. Grav., 26, 045015, 24pp.

Iguchi, H., Mishima, T. (2007). Black di‐ring and infinite nonuniqueness, Phys. Rev., D75, 064018; Erratum‐ibid. D78, 069903.

Izumi, K. (2008). Orthogonal black di‐ring solution, Prog. Theor. Phys., 119, 757–774.

Ipser, J. R. (1971). Electromagnetic Test Fields Around a Kerr‐Metric Black Hole, Phys. Rev. Lett., 27, 529–531.

Israel, W. (1967). Event Horizons in Static Vacuum Space‐Times, Phys. Rev., 164, 1776–1779.

Israel, W. (1968). Event horizons in static electrovac space‐times, Commun. Math. Phys., 8, 245–260.

Israel, W. (1983). Black holes, Sci. Prog. (Oxford), 68, 333–363.

Israel, W. (1986a). Third Law of Black‐Hole Dynamics: A Formulation and Proof, Phys. Rev. Let., 57, 397–399.

Israel, W. (1986b). The formation of black holes in unimpherical collopse and cosmic cenocraphiys, Can. J. Phys., 64, 120–127.

Israel, W. (1987). Dark stars: the evolution of an idea. In S. W. Hawking and W. Israel, eds. 300 Years of Gravitation, pp. 199–276. Cambridge Univ. Press, Cambridge.

Janet M. (1926). Sur la possibilit de plonger un espace Riemannien donn dans un espace Euclidien, Ann. Soc. Polon. Math., 5, 38–42.

Jordan, P., Ehlers, J., Sachs, R. (1961). Beitrage zur Theorie der reinen Gravitationsstrahlung, Akad. Wiss. Mainz. Abh. Math. Naturwiss. Kl., 1, p. 2.

Kaluza, T. (1921). Zum Unitatsproblem der Physik, Sitz. Preuss. Akad. Wiss., K1, 966–972.

Kanti, P. (2004). Black Holes in Theories with Large Extra Dimensions: a Review, Int. J. Mod. Phys. A, 19, 4899–4951.

Kapner, D.J., et al. (2007). Tests of the Gravitational Inverse‐Square Law below the Dark‐ Energy Length Scale, Phys. Rev. Lett., 98, 021101.

Kastin, J. (1968). A Course of Thermodynamics, Vol. 2. Blaisdell, Wattham, Massachusatts.

Kim, S. W., Thorne, K. P. (1991). Do vacuum fluctuations prevent the creation of closed timelike curves? Phys. Rev., D43, 3929–3947.

Klein, O. (1926). Quantum Theory and Five‐Dimensional Theory of Relativity, Z. Phys., 37, 895–906; (1986), Surveys High Energ. Phys., 5, 241–244.

Kol, B., (2006). The phase transition between caged black holes and black holes, Phys. Rep, 422, 119–165.

Kokkotas, K. D., and Schmidt, B. G. (1999). Quasi‐Normal Modes of Stars and Black Holes, Living Rev. Rel. 2, 2. e‐Print: arXiv: gr‐qc/9909058.

Komossa, S., Zhou, H., Lu, H., (2008). A Recoiling Supermassive Black Hole in the Quasar SDSS J092712.65+294344.0?, Astrophys. J., 678, L81–L84.

Konoplya, R.A., Zhidenko, A. (2011). Quasinormal modes of black holes: From astrophysics to strong theory, e‐print: arxiv: 1102.4014 [gr‐gc]

Kormendy, J. (1993). In The Nearest Active Galaxies, J. E. Beckman, H. Netzer, and L. Colina (eds.), Consejo Superior de Investigaciones Cientificas, Madrid, p. 197.

(p.470) Krtous, P., Frolov, V. P., and Kubiznak, D. (2008). Hidden symmetries of higher dimensional black holes and uniqueness of the Kerr‐NUT‐(A)dS spacetime, Phys. Rev., D78, 064022, 5pp.

Kruskal, M. D. (1960). Maximal Extension of Schwarzschild Metric, Phys. Rev., 119, 1743–1745.

Kubiznak, D. (2008). Hidden Symmetries of Higher‐Dimensional Rotating Black Holes, arXiv:0809.2452 [gr‐qc], 170pp.

Kubiznak, D., Frolov, V. P. (2007). Hidden Symmetry of Higher Dimensional Kerr‐NUT‐AdS Spacetimes. Class. Quant. Grav., 24, F1–F6.

Kubiznak, D., Frolov, V. P. (2008). Stationary strings and branes in the higher‐dimensional Kerr‐NUT‐(A)dS spacetimes, JHEP, 0802:007.

Kubiznak, D., Frolov, V. P., Krtouš, P., and Connell, P. (2009). Parallel‐propagated frame along null geodesics in higher‐dimensional black hole spacetimes, Phys. Rev., D79, 024018, 16pp.

Pelavas, N., Neary, N., Lake, K. (2001). Properties of the instantaneous Ergo surface of a Kerr black hole, Class. Quant. Grav., 18, 1319–1332.

Landau, L. D. (1932). On the theory of stars, Physikallische Zeitschrift der Sowjetunion 1, 285–288.

Landau, L. D., Lifshitz, E.M. (1980). The Classical Theory of Fields, Fourth Edition: Volume 2, Butterworth‐Heinemann, Oxford.

Landsberg, G. (2006). Black holes at future colliders and beyond, J. Phys. G: Nucl. Part. Phys., 32, R337–R365.

Lee, H. K., Wijers, R. A. M. J., Brown, G.E. (2000). The Blandford‐Znajek process as a central engine for a gamma‐ray burst. Phys. Rep., 325, 83–114.

Lemaître, G (1933). L'Univers en expansion, Ann. Soc. Sci. Bruxelles, A53, 51–85.

Leonhardt, U., Philbin, T. G. (2008). The case for artificial black holes, Phil. Trans. R. Soc. A, 366, 2851–2857.

Lewis, G. N. and Randall, M. (1961). Themodynamics, 2nd edn., revised by Pitzer, K. S. and Bremer, L., Mcgraw‐Hill, New York.

Lightman, A.P., Press, W. H., Price, R.H., and Teukolsky, S. A., (1975). Problem Book in Relativity and Gravitation, with complete solutions, Princeton University Press, Princeton.

Linet, B. (1976). Electrostatics and magnetostatics in the Schwarzschild metric, J. Phys., A9, 1081–1087.

Lynden‐Bell, D. (1969). Galactic Nuclei as Collapced Old Quazars, Nature, 223, 690–694.

Markov, M. A. (1965). Can the gravitational field prove essential for the theory of elementary particles? Suppl. Progr. Theor. Phys, (extra number), 85–95.

Markov, M. A. (1970). The Closed Universe and Laws of Conservation of Electric Baryon and Lepton Charges, Ann. Phys.,59, 109–128.

Markov, M. A. (1974). Global properties of matter in collapsed state (“black holes”), Sov. Phys. Uspekhi, 16(5), 587–599.

McClintock, J. E., Shafee, R., Narayan, R., Remillard, R.A., Davis, S. W., Li, L. X. (2006). The Spin of the Near‐Extreme Kerr Black Hole GRS 1915+105, Astrophys. J., 652, 518–539.

(p.471) McClintock, J. E., Narayan,R., Gou, L., Liu, J., Penna, R.F., and Steiner, J.F. (2009). Measuring the Spins of Stellar Black Holes: A Progress Report, arXiv:0911.5408.

Melia, F. (2009). High‐Energy Astrophysics, Princeton University Press, Princeton.

Mészáros, P. (2002). Theory of Gamma‐Ray Bursts, Ann. Rev. Astron. Astrophys., 40, 1–40.

Mészáros, P. (2006). Gamma‐Ray Bursts, Rept. Prog. Phys., 69, 2259–2322.

Miller J.M., Reynolds C.S., Fabian A.C., Miniutti G., Gallo L.C. (2009). Stellar‐mass black hole spin constraints from disk reflection and continuum modeling, Astrophys. J., 697, 900–912.

Misner, Charles W., Thorne, K.S., Wheeler, J.A. (1973). Gravitation, W.H. Freeman and Company, New York.

Morris, M. S., Thorne, K. S., and Yurtsever, U. (1988). Wormholes, Time Machines, and the Weak Energy Condition, Phys. Rev. Lett., 61, 1446–1449.

Mundell, C. G., Guidorzi, C., and Steele, I. A. (2010). Gamma‐Ray Bursts in the Era of Rapid Followup, Advances in Astronomy, 2010, 718468, 14pp.

Myers, R. C. and Perry, M. J. (1986). Black holes in higher dimensional space‐times, Ann. Phys., 172, 304–347.

Nash, J. (1956). The imbedding problem for Riemannian manifolds, Annals Math., 63, 20–63.

Nordström, G. (1914). Über die Möglichkeit, das elektromagnetische Feld und das Gravitationsfeld zu vereinigen, Phys. Zeits., 15, 504–506.

Norris, L.K. (1997). Schouten‐Nijenhuis Brackets, J. Math. Phys., 38, 2694–2709.

Novikov, I. D. (1963). On the evolution of a semiclosed universe (in Russian), Astron. Zh. 40, 772.

Novikov, I. D. (1964). R‐ and T‐regions in a spacetime with a spherically symmetric space (in Russian). Comm. State Sternberg Astron. Inst., 132, 3.

Novikov, I. D. (1990). Black Holes and the Universe, Cambridge Univ. Press, Cambridge.

Oota, T., Yasui, Y. (2008). Separability of Dirac equation in higher dimensional Kerr‐NUT‐de Sitter spacetime. Phys. Lett. B, 659, 688–693.

Oota, T., Yasui, Y. (2010). Separability of Gravitational Perturbation in Generalized Kerr‐ NUT‐de Sitter Spacetime, Int. J. Mod. Phys. A, 25, 3055–3094.

Oppenheimer, J. R. and Snyder, H. (1939). On Continued Gravitational Contraction, Phys. Rev., 56, 455–459.

Oppenheimer, J. R. and Volkoff, G. (1939). On Massive Neutron Cores, Phys. Rev., 55, 374–381.

Orosz, J. A., et al. (2007). A 15.65‐solar‐mass black hole in an eclipsing binary in the nearby spiral galaxy M 33, Nature, 449, 872–875.

Orosz, J. A., et al. (2009). A new dynamical model for the black hole binary LMC X‐1, Astrophys. J., 697, 573–591.

Ortín, T. (2004). Gravity and Strings, Cambridge Univ. Press, Cambridge.

Page, D. N. (1983). Comment on “Entropy Evaporated by a Black Hole”, Phys. Rev. Lett., 50, 1013–1013.

(p.472) Penrose, R. (1963). Asymptotic Properties of Fields and Space‐Times, Phys. Rev. Lett., 10, 66–68.

Penrose, R. (1964). Relativity, Groups and Typology eds. Dewitt, C. and Dewitt, B., Gorden and Breach, New York, London, pp. 565–584.

Penrose, R. (1965). Zero rest mass fields including gravitation, Proc. R. Soc. London, A284, 159–203.

Penrose, R. (1968). Structure of Space‐Time. Battelle Rencontres, eds. DeWitt C. M., and Wheeler, J. A., Benjamin, New York, pp. 121–235.

Penrose, R. (1972). Black holes, Sci. Am., 226(5), 38–46.

Penrose, R., Rindler, W., (1987). Spinors and space‐time. Volume 1. Two‐spinor calculus and relativistic fields, Cambridge Univ. Press, Cambridge.

Petterson, J.A. (1974). Magnetic field of a current loop around a Schwarzschild black hole, Phys. Rev., D10, 3166–3170.

Philbin, T. G., Kuklewicz, C., Robertson, S., Hill, S., König, F. & Leonhardt, U. (2008). Fiber‐ optical analog of the event horizon, Science, 319, 1367–1370.

Poisson, E. (2007). A Relativist's Toolkit: The Mathematics of Black‐Hole Mechanics, Cambridge Univ. Press, Cambridge.

Pomeransky, A. A., and Sen'kov, R. A. (2006). Black ring with two angular momenta, arXiv: 0612005 [hep‐th]

Press, W. H. (1972). Time Evolution of a Rotating Black Hole Immersed in a Static Scalar Field, Astrophys. J., 175, 243–252.

Press, W. H. and Teukolsky, S. A. (1973). Perturbations of a Rotating Black Hole. 2. Dynamical Stability of the Kerr Metric, Astrophys. J., 185, 649–673.

Price, R. H. (1972a). Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations, Phys. Rev., D5, 2419–2438.

Price, R. H. (1972b). Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer‐Spin, Zero‐Rest‐Mass Fields, Phys. Rev., D5, 2439–2454.

Punsly, B. (2008). Black Hole Gravitohydromagnetics, Springer‐Verlag, Berlin Heidelberg.

Randall, L., Sundrum, R. (1999). Large Mass Hierarchy from a Small Extra Dimension, Phys. Rev. Lett., 83, 3370–3373.

Rees, M. J. (2000). A Review of Gamma Ray Bursts, Nucl. Phys., A663&664, 42c–55c.

Remillard, R.A., McClintock, J.E. (2006). X‐Ray Properties of Black‐Hole Binaries, Annual Review of Astronomy and Astrophysics, 44, 49–92.

Robinson, D. C. (2009). Four decades of black hole uniqueness theorems. The Kerr Spacetime: Rotating Black Holes in General Relativity, eds. Wiltshire, D. L., Visser, M., and Scott, S. M., Cambridge University Press, pp. 115–143.

Robinson, A., Young, S., Axon, D. J., Kharb, P., Smith, J. E. (2010). Spectropolarimetric Evidence for a Kicked Supermassive Black Hole in the Quasar E1821+643, Astrophys. J. Letters, 717, L122‐L126.

Rubin, M. A., and Ordóñez,C. R. (1984). Eigenvalues and degeneracies for n‐dimensional tensor spherical harmonics, J. Math. Phys., 25, 2888–2894.

(p.473) Sachs, R. K. (1961). Gravitational waves in general relativity VI: The outgoing radiation condition, Proc. R. Soc. London, A264, 309–338.

Sachs, R. K. (1964). Relativity, Groups, and Topology, DeWitt, C. and DeWitt, B. S. eds., N. Y.‐London.

Salpeter, E. (1964). Accretion of interstellar matter by massive objects, Astrophys. J., 140, 796–800.

Sánchez, N. (1978). Absorption and emission spectra of a Schwarzschild black hole, Phys. Rev., D18, 1030–1036.

Sandage, A. R., et al. (1966). On the Optical Identification of SCO X‐1, Astrophys. J., 146, 316–321.

Sathyaprakash, B. S. (1999). Gravitational Waves: The Future of Black Hole Physics, J. Astro‐ phys. Astr., 20, 211–220.

Sathyaprakash, B. S. and Schutz, B. F. (2009). Physics, Astrophysics and Cosmology with Gravitational Waves, Living Reviews in Relativity, http://relativity.livingreviews.org/Articles/lrr-2009-2/.

Sen, A. (2008). Black hole entropy function, attractors and precision counting of microstates, Gen. Relativ. Gravit., 40, 2249–2431.

Schreier, E., et al. (1972). Evidence for the Binary Nature of Centaurus X‐3 from UHURU X‐Ray Observations, Astrophys. J., 172, L79–L89.

Sciama, D. W. (1976). Black holes and their thermodynamics, Vistas Astron., 19, 385.

Shafee, R., McClintock, J. E., Narayan, R., Davis, S.W., Li, L. X., Remillard, R. A. (2006). Estimating the spin of stellar‐mass black holes via spectral fitting of the X‐ray continuum, Astrophys. J., 636, L113‐L116.

Shields, G. A. et al. (2009). The Quasar SDSS J105041.35+345631.3: Black Hole Recoil or Extreme Double‐Peaked Emitter? Astrophys. J., 707, 936–941.

Shklovsky, I. S. (1967). Astrophys. J., 148, L1.

Silverman, J. M. and Filippenko, A. V. (2008). On IC 10 X‐1, The most massive known stellarmass black hole, Astrophys. J., 678, L17–L20.

Smarr, L. (1973). Mass Formula for Kerr Black Holes, Phys. Rev. Lett., 30, 71–73.

Stairs, I. H. (2003). Testing General Relativity with Pulsar Timing, Living reviews in relativity, http://relativity.livingreviews.org/Articles/lrr-2003-5.

Starobinsky, A. A. and Churilov, S. M. (1974). Amplification of electromagnetic and gravitational waves scattered by a rotating black hole, Sov. Phys. JETP, 38, 1–5.

Synge, J. L. (1950). The gravitational field of a particle, Proc. Roy. Irish. Acad., A53, 83–114.

Synge, J. L. (1959). Optical observations in general relativity, Milan Journal of Mathematics, 30, 271–302.

Szekeres, G. (1960). On the singularities of a Riemannian manifold, Publ. Math. Debrecent, 7, 285–301.

Takagi, S. (1986). Vacuum Noise and Stress Induced by Uniform Acceleration, Progr. Theor. Phys. Suppl., 88, 1–142.

(p.474) Teo, E. (2003). Spherical photon orbits around a Kerr black hole, Gen. Rel. Grav., 35, 1909–1926.

Thorne, Kip S., (1974). Disk‐Accretion onto a Black Hole. II. Evolution of the Hole, Astro‐ phys. J., 191, 507–519.

Thorne, Kip S. (1980). Multipole expansions of gravitational radiation, Rev. Mod. Phys., 52, 299–339.

Thorne, K. S. (1993). GR13: General Relativity and Gravitation 1992 – Proceedings of the 13th International Conference on General Relativity and Gravitation, Cordoba, Argentina, 1992, R. J. Gleiser, C. N. Kozameh, and O. M. Moreschi eds., Institute of Physics, Bristol, p. 295.

Thorne, Kip S. (1994). Black Holes and Time Warps, W. W. Norton. New York, London.

Thorne, K. S., Price, R. H., and Macdonald, D. A. (1986). Black Holes: The Membrane Paradigm, Yale Univ. Press, New Haven.

Tichy, W. and Marronetti, P. (2007). Binary black hole mergers: Large kicks for generic spin orientations, Phys. Rev., D76, 061502, 5pp.

Tipler, F. J. (1977). Singularities and Causality Violation, Ann. Phys,, 108, 1–36.

Tolman, R. C. (2010). Relativity, Thermodynamics and Cosmology, Dover Publications.

Vedrenne, G. and Atteia, J.‐L. (2009). Gamma‐Ray Bursts: The Brightest Explosions in the Universe, Springer/Praxis Books.

Visser, M. (1996). Lorentzian Wormholes: From Einstein to Hawking, American Institute of Physics Press. Woodbury, New York.

Volovik, G.E. (2003). The Universe in a Helium Droplet, Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A.

Wald, R. M. (1974). Gedanken experiments to destroy a black hole, Ann. Phys., 82, 548–556.

Wald, R.M. (1984). General Relativity, Univ. Chicago Press, Chicago and London.

Webster, B. L. and Murdin, P. (1972). Cygnus X‐1 – a Spectroscopic Binary with a Heavy Companion? Nature, 235, 37–38.

Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley & Sons, New York.

Weinfurtner, S., Tedford, E. W., Penrice, M. C. J., Unruh, W. G., and Lawrence, G. A. (2011). Measurement of Stimulated Hawking Emission in an Analogue System, Phys. Rev. Lett., 106, 02130, 4 pp.

Weyl, H. (1917). Zur Gravitationstheorie, Ann. Physik, 54, 117–145.

Whiting, B, (1989). Mode stability of the Kerr black hole, J. Math. Phys., 30, 1301–1305.

Wilkins, D. C. (1972). Bound geodesics in the Kerr metric, Phys. Rev., D5, 814–822.

Wilson, A. M. (1957). Thermodynamics and Statistical Mechanics, Cambridge Univ. Press, Cambridge, Chap 7.

York, J. W. (1972). Role of Conformal Three‐Geometry in the Dynamics of Gravitation, Phys. Rev. Lett., 28, 1082–1085.

(p.475) York, J.W. (1986). Boundary Terms in the Action Principles of General Relativity, Foundat. Phys., 16, 249–257.

Yoshino, H., Rychkov, V. S. (2005). Improved analysis of black hole formation in high‐energy particle collisions, Phys. Rev., D71, 104028, 13 pp.

Zel'dovich, Ya. B. (1964). The Fate of a Star and the Evolution of Gravitational Energy upon Accretion, Sov. Phys. Doklady, 9, 195–197.

Zel'dovich, Ya. B. and Novikov, I. D. (1967). The hypothesis of cores retarded during expansion and the hot cosmological model, Sov. Astron., 10, 602.

Zel'dovich, Ya. B. and Novikov, I. D. (1971a). Relativistic Astrophysics, Vol. 1: Stars and Relativity, Univ. of Chicago Press, Chicago.

Zel'dovich, Ya. B. and Novikov, I. D. (1971b). Relativistic Astrophysics, Vol. 2: The Structure and Evolution of the Universe, Univ. of Chicago Press, Chicago.

Zurek, W. H. (1982). Entropy Evaporated by a Black Hole, Phys. Rev. Lett., 49, 1683–1686. (p.476)