Jump to ContentJump to Main Navigation
Dielectric Relaxation in Biological SystemsPhysical Principles, Methods, and Applications$

Valerica Raicu and Yuri Feldman

Print publication date: 2015

Print ISBN-13: 9780199686513

Published to Oxford Scholarship Online: August 2015

DOI: 10.1093/acprof:oso/9780199686513.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 20 June 2018

References

References

Source:
Dielectric Relaxation in Biological Systems
Author(s):

Valerică Raicu

Yuri Feldman

Publisher:
Oxford University Press

Bibliography references:

1. Arrhenius, S., On the reaction rate of the inversion of non-refined sugar upon souring. Z. Phys. Chem., 1889, 4: 226–248.

2. Eyring, H., The activated complex in chemical reactions. J. Chem. Phys., 1935, 3: 107–115.

3. Eyring, H., The theory of absolute reaction rates. Trans. Faraday. Soc., 1938, 34: 41–48.

4. Eyring, H., The activated complex and the absolute rate of chemical reaction. Chem. Rev., 1935, 17: 65–77.

5. Eisenberg, D. and Kauzmann, W., The Structure and Properties of Water. Oxford: Clarendon Press, 1969.

6. Barthel, J., Buchner, R., and Wurm, B., The dynamics of liquid formamide, N-methylformamide, N,N-dimethylformamide, and N,N-dimethylacetamide: a dielectric relaxation study. J. Mol. Liq., 2002, 51: 98–99.

7. Buchner, R., Barthel, J., and Stauber, J., The dielectric relaxation of water between 0 °C and 35 °C. Chem. Phys. Lett., 1999, 306: 57–63.

8. Angell, C.A., Spectroscopy simulation and scattering, and the medium range order problem in glass. J. Non-Cryst. Solids, 1985, 73: 1–17.

9. Angell, C.A., Relaxation in liquids, polymers and plastic crystals – strong fragile patterns and problems. J. Non-Cryst. Solids, 1991, 131–133: 13–31.

10. Böhmer, R., Ngai, K.L., Angell, C.A., and Plazek, D.J., Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys., 1993, 99: 4201–4209.

11. Brand, R., Lunkenheimer, P., and Loidl, A., Relaxation dynamics in plastic crystals. J. Chem. Phys., 2002, 116: 10386–10399.

12. Vogel, H., The law of the relation between the viscosity of liquids and the temperature. Phys. Z., 1921, 22: 645–646.

13. Fulcher, G.S., Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc., 1925, 8: 339–355.

14. Tammann, G. and Hesse, W., Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem., 1926, 156: 245–257.

15. Adam, G. and Gibbs, J.H., On the temperature dependence of cooperative relaxation properties in glass‐forming liquids. J. Chem. Phys., 1965, 43: 139–146.

16. Kauzmann, W., The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev., 1948, 43: 219–256.

17. Richert, R. and Angell, C.A., Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J. Chem. Phys., 1998, 108: 9016–9026.

(p.422) 18. Fox, T.G. and Flory, P.J., Second‐order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys., 1950, 21: 581–591.

19. Fox, T.G. and Flory, P.J., Further studies on the melt viscosity of polyisobutylene. J. Phys. Colloid Chem., 1951, 55: 221–234.

20. Fox, T.G. and Flory, P.J., The glass temperature and related properties of polystyrene. Influence of molecular weight. J. Polym. Sci., 1954, 14: 315–319.

21. Doolittle, A.K., Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free‐space. J. Appl. Phys., 1951, 22: 1471–1475.

22. Turnbull, D. and Cohen, M.H., Free‐volume model of the amorphous phase: glass transition. J. Chem. Phys., 1961, 34: 120–125.

23. Bendler, J.T., Fontanella, J.J., and Shlesinger, M.F., A new Vogel-like law: ionic conductivity, dielectric relaxation, and viscosity near the glass transition. Phys. Rev. Lett., 2001, 87: 195503.

24. Bendler, J.T. and Shlesinger, M.F., Generalized vogel law for glass-forming liquids. J. Stat. Phys., 1988, 53: 531–541.

25. Bendler, J.T. and Shlesinger, M.F., Defect-diffusion models of relaxation. J. Mol. Liq., 1987, 36: 37–46.