Jump to ContentJump to Main Navigation
A Posteriori Error Estimation Techniques for Finite Element Methods$

Rüdiger Verfürth

Print publication date: 2013

Print ISBN-13: 9780199679423

Published to Oxford Scholarship Online: May 2013

DOI: 10.1093/acprof:oso/9780199679423.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 26 February 2017

(p.373) References

(p.373) References

Source:
A Posteriori Error Estimation Techniques for Finite Element Methods
Publisher:
Oxford University Press

Bibliography references:

[1] E. M. Abdalass, Resolution performante du problème de Stokes par mini-éléments, maillages auto-adaptifs et méthodes multigrilles – applications, Ph.D. thesis, Ecole Centrale de Lyon, 1987.

[2] G. Acosta and R. G. Durán, An optimal Poincaré inequality in L1 for convex domains, Proc. Amer. Math. Soc. 132 (2004), no. 1, 195–202.

[3] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[4] M. Afif, A. Bergam, Z. Mghazli, and R. Verfürth, A posteriori estimators for the finite volume discretization of an elliptic problem, Numer. Algorithms 34 (2003), no. 2–4, 127–136, International Conference on Numerical Algorithms, Vol. II (Marrakesh, 2001).

[5] A. Agouzal, A posteriori error estimators for nonconforming approximation, Int. J. Numer. Anal. Model. 5 (2008), no. 1, 77–85.

[6] M. Ainsworth, Robust a posteriori error estimation for nonconforming finite element approximation, SIAM J. Numer. Anal. 42 (2005), no. 6, 2320–2341.

[7] M. Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal. 45 (2007), no. 4, 1777–1798.

[8] M. Ainsworth and I. Babuška, Reliable and robust a posteriori error estimating for singularly perturbed reaction–diffusion problems, SIAM J. Numer. Anal. 36 (1999), no. 2, 331–353.

[9] M. Ainsworth, L. Demkowicz, and C. Kim, Analysis of the equilibrated residual method for a posteriori error estimation on meshes with hanging nodes, Comput. Methods Appl. Mech. Engrg. 196 (2007), 3493–3507.

[10] M. Ainsworth and J. T. Oden, A posteriori error estimators for second order elliptic systems. I. Theoretical foundations and a posteriori error analysis, Comput. Math. Appl. 25 (1993), no. 2, 101–113.

[11] M. Ainsworth and J. T. Oden, A posteriori error estimators for second order elliptic systems. II. An optimal order process for calculating self-equilibrating fluxes, Comput. Math. Appl. 26 (1993), no. 9, 75–87.

[12] M. Ainsworth and J. T. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math. 65 (1993), 23–50.

[13] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2000.

[14] M. Ainsworth and R. Rankin, Robust a posteriori error estimation for the nonconforming Fortin–Soulie finite element approximation, Math. Comp. 77 (2008), no. 264, 1917–1939.

[15] M. Ainsworth and T. Vejchodský, Fully computable robust a posteriori error bounds for singularly perturbed reaction–diffusion problems, Numer. Math. 119 (2011), no. 2, 219–243.

[16] M. Ainsworth, J. Z. Zhu, A. W. Craig, and O. C. Zienkiewicz, Analysis of the Zienkiewicz–Zhu a posteriori error estimator in the finite element method, Internat. J. Numer. Methods Engrg. 28 (1989), no. 9, 2161–2174.

[17] G. Akrivis, C. Makridakis, and R. H. Nochetto, A posteriori error estimates for the Crank–Nicolson method for parabolic equations, Math. Comp. 75 (2006), no. 254, 511–531.

[18] A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), 385–395.

(p.374) [19] H. Amann, Ordinary Differential Equations, de Gruyter Studies in Mathematics, vol. 13, Walter de Gruyter, Berlin, 1990.

[20] H. Amann, Linear and Quasilinear Parabolic Problems. Volume I: Abstract Linear Theory, Birkhäuser, Basel, 1995.

[21] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional nonsmooth domains, Math. Meth. Appl. Sci. 21 (1998), 823–864.

[22] T. Apel, Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements, Computing 60 (1998), no. 2, 157–174.

[23] T. Apel, Interpolation of non-smooth functions on anisotropic finite element meshes, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1149–1185.

[24] M. G. Armentano and C. Padra, A posteriori error estimates for the Steklov eigenvalue problem, Appl. Numer. Math. 58 (2008), no. 5, 593–601.

[25] D. Arnica and C. Padra, A posteriori error estimators for the steady incompressible Navier–Stokes equations, Numer. Methods Partial Differential Equations 13 (1997), no. 5, 561–574.

[26] D. N. Arnold, F. Brezzi, and J. Douglas Jr., PEERS: A new mixed finite element for plane elasticity, Japan J. Appl. Math. 1 (1984), no. 2, 347–367.

[27] D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (1984), 337–344.

[28] D. N. Arnold and R. S. Falk, Well-posedness of the fundamental boundary value problems for constrained anisotropic elastic materials, Arch. Ration. Mech. Anal. 98 (1987), 143–190.

[29] I. Babuška, The finite element method with Lagrange multipliers, Numer. Math. 20 (1973), 179–192.

[30] I. Babuška, R. G. Durán, and R. Rodriguez, Analysis of the efficiency of an a posteriori error estimator for linear triangular elements, SIAM J. Numer. Anal. 29 (1992), 947–964.

[31] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), 736–754.

[32] I. Babuška and W. C. Rheinboldt, A posteriori error estimates for the finite element method, Internat. J. Numer. Meth. Engrg. 12 (1978), 1597–1615.

[33] I. Babuša and R. Rodriguez, The problem of the selection of an a posteriori error indicator based on smoothing techniques, Internat. J. Numer. Math. Engrg. 36 (1993), 539–567.

[34] I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math. 44 (1984), 75–102.

[35] G. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Birkhäuser, Basel, 2003.

[36] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II differential equations analysis library, technical reference, www.dealii.org.

[37] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II — a general-purpose object-oriented finite element library, ACM Trans. Math. Softw. 33 (2007), no. 4, Art. 24, 27.

[38] R. E. Bank, PLTMG: A software package for solving elliptic partial differential equations. User’s Guide 6.0, SIAM, Philadelphia, 1990.

[39] R. E. Bank, PLTMG: A software package for solving elliptic partial differential equations. User’s Guide 10.0, Department of Mathematics, University of California at San Diego, 2007.

[40] R. E. Bank and K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal. 30 (1993), 921–935.

[41] R. E. Bank and K. Smith, Mesh smoothing using a posteriori error estimates, SIAM J. Numer. Anal. 34 (1997), 979–997.

[42] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comput. 44 (1985), 283–301.

[43] R. E. Bank and B. D. Welfert, A posteriori error estimates for the Stokes equations: a comparison, Comput. Methods Appl. Mech. Engrg. 82 (1990), 323–340.

(p.375) [44] R. E. Bank and B. D. Welfert, A posteriori error estimates for the Stokes problem, SIAM J. Numer. Anal. 28 (1991), 591–623.

[45] R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. I. Grids with superconvergence, SIAM J. Numer. Anal. 41 (2003), no. 6, 2294–2312.

[46] R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. II. General unstructured grids, SIAM J. Numer. Anal. 41 (2003), no. 6, 2313–2332.

[47] E. Bänsch, Local mesh refinement in 2 and 3 dimensions, IMPACT Comput. Sci. Engrg. 3 (1991), 181–191.

[48] J. Baranger and H. El Amri, Estimateur a posteriori d’erreur pour le calcul adaptatif d’écoulements quasi-Newtoniens, RAIRO M2AN 25 (1991), 31–48.

[49] S. Bartels and C. Carstensen, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. II. Higher order FEM, Math. Comp. 71 (2002), no. 239, 971–994.

[50] M. Bebendorf, A note on the Poincaré inequality for convex domains, Z. Anal. Anwendungen 22 (2003), no. 4, 751–756.

[51] C. Becker, S. Buijssen, and S. Turek, FEAST: development of HPC technologies for FEM applications, High Performance Computing in Science and Engineering ’07, Springer, Berlin, 2008, pp. 503–516.

[52] R. Becker, An optimal-control approach to a posteriori error estimation for finite element discretizations of the Navier–Stokes equations, East–West J. Numer. Math. 8 (2000), no. 4, 257–274.

[53] R. Becker and R. Rannacher, Weighted a posteriori error control in FE methods, ENUMATH 97 (Singapore) (H. G. Bock et al., eds.), ENUMATH-95, World Scientific, Singapore, 1998, pp. 612–637.

[54] R. Becker and R. Rannacher, An optimal control approach to error estimation and mesh adaptation in finite element methods, Acta Numerica (A. Iserles, ed.), vol. 2000, Cambridge University Press, 2001, pp. 1–101.

[55] L. Beirão da Veiga, J. Niiranen, and R. Stenberg, A family of C0 finite elements for Kirchhoff plates. I. Error analysis, SIAM J. Numer. Anal. 45 (2007), no. 5, 2047–2071.

[56] L. Beirão da Veiga, J. Niiranen, and R. Stenberg, A posteriori error estimates for the Morley plate bending element, Numer. Math. 106 (2007), no. 2, 165–179.

[57] L. Beirão da Veiga, J. Niiranen, and R. Stenberg, A posteriori error analysis for the Morley plate element with general boundary conditions, Internat. J. Numer. Methods Engrg. 83 (2010), no. 1, 1–26.

[58] M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math. 33 (1979), 211–224.

[59] A. Bergam, C. Bernardi, and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations, Math. Comp. 74 (2005), no. 251, 1117–1138.

[60] A. Bergam, Z. Mghazli, and R. Verfürth, Estimations a posteriori d’un schéma de volumes finis pour un problème non linéaire, Numer. Math. 95 (2003), no. 4, 599–624.

[61] A. Bermùdez, M. R. Nogueiras, and C. Vàzquez, Numerical analysis of convection–diffusion–reaction problems with higher order characteristics/finite elements. Part I. Time discretization, SIAM J. Numer. Anal. 44 (2006), 1829–1853.

[62] A. Bermùdez, M. R. Nogueiras, and C. Vàzquez, Numerical analysis of convection–diffusion–reaction problems with higher order characteristics/finite elements. Part II. Fully discretized schemes and quadrature formulas, SIAM J. Numer. Anal. 44 (2006), 1854–1876.

[63] C. Bernardi, F. Hecht, and R. Verfürth, A posteriori error analysis of the method of characteristics, Math. Models Methods Appl. Sci. 21 (2011), no. 6, 1355–1376.

(p.376) [64] C. Bernardi, B. Métivet, and R. Verfürth, Analyse numérique d’indicateurs d’erreur, Maillage et Adaptation (Paris) (P. L. George, ed.), Hermès, Paris 2002, pp. 251–278.

[65] C. Bernardi and G. Raugel, A conforming finite element method for the time-dependent Navier–Stokes equations, SIAM J. Numer. Anal. 22 (1985), no. 3, 455–473.

[66] C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math. 85 (2000), no. 4, 579–608.

[67] C. Bernardi and R. Verfürth, A posteriori error analysis of the fully discretized time-dependent Stokes equations, M2AN Math. Model. Numer. Anal. 38 (2004), no. 3, 437–455.

[68] G. Bernardi and C. Raugel, Analysis of some finite elements for the Stokes problem, Math. Comput. 44 (1985), 71–79.

[69] S. Berrone, Skipping transition conditions in a posteriori error estimates for finite element discretizations of parabolic equations, M2AN Math. Model. Numer. Anal. 44 (2010), no. 3, 455–484.

[70] P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), 219–268.

[71] P. B. Bochev, C. R. Dohrmann, and M. D. Gunzburger, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal. 44 (2006), no. 1, 82–101.

[72] M. E. Bogovskii, Solution of the first boundary value problem for the equation of continuity of an incompressible medium, Soviet Math. Dokl. 20 (1979), 1094–1098.

[73] N. V. Bonnaillie, A posteriori error estimator for the eigenvalue problem associated to the Schrödinger operator with magnetic field, Numer. Math. 99 (2004), no. 2, 325–348.

[74] F. A. Bornemann, B. Erdmann, and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996), no. 3, 1188–1204.

[75] K. Boukir, Y. Maday, and B. Métivet, A high order characteristics method for the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg. 116 (1994), no. 1–4, 211–218.

[76] M. Braack, E. Burman, V. John, and G. Lube, Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 4–6, 853–866.

[77] M. Braack and G. Lube, Finite elements with local projection stabilization for incompressible flow problems, J. Comput. Math. 27 (2009), no. 2–3, 116–147.

[78] D. Braess, The contraction number of a multigrid method for solving the Poisson equation, Numer. Math. 37 (1981), no. 3, 387–404.

[79] D. Braess, Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics, 3rd ed., Cambridge University Press, 2007.

[80] D. Braess, An a posteriori error estimate and a comparison theorem for the nonconforming P1 element, Calcolo 46 (2009), no. 2, 149–155.

[81] D. Braess, C. Carstensen, and R. H. W. Hoppe, Convergence analysis of a conforming adaptive finite element method for an obstacle problem, Numer. Math. 107 (2007), no. 3, 455–471.

[82] D. Braess, C. Carstensen, and R. H. W. Hoppe, Error reduction in adaptive finite element approximations of elliptic obstacle problems, J. Comput. Math. 27 (2009), no. 2–3, 148–169.

[83] D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements, Math. Comput. 77 (2008), no. 262, 651–672.

[84] D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal. 33 (1996), no. 6, 2431–2444.

(p.377) [85] S. C. Brenner, T. Gudi, and L.-Y. Sung, An a posteriori error estimator for a quadratic C0-interior penalty method for the biharmonic problem, IMA J. Numer. Anal. 30 (2010), no. 3, 777–798.

[86] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, Berlin, 1994.

[87] S. C. Brenner and L.-Y. Sung, C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput. 22/23 (2005), 83–118.

[88] F. Brezzi, On the existence, uniqueness, and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal Numér. 8 (1974), 129–151.

[89] F. Brezzi and R. S. Falk, Stability of a higher order Hood–Taylor element, SIAM J. Numer. Anal. 28 (1991), 581–590.

[90] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15, Springer, Berlin, 1991.

[91] C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465–476.

[92] C. Carstensen, Residual-based a posteriori error estimate for a nonconforming Reissner–Mindlin plate finite element, SIAM J. Numer. Anal. 39 (2002), no. 6, 2034–2044.

[93] C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM, Math. Comp. 71 (2002), no. 239, 945–969.

[94] C. Carstensen, S. Bartels, and S. Jansche, A posteriori error estimates for nonconforming finite element methods, Numer. Math. 92 (2002), no. 2, 233–256.

[95] C. Carstensen and S. A. Funken, Fully reliable localized error control in the FEM, SIAM J. Sci. Comput. 21 (1999/2000), no. 4, 1465–1484.

[96] C. Carstensen and S. A. Funken, Averaging technique for a posteriori error control in elasticity. III. Locking-free nonconforming FEM, Comput. Methods Appl. Mech. Engrg. 191 (2001), no. 8–10, 861–877.

[97] C. Carstensen and R. H. W. Hoppe, Convergence analysis of an adaptive nonconforming finite element method, Numer. Math. 103 (2006), no. 2, 251–266.

[98] C. Carstensen and R. H. W. Hoppe, Error reduction and convergence for an adaptive mixed finite element method, Math. Comp. 75 (2006), no. 255, 1033–1042.

[99] C. Carstensen and J. Hu, A unifying theory of a posteriori error control for nonconforming finite element methods, Numer. Math. 107 (2007), no. 3, 473–502.

[100] C. Carstensen, J. Hu, and A. Orlando, Framework for the a posteriori error analysis of nonconforming finite elements, SIAM J. Numer. Anal. 45 (2007), no. 1, 68–82.

[101] C. Carstensen and R. Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal. 36 (1999), no. 5, 1571–1587.

[102] J. M. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550.

[103] J. M. Cascon, R. H. Nochetto, and K. G. Siebert, Design and convergence of AFEM in H(div), Math. Models Methods Appl. Sci. 17 (2007), no. 11, 1849–1881.

[104] A. Charbonneau, K. Dossou, and R. Pierre, A residual-based a posteriori error estimator for the Ciarlet–Raviart formulation of the first biharmonic problem, Numer. Methods Partial Differential Equations 13 (1997), no. 1, 93–111.

[105] I. Cheddadi, R. Fučik, M. I. Prieto, and M. Vohralík, Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems, M2AN Math. Model. Numer. Anal. 43 (2009), no. 5, 867–888.

[106] Z. Chen and J. Feng, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems, Math. Comp. 73 (2004), no. 247, 1167–1193.

[107] S.-K. Chua and R. L. Wheeden, Estimates for best constants in weighted Poincaré inequalities for convex domains, Proc. London Math. Soc. 93 (2006), no. 3, 197–226.

[108] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978.

(p.378) [109] P. G. Ciarlet, Basic Error Estimates for Elliptic Problems, Handbook of Numerical Analysis (P. G. Ciarlet and J. L. Lions, eds.), vol. 2, North-Holland, Amsterdam, 1991, pp. 17–351.

[110] P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 2 (1975), 77–84.

[111] K. A. Cliffe, E. J. C. Hall, P. Houston, E. T. Phipps, and A. G. Salinger, Adaptivity and a posteriori error control for bifurcation problems I: the Bratu problem, Commun. Comput. Phys. 8 (2010), no. 4, 845–865.

[112] M. Costabel and M. Dauge, Construction of corner singularities for Agmon–Douglis–Nirenberg elliptic systems, Math. Nachr. 162 (1993), 209–237.

[113] E. Creuse, M. Farhloul, and L. Paquet, A posteriori error estimation for the dual mixed finite element method for the p-Laplacian in a polygonal domain, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 25–28, 2570–2582.

[114] M. Crouzeix and J. Rappaz, On Numerical Approximation in Bifurcation Theory, RMA, vol. 13, Masson-Springer, Paris, 1990.

[115] M. Crouzeix and V. Thomée, The stability in Lp and W1,p of the L2-projection onto finite element function spaces, Math. Comp. 48 (1987), no. 178, 521–532.

[116] E. Dari, R. Duran, C. Padra, and V. Vampa, A posteriori error estimators for nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 4, 385–400.

[117] M. Dauge, Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations, SIAM J. Math. Anal. 20 (1989), no. 1, 74–97.

[118] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology II: Functional and Variational Methods, Springer, Berlin, 1988.

[119] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology V: Evolution Problems I, Springer, Berlin, 1992.

[120] G. de Rham, Variétés Différentiables, Hermann, Paris, 1960.

[121] A. Demlow and R. Stevenson, Convergence and quasi-optimality of an adaptive finite element method for controlling L2 errors, Numer. Math. 117 (2011), no. 2, 185–218.

[122] P. Destuynder and B. Métivet, Explicit error bounds for a conforming finite element method, Math. Comput. 68 (1999), no. 228, 1379–1396.

[123] P. Deuflhard, P. Leinen, and H. Yserentant, Concepts of an adaptive hierarchical finite element code, IMPACT Comput. Sci. Engrg. 1 (1989), 3–35.

[124] R. DeVore, Nonlinear approximation, Acta Numerica 7 (1998), 51–150.

[125] C. R. Dohrmann and P. B. Bochev, A stabilized finite element method for the Stokes problem based on polynomial pressure projections, Internat. J. Numer. Methods Fluids 46 (2004), no. 2, 183–201.

[126] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Num. Anal. 33 (1996), no. 3, 1106–1124.

[127] R. G. Durán, L. Gastaldi, and C. Padra, A posteriori error estimators for mixed approximations of eigenvalue problems, Math. Models Methods Appl. Sci. 9 (1999), no. 8, 1165–1178.

[128] R. G. Durán, M. A. Muschietti, and R. Rodriguez, On the asymptotic exactness of error estimators for linear triangular elements, Numer. Math. 59 (1991), 107–127.

[129] R. G. Durán, C. Padra, and R. Rodríguez, A posteriori error estimates for the finite element approximation of eigenvalue problems, Math. Models Methods Appl. Sci. 13 (2003), no. 8, 1219–1229.

[130] R. G. Durán and R. Rodriguez, On the asymptotic exactness of Bank–Weiser’s estimator, Numer. Math. 62 (1992), 297–303.

[131] V. Eijkhout and P. Vassilevski, The role of the strengthened Cauchy–Bujanowski–Schwarz inequality in multilevel methods, SIAM Rev. 33 (1991), 405–419.

(p.379) [132] L. El Alaoui and A. Ern, Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods, M2AN Math. Model. Numer. Anal. 38 (2004), no. 6, 903–929.

[133] G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei, and R. L. Taylor, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 34, 3669–3750.

[134] A. Ern, A. F. Stephansen, and M. Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection–diffusion–reaction problems, J. Comput. Appl. Math. 234 (2010), no. 1, 114–130.

[135] R. Eymard, T. Gallouët, and R. Herbin, Finite Volume Methods, Handbook of Numerical Analysis (P. G. Ciarlet and J. L. Lions, eds.), vol. 7, North-Holland, Amsterdam, 2000, pp. 713–1020.

[136] F. Fierro and A. Veeser, A posteriori error estimators for regularized total variation of characteristic functions, SIAM J. Numer. Anal. 41 (2003), no. 6, 2032–2055.

[137] F. Fierro and A. Veeser, A posteriori error estimators, gradient recovery by averaging, and superconvergence, Numer. Math. 103 (2006), no. 2, 267–298.

[138] F. Fierro and A. Veeser, A safeguarded Zienkiewicz–Zhu estimator, Numerical Mathematics and Advanced Applications, Springer, Berlin, 2006, pp. 269–276.

[139] L. P. Franca, S. L. Frey, and T. J. R. Hughes, Stabilized finite element methods I: Application to the advective–diffusive model, Comput. Methods Appl. Mech. Engrg. 95 (1992), 253–271.

[140] L. P. Franca, V. John, G. Matthies, and L. Tobiska, An inf–sup stable and residual-free bubble element for the Oseen equations, SIAM J. Numer. Anal. 45 (2007), no. 6, 2392–2407.

[141] F. Gardini, A posteriori error estimates for an eigenvalue problem arising from fluid-structure interaction, Istit. Lombardo Accad. Sci. Lett. Rend. A 138 (2004), 17–34 (2005).

[142] P. L. George, Automatic Mesh Generation and Finite Element Computation, Handbook of Numerical Analysis (P. G. Ciarlet and J. L. Lions, eds.), vol. 5, North-Holland, Amsterdam, 1996, pp. 69–190.

[143] P. L. George and H. Borouchaki, Delaunay Triangulation and Meshing, Hermès, Paris, 1998.

[144] V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier–Stokes Equations, Lecture Notes in Mathematics, vol. 749, Springer, Berlin, 1979.

[145] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics, vol. 5, Springer, Berlin, 1986.

[146] M. Grajewski, J. Hron, and S. Turek, Dual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals, Appl. Numer. Math. 54 (2005), no. 3–4, 504–518.

[147] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.

[148] S. Grosman, An equilibrated residual method with a computable error approximation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes, M2AN Math. Model. Numer. Anal. 40 (2006), no. 2, 239–267.

[149] F. Hecht, A. Le Hyaric, K. Ohtsuka, and O. Pironneau, Freefem++, second edition, v 3.0-1, Université Pierre et Marie Curie, Paris, 2007, www.freefem.org/ff++/ftp/freefem++doc.pdf.

[150] B.-O. Heimsund, X.-C. Tai, and J. Wang, Superconvergence for the gradient of finite element approximations by L2-projections, SIAM J. Numer. Anal. 40 (2002), 1263–1280.

[151] V. Heuveline and R. Rannacher, A posteriori error control for finite approximations of elliptic eigenvalue problems, Adv. Comput. Math. 15 (2001), no. 1–4, 107–138.

[152] P. Hood and G. Taylor, Navier–Stokes equations using mixed interpolation, Finite Element Method in Flow Problems (J. T. Oden, ed.), UAH Press, 1974.

(p.380) [153] T. J. R. Hughes and A. Brooks, Streamline upwind/Petrov–Galerkin formulations for the convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg. 54 (1982), 199–259.

[154] T. J. R. Hughes, L. P. Franca, and M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal order interpolation, Comput. Methods Appl. Mech. Engrg. 59 (1986), 85–99.

[155] H. Jin and S. Prudhomme, A posteriori error estimation of steady-state finite element solutions of the Navier–Stokes equations by a subdomain residual method, Comput. Methods Appl. Mech. Engrg. 159 (1998), no. 1–2, 19–48.

[156] F. Jochmann, An Hs-regularity result for the gradient of solutions to elliptic equations with mixed boundary conditions, J. Math. Anal. Appl. 238 (1999), 429–450.

[157] V. John, Residual a posteriori error estimates for two-level finite element methods for the Navier–Stokes equations, Appl. Numer. Math. 37 (2001), no. 4, 503–518.

[158] C. Johnson and R. Rannacher, On error control in CFD, Nmerical Methods for the Navier–Stokes Equations (Braunschweig) (F.-K. Hebeker et al., eds.), Vieweg, Braunschweig, 1994, pp. 133–144.

[159] G. Kanschat and D. Schötzau, Energy norm a posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier–Stokes equations, Internat. J. Numer. Methods Fluids 57 (2008), no. 9, 1093–1113.

[160] D. W. Kelly, The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method, Internat. J. Numer. Meth. Engrg. 20 (1984), 1491–1509.

[161] K.-Y. Kim and H.-C. Lee, A posteriori error estimators for nonconforming finite element methods of the linear elasticity problem, J. Comput. Appl. Math. 235 (2010), no. 1, 186–202.

[162] Y. Kondratyuk and R. Stevenson, An optimal adaptive finite element method for the Stokes problem, SIAM J. Numer. Anal. 46 (2008), no. 2, 747–775.

[163] C. Kreuzer, C. A. Möller, A. Schmidt, and K. G. Siebert, Design and convergence analysis for an adaptive discretization of the heat equation, IMA J. Numer. Anal. 32 (2012), no. 4, 1375–1403.

[164] M. Křižek and P. Neittaanmäki, Superconvergence phenomenon in the finite element method arising from averaging of gradients, Numer. Math. 45 (1984), 105–116.

[165] M. Křižek, P. Neittaanmäki, and R. Stenberg (eds.), Finite Element Methods. Superconvergence, Post-Processing and A Posteriori Error Estimates, Lecture Notes in Pure and Applied Mathematics, no. 196, Marcel Dekker, New York, 1998.

[166] D. Kröner, M. Küther, M. Ohlberger, and C. Rohde, A posteriori error estimates and adaptive methods for hyperbolic and convection dominated parabolic conservation laws, Trends in Nonlinear Analysis, Springer, Berlin, 2003, pp. 289–306.

[167] D. Kröner and M. Ohlberger, A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multidimensions, Math. Comp. 69 (2000), no. 229, 25–39.

[168] G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes, Numer. Math. 86 (2000), 471–490.

[169] G. Kunert and S. Nicaise, Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes, M2AN Math. Model. Numer. Anal. 37 (2003), no. 6, 1013–1043.

[170] G. Kunert and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes, Numer. Math. 86 (2000), no. 2, 283–303.

[171] P. Labbé, J. Dompierre, and R. Guibault, F. Camarero, Critères de qualité, Maillage et Adaptation (Paris) (P. L. George, ed.), Hermès, Paris, 2002, pp. 311–348.

(p.381) [172] P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983), 485–509.

[173] O. Lakkis and C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp. 75 (2006), no. 256, 1627–1658.

[174] H.-C. Lee and K.-Y. Kim, A posteriori error estimators for stabilized P1 nonconforming approximation of the Stokes problem, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 45–48, 2903–2912.

[175] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002.

[176] Y. Li, A posteriori error analysis of nonconforming methods for the eigenvalue problem, J. Syst. Sci. Complex. 22 (2009), no. 3, 495–502.

[177] H. Liu and N. Yan, Superconvergence and a posteriori error estimates of nonconforming FEM for boundary control governed by Stokes equations, Recent Advances in Computational Sciences, World Scientific, Hackensack, NJ, 2008, pp. 133–155.

[178] K. Liu and X. Qin, A gradient recovery-based a posteriori error estimators for the Ciarlet–Raviart formulation of the second biharmonic equations, Appl. Math. Sci. (Ruse) 1 (2007), no. 21–24, 997–1007.

[179] W. Liu and N. Yan, Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian, Numer. Math. 89 (2001), no. 2, 341–378.

[180] W. Liu and N. Yan, Some a posteriori error estimators for p-Laplacian based on residual estimation or gradient recovery, J. Sci. Comput. 16 (2001), no. 4, 435–477.

[181] W. Liu and N. Yan, On quasi-norm interpolation error estimation and a posteriori error estimates for p-Laplacian, SIAM J. Numer. Anal. 40 (2002), no. 5, 1870–1895.

[182] M. Lonsing, A posteriori Fehlerschätzer für gemischte Finite Elemente in der linearen Elastizität, Ph.D. thesis, Ruhr-Universität Bochum, Fakultät für Mathematik, 2002, www.rub.de/num1/files/theses/diss_lonsing.pdf.

[183] M. Lonsing and R. Verfürth, A posteriori error estimators for mixed finite element methods in linear elasticity, Numer. Math. 97 (2004), no. 4, 757–778.

[184] G. Lube and G. Rapin, Residual-based stabilized higher-order FEM for a generalized Oseen problem, Math. Models Methods Appl. Sci. 16 (2006), no. 7, 949–966.

[185] G. Lube and L. Tobiska, A non-conforming finite element method of streamline diffusion type for solving the incompressible Navier–Stokes equations, J. Comp. Math. 8 (1989), 147–158.

[186] R. Luce and B. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal. 42 (2004), 1394–1414.

[187] J. F. Maitre and F. Musy, The contraction number of a class of two level methods: an exact evaluation for some finite element subspaces and model problems, Multigrid Methods, Proceedings, Cologne 1981 (Heidelberg), Lecture Notes in Mathematics, vol. 960, Springer, Heidelberg, 1982, pp. 535–544.

[188] C. Makridakis and R. H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal. 41 (2003), no. 4, 1585–1594.

[189] D. Mao, L. Shen, and A. Zhou, Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates, Adv. Comput. Math. 25 (2006), no. 1–3, 135–160.

[190] G. Matthies, G. Lube, and L. Röhe, Some remarks on residual-based stabilisation of inf–sup stable discretisations of the generalised Oseen problem, Comput. Methods Appl. Math. 9 (2009), no. 4, 368–390.

[191] J. M. L. Maubach, Local bisection refinement for n-simplicial grids generated by reflection, SIAM J. Sci. Stat. Comput 16 (1995), 210–227.

(p.382) [192] K. Mekchay, P. Morin, and R. H. Nochetto, AFEM for the Laplace–Beltrami operator on graphs: design and conditional contraction property, Math. Comp. 80 (2011), no. 274, 625–648.

[193] K. Mekchay and R. H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs, SIAM J. Numer. Anal. 43 (2005), no. 5, 1803–1827.

[194] W. F. Mitchell, A comparison of adaptive refinement techniques for elliptic problems, ACM Trans. Math. Software 15 (1989), 326–347.

[195] M. S. Mommer and R. Stevenson, A goal-oriented adaptive finite element method with convergence rates, SIAM J. Numer. Anal. 47 (2009), no. 2, 861–886.

[196] P. Morin, R. H. Nochetto, and K. G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488.

[197] P. Morin, R. H. Nochetto, and K. G. Siebert, Convergence of adaptive finite element methods, SIAM Rev. 44 (2002), no. 4, 631–658, Revised reprint of ‘Data oscillation and convergence of adaptive FEM’ [SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488].

[198] P. Morin, R. H. Nochetto, and K. G. Siebert, Local problems on stars: a posteriori error estimators, convergence, and performance, Math. Comp. 72 (2003), no. 243, 1067–1097.

[199] P. Morin, K. G. Siebert, and A. Veeser, Convergence of finite elements adapted for weaker norms, Applied and Industrial Mathematics in Italy II, Ser. Adv. Math. Appl. Sci., vol. 75, World Scientific, Hackensack, NJ, 2007, pp. 468–479.

[200] P. Morin, K. G. Siebert, and A. Veeser, A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci. 18 (2008), no. 5, 707–737.

[201] J. Nečas, Les Méthodes directes en Théorie des Equations elliptiques, Masson et Cie, Éditeurs, Paris, 1967.

[202] P. Neittaanmäki and S. Repin, Reliable Methods for Computer Simulation. Error Control and A Posteriori Error Estimates, Elsevier, Amsterdam, 2004.

[203] P. Neittaanmäki and S. I. Repin, A posteriori error estimates for boundary-value problems related to the biharmonic operator, East–West J. Numer. Math. 9 (2001), no. 2, 157–178.

[204] S. Nicaise and N. Soualem, A posteriori error estimates for a nonconforming finite element discretization of the heat equation, M2AN Math. Model. Numer. Anal. 39 (2005), no. 2, 319–348.

[205] S. Nicaise and N. Soualem, A posteriori error estimates for a nonconforming finite element discretization of the time-dependent Stokes problem, J. Numer. Math. 15 (2007), no. 2, 137–162.

[206] S. Nicaise and N. Soualem, A posteriori error estimates for a nonconforming finite element discretization of the time-dependent Stokes problem. II. Analysis of the spatial estimator, J. Numer. Math. 15 (2007), no. 3, 209–231.

[207] R. H. Nochetto, Removing the saturation assumption in a posteriori error analysis, Istit. Lombardo Accad. Sci. Lett. Rend. A 127 (1994), no. 1, 67–82.

[208] R. H. Nochetto, A. Veeser, and M. Verani, A safeguarded dual weighted residual method, IMA J. Numer. Anal. 29 (2009), no. 1, 126–140.

[209] M. Ohlberger, A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection–diffusion equations, Numer. Math. 87 (2001), no. 4, 737–761.

[210] M. Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection–diffusion–reaction equations, M2AN Math. Model. Numer. Anal. 35 (2001), no. 2, 355–387.

[211] M. Ohlberger, Error control for approximations of non-linear conservation laws, Finite Volumes for Complex Applications IV, ISTE, London, 2005, pp. 85–100.

[212] M. Ohlberger, A review of a posteriori error control and adaptivity for approximations of non-linear conservation laws, Internat. J. Numer. Methods Fluids 59 (2009), no. 3, 333–354.

(p.383) [213] A. Papastavrou and R. Verfürth, A computational comparison of a posteriori error estimators for convection–diffusion problems, Computational Mechanics (Buenos Aires, 1998), Centro Internac. Métodos Numér. Ing., Barcelona, 1998, pp. CD–ROM file.

[214] A. Papastavrou and R. Verfürth, A posteriori error estimators for stationary convection–diffusion problems: a computational comparison, Comput. Methods Appl. Mech. Engrg. 189 (2000), no. 2, 449–462.

[215] B. Patzák, OOFEM home page, www.oofem.org, 2000.

[216] B. Patzák and Z. Bittnar, Design of object oriented finite element code, Advances in Engineering Software 32 (2001), no. 10–11, 759–767.

[217] L. E. Payne and H. F. Weinberger, An optimal Poincaré-inequality for convex domains, Archive Rat. Mech. Anal. 5 (1960), 286–292.

[218] M. Picasso, Adaptive finite elements for a linear parabolic problem, Comput. Methods Appl. Mech. Engrg. 167 (1998), 223–237.

[219] O. Pironneau, On the transport–diffusion algorithm and its applications to the Navier–Stokes equations, Numer. Math. 38 (1981/82), no. 3, 309–332.

[220] J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov–Galerkin methods applied to nonlinear problems, Numer. Math. 69 (1994), 213–231.

[221] W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math. 5 (1947), 241–269.

[222] A. Quarteroni, R. Sacco, and F. Salieri, Numerical Mathematics, 2nd ed., Texts in Applied Mathematics, vol. 37, Springer, Berlin, 2007.

[223] E. Rank, A-posteriori Fehlerabschätzungen und automatische Netzverfeinerung für Potential- und Bipotentialprobleme, Z. Angew. Math. Mech. 65 (1985), no. 5, 281–283.

[224] R. Rannacher, Error control in finite element computations, Summer School Error Control and Adaptivity in Scientific Computing (H. Bulgak and C. Zenger, eds.), Kluwer, Dordrecht, 1998, pp. 247–278.

[225] R. Rannacher and L. R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comput. 38 (1982), 437–445.

[226] P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles, Collection Mathématiques Appliquées pour la Maî trise., Masson, Paris, 1983.

[227] S. Repin and S. Sauter, Functional a posteriori error estimates for the reaction–diffusion problem, C. R. Math. Acad. Sci. Paris 343 (2006), 349–354.

[228] M. C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid techniques, Internat. J. Numer. Meth. Engrg. 20 (1984), 745–756.

[229] M. C. Rivara, Design and data structure of fully adaptive, multigrid, finite element software, ACM Trans. Math. Software 10 (1984), 242–264.

[230] J. C. Robinson, Infinite-dimensional dynamical systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors.

[231] R. Rodriguez, Some remarks on Zienkiewicz–Zhu estimator, Int. J. Numer. Meth. PDE 10 (1994), 625–635.

[232] H. Rui and M. Tabata, A second order characteristic finite element scheme for convection–diffusion problems, Numer. Math. 92 (2002), 161–177.

[233] G. Sangalli, A robust a posteriori error estimator for the residual-free bubbles method applied to advection–diffusion problems, Numer. Math. 89 (2001), 379–399.

[234] F. Schieweck, A posteriori error estimates with post-processing for nonconforming finite elements, M2AN Math. Model. Numer. Anal. 36 (2002), no. 3, 489–503.

(p.384) [235] A. Schmidt and K. G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Toolbox ALBERTA, Springer, Berlin, 2005.

[236] L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, Math. Modell. Numer. Anal. 9 (1985), 11–43.

[237] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comput. 54 (1990), 483–493.

[238] K. G. Siebert, An a posteriori error estimator for anisotropic refinement, Numer. Math. 73 (1996), no. 3, 373–398.

[239] K. G. Siebert and A. Veeser, A unilaterally constrained quadratic minimization with adaptive finite elements, SIAM J. Optim. 18 (2007), no. 1, 260–289.

[240] C. G. Simader and H. Sohr, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains, Longman, London, 1996.

[241] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269.

[242] G. Szegö, Orthogonal Polynomials, AMS Colloquium Publications, AMS, Providence, Rhode Island, 1959.

[243] R. Temam, Navier–Stokes Equations, 3rd ed., North Holland, Amsterdam, 1984.

[244] L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier–Stokes equations, SIAM J. Numer. Anal. 33 (1996), no. 1, 107–127.

[245] Y. Tourigny and E. Süli, The finite element method with nodes moving along the characteristics for convection–diffusion equations, Numer. Math. 59 (1991), no. 4, 399–412.

[246] A. Veeser, Convergent adaptive finite elements for the nonlinear Laplacian, Numer. Math. 92 (2002), no. 4, 743–770.

[247] A. Veeser and R. Verfürth, Explicit upper bounds for dual norms of residuals, SIAM J. Numer. Anal. 47 (2009), no. 3, 2387–2405.

[248] A. Veeser and R. Verfürth, Poincaré constants for finite element stars, IMA J. Numer. Anal. 32 (2012), no. 1, 30–47.

[249] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Anal. Numér. 18 (1984), no. 2, 175–182.

[250] R. Verfürth, Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition, Numer. Math. 50 (1987), no. 6, 697–721.

[251] R. Verfürth, A posteriori error estimators for the Stokes equations, Numer. Math. 55 (1989), no. 3, 309–325.

[252] R. Verfürth, Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition. II, Numer. Math. 59 (1991), no. 6, 615–636.

[253] R. Verfürth, A posteriori error estimators for the Stokes equations. II. Nonconforming discretizations, Numer. Math. 60 (1991), no. 2, 235–249.

[254] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62 (1994), no. 206, 445–475.

[255] R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), vol. 50, 1994, pp. 67–83.

[256] R. Verfürth, The equivalence of a posteriori error estimators, Fast Solvers for Flow Problems (Kiel, 1994), Notes Numer. Fluid Mech., vol. 49, Vieweg, Braunschweig, 1995, pp. 273–283.

[257] R. Verfürth, The stability of finite element methods, Numer. Methods Partial Differential Equations 11 (1995), no. 1, 93–109.

[258] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner-Wiley, Stuttgart, 1996.

(p.385) [259] R. Verfürth, A posteriori error estimates for nonlinear problems. Lr-estimates for finite element discretizations of elliptic equations, RAIRO Modél. Math. Anal. Numér. 32 (1998), no. 7, 817–842.

[260] R. Verfürth, A posteriori error estimates for nonlinear problems: L r ( 0 , T ; W 1 , ρ ( Ω ) ) -error estimates for finite element discretizations of parabolic equations, Numer. Methods Partial Differential Equations 14 (1998), no. 4, 487–518.

[261] R. Verfürth, A posteriori error estimators for convection–diffusion equations, Numer. Math. 80 (1998), no. 4, 641–663.

[262] R. Verfürth, A review of a posteriori error estimation techniques for elasticity problems, Advances in Adaptive Computational Methods in Mechanics (Cachan, 1997), Stud. Appl. Mech., vol. 47, Elsevier, Amsterdam, 1998, pp. 257–274.

[263] R. Verfürth, Robust a posteriori error estimators for a singularly perturbed reaction–diffusion equation, Numer. Math. 78 (1998), no. 3, 479–493.

[264] R. Verfürth, Error estimates for some quasi-interpolation operators, M2AN Math. Model. Numer. Anal. 33 (1999), no. 4, 695–713.

[265] R. Verfürth, A note on polynomial approximation in Sobolev spaces, M2AN Math. Model. Numer. Anal. 33 (1999), no. 4, 715–719.

[266] R. Verfürth, On the constants in some inverse inequalities for finite element functions, report 257, Ruhr-Universität, Bochum, May 1999, www.ruhr-uni-bochum.de/num1/files/reports/INVEST.pdf.

[267] R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation, Calcolo 40 (2003), no. 3, 195–212.

[268] R. Verfürth, A posteriori error estimates for linear parabolic equations, report, Ruhr-Universität, Bochum, July 2004, www.ruhr-uni-bochum.de/num1/files/reports/APEELPE.pdf.

[269] R. Verfürth, A posteriori error estimates for non-linear parabolic equations, report 361, Ruhr-Universität, Bochum, December 2004, www.ruhr-uni-bochum.de/num1/files/reports/APNLPE.pdf.

[270] R. Verfürth, Robust a posteriori error estimates for nonstationary convection–diffusion equations, SIAM J. Numer. Anal. 43 (2005), no. 4, 1783–1802.

[271] R. Verfürth, Robust a posteriori error estimates for stationary convection–diffusion equations, SIAM J. Numer. Anal. 43 (2005), no. 4, 1766–1782.

[272] R. Verfürth, A note on constant-free a posteriori error estimates, SIAM J. Numer. Anal. 47 (2009), no. 4, 3180–3194.

[273] R. Verfürth, A posteriori error analysis of space–time finite element discretizations of the time-dependent Stokes equations, Calcolo 47 (2010), no. 3, 149–167.

[274] M. Vohralík, Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numer. Math. 111 (2008), no. 1, 121–158.

[275] M. Vohralík, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput. 46 (2011), no. 3, 397–438.

[276] L. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics, no. 1605, Springer, Berlin, 1995.

[277] T. F. Walsh, G. M. Reese, and U. L. Hetmaniuk, Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37–40, 3614–3623.

[278] M. Wang and W. Zhang, Local a priori and a posteriori error estimate of TQC9 element for the biharmonic equation, J. Comput. Math. 26 (2008), no. 2, 196–208.

[279] B. D. Welfert, A posteriori error estimates for the Stokes problem, Ph.D. thesis, University of California, San Diego, 1990.

(p.386) [280] M. F. Wheeler and J. R. Whiteman, Superconvergent recovery of gradients on subdomains from piecewise linear finite element approximations, Numer. Methods for PDE 3 (1987), 357–374.

[281] J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comput. 73 (2004), no. 247, 1139–1152.

[282] K. Yosida, Functional Analysis, Springer, Berlin, 1980.

[283] D. Yu, Asymptotically exact a posteriori error estimator for elements of bi-even degree, Chinese J. Numer. Math. Appl. 13 (1991), no. 2, 64–78.

[284] D. Yu, Asymptotically exact a posteriori error estimators for elements of bi-odd degree, Chinese J. Numer. Math. Appl. 13 (1991), no. 4, 82–90.

[285] E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B, Springer-Verlag, New York, 1990.

[286] J. Z. Zhu and O. C. Zienkiewicz, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Meth. Engrg. 24 (1987), 337–357.