Jump to ContentJump to Main Navigation
Understanding Inconsistent Science$

Peter Vickers

Print publication date: 2013

Print ISBN-13: 9780199692026

Published to Oxford Scholarship Online: September 2013

DOI: 10.1093/acprof:oso/9780199692026.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 25 February 2017

(p.254) Bibliography

(p.254) Bibliography

Understanding Inconsistent Science
Oxford University Press

Bibliography references:

Abraham, M. (1904): ‘Die Grundhypothesen der Elektronentheorie’, Physikalische Zeitschrift 5: 576–79.

Alexander, H. G. (1956): The Leibniz-Clarke Correspondence. Manchester: Manchester University Press.

Andrews, C. L. (1947): ‘Diffraction Pattern of a Circular Aperture at Short Distances’, Physical Review 71 (11): 777–86.

Arnold, V. I. (1977): Mathematical Methods of Classical Mechanics. Berlin: Springer.

Arthur, R. T. W. (1995): ‘Newton’s Fluxions and Equably Flowing Time’, Studies in History and Philosophy of Science 26 (2): 323–51.

—— (2008): ‘Leery Bedfellows: Newton and Leibniz on the Status of Infinitesimals’, in U. Goldenbaum and D. Jesseph (eds), Infinitesimal Differences: Controversies between Leibniz and his Contemporaries. Berlin: Walter de Gruyter, 7–30.

—— (2009): ‘Actual Infinitesimals in Leibniz’s Early Thought’, in M. Kulstad, M. Laerke, and D. Snyder (eds), The Philosophy of the Young Leibniz. Stuttgart: Franz Steiner Verlag, 11–28.

Baggini, J. and Stangroom, J. (2006): Do You Think What You Think You Think? London: Granta Books.

Bartelborth, T. (1989): ‘Is Bohr’s Model of the Atom Inconsistent?’, in P. Weingartner and G. Schurz (eds), Philosophy of the Natural Sciences, Proceedings of the 13th International Wittgenstein Symposium. Vienna: Hölder Pichler Tempsky, 220–3.

Bassler, O. B. (2008): ‘An Enticing (Im)Possibility: Infinitesimals, Differentials, and the Leibnizian Calculus’, in U. Goldenbaum and D. Jesseph (eds), Infinitesimal Differences: Controversies between Leibniz and his Contemporaries. Berlin: Walter de Gruyter, 135–51.

Batterman, R. (1995): ‘Theories Between Theories: Asymptotic Limiting Intertheoretic Relations’, Synthese 103: 171–201.

Baumann, J. J. (1869): Die Lehre von Raum, Zeit und Mathematik in der neueren Philosophie, Vol. II. Berlin: Georg Reimer.

Belot, G. (2007): ‘Is Classical Electrodynamics an Inconsistent Theory?’, Canadian Journal of Philosophy 37: 263–82.

Bergia, S. and Navarro, L. (2000): ‘On the early history of Einstein’s quantization rule of 1917’, Archives Internationales d’Histoire des Sciences 50: 321–73.

(p.255) Berkeley, G. (1734): The Analyst, online edition 〈http://www.maths.tcd.ie/pub/HistMath/People/Berkeley/Analyst/〉. This edition edited by David R. Wilkins. Last accessed: 23 February 2013.

Bernoulli, J. (1924 [1691/2]): Die Differentialrechnung/von Johann Bernoulli. nach der in der Basler Universitätsbibliothek befindlichen Handschrift/übersetzt, mit einem Vorwort und Anmerkungen versehen von Paul Schafheitlin. Leipzig: Akademische Verlagsgesellschaft.

Bohr, N. (1913a): ‘On the Constitution of Atoms and Molecules’, Philosophical Magazine 26 (6): 1–25, 476–502, and 857–75.

—— (1913b): ‘The Spectra of Helium and Hydrogen’, Nature 92: 231–2.

—— (1918): ‘On the Quantum Theory of Line Spectra’, reproduced in N. Bohr: Collected Works, Volume 3. Amsterdam: North Holland Publishing Company, 67–166.

—— (1921): ‘Atomic Structure’, Nature, 24 March.

Bokulich, A. (2006): ‘Heisenberg Meets Kuhn: Closed Theories and Paradigms’, Philosophy of Science 73: 90–107.

Born, M. and Wolf, E. (1999): Principles of Optics, 7th (expanded) edn. Cambridge: Cambridge University Press.

Bos, H. (1974): ‘Differentials, Higher-order Differentials and the Derivative in the Leibnizian Calculus’, Archive for History of Exact Sciences 14: 1–90.

—— (1980): ‘Newton, Leibniz and the Leibnizian Tradition’, in I. Grattan-Guiness (ed.), From the Calculus to Set Theory, 1630–1910. London: Gerald Duckworth & Co., 49–93.

Boyer, C. B. (1949): The History of the Calculus and its Conceptual Development, New York: Dover.

—— (1968): A History of Mathematics. New York/Chichester: John Wiley & Sons.

Braithwaite, R. (1953): Scientific Explanation. Cambridge: Cambridge University Press.

Brandom, R. (1994): Making it Explicit. Cambridge, MA: Harvard University Press.

Breger, H. (2008): ‘Leibniz’s Calculation with Compendia’, in U. Goldenbaum and D. Jesseph (eds), Infinitesimal Differences: Controversies between Leibniz and his Contemporaries. Berlin: Walter de Gruyter, 185–98.

Brigandt, I. (2010): ‘Scientific Reasoning is Material Inference: Combining Confirmation, Discovery, and Explanation’, International Studies in the Philosophy of Science 24 (1): 31–43.

Brook, R. J. (1973): Berkeley’s Philosophy of Science. The Hague: Martinus Nojhoff.

Brown, B. (1990): ‘How to be Realistic about Inconsistency in Science’, Studies in History and Philosophy of Science 21: 281–94.

(p.256) Brown, B. (1992): ‘Old Quantum Theory: A Paraconsistent Approach’, PSA 1992 2: 397–411.

—— (2002): ‘Approximate Truth: A Paraconsistent Account’, in J. Meheus (ed.), Inconsistency in Science. Dordrecht: Kluwer, 81–103.

Brown, B. and Priest, G. (2004): ‘Chunk and Permeate, A Paraconsistent Inference Strategy. Part I: The Infinitesimal Calculus’, Journal of Philosophical Logic 33 (4): 379–88.

Brown, J. (2000): ‘Thought Experiments’, in W. H. Newton-Smith (ed.), A Companion to the Philosophy of Science. Oxford: Blackwell, 528–31.

Brzeziński, J. and Nowak, L. (eds) (1992): Idealization III: Approximation and Truth. Amsterdam: Rodopi.

Bueno, O. (2006): ‘Why Inconsistency is not Hell: Making Room for Inconsistency in Science’, in Erik J. Olsson (ed.), Knowledge and Inquiry: Essays on the pragmatism of Isaac Levi. Cambridge: Cambridge University Press, 70–86.

Burian, R. M. (1977): ‘More Than a Marriage of Convenience: On the Inextricability of History and Philosophy of Science’, Philosophy of Science 44: 1–42.

Cajori, F. (1917): ‘Discussion of Fluxions: From Berkeley to Woodhouse’, The American Mathematical Monthly 24 (4): 145–54.

Carnap, R. (1939): Foundations of Logic and Mathematics. Chicago: University of Chicago Press.

—— (1950): Logical Foundations of Probability. London: Routledge and Kegan Paul.

—— (1967): The Logical Structure of the World: Pseudo-Problems in Philosophy, 2nd edn. London: Routledge and Kegan Paul.

Cartwright, N. (1983): How the Laws of Physics Lie. Oxford: Clarendon Press.

—— Fleck, L., Cat, J., and Uebel, T. (1996): Otto Neurath: Philosophy between Science and Politics. Cambridge: Cambridge University Press.

Cat, J. (2001): ‘On Understanding: Maxwell on the Methods of Illustration and Scientific Metaphor’, Studies in History and Philosophy of Modern Physics 32 (3) 395–441.

Cauchy, A. L. (1821): Cours d’Analyse de L’Ecole Royale Polytechnique. Première Partie. Analyse algébrique. Paris: Imprimérie Royale.

Chakravartty, A. (2001): ‘The Semantic or Model-Theoretic View of Theories and Scientific Realism’, Synthese 127: 325–45.

Clark, M. (2002): Paradoxes from A to Z. London and New York: Routledge.

Cleland, C. E. (2001): ‘Recipes, Algorithms, and Programs’, Minds and Machines 11: 219–37.

—— (2002): ‘On Effective Procedures’, Minds and Machines 12: 159–79.

Colyvan, M. (2008): ‘The Ontological Commitments of Inconsistent Theories’, Philosophical Studies 141: 115–23.

(p.257) —— (2009): ‘Applying Inconsistent Mathematics’ in O. Bueno and Ø. Linnebo (eds), New Waves in Philosophy of Mathematics. Basingstoke: Palgrave Macmillan, 160–72.

Craver, C. (2002): ‘Structures of Scientific Theories’, in P. Machamer and M. Silberstein (eds), The Blackwell Guide to the Philosophy of Science. Malden, MA: Blackwell, 55–79.

Da Costa, N. C. A. and French, S. (1990): ‘Belief, Contradiction and the Logic of Self-Deception’, American Philosophical Quarterly 27 (3): 179–97.

—— and —— (2003): Science and Partial Truth, Oxford: Oxford University Press.

Dales, H. and Oliveri, G. (eds) (1998): Truth in Mathematics. New York: Clarendon Press.

Darden, L. (1991): Theory Change in Science: Strategies from Mendelian Genetics. Oxford: Oxford University Press.

—— and Maull, N. (1977): ‘Interfield Theories’, Philosophy of Science 44 (1): 43–64.

Darrigol, O. (1992): From c-Numbers to q-Numbers. Oxford: University of California Press.

—— (2008): ‘The Modular Structure of Physical Theories’, Synthese 162: 195–223.

Davey, K. (2003): ‘Is Mathematical Rigor Necessary in Physics?’, British Journal for the Philosophy of Science 54: 439–63.

Dirac, P. A. M. (1938): ‘Classical Theory of Radiating Electrons’, Proceedings of the Royal Society A 167: 148–69.

Duffin, W. J. (1990): Electricity and Magnetism, 4th edn. Maidenhead: McGraw-Hill.

Earman, J. (1986): A Primer on Determinism. Dordrecht: Reidel.

—— and Friedman, M. (1973): ‘The Meaning and Status of Newton’s Law of Inertia and the Nature of Gravitational Forces’, Philosophy of Science 40 (3): 329–59.

Edwards, C. H. (1979): The Historical Development of the Calculus. New York: Springer-Verlag.

Ehrenfest, P. (1917): ‘Adiabatic Invariants and the Theory of Quanta’, Philosophical Magazine 33: 500–13.

Einstein, A. (1917): Relativity: the Special and the General Theory, 15th edn (trans.R. W. Lawson). London: Methuen (1954).

Eisberg, R. and Resnick, R. (1985): Quantum Physics of Atoms, Molecules, Solids, and Particles, 2nd edn. New York: Wiley.

Emerson, W. (1743): The Doctrine of Fluxions: not only Explaining the Elements thereof, but also its Application and Use in the Several Parts of Mathematics and Natural Philosophy. London: J. Bettenham (sold by W. Innys, 2nd edn. corrected and enlarged 1757; 3rd edn. 1768; 4th edn. 1773).

Feyerabend, P. (1978): ‘In Defence of Aristotle’, in G. Radnitsky and G. Anderson (eds), Progress and Rationality in Science. Dordrecht: Reidel.

(p.258) Feynman, R., Leighton, R., and Sands, M. (1964): The Feynman Lectures on Physics, vol. II. Reading, MA: Addison-Wesley.

Finkelstein, D. (1966): ‘Matter, Space and Logic’, in C. A. Hooker (ed.), The Logico-algebraic Approach to Quantum Mechanics II. Boston Studies in the Philosophy of Science, Proceedings of the Boston Colloquium for the Philosophy of Science V. Dordrecht: Kluwer, 199–215.

Fodor, J. (1987): Psychosemantics: The Problem of Meaning in the Philosophy of Mind. Cambridge, MA: MIT Press.

Fowler, A. (1913): ‘The Spectra of Helium and Hyrogen’, Nature 92: 95–6.

Fraser, D. (2009): ‘Quantum Field Theory: Underdetermination, Inconsistency, and Idealization’, Philosophy of Science 76 (4): 536–67.

French, S. (2003): ‘A Model-Theoretic Account of Representation’, Philosophy of Science 70: 1472–83.

—— (2008): ‘The Structure of Theories’, in S. Psillos and M. Curd (eds), The Routledge Companion to the Philosophy of Science. London/New York: Routledge, 269–80.

—— and Saatsi, J. (2006): ‘Realism about Structure: The Semantic View and Nonlinguistic Representations’, Philosophy of Science 73: 548–59.

—— and Vickers, P. (2011): ‘Are There No Things That Are Scientific Theories?’, British Journal for the Philosophy of Science 62 (4): 771–804.

Friedrich, B. and Herschbach, D. (2003): ‘Stern and Gerlach: How a Bad Cigar Helped Reorient Atomic Physics’, Physics Today, December: 53–9.

Frisch, M. (2004): ‘Inconsistency in Classical Electrodynamics’, Philosophy of Science 71: 525–49.

—— (2005a): Inconsistency, Asymmetry, and Non-Locality. Oxford: Oxford University Press.

—— (2005b): ‘Mechanisms, Principles, and Lorentz’s Cautious Realism’, Studies in History and Philosophy of Modern Physics 36: 659–79.

—— (2008): ‘Conceptual Problems in Classical Electrodynamics’, Philosophy of Science 75: 93–105.

Gendler, T. S. (1998): ‘Galileo and the Indispensability of Scientific Thought Experiments’, British Journal for the Philosophy of Science 49: 397–424.

Giere, R. (1988): Explaining Science. London: University of Chicago Press.

Goldberg, S. (1970): ‘The Abraham Theory of the Electron: The Symbiosis of Experiment and Theory’, Archive for History of Exact Sciences 7: 7–25.

Goldenbaum, U. and Jesseph, D. (eds) (2008): Infinitesimal Differences: Controversies between Leibniz and his Contemporaries. Berlin: Walter de Gruyter.

Gould, S. J. (2002): The Structure of Evolutionary Theory. London: Belknap Press of Harvard University Press.

(p.259) Grabiner, J. (1983): ‘The Changing Concept of Change: The Derivative from Fermat to Weierstrass’, Mathematics Magazine 56 (4): 195–206.

—— (1997): ‘Was Newton’s Calculus a Dead End? The Continental Influence of Maclaurin’s Treatise of Fluxions’, The American Mathematical Monthly 104 (5): 393–410.

Grattan-Guinness, I. (1970): The Development of the Foundations of Mathematical Analysis from Euler to Riemann. Cambridge, MA: MIT Press.

—— (1990): Convolutions in French Mathematics, 1800–1840. Basel: Birkhäuser Verlag.

Griffiths, D. (1999): Introduction to Electrodynamics. Upper Saddle River, NJ: Prentice-Hall.

Guicciardini, N. (1989): The Development of Newtonian Calculus in Britain, 1700–1800. Cambridge: Cambridge University Press.

—— (2004): ‘Isaac Newton and the Publication of his Mathematical Manuscripts’, Studies in History and Philosophy of Science 35: 455–70.

Hanson, N. R. (1962): ‘The Irrelevance of History of science to Philosophy of Science’, The Journal of Philosophy 59: 574–86.

Hardy, G. H. (1949): Divergent Series. Oxford: Clarendon.

Harman, G. (1986): Change in View. Cambridge, MA: MIT Press.

Heaviside, O. (1899): Electromagnetic Theory 2. London: ‘The Electrician’ Print. and Publ. Co.

Heilbron, J. and Kuhn, T. (1969): ‘The Genesis of the Bohr Atom’, Hitorical Studies in the Physical Sciences 1: 211–90.

Henderson, L., Goodman, N. D., Tenenbaum, J. B., and Woodward, J. F. (2010): ‘The Structure and Dynamics of Scientific Theories: A Hierarchical Bayesian Perspective’, Philosophy of Science 77: 172–200.

Hendry, R. F. (1993): ‘Realism, History and the Quantum Theory: Philosophical and Historical Arguments for Realism as a Methodological Thesis’. PhD thesis, LSE.

Hendry, R. and Psillos, S. (2007): ‘How to Do Things with Theories: An Interactive View of Language and Models in Science’, in J. Brzeziński, A. Klawiter, T. A. F. Kuipers, K. Łastowski, K. Paprzycka, and P. Przybysz (eds), The Courage of Doing Philosophy: Essays Dedicated to Leszek Nowak. Amsterdam/New York: Rodopi, 59–115.

Hettema, H. (1995): ‘Bohr’s Theory of the Atom 1913–1923: A Case Study in the Progress of Scientific Research Programmes’, Studies in History and Philosophy of Modern Physics 26: 307–23.

Heurtley, J. C. (1973): ‘Scalar Rayleigh-Sommerfeld and Kirchhoff Diffraction Integrals: A Comparison of Exact Evaluations for Axial Points’, Journal of the Optical Society of America 63 (8): 1003–8.

(p.260) Horvath, M. (1986): ‘On the Attempts made by Leibniz to Justify his Calculus’, Studia Leibnitiana 18 (1): 60–71.

Horwich, P. (1991): ‘On the Nature and Norms of Theoretical Commitment’, Philosophy of Science 58: 1–14.

Howard, D. (2011): ‘Philosophy of Science and the History of Science’, in S. French and J. Saatsi (eds), The Continuum Companion to the Philosophy of Science. London/New York: Continuum Press, 55–71.

Hunter, G. (1971): Metalogic. Chicago: University of Chicago Press.

Hutchison, K. (1993): ‘Is Classical Mechanics Really Time-Reversible and Deterministic?’, British Journal for the Philosophy of Science 44 (2): 307–23.

Jackson, J. (1962): Classical Electrodynamics, 1st edn. New York: John Wiley and Sons.

—— (1999): Classical Electrodynamics, 3rd edn. New York: John Wiley and Sons.

Jaki, S. L. (1969): The Paradox of Olbers’ Paradox. New York: Herder and Herder.

—— (1979): ‘Das Gravitations-Paradox des unendlichen Universums’. Sudhoffs Archiv 63: 105–22.

Jammer, M. (1966): The Conceptual Development of Quantum Mechanics. London: McGraw-Hill.

Jaśkowski, S. (1948): ‘Rachunek zdán dla systemόv dedukcyjnych sprzecznych’, Studia Societatis Scientiarum Torunensis Sectio A, I: 171–2.

Jeans, J. H. (1924): Report on Radiation and the Quantum Theory. London: Fleetway Press.

Jesseph, D. M. (1993): Berkeley’s Philosophy of Mathematics. Chicago: University of Chicago Press.

—— (1998): ‘Leibniz on the Foundations of the Calculus: The Question of the Reality of Infinitesimal Magnitudes’, Perspectives on Science 6 (1/2): 6–40.

—— (2008): ‘Truth in Fiction: Origins and Consequences of Leibniz’s Doctrine of Infinitesimal Magnitudes’, in U. Goldenbaum and D. Jesseph (eds), Infinitesimal Differences: Controversies between Leibniz and his Contemporaries. Berlin: Walter de Gruyter, 215–33.

Kapitan, T. (1982): ‘On the Concept of Material Consequence’, History and Philosophy of Logic 3: 193–211.

Katz, M. and Sherry, D. (forthcoming): ‘Leibniz’s Infinitesimals: Their Fictionality, their Modern Implementations, and their Foes from Berkeley to Russell and Beyond’, Erkenntnis, Online First. Online ISSN: 1572-8420. DOI: 10.1007/s10670-012-9370-y.

—— Schaps, D., and Shnider, S. (forthcoming 2013): ‘Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond’, Perspectives on Science (p.261) 21 (3). Online access: 〈http://arxiv.org/abs/1210.7750〉. Last accessed: 23 February 2013.

Kenat, R. (1987): ‘Physical Interpretation: Eddington, Idealization and Stellar Structure Theory’. PhD thesis, University of Maryland.

Ketland, J. (2005): ‘From a Deflationary Point of View’, Notre Dame Philosophical Reviews. Review of Paul Horwich, From a Deflationary Point of View. Oxford: Oxford University Press.

Kirchhoff, G. (1882): ‘On the Theory of Light Rays’ (trans. Royal Prussian Academy of Sciences, Berlin) 15 Berlin Mb, 641–69. Published again the following year as: Annalen der Physik 2 (18): 663–95.

Kitcher, P. (1973): ‘Fluxions, Limits and Infinite Littlenesse: A Study of Newton’s Presentation of the Calculus’, Isis 64 (1): 33–49.

—— (1983): The Nature of Mathematical Knowledge. Oxford: Oxford University Press.

Klein, M. (1985): Paul Ehrenfest. The Making of a Theoretical Physicist. Amsterdam: North-Holland Physics Publishing.

Knobloch, E. (2002): ‘Leibniz’s Rigorous Foundation of Infinitesimal Geometry by Means of Riemannian Sums’, Synthese 133 (1/2): 59–73.

Kochiras, H. (2013): ‘Causal Language and the Structure of Force in Newton’s System of the World’, HOPOS: The Journal of the International Society for the History of Philosophy of Science 3 (2).

Korolev, A. (2007a): ‘Indeterminism, Asymptotic Reasoning, and Time Irreversibility in Classical Physics’, Philosophy of Science 74: 943–56.

—— (2007b): ‘The Norton-Type Lipschitz-Indeterministic Systems and Elastic Phenomena: Indeterminism as an Artefact of Infinite Idealizations’. Available on the Philsci Archive: 〈http://philsci-archive.pitt.edu/4314/〉. Last accessed 23 February 2013.

Kragh, H. (1999): Quantum Generations. A History of Physics in the Twentieth Century. Princeton: Princeton University Press.

—— (2001): ‘The Electron, the Protyle, and the Unity of Matter’, in J. Buchwald and A. Warwick (eds), Histories of the Electron: The Birth of Microphysics. Cambridge, MA: MIT Press, 195–226.

—— (2012): Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913–1925. Oxford: Oxford University Press.

Kramers, H. (1919): ‘Intensities of Spectral Lines’, in Collected Scientific Papers. Amsterdam: North Holland, 1956.

—— and Holst, H. (1923): The Atom and the Bohr Theory of its Structure. London: Gyldendal.

(p.262) Kuhn, T. (1962): The Structure of Scientific Revolutions. Chicago: University of Chicago Press.

—— (1977): ‘Objectivity, Value Judgement, and Theory Choice’, in T. Kuhn, The Essential Tension. Chicago: University of Chicago Press.

Kythe, P. K. and Puri, P. (2002): Computational Methods for Linear Integral Equations. Dordrecht: Springer.

Lakatos, I. (1966): ‘Cauchy and the Continuum: The Significance of Non-Standard Analysis for the History and Philosophy of Mathematics’, Mathematical Intelligencer 1 (1978): 151–61.

—— (1970a): ‘Falsification and the Methodology of Scientific Research Programs’, in I. Lakatos and A. Musgrave (eds), Criticism and the Growth of Knowledge. Cambridge: Cambridge University Press, 91–195.

—— (1970b): ‘History of Science and Its Rational Reconstructions’, in R. C. Buck and R. S. Cohen (eds), PSA 1970. Dordrecht: D. Reidel Publ. Co., 91–136.

Landau, L. and Lifshitz, E. (1951): The Classical Theory of Fields (trans. Morton Hamermesh). Cambridge, MA: Addison-Wesley.

—— and —— (1962): Course of Theoretical Physics: The Classical Theory of Fields, Vol. 2, 2nd edn (trans. Morton Hamermesh). London: Pergamon Press.

Lange, M. (2002): An Introduction to the Philosophy of Physics: Locality, Fields, Energy and Mass. Oxford: Blackwell.

Laudan, L. (1977): Progress and its Problems. Ewing, NJ: University of California Press.

—— Donovan, A., Laudan, R., Barker, P., Brown, H., Leplin, J., Thagard, P., and Wykstra, S. (1986): ‘Scientific Change: Philosophical Models and Historical Research’, Synthese 69: 141–223.

Laugwitz, D. (1989): ‘Definite Values of Infinite Sums’, Archive for History of Exact Sciences 39: 195–245.

Lavine, S. (1994): Understanding the Infinite. Cambridge, MA: Harvard University Press.

Layzer, D. (1954): ‘On the Significance of Newtonian Cosmology’, The Astronomical Journal 59: 268–70.

Levey, S. (2008): ‘Archimedes, Infinitesimals and the Law of Continuity: On Leibniz’s Fictionalism’, in U. Goldenbaum and D. Jesseph (eds), Infinitesimal Differences: Controversies between Leibniz and his Contemporaries. Berlin: Walter de Gruyter, 107–33.

Lindsay, R. B. (1927): ‘Note on “Pendulum” Orbits in Atomic Models’, Proceedings of the National Academy of Sciences of the United States of America 13: 413–19.

Lorentz, H. A. (1916): The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, 2nd edn. Leipzig: B. G. Teubner.

(p.263) Lycan, W. G. (1994): Modality and Meaning. Dordrecht: Kluwer.

Mc Cormmach, R. (1970): ‘Einstein, Lorentz, and the Electron Theory’, Historical Studies in the Physical Sciences 2: 41–87.

McCrea, W. H. (1955): ‘On the Significance of Newtonian Cosmology’, The Astronomical Journal 60: 271–4.

MacFarlane, J. (2000): ‘What Does It Mean to Say that Logic is Formal?’ PhD thesis, University of Pittsburgh, PA.

Machery, E. (2009): Doing Without Concepts. Oxford: Oxford University Press.

Maclaurin, C. (1742): A Treatise of Fluxions in Two Books. Edinburgh: T. Ruddimans.

Maher, P. (1990): ‘Acceptance without Belief’, in A. Fine, M. Forbes, and L. Wessels (eds), PSA 1990, Vol. 1, East Lansing, MI: Philosophy of Science Association, 381–92.

Malament, D. (1995): ‘Is Newtonian Cosmology Really Inconsistent?’, Philosophy of Science 62: 489–510.

Mancosu, P. (1989): ‘The Metaphysics of the Calculus: A Foundational Debate in the Paris Academy of Sciences, 1700–1706’, Historia Mathematica 16: 224–48.

—— (1996): Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century, Oxford: Oxford University Press.

Marchand, E. W. and Wolf, E. (1966): ‘Consistent Formulation of Kirchhoff’s Diffraction Theory’, Journal of the Optical Society of America 56 (12): 1712–22.

Marchildon, L. (2002): Quantum Mechanics: From Basic Principles to Numerical Methods and Applications. Berlin: Springer-Verlag.

Mártin, H. O. and Tsallis, C. (1981): ‘Renormalization Group Specific Heat and Magnetization of the Ising Ferromagnet in Cubic and Hypercubic Lattices’, Zeitschrift für Physik B 44 (4): 325–31.

Meheus, J. (ed.) (2002): Inconsistency in Science. Dordrecht: Kluwer Academic Publishers.

Mehra, J. and Rechenberg, H. (1982): Historical Development of Quantum Mechanics. Dordrecht: Springer.

—— and —— (2000a): The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld: Its Foundation and the Rise of Its Difficulties. Dordrecht: Springer.

——  and —— (2000b): The Fundamental Equations of Quantum Mechanics, 1925–1926: The Reception of the New Quantum Mechanics, 1925–1926, Volume 4. Dordrecht: Springer.

Merleau-Ponty, J. (1977): ‘Laplace as a Cosmologist’, in W. Yourgrau and A. D. Breck (eds), Cosmology, History and Theology. New York: Plenum Press, 283–91.

(p.264) Merleau-Ponty, J. and Morando, B. (1976): The Rebirth of Cosmology. New York: Alfred A. Knopf.

Miller, A. I. (1981): Albert Einstein’s Special Theory of Relativity: Emergence (1905) and Early Interpretation (1905–1911). Reading, MA: Addison-Wesley.

Millikan, R. A. (1917): The Electron: Its Isolation and Measurement and the Determination of some of its Properties. Chicago: University of Chicago Press.

Morrison, M. (2007): ‘Where Have All the Theories Gone?’, Philosophy of Science 74: 195–228.

Muller, F. A. (2007): ‘Inconsistency in Classical Electrodynamics?’, Philosophy of Science 74: 253–77.

Nagel, E. (1961): The Structure of Science. London: Routledge and Kegan Paul.

Nagel, F. (2008): ‘Nieuwentijt, Leibniz, and Jacob Hermann on Infinitesimals’, in U. Goldenbaum and D. Jesseph (eds), Infinitesimal Differences: Controversies between Leibniz and his Contemporaries. Berlin: Walter de Gruyter, 199–214.

Newton, I. (1971): The Mathematical Papers of Isaac Newton, Volume IV, 1674–1684. D. T. Whiteside (ed.). Cambridge: Cambridge University Press.

—— (1981): The Mathematical Papers of Isaac Newton, Volume VIII, 1697–1722. D. T. Whiteside (ed.), Cambridge: Cambridge University Press.

—— (1999 [1687]): The Principia, Mathematical Principles of Natural Philosophy (trans. I. B. Cohen and A. Whitman, assisted by Julia Budenz). Berkeley, LA/London: University of California Press.

Newton-Smith, W. H. (1981): The Rationality of Science. Boston: Routledge and Kegan Paul.

Nickles, T. (1977): ‘Heuristics and Justification in Scientific Research: Comments on Shapere’, in F. Suppe (ed.), The Structure of Scientific Theories. Illinois: University of Illinois Press, 518–65.

—— (2002): ‘From Copernicus to Ptolemy: Inconsistency and Method’, in J. Meheus (ed.), Inconsistency in Science. Dordrecht: Kluwer Academic Publishers, 1–33.

Niiniluoto, I. (1984): Is Science Progressive? Dordrecht/Boston: D. Reidel.

North, J. D. (1965): The Measure of the Universe: A History of Modern Cosmology. Oxford: Clarendon.

Norton, J. (1987): ‘The Logical Inconsistency of the Old Quantum Theory of Black Body Radiation’, Philosophy of Science 54: 327–50.

—— (1993): ‘A Paradox in Newtonian Cosmology’, in D. Hull, M. Forbes, and K. Okruhlik (eds), PSA 1992, Vol. 2. East Lansing, MI: Philosophy of Science Association, 412–20.

—— (1995): ‘The Force of Newtonian Cosmology: Acceleration is Relative’, Philosophy of Science 62: 511–22.

(p.265) —— (1999): ‘The Cosmological Woes of Newtonian Gravitation Theory’, in H. Goenner et al. (eds), The Expanding Worlds of General Relativity, Einstein Studies, vol. 7, 271–323.

—— (2000): ‘How We Know About Electrons’, in R. Nola and H. Sankey (eds), After Popper, Kuhn and Feyerabend. Dordrecht: Kluwer, 67–97.

—— (2002): ‘A Paradox in Newtonian Gravitation Theory II’, in J. Meheus (ed.), Inconsistency in Science. Dordrecht: Kluwer Academic Publishers, 185–95.

—— (2008): ‘The Dome: An Unexpectedly Simple Failure of Determinism’, Philosophy of Science 75: 786–98.

—— (2011): ‘History of Science and the Material Theory of Induction: Einstein’s Quanta, Mercury’s Perihelion’, European Journal for Philosophy of Science 1 (1): 3–27.

Pais, A. (1972): ‘The Early History of the Theory of the Electron’, in A. Salam and E. P. Wigner (eds), Aspects of Quantum Theory. Cambridge: Cambridge University Press, 79–94.

—— (1991): Niels Bohr’s Times. Oxford: Oxford University Press.

Pauli, W. (1926): ‘Quantentheorie’, in H. Geiger and K. Scheel (eds), Handbuch der Physik. Berlin: Springer, vol. 23, 1–278. (Reprinted in W. Pauli (1964): Collected Scientific Papers, Vol. 1, ed. R. Kronig and V. F. Weisskopf. New York: Interscience Publishers, 1964: 271.)

Piccinini, G. and Scott, S. (2006): ‘Splitting Concepts’, Philosophy of Science 73: 390–409.

Pincock, C. (2010): ‘Exploring the Boundaries of Conceptual Evaluation’, Philosophia Mathematica 18 (III): 106–36.

Poincaré, H. (1892): Théorie mathématique de la lumière. Paris: Gauthier Villars.

Popper, K. (1940): ‘What is Dialectic?’ Mind 49: 403–36.

—— (1959): The Logic of Scientific Discovery. London: Hutchinson and Co.

Priest, G. (2002): ‘Inconsistency and the Empirical Sciences’, in J. Meheus (ed.), Inconsistency in Science. Dordrecht: Kluwer, 119–28.

Priest, G. and Routley, R (1983): On Paraconsistency, Research Report 13, Logic Group, Research School of Social Sciences, Australian National University.

Psillos, S. and Curd, M. (eds) (2008): The Routledge Companion to the Philosophy of Science. London/New York: Routledge.

Ratcliffe, M. (2008): ‘Farewell to Folk Psychology: A Response to Hutto’, International Journal of Philosophical Studies 16 (3): 445–51.

Read, S. (1994): ‘Formal and Material Consequence’, Journal of Philosophical Logic 23: 247–65.

Reichenbach, H. (1938): Experience and Prediction: An Analysis of the Foundations and the Structure of Knowledge. Chicago: University of Chicago Press.

(p.266) Reichenbach, H. (1951): The Rise of Scientific Philosophy. Berkeley: University of California Press.

Rescher, N. (1955): ‘Leibniz’ Conception of Quantity, Number, and Infinity’, The Philosophical Review 64 (1): 108–14.

—— (1973): The Primacy of Practice. Oxford: Blackwell.

Rohrlich, F. (2007): Classical Charged Particles. Singapore: World Scientific.

—— and Hardin, L. (1983): ‘Established Theories’, Philosophy of Science 50: 603–17.

Saatsi, J. and Vickers, P. (2011): ‘Miraculous Success? Inconsistency and Untruth in Kirchhoff’s Diffraction Theory’, British Journal for the Philosophy of Science 62 (1): 29–46.

Salmon, W. (1965): The Foundations of Scientific Inference. Pittsburgh: University of Pittsburgh Press.

Sarukkai, S. (2005): ‘Revisiting the “Unreasonable Effectiveness” of Mathematics’, Current Science 88 (3): 415–23.

Scerri, E. R. (1993): ‘Correspondence and Reduction in Chemistry’, in S. French and H. Kamminga (eds), Correspondence, Invariance and Heuristics: Essays in Honour of Heinz Post. Dordrecht: Kluwer.

Schickore, J. (2011): ‘More Thoughts on HPS: Another 20 Years Later’, Perspectives on Science 19 (4): 453–81.

Schott, G. (1918): ‘On Bohr’s Hypothesis of Stationary States of Motion and the Radiation from an Accelerated Electron’, Philosophical Magazine 36: 243–61.

Schrenk, M. (2004): ‘Galileo vs. Aristotle on Free Falling Bodies’, Logical Analysis and History of Philosophy, volume 7: History and Philosophy of Nature, 1–11.

Seeliger, H. (1895): ‘Über das Newton’sche Gravitationsgesetz’, Astronomische Nachrichten 137 (3273): 129–36.

Shapere, D. (1969): ‘Notes toward a Post-Positivistic Interpretation of Science’, in P. Achinstein and S. F. Barker (eds), The Legacy of Logical Positivism. Baltimore: MD: Johns Hopkins University Press, 115–60.

—— (1977): ‘Scientific Theories and Their Domains’, in F. Suppe (ed.), The Structure of Scientific Theories. Illinois: University of Illinois Press, 518–65.

—— (1984a): Reason and the Search for Knowledge. Dordrecht: Reidel.

—— (1984b): ‘Objectivity, Rationality and Scientific Change’, PSA 1984 2: 637–63.

Sherry, D. (1987): ‘The Wake of Berkeley’s Analyst: Rigor Mathematicae?’, Studies in History and Philosophy of Science 18 (4): 455–80.

Sitte, B. and Egbers, C. (2000): ‘Experimental Investigations on Nonlinear Behaviour of Baroclinic Waves’, in R. J. Adrian (ed.), Laser Techniques Applied to Fluid Mechanics: Selected Papers from the 9th International Symposium, Lisbon, Portugal, July 13–16, 1998. Berlin: Springer, 315–36.

(p.267) Smith, J. (1988): ‘Inconsistency and Scientific Reasoning’, Studies in History and Philosophy of Science 19: 429–45.

Smith, P. (2007): An Introduction to Gödel’s Theorems. Cambridge: Cambridge University Press.

Sommerfeld, A. (1916): ‘Zur Quantentheorie der Spektrallinien’, Annalen der Physik 51: 1–94, 125–67.

Spohn, H. (2004): Dynamics of Charged Particles and their Radiation Field, Cambridge: Cambridge University Press.

Suppe, F. (ed.) (1977): The Structure of Scientific Theories, 2nd edn. Illinois: University of Illinois Press.

—— (1989): The Semantic Conception of Theories and Scientific Realism. Illinois: University of Illinois Press.

Suppes, P. (1957): Introduction to Logic. New York: Van Nostrand.

—— (1967): ‘What is a scientific theory?’, in S. Morgenbesser (ed.), Philosophy of Science Today. New York: Basic Books, 55–67.

Taylor, C. (1977): Hegel. Cambridge: Cambridge University Press.

Toulmin, S. (1972): Human Understanding. Oxford: Clarendon Press.

Van Fraassen, B. (1980): The Scientific Image. Oxford: Oxford University Press.

Van Vleck, J. H. (1926): Quantum Principles and Line Spectra. Washington, DC: National Research Council of the National Academy of Sciences.

Vickers, P. (2008): ‘Frisch, Muller and Belot on an Inconsistency in Classical Electrodynamics’, British Journal for the Philosophy of Science 59 (4): 767–92.

—— (2009a): ‘Was Newtonian Cosmology Really Inconsistent?’, Studies in History and Philosophy of Modern Physics 40 (3): 197–208.

—— (2009b): ‘Can Partial Structures Accommodate Inconsistent Science?’, Principia 13 (2): 233–50.

—— (2012): ‘Historical Magic in Old Quantum Theory?’, European Journal for Philosophy of Science 2 (1): 1–19.

—— (forthcoming): ‘Scientific Theory Eliminativism’, Erkenntnis. DOI: 10.1007/s10670-013-9471-2.

Votsis, I. (2011): ‘The Prospective Stance in Realism’, Philosophy of Science 78 (5): 1223–34.

Warmbrod, K. (1999): ‘Logical constants’, Mind 108: 503–38.

Whiteside, D. T. and Newton, I. (1967): The Mathematical Papers of Isaac Newton, Vol. 1, 1664–1666. Cambridge: Cambridge University Press.

Wilson, M. (2006): Wandering Significance. Oxford: Oxford University Press.

—— (2009): ‘Determinism and the Mystery of the Missing Physics’, British Journal for the Philosophy of Science 60: 173–93.

(p.268) Wilson, M. (2013): ‘What is “Classical Mechanics” Anyway?’, in R. Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford: Oxford University Press.

Yaghjian, A. D. (1992): Relativistic Dynamics of a Charged Sphere: Updating the Lorentz-Abraham Model. Berlin: Springer.

Zinkernagel, H. (2010): ‘Causal Fundamentalism in Physics’, in M. Suárez, M. Dorato, and M. Rédei (eds), EPSA Philosophical Issues in the Sciences. Dordrecht: Springer, 311–22.