Jump to ContentJump to Main Navigation
Quantum Machines: Measurement and Control of Engineered Quantum Systems
Users without a subscription are not able to see the full content.

Quantum Machines: Measurement and Control of Engineered Quantum Systems: Lecture Notes of the Les Houches Summer School: Volume 96, July 2011

Michel Devoret, Benjamin Huard, Robert Schoelkopf, and Leticia F. Cugliandolo

Abstract

This book gathers the lecture notes of courses given at the 2011 Les Houches Summer School in Theoretical Physics, Session XCVI. What is a quantum machine? Can we say that lasers and transistors are quantum machines? After all, physicists advertise these devices as the two main spin-offs of the understanding of quantum physics. However, while quantum mechanics must be used to predict the wavelength of a laser and the operation voltage of a transistor, it does not intervene at the level of the signals processed by these systems. Signals involve macroscopic collective variables such as voltages ... More

Keywords: quantum physics, quantum mechanics, quantum machine

Bibliographic Information

Print publication date: 2014 Print ISBN-13: 9780199681181
Published to Oxford Scholarship Online: September 2014 DOI:10.1093/acprof:oso/9780199681181.001.0001

Authors

Affiliations are at time of print publication.

Michel Devoret, editor
Department of Applied Physics, Yale University, USA; Collège de France, Paris, France

Benjamin Huard, editor
Laboratoire Pierre Aigrain, CNRS, Ecole Normale Supérieure, Paris, France

Robert Schoelkopf, editor
Department of Applied Physics, Yale University, USA

More
Show Summary Details

subscribe or login to access all content.

Contents

View:

Part I Lectures

1 Real-time feedback control of quantum optical input-output systems

H. Mabuchi Edward L. Ginzton Laboratory and Department of Applied Physics Stanford University Stanford, CA 94305, USA

2 Quantum noise and quantum measurement

A. Clerk Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8

3 Circuit QED: superconducting qubits coupled to microwave photons

S. M. Girvin Department of Physics, Yale University, New Haven, CT 06520, USA

4 Quantum logic gates in superconducting qubits

J. M. Martinis Department of Physics, University of California, Santa Barbara, CA 93111, USA

5 Exploring quantum matter with ultracold atoms

I. Bloch Max-Planck-Institute of Quantum Optics 85748 Garching, Germany Ludwig-Maximilians-University of Munich 80799 Munich, Germany

6 Readout of superconducting qubits

D. Esteve Quantronics Group Service de Physique de l’Etat Condensé/IRAMIS/DSM (CNRS URA 2464) CEA Saclay, 91191 Gif-sur-Yvette, France

7 Quantum error correction

I. L. Chuang Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA

8 Quantum optomechanics

F. Marquardt University of Erlangen-Nuremberg, Institute of Theoretical Physics Staudtstr. 7, 91058 Erlangen, Germany Max Planck Institute for the Science of Light Günther-Scharowsky-Straße 1/Bau 24, 91058 Erlangen, Germany

9 Micromechanics and superconducting circuits

K.W. Lehnert JILA, National Institute of Standards and Technology Physics Department, The University of Colorado Boulder, CO 80309, USA

10 Two-electron spin qubits in GaAs: control and dephasing due to nuclear spins

A. Yacoby H. Bluhm Department of Physics, Harvard University, Cambridge, MA 02138, USA

11 Exploring the quantum world with photons trapped in cavities and Rydberg atoms

A. Yacoby Laboratoire Kastler Brossel, ENS, CNRS, UPMC-Paris 6 24 rue Lhomond, 75231 Paris Cedex 05, France

12 SQUID amplifiers

J. Clarke1 Department of Physics, University of California, Berkeley, California 94720, USA M. H. Devoret2,3 College de France, II Place Marcelin Berthelot, F-75231 Paris Cedex, France Department of Applied Physics, Yale University, New Haven, CT 06520, USA A. Kamal3,4 Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

13 Quantum information science: experimental implementation with trapped ions

T. Monz* Institut für Experimentalphysik, Universität Innsbruck Technikerstraß e 25, 6020 Innsbruck, Austria P. Schindler* D. Nigg* R. Blatt*,† Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Technikerstraß e 21a, 6020 Innsbruck, Austria

Part II Seminars

14 An introduction to laser cooling optomechanical systems

J. G. E. Harris Departments of Physics and Applied Physics Yale University New Haven, CT 06520, USA

15 Tomography schemes for characterizing itinerant microwave photon fields

C. Eichler* D. Bozyigit* C. Lang* L. Steffen* J. Fink* A. Wallraff* Department of Physics, ETH Zürich, CH-8093, Zürich, Switzerland

16 Using a “frictionless” pendulum for quantum measurement

I. Siddiqi Quantum Nanoelectronics Laboratory Department of Physics, University of California, Berkeley, CA 94720, USA

17 Quantum Bayesian approach to circuit QED measurement

A. N. Korotkov Department of Electrical Engineering University of California Riverside, CA 92521-0204, USA

18 Superconducting quantum circuits: artificial atoms coupled to 1D modes

Y. Nakamura Research Center for Advanced Science and Technology (RCAST) The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan

19 A superconducting artificial atom with two internal degrees of freedom

O. Buisson Institut Néel CNRS, Université Joseph Fourier, INP-Grenoble, Grenoble, France