Jump to ContentJump to Main Navigation
The Theory of Intermolecular Forces$

Anthony Stone

Print publication date: 2013

Print ISBN-13: 9780199672394

Published to Oxford Scholarship Online: May 2013

DOI: 10.1093/acprof:oso/9780199672394.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 17 August 2018

(p.298) References

(p.298) References

Source:
The Theory of Intermolecular Forces
Publisher:
Oxford University Press

Bibliography references:

Abramowitz, M. and Stegun, I. A. (1965) Handbook of Mathematical Functions, Dover, New York. 144, 272

Acevedo, O. and Jorgensen, W. L. (2009) ‘Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions,’ Acc. Chem. Res. 43, 142–151. 220

Adamo, C. and Barone, V. (1999) ‘Toward reliable density functional methods without adjustable parameters: The PBE0 model,’ J. Chem. Phys. 110, 6158–6170. 79

Adams, W. H. (1990) ‘Perturbation theory of intermolecular interactions—what is the problem, are there solutions?’ International Journal of Quantum Chemistry S24, 531–547. 106

Adams, W. H. (1994) ‘The polarization approximation and the Amos–Musher intermolecular perturbation theories compared to infinite order at finite separation,’ Chem. Phys. Lett. 229, 472–480. 113

Adams, W. H. (2002a) ‘True or false? Order is not uniquely defined in symmetry adapted perturbation theory,’ J. Mol. Struct. (TheoChem) 591, 59–65. 104

Adams, W. H. (2002b) ‘Two new symmetry-adapted perturbation theories for the calculation of intermolecular interaction energies,’ Theor. Chem. Acc. 108, 225–231. 114, 115, 117

Addicoat, M. A. and Collins, M. A. (2009) ‘Accurate treatment of non-bonded interactions within systematic molecular fragmentation,’ J. Chem. Phys. 131, 104103. 219, 220

Ahlrichs, R. (1976) ‘Convergence properties of the intermolecular force series (1/r expansion),’ Theor. Chim. Acta 41, 7–15. 63, 148

Ahlrichs, R., Furche, F., Hättig, C., Klopper, W., Sierka, M. and Weigend, F. (2011) Turbomole 6.3.1, Karlsruhe, http://www.turbomole-gmbh.com/. 91

Ahlrichs, R., Penco, R. and Scoles, G. (1977) ‘Intermolecular forces in simple systems,’ Chem. Phys. 19, 119–130. 205

Alemán, C., Orozco, M. and Luque, F. J. (1994) ‘Multicentric charges for the accurate representation of electrostatic interactions in force-field calculations for small molecules,’ Chem. Phys. 189, 573–584. 139

Allen, M. J. and Tozer, D. J. (2000) ‘Kohn–Sham calculations using hybrid exchange–correlation functionals with asymptotically corrected potentials,’ J. Chem. Phys. 113, 5185–5192. 79

Allen, M. J. and Tozer, D. J. (2002) ‘Helium dimer dispersion forces and correlation potentials in density functional theory,’ J. Chem. Phys. 117, 11113–11120. 93

Allen, M. P. and Tildesley, D. J. (1987) Computer Simulation of Liquids, Clarendon Press, Oxford. 247, 248, 265

Allinger, N. L. (1976) ‘Calculation of molecular structure and energy by force-field methods,’ Adv. Phys. Org. Chem. 13, 1–82. 221

Allinger, N. L. (1977) ‘Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V 1 and V 2 torsional terms,’ J. Amer. Chem. Soc. 99, 8127–8134. 221

Allinger, N. L., Yuh, Y. H. and Lii, J.-H. (1989) ‘Molecular mechanics. The MM3 force field for hydrocarbons. I.’ J. Amer. Chem. Soc. 111, 8551–8566. 221

Althorpe, S. C. and Clary, D. C. (1994) ‘Calculation of the intermolecular bound states for water dimer,’ J. Chem. Phys. 101, 3603–3609. 259

Althorpe, S. C. and Clary, D. C. (1995) ‘A new method for calculating the rovibrational states of polyatomics with application to water dimer,’ J. Chem. Phys. 102, 4390–4399. 257

Altman, R. S., Marshall, M. D. and Klemperer, W. (1982) Disc. Faraday Soc. 73, 116. 169

Altman, R. S., Marshall, M. D. and Klemperer, W. (1983a) ‘Electric dipole moment and quadrupole hyperfine structure of OC - HCl and OC - DCl.’ J. Chem. Phys. 79, 52–56. 169

Altman, R. S., Marshall, M. D. and Klemperer, W. (1983b) ‘Microwave spectrum and molecular structure of N2 - HCl,’ J. Chem. Phys. 79, 57–64. 169

Altmann, S. L. (1986) Rotations, Quaternions and Double Groups, Oxford University Press, New York. 234

Amos, A. T. (1970) ‘The derivation of symmetry-adapted perturbation theories,’ Chem. Phys. Lett. 5, 587–590. 111

Amos, A. T. and Crispin, R. J. (1976a) ‘Calculations of intermolecular interaction energies,’ Theoretical Chemistry: Advances and Perspectives 2, 1–66, Note that eqn (A2) is incorrect. 122

Amos, A. T. and Crispin, R. J. (1976b) ‘Intermolecular forces between large molecules,’ Molec. Phys. 31, 159–176. 124

Amos, R. D. (1985) ‘Multipole moments of N2 and F2 using SCF and Møller–Plesset calculation,’ Chem. Phys. Lett. 113, 19–22. 124

(p.299) Anderson, J. B. (1975) ‘A random-walk simulation of the Schrödinger equation: H 3 + ,’ J. Chem. Phys. 63, 1499–1503. 257

Anderson, J. B. (1976) ‘Quantum chemistry by random walk,’ J. Chem. Phys. 65, 4121. 257

Anderson, J. B. (1980) ‘Quantum chemistry by random walk: higher accuracy,’ J. Chem. Phys. 73, 3897–3899. 257

Anderson, J. B. (1995) ‘Fixed-node quantum Monte Carlo,’ Int. Rev. Phys. Chem. 14, 85–112. 258

Ángyán, J. G. (2007) ‘On the exchange-hole model of London dispersion forces,’ J. Chem. Phys. 127, 024108. 95

Ángyán, J. G., Jansen, G., Loos, M., Hättig, C. and Heß, B. A. (1994) ‘Distributed polarizabilities using the topological theory of atoms in molecules,’ Chem. Phys. Lett. 219, 267–273. 170

Applequist, J. (1983) ‘Cartesian polytensors,’ J. Math. Phys. 24, 736–741. 163

Applequist, J. (1985) ‘A multipole interaction theory of electric polarization of atomic and molecular assemblies.’ J. Chem. Phys. 83, 809–826. 163

Applequist, J., Carl, J. R. and Fung, K.-K. (1972) ‘An atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities,’ J. Amer. Chem. Soc. 94, 2952– 2960. 161, 163

Arfken, G. (1970) Mathematical Methods for Physicists, Academic Press, New York, London. 47

Arnautova, Y. A., Jagielska, A. and Scheraga, H. A. (2006) ‘A new force field (ECEPP-05) for peptides, proteins, and organic molecules,’ J. Phys. Chem. B 110, 5025–5044. 221

Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. and Nesbitt, D. J. (2011) ‘Defining the hydrogen bond,’ Pure Appl. Chem. 83, 1619–1636. 153

Avila, G. and Carrington, T., Jr (2011) ‘Using nonproduct quadrature grids to solve the vibrational Schrödinger equation in 12D,’ J. Chem. Phys. 134, 054126. 256

Axilrod, P. M. and Teller, E. (1943) ‘Interaction of the Van der Waals type between three atoms,’ J. Chem. Phys. 11, 299–300. 188

Aziz, R. A. (1984) in Inert Gases, Potentials, Dynamics, and Energy Transfer in Doped Crystals, ed. M. L. Klein, chap. 2, Springer, Berlin. 207

Bačié, Z. and Light, J. C. (1989) ‘Theoretical methods for rovibrational spectra of floppy molecules,’ Ann. Rev. Phys. Chem. 40, 469–498. 255

Bader, R. F. W. (1990) Atoms in Molecules, Clarendon Press, Oxford. 129, 170, 241

Bak, K. L., Halkier, A., Jørgensen, P., Olsen, J., Helgaker, T. and Klopper, W. (2001) ‘Chemical accuracy from’Coulomb hole’ extrapolated molecular quantum-mechanical calculations,’ J. Mol. Struct. 567, 375–384. 81

Bardwell, D. A., Adjiman, C. S., Arnautova, Y. A., Bartashevich, E., Boerrigter, S. X. M., Braun, D. E., Cruz-Cabeza, A. J., Day, G. M., Valle, R. G. D., Desiraju, G. R., van Eijck, B. P., Facelli, J. C., Ferraro, M. B., Grillo, D., Habgood, M., Hofmann, D. W. M., Hofmann, F., Jose, K. V. J., Karamertzanis, P. G., Kazantsev, A. V., Kendrick, J., Kuleshova, L. N., Leusen, F. J. J., Maleev, A. V., Misquitta, A. J., Mohamed, S., Needs, R. J., Neumann, M. A., Nikylov, D., Orendt, A. M., Pal, R., Pantelides, C. C., Pickard, C. J., Price, L. S., Price, S. L., Scheraga, H. A., van de Streek, J., Thakur, T. S., Tiwari, S., Venuti, E. and Zhitkov, I. K. (2011) ‘Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test,’ Acta Cryst. B 67, 535–551. 266

Barker, J. A. (1953) ‘Statistical mechanics of interacting dipoles,’ Proc. Roy. Soc. A 219, 367–372. 176, 179

Barker, J. A. (1986) ‘Many-body interactions in rare gases,’ Molec. Phys. 57, 755–760. 190

Barker, J. A., Fisher, R. A. and Watts, R. O. (1971) ‘Liquid argon: Monte Carlo and molecular dynamics calculations,’ Molec. Phys. 21, 657–673. 204

Barnes, P., Finney, J. L., Nicholas, J. D. and Quinn, J. E. (1979) ‘Cooperative effects in simulated water,’ Nature 282, 459–464. 227

Barnett, S. A., Broder, C. K., Shankland, K., David, W. I. F., Ibberson, R. M. and Tocher, D. A. (2006) ‘Single-crystal X-ray and neutron powder diffraction investigation of the phase transition in tetrachlorobenzene,’ Acta Cryst. B 62, 287–295. 265

Bartlett, R. J. (2010) ‘The coupled-cluster revolution,’ Molec. Phys. 108, 2905–2920. 77

Bartolomei, M., Hernández, M. I., Campos-Martínez, J., Carmona-Novillo, E. and Hernández-Lamoneda, R. (2008) ‘The intermolecular potentials of the O2 O2 dimer: a detailed ab initio study of the energy splittings for the three lowest multiplet states,’ Phys. Chem. Chem. Phys 10, 7374–5380. 200

Basilevsky, M. V. and Berenfeld, M. M. (1972a) ‘Intermolecular interactions in the region of small overlap,’ Int. J. Quantum Chem. 6, 23–45. 107

Basilevsky, M. V. and Berenfeld, M. M. (1972b) ‘SCF perturbation theory and intermolecular interactions,’ Int. J. Quantum Chem. 6, 555–574. 107

Battaglia, M. R., Buckingham, A. D., Neumark, D., Pierens, R. K. and Williams, J. H. (1981) ‘The quadrupole moments of carbon dioxide and carbon disulphide,’ Molec. Phys. 43, 1015–1020. 16

Becke, A. D. (1988) ‘A multicenter numerical integration scheme for polyatomic molecules,’ J. Chem. Phys. 88, 2547–2553. 81, 128

(p.300) Becke, A. D. (1993a) ‘A new mixing of Hartree–Fock and local density-functional theories,’ J. Chem. Phys. 98, 1372–1377. 79

Becke, A. D. (1993b) ‘Density-functional thermochemistry. III. The role of exact exchange,’ J. Chem. Phys. 98, 5648–5652. 79

Becke, A. D. and Johnson, E. R. (2005) ‘Exchange-hole dipole moment and the dispersion interaction,’ J. Chem. Phys. 122, 154104. 94

Becke, A. D. and Johnson, E. R. (2006) ‘Exchange-hole dipole moment and the dispersion interaction: High-order dispersion coefficients,’ J. Chem. Phys. 124, 014104. 94

Becke, A. D. and Johnson, E. R. (2007) ‘Exchange-hole dipole moment and the dispersion interaction revisited,’ J. Chem. Phys. 127, 154108. 94

Bell, R. J. (1970) ‘Multipolar expansion for the non-additive third-order interaction energy of three atoms,’ J. Phys. B 3, 751–62. 189

Ben-Naim, A. (1980) Hydrophobic Interactions, Plenum Press, New York. 192

Berendsen, H. J. C. (2007) Simulating the Physical World, Cambridge University Press, Cambridge. 249

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F. and Hermans, J. (1981) ‘Interaction models for water in relation to protein hydration,’ in Intermolecular Forces, ed. B. Pullman, 331–342, D. Reidel, Dordrecht, Holland. 226

Bernal, J. D. and Fowler, R. H. (1933) ‘A theory of water and ionic solutions,’ J. Chem. Phys. 1, 515–548. 225

Berne, B. J. and Pechukas, P. (1972) ‘Gaussian model potentials for molecular interactions,’ J. Chem. Phys. 56, 4213–4216. 209

Bernstein, J. (2011) ‘Polymorphism – a perspective,’ Cryst. Growth Des. 11, 627–631. 265

Berweger, C. D., van Gunsteren, W. F. and Müller-Plathe, F. (1995) ‘Force field parametrisation by weak coupling: re-engineering SPC water,’ Chem. Phys. Lett. 232, 429–436. 226

Best, R. B., Buchete, N.-V. and Hummer, G. (2008) ‘Are current molecular dynamics force fields too helical?’ Biophys. J. 95, L07–L09. 223

Best, R. B. and Hummer, G. (2009) ‘Optimized molecular dynamics force fields applied to the helix–coil transition of polypeptides,’ J. Phys. Chem. B 113, 9004–9015. 223

Beyer, T., Day, G. M. and Price, S. L. (2001) ‘The prediction, morphology, and mechanical properties of the poly-morphs of paracetamol,’ J. Amer. Chem. Soc. 123, 5086–5094. 265

Bickelhaupt, F. M. and Baerends, E. J. (2000) ‘Kohn–Sham density functional theory: predicting and understanding chemistry,’ Rev. Comput. Chem. 15, 1–86. 98

Birge, R. R. (1980) ‘Calculation of molecular polarizabilities using an anisotropic atom point dipole interaction model which includes the effect of electron repulsion,’ J. Chem. Phys. 72, 5312–5319. 161

Birnbaum, G. and Cohen, E. R. (1975) ‘Far infrared collision-induced absorption in gaseous methane. II. Determination of the octopole and hexadecapole moments,’ J. Chem. Phys. 62, 3807–3812. 242

Bissonnette, C., Chuaqui, C. E., Crowell, K. G., Roy, R. J. L., Wheatley, R. J. and Meath, W. J. (1996) ‘A reliable new potential energy surface for H2…Ar,’ J. Chem. Phys. 105, 2639–2653. 250

Bogaard, M. P., Buckingham, A. D., Pierens, R. K. and White, A. H. (1978) ‘Rayleigh scattering depolarization ratio and molecular polarizability anisotropy for gases,’ J. Chem. Soc. Faraday Trans. I 74, 3008–3015. 169

Böhm, H.-J. and Ahlrichs, R. (1982) ‘A study of short-range repulsions,’ J. Chem. Phys. 77, 2028–2034. 214, 215

Bondi, A. (1964) ‘Van der Waals volumes and radii,’ J. Phys. Chem. 68, 441–451. 154, 202

Bone, R. G. A. and Handy, N. C. (1990) ‘Ab initio studies of internal rotation barriers and vibrational frequencies of (C2H2)2, (CO2)2 and C2H2…CO2,’ Theor. Chim. Acta 78, 133–163. 53, 54

Bone, R. G. A., Rowlands, T. W., Handy, N. C. and Stone, A. J. (1991) ‘Transition states from molecular symmetry groups: analysis of non-rigid acetylene trimer,’ Molec. Phys. 72, 33–73. 7, 53

Born, M. and Mayer, J. E. (1932) ‘Zur Gittertheorie der Ionenkristalle,’ Z. Phys. 75, 1–18. 204

Böttcher, C. J. F., van Belle, O. C., Bordewijk, P. and Rip, A. (1972) Theory of Electric Polarization, Elsevier. 176

Boys, S. F. (1950) ‘Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system,’ Proc. Roy. Soc. A 200, 542–554. 125

Boys, S. F. (1960) ‘Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another,’ Rev. Mod. Phys. 32, 296–299. 174

Boys, S. F. and Bernardi, F. (1970) ‘The calculation of small molecular interactions by the difference of separate total energies. Some procedures with reduced errors,’ Molec. Phys. 19, 553–566. 89, 151

Boys, S. F. and Shavitt, I. (1959) ‘Report WIS–AF–13,’ Tech. rep., University of Wisconsin, Madison, WI, USA. 82

Braun, D. E., Karamertzanis, P. G. and Price, S. L. (2011) ‘Which, if any, hydrates will crystallise? Predicting hydrate formation of two dihydroxybenzoic acids,’ Chem. Comm. 47, 5443–5445. 225

Breneman, C. M. and Wiberg, K. B. (1990) ‘Determining atom-centered monopoles from molecular electrostatic potentials – the need for high sampling density in formamide conformational analysis,’ J. Comput. Chem. 11, 361–373. 138

(p.301) Bridge, N. J. and Buckingham, A. D. (1966) ‘The polarization of laser light scattered by gases,’ Proc. Roy. Soc. A 295, 334–349. 166

Brink, D. M. and Satchler, G. R. (1993) Angular Momentum, Clarendon Press, Oxford, 3rd edn. 22, 40, 271, 274, 275, 276

Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. and Karplus, M. (1983) ‘CHARMM: A program for macromolecular energy, minimization and dynamics calculations,’ J. Comput. Chem. 4, 187–217. 221

Brooks, F. C. (1952) ‘Convergence of intermolecular force series,’ Phys. Rev. 86, 92–97. 63, 148

Brown, G. G., Dian, B. C., Douglass, K. O., Geyer, S. M., Shipman, S. T. and Pate, B. H. (2008) ‘A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,’ Rev. Sci. Instr. 79, 053103. 249, 250

Buch, V. (1992) ‘Treatment of rigid bodies by diffusion Monte Carlo: application to the para–H2…H2O and orthoH2…H2O clusters,’ J. Chem. Phys. 97, 726–729. 259

Buck, U., Huisken, F., Kohlhase, A., Otten, D. and Schaefer, J. (1983) ‘State resolved rotational excitations in D2…H2 collisions,’ J. Chem. Phys. 78, 4439–4450. 262

Buckingham, A. D. (1960) ‘Solvent effects in vibrational spectroscopy,’ Trans. Faraday Soc. 56, 753–760. 157

Buckingham, A. D. (1967) ‘Permanent and induced molecular moments and long-range intermolecular forces,’ Adv. Chem. Phys. 12, 107–143. 39, 46, 57, 66, 241

Buckingham, A. D. (1978) ‘Basic theory of intermolecular forces: applications to small molecules,’ in Intermolecular Interactions from Diatomics to Biopolymers, ed. B. Pullman, 1–67, Wiley, Chichester. 33

Buckingham, A. D., del Bene, J. E. and McDowell, S. A. C. (2008) ‘The hydrogen bond,’ Chem. Phys. Lett 153

Buckingham, A. D. and Disch, R. L. (1963) ‘The quadrupole moment of carbon dioxide,’ Proc. Roy. Soc. A 273, 275–289. 23, 242

Buckingham, A. D., Disch, R. L. and Dunmur, D. A. (1968) ‘The quadrupole moments of some simple molecules,’ J. Amer. Chem. Soc. 90, 3104–3107. 132

Buckingham, A. D. and Fowler, P. W. (1983) ‘Do electrostatic interactions predict structures of Van der Waals molecules?’ J. Chem. Phys. 79, 6426–6428. 154, 203

Buckingham, A. D. and Fowler, P. W. (1985) ‘A model for the geometries of Van der Waals complexes,’ Canad. J. Chem. 63, 2018–2025. 154, 203

Buckingham, A. D., Fowler, P. W. and Stone, A. J. (1986) ‘Electrostatic predictions of shapes and properties of Van der Waals molecules,’ Internat. Rev. Phys. Chem. 5, 107–114. 170

Buckingham, A. D., Graham, C. and Williams, J. H. (1983) ‘Electric field-gradient-induced birefringence in N2, C2H6, C3H6, Cl2, N2O and CH3F,’ Molec. Phys. 49, 703–710. 23, 124

Buckingham, A. D. and Longuet-Higgins, H. C. (1968) ‘The quadrupole moments of polar molecules,’ Molec. Phys. 14, 63–72. 42

Buckingham, R. A. and Corner, J. (1947) ‘Tables of second virial and low-pressure Joule–Thompson coefficients for intermolecular potentials with exponential repulsion,’ Proc. Roy. Soc. A 189, 118–129. 204

Bukowski, R., Szalewicz, K., Groenenboom, G. C. and van der Avoird, A. (2008a) ‘Polarizable interaction potential for water from coupled cluster calculations. I. Analysis of dimer potential energy surface,’ J. Chem. Phys. 128, 094313. 228

Bukowski, R., Szalewicz, K., Groenenboom, G. C. and van der Avoird, A. (2008b) ‘Polarizable interaction potential for water from coupled cluster calculations. II. Applications to dimer spectra, virial coefficients, and simulations of liquid water,’ J. Chem. Phys. 128, 094314. 228

Bultinck, P., Alsenoy, C. V., Ayers, P. W. and Carbó-Dorca, R. (2007) ‘Critical analysis and extension of the Hirshfeld atoms in molecules,’ J. Chem. Phys. 126, 144111. 129

Bundgen, P., Thakkar, A. J., Kumar, A. and Meath, W. J. (1997) ‘Reliable anisotropic dipole properties and dispersion energy coefficients for NO, evaluated using constrained dipole oscillator strength techniques,’ Molec. Phys. 90, 721–728. 244

Burnham, C. J. and Xantheas, S. S. (2002a) ‘Development of transferable interaction models for water. I. Prominent features of the water dimer potential energy surface,’ J. Chem. Phys. 116, 1479–1492. 227, 229

Burnham, C. J. and Xantheas, S. S. (2002b) ‘Development of transferable interaction models for water. III. Reparametrization of an all-atom polarizable rigid model (TTM2–R) from first principles,’ J. Chem. Phys. 116, 1500–1510. 227

Burnham, C. J. and Xantheas, S. S. (2002c) ‘Development of transferable interaction models for water. IV. A flexible, all-atom polarizable potential (TTM2–F) based on geometry dependent charges derived from an ab initio monomer dipole moment surface,’ J. Chem. Phys. 116, 5115–5124. 227

Caldwell, J. W. and Kollman, P. A. (1995) ‘Structure and properties of neat liquids using nonadditive molecular dynamics: Water, methanol, and N-methylacetamide,’ J. Phys. Chem. 99, 6208–6219. 227

Cammi, R., Bonaccorsi, R. and Tomasi, J. (1985) ‘Counterpoise corrections to the interaction energy components in bimolecular complexes,’ Theor. Chim. Acta 68, 271–283. 98

(p.302) Car, R. and Parrinello, M. (1985) ‘Unified approach for molecular dynamics and density functional theory,’ Phys. Rev. Lett. 55, 2471–2474. 248

Case, D. A., Cheatham, T. E., III, Darden, T. A., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B. and Woods, R. (2005) ‘The AMBER biomolecular simulation programs,’ J. Comput. Chem. 26, 1668– 1688. 221

Casida, M. E. (1995) ‘Time-dependent density-functional response theory for molecules,’ in Recent Advances in Density-Functional Theory, ed. D. P. Chong, World Scientific. 85

Casida, M. E. and Salahub, D. R. (2000) ‘Asymptotic correction approach to improving approximate exchange– correlation potentials: Time-dependent density-functional theory calculations of molecular excitation spectra,’ Chem. Phys. 113, 8918–8935. 79

Casimir, H. B. G. and Polder, D. (1948) ‘The influence of retardation on the London–Van der Waals forces,’ Phys. Rev. 73, 360–372. 65, 67

Celebi, N., Ángyán, J. G., Dehez, F., Millot, C. and Chipot, C. (2000) ‘Distributed polarizabilities derived from induction energies: a finite perturbation approach,’ J. Chem. Phys. 112, 2709–2717. 172

Cencek, W., Szalewicz, K., Leforestier, C., van Harrevelt, R. and van der Avoird, A. (2008) ‘An accurate analytic representation of the water pair potential,’ Phys. Chem. Chem. Phys 10, 4716–4731. 228

Ceperley, D. M. (1995) ‘Path integrals in the theory of condensed helium,’ Rev. Mod. Phys. 67, 279–355. 249

Cerjan, C. J. and Miller, W. H. (1981) ‘On finding transition states,’ J. Chem. Phys. 75, 2800–2806. 229, 236

Chai, J.-D. and Head-Gordon, M. (2008) ‘Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections,’ Phys. Chem. Chem. Phys 10, 6615–6620. 94

Chakrabarti, D. and Wales, D. J. (2009) ‘Simulations of rigid bodies in an angle-axis framework,’ Phys. Chem. Chem. Phys 11, 1970–1976. 234

Chakravarty, C. (2005) ‘Hybrid Monte Carlo implementation of the Fourier path integral algorithm,’ J. Chem. Phys. 123, 024104. 249

Chałasiński, G., Rak, J., Szczçśniak, M. M. and Cybulski, S. M. (1997) ‘Origins and modeling of many-body exchange effects in Van der Waals clusters,’ J. Chem. Phys. 106, 3301–3310. 190

Chałasiński, G. and Szczçśniak, M. M. (2000) ‘State of the art and challenges of the ab initio theory of intermolecular interactions,’ Chem. Rev. 100, 4227–4252. 191, 240

Champagne, B., Perpète, E. A., van Gisbergen, S. J. A., Baerends, E. J., Snijders, J. G., Soubra-Ghaoui, C., Robins, A. and Kirtman, B. (1998) ‘Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: An ab initio investigation of polyacetylene chains,’ J. Chem. Phys. 109, 10489–10498. 68

Chandler, D. (2005) ‘Interfaces and the driving force of hydrophobic assembly,’ Nature 437, 640–647. 192

Cheatham, T. E., III and Young, M. A. (2000) ‘Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise,’ Biopolymers 56, 232–256, AMBER; nucleic acids. 221

Chemical Reviews (1988) ‘Van der Waals molecules,’ Chem. Rev. 88, 815–988. 249

Chemical Reviews (1994) ‘Van der Waals molecules II,’ Chem. Rev. 94, 1721–2160. 249

Chemical Reviews (2000) ‘Van der Waals molecules III,’ Chem. Rev. 100, 3861–4264. 249

Child, M. S. (1991) Semiclassical Mechanics with Molecular Applications, Clarendon Press, Oxford. 252, 262

Chipot, C., Ángyán, J. G., Maigret, A. and Scheraga, H. A. (1994) ‘Modelling amino-acid side-chains. 3. Influence of intramolecular and intermolecular environment on point charges,’ J. Phys. Chem. 98, 1518. 139

Christiansen, O., Olsen, J., Jorgensen, P., Koch, H. and Malmqvist, P. A. (1996) ‘On the inherent divergence in the Møller–Plesset series: the neon atom – a test case,’ Chem. Phys. Letters 261, 369–378. 77

Cioslowski, J. (1989a) ‘General and unique partitioning of molecular electronic properties into atomic contributions,’ Phys. Rev. Lett. 62, 1469–1471. 137

Cioslowski, J. (1989b) ‘A new population analysis based on atomic polar tensors,’ J. Amer. Chem. Soc. 111, 8333– 8336. 137

Cisneros, G. A., Elking, D. M., Piquemal, J.-P. and Darden, T. A. (2007) ‘Numerical fitting of molecular properties to Hermite gaussians,’ J. Phys. Chem. A 111, 12049–12056. 145

Čižek, J. and Paldus, J. (1980) ‘The coupled-cluster approach,’ Physica Scripta 21, 251. 77

Claverie, P. (1971) ‘Theory of intermolecular forces. I. On the inadequacy of the usual Rayleigh–Schrödinger perturbation method for the treatment of intermolecular forces,’ Int. J. Quantum Chem. 5, 273–296. 104, 106

Claverie, P. (1978) ‘Elaboration of approximate formulas for the interactions between large molecules: applications in organic chemistry,’ in Intermolecular Interactions: from Diatomics to Biopolymers, ed. B. Pullman, 69–305, Wiley. 106

Cochran, W. (1959) ‘Theory of the lattice vibrations of germanium,’ Proc. Roy. Soc. A 253, 260–276. 208

Cohen, A. J., Mori-Sánchez, P. and Yang, W. (2008a) ‘Insights into current limitations of density functional theory,’ Science 321, 792–794. 95

(p.303) Cohen, E. R., Cvitaš, T., Frey, J. G., Holmström, B., Kuchitsu, K., Marquardt, R., Mills, I. M., Pavese, F., Quack, M., Stohner, J., Strauss, H. L., Takami, M. and Thor, A. J., eds. (2008b) Quantities, Units and Symbols in Physical Chemistry, IUPAC and RSC Publishing, Cambridge, 3rd edn. 283

Cohen, R. C. and Saykally, R. J. (1990) ‘Extending the collocation method to multidimensional molecular dynamics: direct determination of the intermolecular potential of Ar − H2O from tunable far infrared laser spectroscopy,’ J. Phys. Chem. 94, 7991–8000. 257

Cohen, R. C. and Saykally, R. J. (1993) ‘Determination of an improved global potential energy surface for Ar − H2O from vibration–rotation–tunnelling spectroscopy,’ J. Chem. Phys. 98, 6007–6030. 250

Colwell, S. M., Handy, N. C. and Lee, A. M. (1996) ‘Determination of frequency-dependent polarizabilities using current density-functional theory,’ J. Chem. Phys. 53, 1316–1322. 85

Colwell, S. M., Murray, C. W., Handy, N. C. and Amos, R. D. (1993) ‘The determination of hyperpolarisabilities using density functional theory,’ Chem. Phys. Lett. 210, 261–268. 85

Coombes, D. S., Price, S. L., Willock, D. J. and Leslie, M. (1996) ‘Role of electrostatic interactions in determining the crystal structures of polar organic molecules. a distributed multipole study,’ J. Phys. Chem. 100, 7352–7360. 265

Cooper, A. R. and Hutson, J. M. (1993) ‘Non-additive intermolecular forces from the spectroscopy of Van der Waals trimers: calculations on Ar2…HCl,’ J. Chem. Phys. 98, 5337–5351. 191

Cooper, D. L. and Stutchbury, N. C. J. (1985) ‘Distributed multipole analysis from charge partitioning by zero-flux surfaces: the structure of HF complexes,’ Chem. Phys. Lett. 120, 167–172. 129

Corner, J. (1948) ‘The second virial coefficient of a gas of non-spherical molecules,’ Proc. Roy. Soc. A 192, 275–292. 209

Cox, S. R. and Williams, D. E. (1981) ‘Representation of the molecular electrostatic potential by a net atomic charge model,’ J. Comput. Chem. 2, 304–323. 138

Cozzi, F., Cinquini, M., Annunziata, R. and Siegel, J. S. (1993) ‘Dominance of polar/2r over charge transfer effects: stacked phenyl interactions,’ J. Amer. Chem. Soc. 115, 5330–5331. 151

Craig, D. P. and Thirumachandran, T. (1984) Molecular Quantum Electrodynamics, Academic Press. 65

Craig, S. L. and Stone, A. J. (1994) ‘Stereoselectivity and regioselectivity in Diels–Alder reactions studied by intermolecular perturbation theory,’ J. Chem. Soc. Faraday Trans. 90, 1663–1668. 153

Császár, A. G., Fábri, C., Szidarovszky, T., Mátyus, E., Furtenbacher, T. and Czakó, G. (2012) ‘The fourth age of quantum chemistry: molecules in motion,’ Phys. Chem. Chem. Phys 14, 1085–1106. 256

Cwiok, T., Jeziorski, B., Kołos, W., Moszynski, R., Rychlewski, J. and Szalewicz, K. (1992) ‘Convergence properties and large-order behavior of the polarization expansion for the interaction energy of hydrogen atoms,’ Chem. Phys. Lett. 195, 67–76. 105, 113

Cybulski, S. M., Bledson, T. M. and Toczyłowski, R. R. (2002) ‘Comment on “hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory treatment” [J. Chem. Phys. 114, 5149 (2001),’ J. Chem. Phys. 116, 11039–11040. 94

Cybulski, S. M. and Scheiner, S. (1990) ‘Comparison of Morokuma and perturbation-theory approaches to decomposition of interaction energy: N H 4 + … NH3,’ Chem. Phys. Lett. 166, 57–64. 97

Cybulski, S. M. and Seversen, C. E. (2003) ‘An interaction energy decomposition approach for the supermolecule density functional theory calculations,’ J. Chem. Phys. 119, 12704–12707. 92, 93, 99

Cybulski, S. M. and Seversen, C. E. (2005) ‘Critical examination of the supermolecule density functional theory calculations of intermolecular interactions,’ J. Chem. Phys. 122, 014117. 93

Dalgarno, A. (1967) ‘New methods for calculating long-range intermolecular forces,’ Adv. Chem. Phys. 12, 143–166. 244

Dalgarno, A. and Lynn, N. (1957a) ‘An exact calculation of second order long range forces,’ Proc. Phys. Soc. (London) A70, 223–225. 63, 148

Dalgarno, A. and Lynn, N. (1957b) ‘Properties of the helium atom,’ Proc. Phys. Soc. (London) A70, 802–808. 244

Darden, T. A., Perera, L., Li, L. and Pedersen, L. G. (1999) ‘New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations,’ Structure 7, R55–R60. 222

Davidson, E. R. and Chakravorty, S. J. (1994) ‘A possible definition of basis set superposition error,’ Chem. Phys. Lett. 217, 48–54. 88

Davydov, A. S. (1962) Theory of Molecular Excitons, McGraw-Hill, New York, translated by M. Kasha and M. Oppenheimer, Jr. from the Russian edition of 1951. 196

Day, G. M. (2011) ‘Current approaches to predicting molecular organic crystal structures,’ Cryst. Rev. 17, 3–52. 265

Day, G. M., Cooper, T. G., Cruz-Cabeza, A. J., Hejczyk, K. E., Ammon, H. L., Boerrigter, S. X. M., Tan, J. S., Della Valle, R. G., Venuti, E., Jose, K. V. J., Gadre, S. R., Desiraju, G. R., Thakur, T. S., van Eijck, B. P., Facelli, J. C., Bazterra, V. E., Ferraro, M. B., Hofmann, D. W. M., Neumann, M. A., Leusen, F. J. J., Kendrick, J., Price, S. L., Misquitta, A. J., Karamertzanis, P. G., Welch, G. W. A., Scheraga, H. A., Arnautova, Y. A., Schmidt, M. U., van de Streek, J., Wolf, A. K. and Schweizer, B. (2009) ‘Significant progress in predicting the crystal structures of small organic molecules — a report on the fourth blind test,’ Acta Cryst. B 65, 107–125. 266

(p.304) Day, G. M., Motherwell, W. D. S., Ammon, H. L., Boerrigter, S. X. M., Valle, R. G. D., Venuti, E., Dzyabchenko, A., Dunitz, J. D., Schweizer, B., van Eijck, B. P., Erk, P., Facelli, J. C., Bazterra, V. E., Ferraro, M. B., Hofmann, D. W. M., Leusen, F. J. J., Liang, C., Pantelides, C. C., Karamertzanis, P. G., Price, S. L., Lewis, T. C., Nowell, H., Torrisi, A., Scheraga, H. A., Arnautova, Y. A., Schmidt, M. U. and Verwer, P. (2005a) ‘A third blind test of crystal structure prediction,’ Acta Cryst. B 61, 511–527. 266

Day, G. M., Motherwell, W. D. S. and Jones, W. (2005b) ‘Beyond the isotropic atom model in crystal structure prediction of rigid molecules: atomic multipoles versus point charges,’ Cryst. Growth Des. 5, 1023–1033. 265

Day, G. M. and Price, S. L. (2003) ‘A nonempirical anisotropic atom–atom model potential for chlorobenzene crystals,’ J. Amer. Chem. Soc. 125, 16434–16443. 213, 265

Dayton, D. C., Jucks, K. W. and Miller, R. E. (1989) ‘Photofragment angular distributions for HF dimer: scalar J-J correlations in state-to-state photodissociation,’ J. Chem. Phys. 90, 2631–2638. 6, 250

del Bene, J. E., Person, W. B. and Szczepaniak, K. (1995) ‘Properties of hydrogen-bonded complexes obtained from the B3LYP functional with 6–31G(d, p) and 6–31+G(d, p) basis sets,’ J. Phys. Chem. 99, 10705–10707. 92

Dewar, M. J. S. and Thompson, C. C. (1966) ‘2r–molecular complexes. III. A critique of charge transfer, and stability constants for some TCNE–hydrocarbon complexes,’ Tetrahedron 22 (S7), 97–114. 150

Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. and Stewart, J. J. P. (1985) ‘AM1: a new general-purpose quantum mechanical molecular model,’ J. Amer. Chem. Soc. 107, 3902–3909. 95

Dham, A. K., Allnatt, A. R., Meath, W. J. and Aziz, R. A. (1989) ‘The Kr–Kr potential energy curve and related physical properties: the XC and HFD-B potential models,’ Molec. Phys. 67, 1291–1307. 207, 208

Dick, B. G. and Overhauser, A. W. (1958) ‘Theory of the dielectric constants of alkali halide crystals,’ Phys. Rev. 112, 90–103. 208

Dinur, U. and Hagler, A. T. (1989) ‘Determination of atomic point charges and point dipoles from the Cartesian derivatives of the molecular dipole moment and second moments, and from energy second derivatives of planar dimers. I. Theory,’ J. Chem. Phys. 91, 2949–2958. 137

Dixit, S., Crain, J., Poon, W. C. K., Finney, J. L. and Soper, A. K. (2002) ‘Molecular segregation observed in a concentrated alcohol–water solution,’ Nature 416, 829–832. 192

Dobson, J. F. (2007) ‘Unusual features of the dispersion force in layered and striated nanostructures,’ Surface Sci. 601, 5667–5672. 180

Doran, M. B. and Zucker, I. J. (1971) ‘Higher-order multipole three-body Van der Waals interactions and stability of rare gas solids,’ J. Phys. C 4, 307–312. 189

Douketis, C., Scoles, G., Marchetti, S., Zen, M. and Thakkar, A. J. (1982) ‘Intermolecular forces via hybrid Hartree– Fock-SCF plus damped dispersion (HFD) energy calculations: an improved spherical model,’ J. Chem. Phys. 76, 3057–3063. 205, 207

Du, Q., Freysz, E. and Shen, Y. R. (1994) ‘Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity,’ Science 264, 826–828. 193

Dulmage, W. J. and Lipscomb, W. N. (1951) ‘The crystal structures of hydrogen cyanide, HCN,’ Acta. Cryst. 4, 330–334. 52

Dunlap, B. I. (2000) ‘Robust and variational fitting,’ Phys. Chem. Chem. Phys 2, 2113–2116. 82

Dunlap, B. I., Connolly, J. W. D. and Sabin, J. R. (1979) ‘On first-row diatomic molecules and local density models,’ J. Chem. Phys. 71, 4993–4999. 82

Dyke, T. R., Howard, B. J. and Klemperer, W. (1972) ‘Radiofrequency and microwave spectrum of HF dimer,’ J. Chem. Phys. 56, 2442–2454. 55

Eberly, J. H. (1989) ‘Quantum optics at very high laser intensities,’ Adv. Chem. Phys. 73, 801–822. 30

Eggenberger, R., Gerber, S., Huber, H. and Searles, D. (1991) ‘Basis set superposition errors in intermolecular structures and force constants,’ Chem. Phys. Lett. 183, 223–226. 91

Eisenschitz, L. and London, F. (1930) ‘Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften,’ Z. Phys. 60, 491–527. 110

Elking, D. M., Cisneros, G. A., Piquemal, J.-P., Darden, T. A. and Pedersen, L. G. (2010) ‘Gaussian multipole model (GMM),’ J. Chem. Theory Comput. 6, 190–202. 145

Elliott, J. P. and Dawber, P. G. (1979) Symmetry in Physics, MacMillan, London. 34

Elrod, M. J. and Saykally, R. J. (1994) ‘Many-body effects in intermolecular forces,’ Chem. Rev. 94, 1975–1997. 187

Elrod, M. J., Steyert, D. W. and Saykally, R. J. (1991) ‘Tunable far-infrared laser spectroscopy of a ternary Van der Waals cluster Ar2HCl: a sensitive probe of three-body forces,’ J. Chem. Phys. 94, 58–66. 252

Elrod, M. J., Host, B. C., Steyert, D. W. and Saykally, R. J. (1993) ‘Far-infrared vibration-rotation-tunnelling spectroscopy of ArDCl. A critical test of the H6(4,3,0) potential surface,’ Molec. Phys. 79, 245–251. 250

Elrod, M. J., Loeser, J. G. and Saykally, R. J. (1993) ‘An investigation of three-body effects in intermolecular forces. III. Far infrared laser vibration–rotation–tunnelling spectra of the lowest internal rotor state of Ar2HCl,’ J. Chem. Phys. 98, 5352–5361. 252

Epstein, S. T. and Johnson, R. E. (1968) ‘The application of perturbation theories for exchange forces to a simple model,’ Chem. Phys. Lett. 1, 602–604. 111

(p.305) Ernesti, A. and Hutson, J. M. (1994) ‘Non-additive intermolecular forces from the spectroscopy of Van der Waals trimers: the effect of monomer vibrational excitation in Ar2…HF and Ar2…HCl,’ J. Chem. Soc. Faraday Disc. 97, 119–129. 191

Etters, R. D. and Danilowicz, R. (1979) ‘Three-body interactions in small rare-gas clusters,’ J. Chem. Phys. 71, 4767–4768. 189

Ewald, P. (1921) Ann. Phys. (Leipzig) 64, 253–287. 266

Ewing, J. J., Tigelaar, H. L. and Flygare, W. H. (1972) ‘Molecular Zeeman effect, magnetic properties and electric quadrupole moments in ClF, BrF, ClCN, BrCN and ICN,’ J. Chem. Phys. 1957–1966. 241

Fanourgakis, G. S., Markland, T. E. and Manolopoulos, D. E. (2009) ‘A fast path integral method for polarizable force fields,’ J. Chem. Phys. 131, 094102. 249

Faraday (2010) ‘Multiscale modelling of soft matter,’ Faraday Disc. 144. 229

Faraday (1994) ‘Structure and dynamics of Van der Waals complexes,’ Faraday Disc. 97, 1–461. 249

Feller, D. (1992) ‘Application of systematic sequences of wavefunctions to the water dimer,’ J. Chem. Phys. 96, 6104–6114. 82

Ferenczy, G. G. (1991) ‘Charges derived from distributed multipole series,’ J. Comp. Chem. 12, 913–917. 131

Ferenczy, G. G., Winn, P. J. and Reynolds, C. A. (1997) ‘Toward improved force fields. 2. Effective distributed multipoles,’ J. Phys. Chem. A 101, 5446–5455. 131

Feynman, R. P. (1939) ‘Forces in molecules,’ Phys. Rev. 56, 340. 83

Feynman, R. P. and Hibbs, A. R. (1965) Quantum Mechanics and Path Integrals, McGraw-Hill, New York. 249

Figari, G. and Magnasco, V. (1985) ‘On the evaluation of the cofactors occurring in the matrix elements between multiply-excited determinantal wavefunctions of non-orthogonal orbitals,’ Molec. Phys. 55, 319–330. 109

Filippini, G. and Gavezzotti, A. (1993) ‘Empirical intermolecular potentials for organic crystals: the ‘6-exp’ approximation revisited,’ Acta Cryst. B49, 868–880. 212

Finney, J. L. (2001) ‘The water molecule and its interactions: the interaction between theory, modelling, and experiment,’ J. Mol. Liq. 90, 303–312. 225

Fischer, F. R., Wood, P. A., Allen, F. H. and Diederich, F. (2008) ‘Orthogonal dipolar interactions between amide carbonyl groups,’ Proc. Nat. Acad. Sci. (US) 105, 17290–17294. 117

Fleming, I. (1976) Frontier Orbitals and Organic Chemical Reactions, Wiley, London, New York. 153

Fleming, I. (2009) Molecular Orbitals and Organic Chemical Reactions, Wiley, Chichester. 153

Forster, T. and Kasper, K. (1955) ‘Ein Konzentrationsumschlag der Fluoreszenz des Pyrens,’ Z. Elektrochem. 59, 976–980. 197

Fowler, P. W. and Madden, P. A. (1984) ‘In-crystal polarizabilities of alkali and halide ions,’ Phys. Rev. B 29, 1035– 1042. 185, 186

Fowler, P. W. and Madden, P. A. (1985) ‘In-crystal polarizability of O2,’ J. Phys. Chem. 89, 2581–2585. 185

Fowler, P. W. and Stone, A. J. (1987) ‘Induced dipole moments of Van der Waals complexes,’ J. Phys. Chem. 91, 509–511. 170, 241

Francl, M. M., Carey, C., Chirlian, L. E. and Gange, D. M. (1996) ‘Charges fit to electrostatic potentials. II. Can atomic charges be unambiguously fit to electrostatic potentials?’ J. Comput. Chem. 17, 367–383. 139

Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J. and Pople, J. A. (1982) ‘SCFMO methods. 23. A polarization-type basis set for second-row elements,’ J. Chem. Phys. 77, 3654–3665. 80

Frank, H. S. and Evans, M. W. (1945) ‘Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes,’ J. Chem. Phys. 13, 507–532. 193

Fraser, G. T., Suenram, R. D., Lovas, F. J., Pine, A. S., Hougen, J. T., Lafferty, W. J. and Muenter, J. S. (1988) ‘Infrared and microwave investigations of interconversion tunnelling in the acetylene dimer,’ J. Chem. Phys. 89, 6028–6045. 53

Freitag, M. A., Gordon, M. S., Jensen, J. H. and Stevens, W. J. (2000) ‘Evaluation of charge penetration between distributed multipole expansions,’ J. Chem. Phys. 112, 7300–7306. 145

Frey, R. F. and Davidson, E. R. (1989) ‘Energy partitioning of the self-consistent-field interaction energy of ScCO,’ J. Chem. Phys. 90, 5555–5562. 97

Freyriafava, C., Dovesi, F., Saunders, V. R., Leslie, M. and Roetti, C. (1993) ‘Ca and Be substitution in bulk MgO: ab initio Hartree–Fock and ionic model supercell calculations,’ J. Phys. Condensed Matter 5, 4793–4804. 209

Frisch, H. L. and Helfand, E. (1960) ‘Conditions imposed by gross properties on the intermolecular potential,’ J. Chem. Phys. 32, 269–270. 245

Frisch, M. J., del Bene, J. E., Binkley, J. S. and Schaefer, H. F., III (1986) ‘Extensive theoretical studies of thehydrogen-bonded complexes (H2O)2, (H2O)2H+, (HF)2, F2H and (NH3)2,’ J. Chem. Phys. 84, 2279–2289. 90

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B. G., Chen, W., Wong, M. W., Gonzalez, C. and Pople, J. A. (2004) ‘Gaussian 03,’ Gaussian, Inc., Wallingford, CT. 81

(p.306) Fukui, K. and Fujimoto, H. (1968) ‘An MO-theoretical interpretation of the nature of chemical reaction. I. Partitioning analysis of the interaction energy,’ Bull. Chem. Soc. Japan 41, 1989–1997. 153

Garmer, D. R. and Stevens, W. J. (1989) ‘Transferability of molecular distributed polarizabilities from a simple localized orbital based method,’ J. Phys. Chem. 93, 8263–8270. 174

Garrido, N. M., Jorge, M., Queimada, A. J., Gomes, J. R. B., Economou, I. G. and Macedo, E. A. (2011) ‘Predicting hydration Gibbs energies of alkyl-aromatics using molecular simulation,’ Phys. Chem. Chem. Phys 13, 17384– 17394. 223

Gavezzotti, A. (2007) Molecular Aggregation, Oxford University Press. 265

Gavezzotti, A. and Filippini, G. (1994) ‘Geometry of the intermolecular X–H.Y (X, Y = N, O) hydrogen bond and the calibration of empirical hydrogen-bond potentials,’ J. Phys. Chem. 98, 4831–4837. 212

Gavezzotti, A. and Filippini, G. (1995) ‘Polymorphic forms of organic crystals at room conditions: thermodynamic and structural implications,’ J. Amer. Chem. Soc. 117, 12299–12305. 266

Gerratt, J. and Mills, I. M. (1968) ‘Force constants and dipole moment derivatives of molecules from perturbed Hartree–Fock calculations,’ J. Chem. Phys. 49, 1719–1729. 85, 170

Ghanty, T. K., Staroverov, V. N., Koren, P. R. and Davidson, E. R. (2000) ‘Is the hydrogen bond in water dimer and ice covalent?’ J. Amer. Chem. Soc. 122, 1210–1214. 151, 156

Goldman, N., Fellers, R. S., Brown, M. G., Braly, L. B., Keoshian, C. J., Leforestier, C. and Saykally, R. J. (2002) ‘Spectroscopic determination of the water dimer intermolecular potential-energy surface,’ J. Chem. Phys. 116, 10148–10163. 228, 251

Goldman, N., Leforestier, C. and Saykally, R. J. (2005) ‘A ‘first principles’ potential energy surface for liquid water from VRT spectroscopy of water clusters,’ Phil. Trans. Roy. Soc. A 363, 493–508. 228, 251

Goldman, N. and Saykally, R. J. (2004) ‘Elucidating the role of many-body forces in liquid water. I. Simulations of water clusters on the VRT–(ASP-W) potential surfaces,’ J. Chem. Phys. 120, 4777–4789. 189

Gordon, M. S., Fedorov, D. G., Pruitt, S. R. and Slipchenko, L. V. (2012) ‘Fragmentation methods: a route to accurate calculations on large systems,’ Chem. Rev. 112, 632–672. 219

Gouyet, J. F. (1973) ‘Use of biorthogonal orbitals in calculation by perturbation of intermolecular interactions,’ J. Chem. Phys. 59, 4637–4641. 108

Gray, C. G. and Gubbins, K. E. (1984) Theory of Molecular Fluids, vol. 1: Fundamentals, Oxford University Press, Oxford. 14, 17, 19, 27, 28, 72, 240, 243

Gray, C. G., Gubbins, K. E. and Joslin, C. G. (2011) Theory of Molecular Fluids, vol. 2: Applications, Oxford University Press, Oxford. 240

Gray, N. A. B. and Stone, A. J. (1970) ‘Justifiability of the ZDO approximation in terms of a power series expansion,’ Theor. Chim. Acta 18, 389–390. 107

Gregory, J. K. and Clary, D. C. (1994) ‘A comparison of conventional and rigid body diffusion Monte Carlo techniques. Application to water dimer.’ Chem. Phys. Lett. 228, 547–554. 259

Gregory, J. K. and Clary, D. C. (1995a) ‘Calculations of the tunnelling splittings in water dimer and trimer using diffusion Monte Carlo,’ J. Chem. Phys. 102, 7817–7829. 259

Gregory, J. K. and Clary, D. C. (1995b) ‘Three-body effects on molecular properties in the water trimer,’ J. Chem. Phys. 103, 8924–8930. 259

Gresh, N. (1995) ‘Energetics of Zn2 binding to a series of biologically relevant ligands: a molecular mechanics investigation grounded on ab initio self-consistent field supermolecular computations,’ J. Comput. Chem. 16, 856– 882. 219

Gresh, N., Claverie, P. and Pullman, A. (1984) ‘Theoretical studies of molecular conformation – derivation of an additive procedure for the computation of intramolecular interaction energies – comparison with ab initio SCF computations,’ Theor. Chim. Acta 66, 1–20. 219

Griffiths, G. I. G., Misquitta, A. J., Needs, R. J., Pickard, C. J. and Fortes, A. D. (2012) ‘Theoretical study of ammonia monohydrate at pressures up to 12 GPa,’ J. Chem. Phys. submitted. 95

Grimme, S. (2011) ‘Density functional theory with London dispersion corrections,’ WIREs Comp. Molec. Sci. 1, 211–228. 94

Grimme, S., Antony, J., Ehrlich, S. and Krieg, H. (2010) ‘A consistent and accurate ab initio parametrization ofdensity functional dispersion correction (DFT-D) for the 94 elements H–Pu,’ J. Chem. Phys. 132, 154104. 94

(p.307) Gritsenko, O. V. and Baerends, E. J. (2004) ‘Asymptotic correction of the exchange–correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations,’ J. Chem. Phys. 121, 655–660. 79

Guerra, C. F., Handgraaf, J.-W., Baerends, E. J. and Bickelhaupt, F. M. (2004) ‘Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis,’ J. Comput. Chem. 25, 189–210. 129

Guillot, B. (2002) ‘A reappraisal of what we have learnt during three decades of computer simulations on water,’ J. Mol. Liq. 101, 219–260. 225

Gunning, M. J. and Raab, R. E. (1997) ‘Physical implications of the use of primitive and traceless electric quadrupole moments,’ Molec. Phys. 91, 589–595. 42

Gussoni, M., Castiglioni, C. and Zerbi, G. (1986) ‘Molecular point charges as derived from infrared intensities and from ab initio calculations,’ Theochem (J. Mol. Struct.) 31, 203–212. 136

Gutowski, M. and Piela, L. (1988) ‘Interpretation of the Hartree–Fock interaction energy between closed-shell systems,’ Molec. Phys. 64, 337–355. 97, 98

Gutowski, M., Van Duijneveldt, F. B., Chałasiński, G. and Piela, L. (1987) ‘Proper correction for the basis set superposition error in SCF calculations of intermolecular interactions,’ Molec. Phys. 61, 233–247. 89

Gutowski, M., van Duijneveldt-van de Rijdt, J. G. C. M., van Lenthe, J. H. and van Duijneveldt, F. B. (1993) ‘Accuracy of the Boys and Bernardi function counterpoise method,’ J. Chem. Phys. 98, 4728–4737. 90

Halkier, A., Klopper, W., Helgaker, T. and Jørgensen, P. (1999) ‘Basis-set convergence of the molecular electric dipole moment,’ J. Chem. Phys. 111, 4424–4430. 14

Hamermesh, M. (1989) Group Theory and Its Application to Physical Problems, Dover, New York. 34

Handy, N. C. and Schaefer, H. F., III (1984) ‘On the evaluation of analytic energy derivatives for correlated wave-functions,’ J. Chem. Phys. 81, 5031–5033. 85

Hariharan, P. C. and Pople, J. A. (1973) ‘Self-consistent-field molecular orbital methods. XII. Further extension of Gaussian-type basis sets for use in molecular-orbital studies of organic molecules,’ Theor. Chim. Acta 28, 213–222.

Harvey, A. H. and Lemmon, E. W. (2004) ‘Correlation for the second virial coefficient of water,’ J. Phys. Chem. Ref. Data 33, 369–376. 246

Hättig, C. (1996) ‘Recurrence relations for the direct calculation of spherical multipole interaction tensors and Coulomb-type interaction energies,’ Chem. Phys. Lett. 260, 341–351. 51, 231

Hättig, C. (1997) ‘On the calculation of derivatives for Coulomb-type interaction energies and general anisotropic pair potentials,’ Chem. Phys. Lett. 268, 521–530. 52

Hättig, C. and Heß, B. A. (1994) ‘Calculation of orientation dependent double-tensor moments for Coulomb-type molecular interactions,’ Molec. Phys. 81, 813–824. 50, 230, 291

Haverkort, J. E. M., Baas, F. and Beenakker, J. J. M. (1983) ‘Measurements of depolarization ratios of linear chain molecules: a test of the principle of additivity of bond polarizabilities,’ Chem. Phys. 79, 105–109. 159

Hayes, I. C. and Stone, A. J. (1984a) ‘An intermolecular perturbation theory for the region of moderate overlap,’ Molec. Phys. 53, 83–105. 107, 109, 117, 146

Hayes, I. C. and Stone, A. J. (1984b) ‘Matrix elements between determinantal wavefunctions of non-orthogonal orbitals,’ Molec. Phys. 53, 69–82. 109

Heather, R. W. and Light, J. C. (1982) ‘Discrete variable theory of triatomic photodissociation,’ J. Chem. Phys. 79, 147–159. 256

Hehre, W. J., Ditchfield, R. and Pople, J. A. (1971) ‘Self-consistent-field molecular-orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules,’ J. Chem. Phys. 56, 2257–2261. 80

Helgaker, T., Jørgensen, P. and Olsen, J. (2000) Molecular Electronic-Structure Theory, Wiley, Chichester. 74, 75, 76

Helgaker, T., Klopper, W., Koch, H. and Noga, J. (1997) ‘Basis-set convergence of correlated calculations on water,’ J. Chem. Phys. 106, 9639–9646. 77

Hellmann, H. (1937) Einführung in die Quantenchemie, Deuticke, Leipzig. 83

Hepburn, J., Scoles, G. and Penco, R. (1975) ‘A simple but reliable method for prediction of intermolecular potentials,’ Chem. Phys. Lett. 36, 451–456. 93, 205

Hermans, J., Berendsen, H. J. C., van Gunsteren, W. F. and Postma, J. P. M. (1984) ‘A consistent empirical potential for water–protein interactions,’ Biopolymers 23, 1513–1518. 221

Hesselmann, A. (2009) ‘Derivation of the dispersion energy as an explicit density- and exchange-hole functional,’ J. Chem. Phys. 130, 084104. 95

Hesselmann, A. and Jansen, G. (2002a) ‘First-order intermolecular interaction energies from Kohn–Sham orbitals,’ Chem. Phys. Lett. 357, 464–470. 79, 117, 119

Hesselmann, A. and Jansen, G. (2002b) ‘Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory,’ Chem. Phys. Lett. 362, 319–325. 119

(p.308) Hesselmann, A. and Jansen, G. (2003) ‘Intermolecular dispersion energies from time-dependent density functional theory,’ Chem. Phys. Lett. 367, 778–784. 119

Hills, R. D., Jr, Lu, L. and Voth, G. A. (2010) ‘Multiscale coarse-graining of the protein energy landscape,’ PLoS Comput. Biol. 6, e1000827. 229

Hinde, R. J. (2008) ‘Three-body interactions in solid parahydrogen,’ Chem. Phys. Lett. 460, 141–145. 190

Hirschfelder, J. O. (1967) ‘Perturbation theory for exchange forces,’ Chem. Phys. Lett. 1, 325–329, 363–368. 59, 111

Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B. (1954) Molecular Theory of Liquids and Gases, Wiley, New York and London. 46, 247

Hirschfelder, J. O. and Silbey, R. (1966) ‘New type of molecular perturbation treatment,’ J. Chem. Phys. 45, 2188– 2192. 111

Hirshfeld, F. L. (1977) ‘Bonded-atom fragments for describing molecular charge densities,’ Theor. Chim. Acta 44, 129–138. 128

Hodges, M. P., Stone, A. J. and Xantheas, S. S. (1997) ‘The contribution of many-body terms to the energy for small water clusters — a comparison of ab initio and accurate model potentials,’ J. Phys. Chem. A 101, 9163–9168. 183

Hohenberg, P. and Kohn, W. (1964) ‘Inhomogeneous electron gas,’ Phys. Rev. 136, B864–B871. 78

Holmgren, S. L., Waldman, M. and Klemperer, W. (1977) ‘Internal dynamics of Van der Waals complexes. I. BornOppenheimer separation of radial and angular motion,’ J. Chem. Phys. 67, 4414–4422. 255

Huang, D. M. and Chandler, D. (2002) ‘The hydrophobic effect and the influence of solute–solvent attractions,’ J. Phys. Chem. B 106, 2047–2053. 193

Huang, X., Braams, B. J. and Bowman, J. M. (2005) ‘Ab initio potential energy and dipole moment surfaces for (H5O2)+,’ J. Chem. Phys. 122, 044308. 228

Huang, X., Braams, B. J. and Bowman, J. M. (2006) ‘Ab initio potential energy and dipole moment surfaces for (H2O)2,’ J. Phys. Chem. A 110, 445–451. 96, 228

Huang, X., Braams, B. J., Bowman, J. M., Kelly, R. E. A., Tennyson, J., Groenenboom, G. C. and van der Avoird, A. (2008) ‘New ab initio potential energy surface and the vibration-rotation-tunneling levels of (H2O)2 and (D2O)2,’ J. Chem. Phys. 128, 034312. 96, 228, 256

Huang, Z. S. and Miller, R. E. (1989) ‘The structure of CO2–HCCH from near infrared spectroscopy,’ Chem. Phys. 132, 185–196. 54

Hujo, W. and Grimme, S. (2011) ‘Performance of the Van der Waals density functional VV10 and (hybrid) GGA variants for thermochemistry and noncovalent interactions,’ J. Chem. Theory Comput. 7, 3866–3871. 93

Hunter, C. A. (1993) ‘Sequence-dependent DNA structure: the role of base stacking interactions,’ J. Molec. Biol. 230, 1025–1054. 140

Hunter, C. A. (1994) ‘The role of aromatic interactions in molecular recognition,’ Chem. Soc. Rev. 23, 101–109. 140, 198

Hunter, C. A. and Sanders, J. K. M. (1990) ‘The nature of r - r interactions,’ J. Amer. Chem. Soc. 112, 5525–5534. 140

Hunter, C. A., Sanders, J. K. M. and Stone, A. J. (1989) ‘Exciton coupling in porphyrin dimers,’ Chem. Phys. 133, 395–404. 199

Hunter, C. A., Singh, J. and Thornton, J. M. (1991) ‘π-π interactions: the geometry and energetics of phenylalanine– phenylalanine interactions in proteins,’ J. Molec. Biol. 218, 837–846. 140

Huot, J. and Bose, T. K. (1991) ‘Determination of the quadrupole moment of nitrogen from the dielectric second virial coefficient,’ J. Chem. Phys. 94, 3849–3854. 124

Hutson, J. M. (1989a) ‘The intermolecular potential of Ne–HCl: determination from high-resolution spectroscopy,’ J. Chem. Phys. 91, 4448–4454. 210

Hutson, J. M. (1989b) ‘Anisotropic intermolecular forces. III. Rare gas–hydrogen bromide systems,’ J. Chem. Phys. 91, 4455–4461. 210

Hutson, J. M. (1990a) ‘BOUND,’ A computer program distributed by EPSRC Collaborative Computational Project No. 6 on Heavy Particle Dynamics. 255

Hutson, J. M. (1990b) ‘Dynamics of Van der Waals complexes: beyond atom-diatom systems,’ in Dynamics of Polyatomic Van der Waals Complexes, eds. N. Halberstadt and K. C. Janda, 67–79, NATO ASI, Plenum. 253

Hutson, J. M. (1992) ‘Vibrational dependence of the anisotropic intermolecular potential of Ar–HCl,’ J. Phys. Chem. 96, 4237–4247. 250, 253

Hutson, J. M., Ernesti, A., Law, M. M., Roche, C. F. and Wheatley, R. J. (1996) ‘The intermolecular potential energy surface for CO2…Ar: fitting to high-resolution spectroscopy of Van der Waals complexes and second virial coefficients,’ J. Chem. Phys. 105, 9130–9140. 250

Hutson, J. M. and Howard, B. J. (1980) ‘Spectroscopic properties and potential surfaces for atom–diatom Van der Waals molecules,’ Molec. Phys. 41, 1123–1141. 255

Hylleraas, E. A. (1929) ‘New calculation of the energy of helium in the ground-state, and the deepest terms of orthohelium,’ Zeit. Phys. 54, 347–366. 77

(p.309) Isaacs, E. D., Shukla, A., Platzman, P. M., Hamann, D. R., Barbiellini, B. and Tulk, C. A. (1999) ‘Covalency of the hydrogen bond in ice: a direct X-ray measurement,’ Phys. Rev. Lett. 82, 600–603. 150, 156

Israelachvili, J. N. (1992) Intermolecular and Surface Forces, Academic Press, London, 2nd edn. 65

Jaeger, H. M., Swenson, D. W. H. and Dykstra, C. E. (2006) ‘Remarkable features in the interactions of quadrupolar molecules,’ J. Phys. Chem. A 110, 6399–6407. 259

Jalink, H., Parker, D. H. and Stolte, S. (1987) ‘Experimental verification of the sign of the electric dipole moment of N2O.’ J. Mol. Spectr. 121, 236–237. 170, 241

Janda, K. C., Klemperer, W. and Novick, S. E. (1976) ‘Measurement of the sign of the dipole moment of ClF,’ J. Chem. Phys. 64, 2698–2699. 241

Jankowski, P. (2004) ‘Approximate generation of full-dimensional ab initio Van der Waals surfaces for high-resolution spectroscopy,’ J. Chem. Phys. 121, 1655–1662. 224

Jansen, L. (1957) ‘Interactions between permanent multipole moments,’ Physica 23, 599–604. 46

Jansen, L. (1958) ‘Tensor formalism for Coulomb interaction and asymptotic properties of multipole expansions,’ Phys. Rev. 110, 661–669. 46

Jarque, C. and Buckingham, A. D. (1989) ‘Ion–ion interaction in a polarizable lattice,’ Chem. Phys. Lett. 164, 485– 490. 191

Jarque, C. and Buckingham, A. D. (1992) ‘Ion–ion interaction in a polarizable medium,’ in Molecular Liquids: New Perspectives in Physics and Chemistry, ed. J. J. C. Teixeira-Dias, 253–265, Kluwer, Dordrecht. 191

Jeffreys, H. (1931) Cartesian Tensors, Cambridge University Press. 267

Jensen, F. (1999) Introduction to Computational Chemistry, Wiley, Chichester. 74, 76, 78, 83, 85

Jensen, F. (2001) ‘Polarization consistent basis sets: Principles,’ J. Chem. Phys. 115, 9113–9125. 81

Jensen, F. (2002a) ‘Polarization consistent basis sets. II. Estimating the Kohn–Sham basis set limit,’ J. Chem. Phys. 7372–7379. 81

Jensen, F. (2002b) ‘Polarization consistent basis sets. III. The importance of diffuse functions,’ J. Chem. Phys. 117, 9234–9240. 81

Jensen, F. (2003) ‘Polarization consistent basis sets. IV. The basis set convergence of equilibrium geometries, harmonic vibrational frequencies, and intensities,’ J. Chem. Phys. 118, 2459–2463. 81

Jensen, F. (2007) ‘Polarization consistent basis sets. 4: the elements He, Li, Be, B, Ne, Na, Mg, Al, and Ar,’ J. Phys. Chem. A. 81

Jensen, J. H. and Gordon, M. S. (1996) ‘An approximate formula for the intermolecular Pauli repulsion between closed shell molecules,’ Molec. Phys. 89, 1313–1325. 219

Jeziorska, M., Jeziorski, B. and Čižek, J. (1987) ‘Direct calculation of the Hartree–Fock interaction energy via exchange perturbation expansion—the He.He interaction,’ Int. J. Quantum Chem. 32, 149–164. 116

Jeziorski, B. and Kołos, W. (1977) ‘On symmetry forcing in the perturbation theory of weak intermolecular interactions,’ Int. J. Quantum Chem. 12, Suppl. 1, 91–117. 111, 112, 113

Jeziorski, B., Moszynski, R., Ratkiewicz, A., Rybak, S., Szalewicz, K. and Williams, H. L. (1993) ‘SAPT: a program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies,’ in Methods and Techniques in Computational Chemistry: METECC94, ed. E. Clementi, vol. B, 79, STEF, Cagliari. 117, 119

Jeziorski, B., Moszynski, R. and Szalewicz, K. (1994) ‘Perturbation theory approach to intermolecular potential energy surfaces of Van der Waals complexes,’ Chem. Rev. 94, 1887–1930. 117

Jeziorski, B., Szalewicz, K. and Chałasinski, G. (1978) ‘Symmetry forcing and convergence properties of perturbation expansions for molecular interaction energies,’ Int. J. Quantum Chem. 14, 271–287. 111, 113

Jhanwar, B. L. and Meath, W. J. (1982) ‘Dipole oscillator strength distributions, sums and dispersion energy coefficients for CO and CO2,’ Chem. Phys. 67, 185–199. 244

Jhanwar, B. L., Meath, W. J. and MacDonald, J. C. F. (1981) ‘Dipole oscillator strength distributions and sums for C2H6, C3H8, n-C4H10, n-C5H12, n-C6H14, n-C7H16, and n-C8H18,’ Canad. J. Phys. 59, 185–197. 159

Johnson, B. R. (1978) ‘The renormalized Numerov method applied to calculations of bound states of the coupledchannel Schrödinger equation,’ J. Chem. Phys. 69, 4678–4688. 255

Johnson, R. E. and Epstein, S. T. (1968) ‘Connection between several perturbation theories of intermolecular forces,’ Chem. Phys. Lett. 1, 599–601. 111

Jordan, M. J. T., Thompson, K. C. and Collins, M. A. (1995) ‘Convergence of molecular potential energy surfaces by interpolation: Application to the OH + H2 -* H2O + H reaction,’ J. Chem. Phys. 102, 5647–5657. 96

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. and Klein, M. L. (1983) ‘Comparison of simple model potentials for simulating liquid water,’ J. Chem. Phys. 79, 926–935. 226

Jorgensen, W. L. and Tirado-Rives, J. (1988) ‘The OPLS potential function for proteins. Energy minimization for crystals of cyclic peptides and crambin,’ J. Amer. Chem. Soc. 110, 1657–1666. 221

Joslin, C. G., Gray, C. G. and Singh, S. (1985) ‘Far infrared absorption in gaseous CH4 and CF4. A theoretical study.’ Molec. Phys. 54, 1469–1489. 242

(p.310) Joubert, L. and Popelier, P. L. A. (2002) ‘Improved convergence of the ‘atoms in molecules’ multipole expansion of the electrostatic interaction,’ Molec. Phys. 100, 3357–3365. 130

Jurečka, P., Černý, J., Hobza, P. and Salahub, D. R. (2007) ‘Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations,’ J. Comput. Chem. 28, 555–569. 94

Jurečka, P., Šponer, J., Černý, J. and Hobza, P. (2006) ‘Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs,’ Phys. Chem. Chem. Phys 8, 1985–1993. 94

Kaczmarek, A., Sadlej, A. J. and Leszczynski, J. (2004) ‘Monomer basis-set truncation effects in calculations of interaction energies: A model study,’ J. Chem. Phys. 120, 7837–7848. 89

Kaczmarek, A., Sadlej, A. J. and Leszczynski, J. (2006) ‘First-order interaction energies and basis set truncation effects,’ Molec. Phys. 104, 395–407. 89

Kato, T. (1957) ‘On the eigenfunctions of many-particle systems in quantum mechanics,’ Commun. pure appl. math. 10, 151–177. 77

Kazantsev, A. V., Karamertzanis, P. G., Adjiman, C. S. and Pantelides, C. C. (2011a) ‘Efficient handling of molecular flexibility in lattice energy minimization of organic crystals,’ J. Chem. Theory Comput. 7, 1998–2016. 225

Kazantsev, A. V., Karamertzanis, P. G., Adjiman, C. S., Pantelides, C. C., Price, S. L., Galek, P. T. A., Day, G. M. and Cruz-Cabeza, A. J. (2011b) ‘Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction,’ Int. J. Pharm. 418, 168–178. 225

Keller, J. B. and Zumino, B. (1959) ‘Determination of intermolecular potentials from thermodynamic data and the law of corresponding states,’ J. Chem. Phys. 30, 1351–1353. 245

Kendrick, J., Leusen, F. J. J., Neumann, M. A. and van de Streek, J. (2011) ‘Progress in crystal structure prediction,’ Chem. Eur. J 17, 10735–10743. 265

Khaliullin, R. Z., Cobar, E. A., Lochan, R. C., Bell, A. T. and Head-Gordon, M. (2007) ‘Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals,’ J. Phys. Chem. 111, 8753–8765. 99, 152

Kihara, T. (1978) Intermolecular Forces, Wiley. 209

Kim, H.-Y., Sofod, J. O., Velegol, D., Cole, M. W. and Lucas, A. A. (2006) ‘Van der Waals forces between nanoclusters: importance of many-body effects,’ J. Chem. Phys. 124, 074504. 190

Kim, Y. S., Kim, S. K. and Lee, W. D. (1981) ‘Dependence of the closed-shell repulsive interaction on the overlap of the electron densities,’ Chem. Phys. Lett. 80, 574–575. 216

King, B. F. and Weinhold, F. (1995) ‘Structure and spectroscopy of (HCN)n clusters: cooperative and electronic delocalization effects in C–H…N hydrogen bonding,’ J. Chem. Phys. 103, 333–347. 108

Kita, S., Noda, K. and Inouye, H. (1976) ‘Repulsion potentials for Cl–R and Br–R (R = He, Ne and Ar) derived from beam experiments,’ J. Chem. Phys. 64, 3446–3449. 216

Kitaura, K., Ikeo, E., Asada, T., Nakano, T. and Uebayasi, M. (1999) ‘Fragment molecular orbital method: an approximate computational method for large molecules,’ Chem. Phys. Lett. 313, 701–708. 219

Kitaura, K. and Morokuma, K. (1976) ‘A new energy decomposition scheme for molecular interactions within the Hartree–Fock approximation,’ Int. J. Quantum Chem. 10, 325–340. 97

Kittel, C. (1987) Quantum theory of solids, Wiley, New York & Chichester. 196

Klopman, G. (1968) ‘Chemical reactivity and the concept of charge- and frontier-controlled reactions,’ J. Amer. Chem. Soc. 90, 223–234. 153

Klopman, G. and Hudson, R. F. (1967) ‘Polyelectronic perturbation theory of chemical reactivity,’ Theor. Chim. Acta 8, 165 174. 153

Klopper, W. and Lüthi, H. P. (1999) ‘The MP2 limit correction applied to coupled cluster calculations of the electronic dissociation energies of the hydrogen fluoride and water dimers,’ Molec. Phys. 96, 559–570. 83

Klopper, W., Manby, F. R., Ten-no, S. and Valeev, E. F. (2006) ‘R12 methods in explicitly correlated molecular electronic structure theory,’ Int. Rev. Phys. Chem. 25, 427. 77

Klopper, W., van Duijneveldt-van de Rijdt, J. G. C. M. and van Duijneveldt, F. B. (2000) ‘Computational determination of equilibrium geometry and dissociation energy of the water dimer,’ Phys. Chem. Chem. Phys 2, 2227–2234. 91, 229

Knizia, G., Adler, T. B. and Werner, H.-J. (2009) ‘Simplified CCSD(T)-F12 methods: Theory and benchmarks,’ J. Chem. Phys. 130, 054104. 77

Knowles, P. J. and Meath, W. J. (1986a) ‘Non-expanded dispersion and induction energies, and damping functions, for molecular interactions, with application to HF…He,’ Molec. Phys. 59, 965–984. 149, 207

Knowles, P. J. and Meath, W. J. (1986b) ‘Non-expanded dispersion energies and damping functions for Ar2 and Li2,’ Chem. Phys. Lett. 124, 164–171. 149, 207

Knowles, P. J. and Meath, W. J. (1987) ‘A separable method for the calculation of dispersion and induction energy damping functions with applications to the dimers arising from He, Ne and HF,’ Molec. Phys. 60, 1143–1158. 149, 207

(p.311) Koch, U., Popelier, P. L. A. and Stone, A. J. (1995) ‘Conformational dependence of atomic multipole moments,’ Chem. Phys. Lett. 238, 253–260. 224

Koch, W. and Holthausen, M. C. (2000) A Chemist’s Guide to Density Functional Theory, Wiley-VCH Verlag GmbH, Weinheim. 78

Kochanski, E. and Gouyet, J. F. (1975a) ‘Ab initio calculation of the first order term of the intermolecular energy near the Van der Waals minimum,’ Theor. Chim. Acta 39, 329–337. 108

Kochanski, E. and Gouyet, J. F. (1975b) ‘Ab initio studies of the intermolecular interactions between two hydrogen molecules near the Van der Waals minimum from a perturbation procedure using biorthogonal orbitals,’ Molec. Phys. 29, 693–701. 108

Kohn, W. and Sham, L. J. (1965) ‘Self-consistent equations including exchange and correlation effects,’ Phys. Rev. 140, A1133–A1138. 78

Koide, A., Meath, W. J. and Allnatt, A. R. (1981) ‘Second-order charge overlap effects and damping functions for isotropic atomic and molecular interactions,’ Chem. Phys. 58, 105–119. 206, 207

Kołos, W. and Wolniewicz, L. (1974) ‘Variational calculations of the long-range interaction between two ground state hydrogen atoms,’ Chem. Phys. Lett. 24, 457–460. 205

Korona, T., Hesselmann, A. and Dodziuk, H. (2009) ‘Symmetry-adapted perturbation theory applied to endohedral fullerene complexes: A stability study of H2@C60 and 2H2@C60,’ J. Chem. Theory Comput. 5, 1585–1596. 121

Korona, T., Williams, H. L., Bukowski, R., Jeziorski, B. and Szalewicz, K. (1997) ‘Helium dimer potential from symmetry-adapted perturbation theory calculations using large gaussian geminal and orbital basis sets,’ J. Chem. Phys. 106, 5109–5122. 110

Kreek, H. and Meath, W. J. (1969) ‘Charge-overlap effects. Dispersion and induction forces,’ J. Chem. Phys. 50, 2289–2302. 148, 205

Kuharsky, R. A. and Rossky, P. J. (1985) ‘A quantum mechanical study of structure in liquid H2O and D2O,’ J. Chem. Phys. 82, 5164–5177. 229

Kumar, A. and Meath, W. J. (1984) ‘Pseudo-spectral dipole oscillator-strength distributions for SO2, CS2 and OCS and values of some related dipole–dipole and triple-dipole dispersion energy constants,’ Chem. Phys. 91, 411–418. 188

Kumar, A. and Meath, W. J. (1985) ‘Pseudo-spectral dipole oscillator strengths and dipole–dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe,’ Molec. Phys. 54, 823–833. 188

Kumar, A. and Meath, W. J. (1992) ‘Dipole oscillator strength properties and dispersion energies for acetylene and benzene,’ Molec. Phys. 75, 311–324. 244

Kumar, A. and Meath, W. J. (1994) ‘Reliable isotropic and anisotropic dipole properties, and dipolar dispersion energy coefficients, for CO evaluated using constrained dipole oscillator strength techniques,’ Chem. Phys. 189, 467–477. 244

Kumar, A., Meath, W. J., Bundgen, P. and Thakkar, A. J. (1996) ‘Reliable anisotropic dipole properties, and dispersion energy coefficients, for O2 evaluated using constrained dipole oscillator strength techniques,’ J. Chem. Phys. 105, 4927–4937. 244

Kumar, A. and Thakkar, A. J. (2010) ‘Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited,’ Canad. J. Chem. 132, 074301. 243, 244

Kutzelnigg, W. (1980) ‘The ‘primitive’ wavefunction in the theory of intermolecular interactions,’ J. Chem. Phys. 73, 343–359. 113

Kutzelnigg, W. (1985) ‘r 12-dependent terms in the wave function as closed sums of partial wave amplitudes for large L,’ Theor. Chim. Acta 68, 445. 77

Kutzelnigg, W. (1992) ‘Does the polarization approximation converge for large r to a primitive or a symmetry-adapted function?’ Chem. Phys. Lett. 195, 77–84. 105

Kvasnicka, V., Laurinc, H. and Hubac, I. (1974) ‘Many-body perturbation theory of intermolecular interactions,’ Phys. Rev. A 10, 2016–2026. 107

Lange, O. L. D. and Raab, R. E. (2006) ‘On the theory of the Buckingham effect,’ Molec. Phys. 104, 607–611. 42

Langreth, D. C., Lundqvist, B. I., Chakarova-Kack, S. D., Cooper, V. R., Dion, M., Hyldgaard, P., Kelkkanen, A., Kleis, J., Kong, L., Li, S., Moses, P. G., Murray, E., Puzder, A., Rydberg, H., Schroder, E. and Thonhauser, T. (2009) ‘A density functional for sparse matter,’ J. Phys. Condens. Matter 21, 084203. 93

Le, H.-A. and Bettens, R. P. A. (2011) ‘Distributed multipoles and energies of flexible molecules,’ J. Chem. Theory Comput. 7, 921–930. 224

Le Fèvre, R. J. W. (1965) ‘Molecular polarizability and refractivity,’ Adv. Phys. Org. Chem. 3, 1–90. 160

Le Roy, R. J. and Van Kranendonk, J. (1974) ‘Anisotropic intermolecular potentials from an analysis of spectra of H2– and D2–inert-gas complexes,’ J. Chem. Phys. 61, 4750–4769. 253

Le Sueur, C. R. and Stone, A. J. (1993) ‘Practical schemes for distributed polarizabilities,’ Molec. Phys. 78, 1267– 1291. 170

(p.312) Le Sueur, C. R. and Stone, A. J. (1994) ‘Localization methods for distributed polarizabilities,’ Molec. Phys. 83, 293–308. 173

Le Sueur, C. R., Stone, A. J. and Fowler, P. W. (1991) ‘Induced dipole moments in acetylene complexes,’ J. Phys. Chem. 95, 3519–3522. 170

Leavitt, R. P. (1980) ‘An irreducible tensor method of deriving the long-range anisotropic interactions between molecules of arbitrary symmetry,’ J. Chem. Phys. 72, 3472–3482. 46

Leforestier, C. (1994) ‘Grid method for the Wigner functions. Application to the Van der Waals system Ar–H2O,’ J. Chem. Phys. 101, 7357–7363. 257

Leforestier, C., van Harrevelt, R. and van der Avoird, A. (2009) ‘Vibration–rotation–tunneling levels of the water dimer from an ab initio potential surface with flexible monomers,’ J. Phys. Chem. A. 228, 257

Legon, A. C. (2010) ‘The halogen bond: an interim perspective,’ Phys. Chem. Chem. Phys 12, 7736–7747. 157

Legon, A. C. and Millen, D. J. (1982) ‘Determination of properties of hydrogen-bonded dimers by rotational spectroscopy and a classification of dimer geometries,’ Faraday Disc. Chem. Soc. 73, 71–87, 127, 128. 153

Legon, A. C., Millen, D. J. and Mjöberg, P. J. (1977) ‘The hydrogen cyanide dimer: Identification and structure from microwave spectroscopy,’ Chem. Phys. Lett. 47, 589–591. 52

Leighton, P., Cowan, J. A., Abraham, R. J. and Sanders, J. K. M. (1988) ‘Geometry of porphyrin–porphyrin interactions,’ J. Org. Chem. 53, 733–740. 198

Leslie, M. (1983) ‘A symmetry-adapted method for the determination of the lattice energy and properties of ionic crystals,’ Solid State Ionics 8, 243–246. 209

Leslie, M. (2008) ‘DL MULTI—a molecular dynamics program to use distributed multipole electrostatic models to simulate the dynamics of organic crystals,’ Molec. Phys. 106, 1567–1578. 51, 230, 266

Li, G., Parr, J., Fedorov, I. and Reisler, H. (2006) ‘Imaging study of vibrational predissociation of the HCl–acetylene dimer: pair-correlated distributions,’ Phys. Chem. Chem. Phys 8, 2915–2924. 249

Light, J. C. and Carrington, T., Jr (2000) ‘Discrete-variable representations and their utilization,’ Advances in Chem. Phys. 114, 263–310. 256, 257

Lighthill, M. J. (1958) Fourier Analysis and Generalized Functions, Cambridge University Press, Cambridge. 20

Lii, J.-H. and Allinger, N. L. (1991) ‘The MM3 force field for amides, polypeptides and proteins,’ J. Comput. Chem. 12, 186–199. 221

Lillestolen, T. C. and Wheatley, R. (2008) ‘Redefining the atom: atomic charge densities produced by an iterative stockholder approach,’ Chem. Comm. 2008, 5909–5911. 129

Lillestolen, T. C. and Wheatley, R. (2009) ‘Atomic charge densities generated using an iterative stockholder approach,’ J. Chem. Phys. 131, 144101. 129

Lillestolen, T. C. and Wheatley, R. J. (2007) ‘First-principles calculation of local atomic polarizabilities,’ J. Phys. Chem. A 111, 11141–11146. 174

Linder, B. (1962) ‘Generalized form for dispersion interaction,’ J. Chem. Phys. 37, 963–966. 67

Lindorff-Larsen, K., Maragakis, P., Piana, S., Eastwood, M. P., Dror, R. O. and Shaw, D. E. (2012) ‘Systematic validation of protein force fields against experimental data,’ PLoS ONE 7, e32131. 223

Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. and Williams, D. E. (2000) ‘A test of crystal structure prediction of small organic molecules,’ Acta Cryst. B 56, 697–714. 266

London, F. (1930a) ‘Über einige Eigenschaften und Anwendungen der Molekularkräfte,’ Z. Physik. Chem. B 11, 222–251. 64, 65

London, F. (1930b) ‘Zur Theorie und Systematik der Molekularkräfte,’ Z. Phys. 63, 245–279. 57

London, F. (1937) ‘The general theory of molecular forces,’ Trans. Faraday Soc. 33, 8–26. 57, 64

Longuet-Higgins, H. C. (1956) ‘The electronic states of composite systems,’ Proc. Roy. Soc. A 235, 537–543. 57, 58

Longuet-Higgins, H. C. (1965) ‘Intermolecular forces,’ Disc. Faraday Soc. 40, 7–18. 27

Loudon, R. (1973) The Quantum Theory of Light, Clarendon Press, Oxford. 33

Löwdin, P.-O. (1950) ‘On the non-orthogonality problem connected with the use of atomic wavefunctions in the theory of molecules and crystals,’ J. Chem. Phys. 18, 365–375. 107

Lu, L. and Voth, G. A. (2011) ‘The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials,’ J. Chem. Phys. 134, 224107. 229

Magnasco, V. and Figari, G. (1986) ‘Epstein–Nesbet calculation of interatomic interactions in the Van der Waals region,’ Molec. Phys. 59, 689–705. 109

Mahoney, M. W. and Jorgensen, W. L. (2000) ‘A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions,’ J. Chem. Phys. 112, 8910–8922. 226

Maitland, G. C., Rigby, M., Smith, E. B. and Wakeham, W. A. (1981) Intermolecular Forces: their origin and determination, Clarendon Press, Oxford. 203, 204, 246, 247

Manolopoulos, D. E. (1988) ‘Close coupled equations,’ Ph.D. thesis, Cambridge University. 255

(p.313) Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. and Truhlar, D. G. (2009) ‘Consistent Van der Waals radii for the whole main group,’ J. Phys. Chem. A 113, 5806–5812. 202

Margenau, H. (1939) ‘Van der Waals forces,’ Rev. Mod. Phys. 11, 1–35. 57

Margoliash, D. J., Proctor, T. R., Zeiss, G. D. and Meath, W. J. (1978) ‘Triple-dipole energies for H, He, Li, N, O. H2, N2, O2, NO, N2O, H2O, NH3 and CH4 evaluated using pseudo-spectral dipole oscillator strength distributions.’ Molec. Phys. 35, 747–757. 189

Markland, T. E. and Manolopoulos, D. E. (2008a) ‘An efficient ring polymer contraction scheme for imaginary time path integral simulations,’ J. Chem. Phys. 129, 024105. 249

Markland, T. E. and Manolopoulos, D. E. (2008b) ‘A refined ring polymer contraction scheme for systems with electrostatic interactions,’ Chem. Phys. Lett. 464, 256–261. 249

Maroulis, G. (2003) ‘Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2,’ J. Chem. Phys. 118, 2673–2687. 124

Marx, D. and Hutter, J. (2009) Ab initio molecular dynamics: basic theory and advanced methods, Cambridge University Press. 249

Mas, E. M., Bukowski, R., Szalewicz, K., Groenenboom, G. C., Groenenboom, G. C., Wormer, P. E. S. and van der Avoird, A. (2000) ‘Water pair potential of near spectroscopic accuracy. I. Vibration–rotation–tunneling levels of the water dimer,’ J. Chem. Phys. 113, 6687–6701. 228

Mason, E. A. (1957) ‘Scattering of low-velocity molecular beams in gases,’ J. Chem. Phys. 26, 667–677. 261

Matsuoka, O., Clementi, E. and Yoshimine, M. (1976) ‘Configuration interaction study of the water dimer potential surface,’ J. Chem. Phys. 64, 1351–1367. 226

Mavroyannis, C. and Stephen, M. J. (1962) ‘Dispersion forces,’ Molec. Phys. 5, 629–638. 67, 68

Mayer, I. and Surjan, P. R. (1993) ‘Handling overlap as a perturbation,’ Croatica Chem. Acta 66, 161–165. 107

McClellan, A. L. (1963) Tables of Experimental Dipole Moments, vol. 1, Freeman. 14, 240

McClellan, A. L. (1974) Tables of Experimental Dipole Moments, vol. 2, Rahara Enterprises, El Cerrito. 14, 240

McClellan, A. L. (1989) Tables of Experimental Dipole Moments, vol. 3, Rahara Enterprises, El Cerrito. 14, 240

McDowell, S. A. C., Le Sueur, C. R., Buckingham, A. D. and Stone, A. J. (1992) ‘Using monomer properties to obtain integrated intensities for vibrational transitions of Van der Waals complexes,’ Molec. Phys. 77, 823–835. 157

McGurk, J., Norris, C. L., Tigelaar, H. L. and Flygare, W. H. (1973) ‘Molecular magnetic properties of FCl,’ J. Chem. Phys. 58, 3118–3120. 241

McIlroy, A., Lascola, R., Lovejoy, C. M. and Nesbitt, D. J. (1991) ‘Structural dependence of HF vibrational red shifts in ArnHF, n = 1–4, via high-resolution slit jet infrared spectroscopy,’ J. Phys. Chem. 95, 2636–2644. 252

McIlroy, A. and Nesbitt, D. J. (1992) ‘Intermolecular motion in ArnHF micromatrices,’ J. Chem. Phys. 97, 6044–6056. 252

McKellar, A. R. W. (1994) ‘Long-path equilibrium IR spectra of weakly bound complexes at low temperatures,’ Faraday Disc. 97, 69–80. 252

McLachlan, A. D. (1963) ‘Retarded dispersion forces between molecules,’ Proc. Roy. Soc. A 271, 387–401. 67

McQuarrie, D. A. (1976) Statistical Mechanics, Harper & Row, New York. 245, 247

McWeeny, R. (1984) ‘Weak interactions between molecules,’ Croatica Chem. Acta 57, 865–878. 180

McWeeny, R. (1989) Methods of Molecular Quantum Mechanics, Academic Press, London, 2nd edn. 280

Meath, W. J. and Aziz, R. A. (1984) ‘On the importance and problems in the construction of many-body potentials.’ Molec. Phys. 52, 225–243. 190

Meath, W. J. and Koulis, M. (1991) ‘On the construction and use of reliable two-body and many-body interatomic and intermolecular potentials,’ Theochem. (J. Mol. Struct.) 72, 1–37. 93, 190, 207

Meath, W. J. and Kumar, A. (1990) ‘Reliable isotropic and anisotropic dipole dispersion energies, evaluated using constrained dipole oscillator strength techniques, with application to interactions involving H2, N2, and the rare gases,’ Int. J. Quantum Chem. 38, issue S24, 501–520. 244

Meath, W. J., Margoliash, D. J., Jhanwar, B. L., Koide, A. and Zeiss, G. D. (1981) ‘Accurate molecular properties, their additivity, and their use in constructing intermolecular potentials,’ in Intermolecular forces, ed. B. Pullman, 101–115, Reidel, Dordrecht. 243

Meerts, W. L., de Leeuw, F. H. and Dymanus, A. (1977) ‘Electric and magnetic properties of carbon monoxide by molecular-beam electric-resonance spectroscopy,’ Chem. Phys. 22, 319–324. 133

Miller, K. J. (1990) ‘Additivity methods in molecular polarizability,’ J. Amer. Chem. Soc. 112, 8533–8542. 160

Millot, C., Soetens, J.-C., Martins Costa, M. T. C., Hodges, M. P. and Stone, A. J. (1998) ‘Revised anisotropic site potentials for the water dimer, and calculated properties,’ J. Phys. Chem. A 102, 754–770. 183, 228

Millot, C. and Stone, A. J. (1992) ‘Towards an accurate intermolecular potential for water,’ Molec. Phys. 77, 439–462. 156, 213, 227, 259

Milonni, P. W. and Eberly, J. H. (1988) Lasers, Wiley, New York. 197

(p.314) Mirsky, K. (1978) ‘The determination of the intermolecular interaction energy by empirical methods,’ in Computing in Crystallography, eds. R. Schenk, R. Olthof-Hazenkamp, H. van Koningsveld and G. C. Bassi, 169–182, Delft University Press. 211

Misquitta, A. J., Jeziorski, B. and Szalewicz, K. (2003) ‘Dispersion energy from density-functional theory description of monomers,’ Phys. Rev. Lett. 91, 33201. 117, 119

Misquitta, A. J., Jeziorski, B. and Szalewicz, K. (2005a) ‘Dispersion energy from density-functional theory description of monomers,’ Phys. Rev. Lett. 91, 033201. 86

Misquitta, A. J., Podeszwa, R., Jeziorski, B. and Szalewicz, K. (2005b) ‘Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations,’ J. Chem. Phys. 123, 214103. 86

Misquitta, A. J., Spencer, J., Stone, A. J. and Alavi, A. (2010) ‘Dispersion interactions between semiconducting wires,’ Phys. Rev. B 82, 075312. 181

Misquitta, A. J. and Stone, A. J. (2008) ‘Accurate induction energies for small organic molecules: 1. Theory,’ J. Chem. Theory Comput. 4, 7–18. 116, 175, 180

Misquitta, A. J. and Stone, A. J. (2012) ‘Ab initio atom–atom potentials using CAMCASP: pyridine,’ in preparation. See also http://www-stone.ch.cam.ac.uk/programs/camcasp.html. 175, 217, 219

Misquitta, A. J., Stone, A. J. and Price, S. L. (2008a) ‘Accurate induction energies for small organic molecules. 2. Development and testing of distributed polarizability models against sapt(dft) energies,’ J. Chem. Theory Comput. 4, 19–32. 175, 176

Misquitta, A. J. and Szalewicz, K. (2002) ‘Intermolecular forces from asymptotically corrected density functional description of monomers,’ Chem. Phys. Lett. 357, 301–306. 119, 120

Misquitta, A. J. and Szalewicz, K. (2005) ‘Symmetry-adapted perturbation-theory calculations of intermolecular forces employing density-functional description of monomers,’ J. Chem. Phys. 122, 214109. 119

Misquitta, A. J., Welch, G. W. A., Stone, A. J. and Price, S. L. (2008b) ‘A first principles prediction of the crystal structure of C6Br2ClFH2,’ Chem. Phys. Lett. 456, 105–109. 219

Momany, F. A. (1978) ‘Determination of partial atomic charge from ab initio molecular electrostatic potentials. Application to formamide, methanol and formic acid,’ J. Phys. Chem. 82, 592. 138

Morgan, J. D., III and Simon, B. (1980) ‘Behaviour of molecular potential energy curves for large molecular separation,’ Int. J. Quantum Chem. 17, 1143–1166. 106

Morokuma, K. (1971) ‘Molecular orbital studies of hydrogen bonds. III. C=O…H–O hydrogen bond in H2CO…H2O and H2CO…2H2O,’ J. Chem. Phys. 55, 1236–1244. 97

Morokuma, K. and Kitaura, K. (1981) ‘Energy decomposition analysis of molecular interactions,’ in Chemical Applications of Atomic and Molecular Eletrostatic Potentials, eds. P. Politzer and D. G. Truhlar, 215–242, Plenum Press, New York. 97

Moszynski, R., Heijmen, T. G. A. and Jeziorski, B. (1996) ‘Symmetry-adapted perturbation theory for the calculation of Hartree–Fock interaction energies,’ Molecular Phys. 88, 741–758. 116

Moszynski, R., Wormer, P. E. S., Heijmen, T. G. A. and van der Avoird, A. (1998) ‘Symmetry-adapted perturbation theory of non-additive three-body interactions in Van der Waals molecules. II. Application to the Ar2…HF interaction,’ J. Chem. Phys. 108, 579–589. 121

Moszynski, R., Wormer, P. E. S., Jeziorski, B. and van der Avoird, A. (1995a) ‘Symmetry-adapted perturbation theory of non-additive three-body interactions in Van der Waals molecules. I. General theory,’ J. Chem. Phys. 103, 8058–8074. 121

Moszynski, R., Wormer, P. E. S. and Van der Avoird, A. (1995b) ‘Ab initio potential-energy surface and near infrared spectrum of the He–C2H2 complex,’ J. Chem. Phys. 102, 8385–8397. 119

Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Scheraga, H. A., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. and Williams, D. E. (2002) ‘Crystal structure prediction of small organic molecules: a second blind test,’ Acta Cryst. B 58, 647–661. 266

Muenter, J. S. (1989) ‘Radio-frequency and microwave spectroscopy of the HCCH–CO2 and DCCD–CO2 Van der Waals complexes,’ J. Chem. Phys. 90, 4048–4053. 54

Mulliken, R. S. (1952) ‘Molecular compounds and their spectra,’ J. Amer. Chem. Soc. 74, 811–824. 150

Munro, L. J. and Wales, D. J. (1999) ‘Defect migration in crystalline silicon,’ Phys. Rev. B 59, 3969–3980. 229

Murray, C. W., Handy, N. C. and Laming, G. J. (1993) ‘Quadrature schemes for integrals of density functional theory,’ Molec. Phys. 78, 997–1014. 81, 128

Murrell, J. N. and Bosanac, S. D. (1989) Introduction to the Theory ofAtomic and Molecular Collisions, Wiley. 260, 262

Murrell, J. N. and Laidler, K. J. (1968) ‘Symmetries of activated complexes,’ Trans. Faraday Soc. 64, 371–377. 7

Murrell, J. N. and Shaw, G. (1967) ‘Intermolecular forces in the region of small orbital overlap,’ J. Chem. Phys. 46, 1768–1772. 111

(p.315) Murthy, C. S., O’Shea, S. F. and McDonald, I. R. (1983) ‘Electrostatic interactions in molecular crystals: lattice dynamics of solid nitrogen and carbon dioxide,’ Molec. Phys. 50, 531–541. 138

Musher, I. J. and Amos, A. T. (1967) ‘Theory of weak atomic and molecular interactions,’ Phys. Rev. 164, 31–43. 111

Muto, Y. (1943) Proc. Phys.-Math. Soc. Japan 17, 629–631. 188

Neiss, C. and Hättig, C. (2007) ‘Frequency-dependent nonlinear optical properties with explicitly correlated coupled-cluster response theory using the CCSD(R12) model,’ J. Chem. Phys. 126, 154101. 77

Nelson, D. D., Fraser, G. T. and Klemperer, W. (1985) ‘Ammonia dimer – a surprising structure,’ J. Chem. Phys. 83, 6201–6208. 251

Némethy, G., Pottle, M. S. and Scheraga, H. A. (1983) ‘Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions and hydrogen-bond interactions for the naturally occurring amino acids,’ J. Phys. Chem. 87, 1883–1887. 221

Nesbitt, D. J. (1994) ‘Probing potential energy surfaces via high-resolution IR laser spectroscopy,’ Faraday Discuss. Chem. Soc. 97, 1–18. 252

Nesbitt, D. J. and Child, M. S. (1993) ‘Rotational RKR inversion of intermolecular stretching potentials: extension to linear hydrogen-bonded complexes,’ J. Chem. Phys. 98, 478–486. 252

Nesbitt, D. J., Child, M. S. and Clary, D. C. (1989) ‘Rydberg–Klein–Rees inversion of high-resolution Van der Waals infrared spectra: an intermolecular potential energy surface for Ar…HF (v = 1),’ J. Chem. Phys. 90, 4855–4864. 252

Neumann, M. A. and Perrin, M.-A. (2005) ‘Energy ranking of molecular crystals using density functional theory calculations and an empirical Van der Waals correction,’ J. Phys. Chem. B 109, 3181–3183. 94

Nevins, N., Chen, K. and Allinger, N. L. (1996) ‘Molecular mechanics (MM4) calculations on alkenes,’ J. Comput. Chem. 17, 669–694. 221

Ng, K.-C., Meath, W. J. and Allnatt, A. R. (1979) ‘A reliable semi-empirical approach for evaluating the isotropic intermolecular forces between closed-shell systems,’ Molec. Phys. 37, 237–253. 207

Novick, S. E., Janda, K. C. and Klemperer, W. (1976) ‘HF–ClF: structure and bonding,’ J. Chem. Phys. 65, 5115– 5121. 155

Novoa, J. J., Planas, M. and Whangbo, M.-H. (1994) ‘A numerical evaluation of the counterpoise method on hydrogen bond complexes using near complete basis sets,’ Chem. Phys. Lett. 225, 240–246. 90

Nyburg, S. C. and Faerman, C. H. (1985) ‘A revision of Van der Waals radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon,’ Acta Cryst. B: Struct. Sci. B41, 274–279. 212

Oganov, A. R., ed. (2011) Modern Methods of Crystal Structure Prediction, Wiley-VCH, Weinheim. 265, 322

Ogilvie, J. F. (1988) ‘The electric dipole moment function of HF,’ J. Phys. B 21, 1663–1671. 134

Ohashi, N. and Pine, A. S. (1984) ‘High resolution spectrum of the HCl dimer,’ J. Chem. Phys. 81, 73–84. 55

Ohshima, Y., Masumoto, Y., Takami, M. and Kuchitsu, K. (1988) ‘The structure and tunneling motion of acetylene dimer studied by free-jet infrared absorption spectroscopy in the 14µm region,’ Chem. Phys. Lett. 147, 1–6. 53

Olsen, J.,|Christiansen, O.,|Koch, H.|Jorgensen, P. (1996) ‘Surprising cases of divergent behavior in MøllerPlesset perturbation-theory,’ J. Chem. Phys. 105, 5082–5090. 77

Olthof, E. H. T., van der Avoird, A. and Wormer, P. E. S. (1994) ‘Structure, internal mobility, and spectrum of the ammonia dimer: calculation of the vibration–rotation–tunneling states,’ J. Chem. Phys. 101, 8430–8442. 251, 256

Onuchic, J. N., Luthey-Schulten, Z. and Wolynes, P. G. (1997) ‘Theory of protein folding: the energy landscape perspective,’ Ann. Rev. Phys. Chem. 48, 545–600. 7

Pack, R. T. (1978) ‘Anisotropic potentials and the damping of rainbow and diffraction oscillations in differential cross-sections,’ Chem. Phys. Lett. 55, 197–201. 210

Pack, R. T., Piper, E., Pfeffer, G. A. and Toennies, J. P. (1984) ‘Multiproperty empirical anisotropic intermolecular potentials. II. He…SF6 and Ne…SF6,’ J. Chem. Phys. 80, 4940–4950. 210

Pack, R. T., Valentini, J. J. and Cross, J. D. (1982) ‘Multiproperty empirical anisotropic intermolecular potentials. I. Ar…SF6 and Kr…SF6,’ J. Chem. Phys. 77, 5486–5499. 210

Patel, A. J., Varilly, P., Jamadagni, S. N., Acharya, H., Garde, S. and Chandler, D. (2011) ‘Extended surfaces modulate hydrophobic interactions of neighboring solutes,’ Proc. Nat. Acad. Sci. (US) 108, 17678–17683. 193

Patkowski, K., Jeziorski, B. and Szalewicz, K. (2001a) ‘Symmetry-adapted perturbation theory with regularized Coulomb potential,’ J. Mol. Struct. (TheoChem) 547, 293–307. 114, 115

Patkowski, K., Jeziorski, B. and Szalewicz, K. (2004) ‘Unified treatment of chemical and Van der Waals forces via symmetry-adapted perturbation expansion,’ J. Chem. Phys. 120, 6849–6862. 114

Patkowski, K., Korona, T. and Jeziorski, B. (2001b) ‘Convergence behavior of the symmetry-adapted perturbation theory for states submerged in Pauli forbidden continuum,’ J. Chem. Phys. 115, 1137–1152. 113

Patkowski, K., Murdachaew, G., Fou, C.-M. and Szalewicz, K. (2005) ‘Accurate ab initio potential for argon dimmer including the highly repulsive region,’ Molec. Phys. 103, 2031–2045. 77

Pauling, L. (1928) ‘The shared-electron chemical bond,’ Proc. Nat. Acad. Sci. 14, 359–362. 153

(p.316) Pauling, L. (1960) The Nature of the Chemical Bond, Cornell University Press, 3rd edn. 154, 202

PCCP (2009) ‘Coarse-grained modeling of soft condensed matter,’ Phys. Chem. Chem. Phys 11, 1855–2125, (special issue). 229

Peet, A. C. and Yang, W. (1989) ‘An adapted form of the collocation method for calculating energy levels of rotating atom–diatom complexes,’ J. Chem. Phys. 91, 6598–6603. 257

Perdew, J. P., Burke, K. and Ernzerhof, M. (1996) ‘Generalized gradient approximation made simple,’ Phys. Rev. Lett. 77, 3865–3868, also see erratum, Phys. Rev. Lett. 78, 1396 (1996). 79

Perdew, J. P., Parr, R. G., Levy, M. and Balduz, J. L., Jr. (1982) ‘Density-functional theory for fractional particle number: derivative discontinuities of the energy,’ Phys. Rev. Lett. 49, 1691–1694. 79

Pérez, C., Muckle, M. T., Zaleski, D. P., Seifert, N. A., Temelso, B., Shields, G. C., Kisiel, Z. and Pate, B. H. (2012) ‘Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy,’ Science 336, 897–901. 251

Pérez-Jordá, J. M. and Becke, A. D. (1995) ‘A density-functional study of Van der Waals forces: rare gas diatomics,’ Chem. Phys. Lett. 233, 134–137. 92

Pertsin, A. J. and Kitaigorodsky, A. I. (1987) The atom–atom potential method: applications to organic molecular solids, vol. 43 of Springer series in chemical physics, Springer-Verlag, Berlin, New York. 265

Petersilka, M., Gossmann, U. J. and Gross, E. K. U. (1996) ‘Excitation energies from time-dependent density-functional theory,’ Phys. Rev. Lett. 76, 1212–1215. 85

Peterson, K. A. and Dunning, T. H. (1995) ‘Benchmark calculations with correlated molecular wave functions. VII. Binding energy and structure of the HF dimer,’ J. Chem. Phys. 102, 2032–2041. 6

Piana, S., Lindorff-Larsen, K. and Shaw, D. E. (2011) ‘How robust are protein folding simulations with respect to force field parameterization?’ Biophys. J. 100, L47–L49. 223

Pimentel, G. C. and McClellan, A. L. (1960) The Hydrogen Bond, W. H. Freeman, San Francisco. 153

Piquemal, J.-P., Chevreau, H. and Gresh, N. (2007) ‘Toward a separate reproduction of the contributions to the Hartree–Fock and DFT intermolecular interaction energies by polarizable molecular mechanics with the SIBFA potential,’ J. Chem. Theory Comput. 3, 824–837. 219

Piquemal, J.-P., Cisneros, G. A., Reinhardt, P., Gresh, N. and Darden, T. A. (2006) ‘Towards a force field based on density fitting,’ J. Chem. Phys. 124, 104101. 145

Piquemal, J.-P., Gresh, N. and Giessner-Prettre, C. (2003) ‘Improved formulas for the calculation of the electrostatic contribution to the intermolecular interaction energy from multipolar expansion of the electronic distribution,’ J. Phys. Chem. 107, 10353–10359. 145

Pitzer, K. S. (1959) ‘Inter- and intramolecular forces and molecular polarizabilities,’ Adv. Chem. Phys. 2, 59–83. 68

Podeszwa, R. and Szalewicz, K. (2007) ‘Three-body symmetry-adapted perturbation theory based on Kohn–Sham description of the monomers,’ J. Chem. Phys. 126, 194101. 121, 189

Poll, J. D. and Hunt, J. L. (1981) ‘Analysis of the far infrared spectrum of gaseous N2,’ Canad. J. Phys. 59, 1448– 1458. 124

Ponder, J. W. (2009) ‘TINKER – software tools for molecular design,’ Tech. rep., http://dasher.wustl.edu/tinker/. 223, 230

Ponder, J. W. and Case, D. A. (2003) ‘Force fields for protein simulations,’ in Protein Simulations, vol. 66 of Advances in Protein Chemistry, 27. 221, 223

Ponder, J. W., Wu, C., Ren, P., Pande, V. S., Chodera, J. D., Schnieders, M. J., Haque, I., Mobley, D. L., Lambrecht, D. S., DiStasio, R. A., Jr., Head-Gordon, M., Clark, G. N. I., Johnson, M. E. and Head-Gordon, T. (2010) ‘Current status of the AMOEBA polarizable force field,’ J. Phys. Chem. B 114, 2549–2564. 223

Popelier, P. L. A. (2000) Atoms in Molecules: an Introduction, Prentice-Hall, Harlow, UK. 129

Popelier, P. L. A. and Stone, A. J. (1994) ‘Formulae for the first and second derivatives of anisotropic potentials with respect to geometrical parameters,’ Molec. Phys. 82, 411–425, Erratum, Molec. Phys. (1995) 84, 811. 235

Pople, J. A., Schneider, W. G. and Bernstein, H. J. (1959) High-Resolution Nuclear Magnetic Resonance, McGrawHill, New York. 157

Price, S. L. (2009) ‘Computational prediction of organic crystal structures and polymorphism,’ Int. Rev. Phys. Chem. 27, 541–568. 265

Price, S. L., Leslie, M., Welch, G. W. A., Habgood, M., Price, L. S., Karamertzanis, P. G. and Day, G. M. (2010) ‘Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials,’ Phys. Chem. Chem. Phys 12, 8478–8490. 265

Price, S. L. and Stone, A. J. (1980) ‘Evaluation of anisotropic model intermolecular pair potentials using an ab initio SCF-CI surface,’ Molec. Phys. 40, 805–822. 212

Price, S. L. and Stone, A. J. (1982) ‘The anisotropy of the Cl2…Cl2 pair potential as shown by the crystal structure— evidence for intermolecular bonding or lone-pair effects?’ Molec. Phys. 47, 1457–1470. 212, 213

Price, S. L. and Stone, A. J. (1983) ‘A distributed multipole analysis of the charge densities of the azabenzene molecules,’ Chem. Phys. Lett. 98, 419–423. 134

(p.317) Price, S. L. and Stone, A. J. (1984) ‘A six-site intermolecular potential scheme for the azabenzene molecules, derived by crystal structure analysis,’ Molec. Phys. 51, 569–583. 134

Price, S. L. and Stone, A. J. (1987) ‘The electrostatic interactions in Van der Waals complexes involving aromatic molecules,’ J. Chem. Phys. 86, 2859–2868. 154

Price, S. L., Stone, A. J. and Alderton, M. (1984) ‘Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry,’ Molec. Phys. 52, 987–1001. 50

Prichard, J. S., Nandi, R. N., Muenter, J. S. and Howard, B. J. (1988) ‘Vibration–rotation spectrum of the carbondioxide acetylene Van der Waals complex in the 3µ region,’ J. Chem. Phys. 89, 1245–1250. 54

Pu, M., Garrahan, J. P. and Hirst, J. D. (2011) ‘Comparison of implicit solvent models and force fields in molecular dynamics simulations of the PB1 domain,’ Chem. Phys. Lett. 515, 283–289. 223

Pusztai, L., Pizio, O. and Sokolowski, S. (2008) ‘Comparison of interaction potentials of liquid water with respect to their consistency with neutron diffraction data of pure heavy water,’ J. Chem. Phys. 129, 184103. 264

Rauk, A., Allen, L. C. and Clementi, E. (1970) ‘Electronic structure and inversion barrier of ammonia,’ J. Chem. Phys. 52, 4133–4144. 88

Reed, A. E., Curtiss, L. A. and Weinhold, F. (1988) ‘Intermolecular interactions from a natural bond orbital, donor– acceptor viewpoint,’ Chem. Rev. 88, 899–926. 108, 156

Reed, A. E., Weinhold, F., Curtiss, L. A. and Pochatko, D. J. (1986) ‘Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO and CO2 with HF, H2O and NH3,’ J. Chem. Phys. 84, 5687–5705. 107, 108

Reimers, J. R., Watts, R. O. and Klein, M. L. (1982) ‘Intermolecular potential functions and the properties of water,’ Chem. Phys. 64, 95–114. 226, 227

Rein, R. (1973) ‘Physical properties and interactions of polyatomic molecules: with applications to molecular recognition in biology,’ Adv. Quantum Chem. 7, 335–396. 124

Ren, P. and Ponder, J. W. (2002) ‘Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations,’ J. Comput. Chem. 23, 1497–1506. 223

Ren, P. and Ponder, J. W. (2003) ‘Polarizable atomic multipole water model for molecular mechanics simulation,’ J. Phys. Chem. B 107, 5933–5947. 51, 223

Reynolds, C. A., Essex, J. W. and Richards, W. G. (1992a) ‘Atomic charges for variable molecular-conformations,’ J. Amer. Chem. Soc. 114, 9075–9079. 224

Reynolds, C. A., Essex, J. W. and Richards, W. G. (1992b) ‘Errors in free energy perturbation calculations due to neglecting the conformational variation of atomic charges,’ Chem. Phys. Letters 199, 257–260. 224

Rezus, Y. L. and Bakker, H. J. (2007) ‘Observation of immobilized water molecules around hydrophobic groups,’ Phys. Rev. Lett. 99, 148301. 193

Richardson, J. O. and Althorpe, S. C. (2009) ‘Ring-polymer molecular dynamics rate-theory in the deep-tunneling regime: connection with semiclassical instanton theory,’ J. Chem. Phys. 131, 214106. 260

Richardson, J. O. and Althorpe, S. C. (2011) ‘Ring-polymer instanton method for calculating tunneling splittings,’ J. Chem. Phys. 134, 054109. 260

Richardson, J. O., Althorpe, S. C. and Wales, D. J. (2011) ‘Instanton calculations of tunneling splittings for water dimer and trimer,’ J. Chem. Phys. 135, 124109. 260

Richardson, J. O., Althorpe, S. C. and Wales, D. J. (2012) in preparation. 260

Rijks, W. and Wormer, P. E. S. (1989) ‘Correlated Van der Waals coefficients. II. Dimers consisting of CO, HF, H2O and NH3,’ J. Chem. Phys. 90, 6507–6519, Note Erratum below, correcting many of the tabulated values. 68, 227

Rijks, W. and Wormer, P. E. S. (1990) ‘Erratum: Correlated Van der Waals coefficients. II. Dimers consisting of CO, HF, H2O and NH3,’ J. Chem. Phys. 92, 5754. 228

Rob, F., Podeszwa, R. and Szalewicz, K. (2007) ‘Electrostatic interaction energies with overlap effects from a localized approach,’ Chem. Phys. Lett. 445, 315–320. 145

Rocher-Casterline, B. E., Ch’ng, L. C., Mollner, A. K. and Reisler, H. (2011) ‘Determination of the bond dissociation energy (D 0) of the water dimer, (H2O)2, by velocity map imaging,’ J. Chem. Phys. 134, 211101. 228, 249, 250.

Rodger, P. M., Stone, A. J. and Tildesley, D. J. (1987) ‘Atomic anisotropy and the structure of liquid chlorine,’ J. Chem. Soc. Faraday Trans. II 83, 1689–1702. 248

Rodger, P. M., Stone, A. J. and Tildesley, D. J. (1988a) ‘The intermolecular potential of chlorine—a three-phase study,’ Molec. Phys. 63, 173–188. 212, 213

Rodger, P. M., Stone, A. J. and Tildesley, D. J. (1988b) ‘Intermolecular interactions in halogens: bromine and iodine,’ Chem. Phys. Lett. 145, 365–370. 212, 213

Roterman, I. K., Gibson, K. D. and Scheraga, H. A. (1989a) ‘A comparison of the CHARMm, AMBER and ECEPP potentials for peptides. 1. Conformational predictions for the tandemly repeated peptide (Asn–Ala–Asn–Pro)9,’ J. Biomol. Struct. Dyn. 7, 391–419. 138, 223

Roterman, I. K., Lambert, M. H., Gibson, K. D. and Scheraga, H. A. (1989b) ‘A comparison of the CHARMm, AMBER and ECEPP potentials for peptides. 2. Phi-psi maps for normal-acetyl alanine N’-methyl amide— comparisons, contrasts and simple experimental tests,’ J. Biomol. Struct. Dyn. 7, 421–453. 138, 223

(p.318) Rowlinson, J. S. (1949) ‘The second virial coefficient of polar gases,’ Trans. Faraday Soc. 45, 974. 225

Rowlinson, J. S. (1951) ‘The lattice energy of ice and the second virial coefficient of water vapour,’ Trans. Faraday Soc. 47, 120. 226

Rybak, S., Jeziorski, B. and Szalewicz, K. (1991) ‘Many-body symmetry-adapted perturbation theory of intermolecular interactions—H2O and HF dimers,’ J. Chem. Phys. 95, 6576–6601. 113

Sadlej, A. J. (1988) ‘Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties,’ Coll. Czech Chem. Commun. 53, 1995–2016. 87

Sadlej, A. J. (1991) ‘Medium-sized polarized basis sets for high-level correlated calculations of molecular electric properties. II. Second-row atoms Si–Cl,’ Theor. Chim. Acta 79, 123–140. 87

Salem, L. (1968) ‘Intermolecular orbital theory of the interaction between conjugated systems. I. General theory,’ J. Amer. Chem. Soc. 90, 543–552. 153

Sandorfy, C. (1976) Anharmonicity and Hydrogen Bonding, North-Holland, Amsterdam, 613–654. 157

Saykally, R. J. and Blake, G. A. (1993) ‘Molecular interactions and hydrogen-bond tunneling dynamics—some new perspectives,’ Science 259, 1570–1575. 250

Saykally, R. J. and Wales, D. J. (2012) ‘Pinning down the water hexamer,’ Science 336, 814–815. 251

Schäffer, R. and Jansen, G. (2012) ‘Intermolecular exchange-induction energies without overlap expansion,’ Theor. Chim. Acta submitted. 110

Schmuttenmaer, C. A., Cohen, R. C. and Saykally, R. J. (1994) ‘Spectroscopic determination of the intermolecular potential energy surface for Ar…NH3,’ J. Chem. Phys. 101, 146–173. 250

Schnieders, M. J., Fenn, T. D., Pande, V. S. and Brunger, A. T. (2009) ‘Polarizable atomic multipole X-ray refinement: application to peptide crystals,’ Acta Cryst D 65, 952–965. 241

Schwenke, D. W. and Truhlar, D. G. (1985) ‘Systematic study of basis set superposition errors in the calculated interaction energy of two HF molecules,’ J. Chem. Phys. 82, 2418–2426. 90

Shank, A., Wang, Y., Kaledin, A., Braams, B. J. and Bowman, J. M. (2009) ‘Accurate ab initio and “hybrid” potential energy surfaces, intramolecular vibrational energies, and classical IR spectrum of the water dimer,’ J. Chem. Phys. 130, 144314. 228, 259

Shaw, D. E. et al. (2008) ‘Anton, a special-purpose machine for molecular dynamics simulation,’ Comm. ACM 51, 91–97. 248

Sherrill, C. D., Sumpter, B. G., Sinnokrot, M. O., Marshall, M. S., Hohenstein, E. G., Walker, R. C. and Gould, I. R. (2009) ‘Assessment of standard force field models against high-quality ab initio potential curves for prototypes of r–r, CH–r, and SH–r interactions,’ J. Comput. Chem. 30, 2187–2193. 223

Sholl, D. and Steckel, J. A. (2009) Density Functional Theory: A Practical Introduction, Wiley, New Jersey. 78

Sikora, P. T. (1970) ‘Combining rules for spherically symmetrical intermolecular potentials,’ J. Phys. B 3, 1475–1482. 215

Silberstein, L. (1917) ‘Molecular refractivity and atomic interaction,’ Phil. Mag. 33, 92–128. 61, 161

Simon, S., Duran, M. and Dannenberg, J. J. (1996) ‘How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers?’ J. Chem. Phys. 105, 11024. 91

Singh, U. C. and Kollman, P. A. (1984) ‘An approach to computing electrostatic charges for molecules,’ J. Comput. Chem. 5, 129–145. 138

Sippl, M., Némethy, G. and Scheraga, H. A. (1984) ‘Intermolecular potentials from crystal data. 6. Determination of empirical potentials for OH…O=C hydrogen bond from packing considerations,’ J. Phys. Chem. 88, 6231–6233. 221

Slater, J. C. (1951) ‘A simplification of the Hartree–Fock method,’ Phys. Rev. 81, 385–390. 94

Slater, J. C. and Kirkwood, J. G. (1931) ‘The Van der Waals forces in gases,’ Phys. Rev. 37, 682–697. 68

Slipchenko, L. V. and Gordon, M. S. (2006) ‘Electrostatic energy in the effective fragment potential method: Theory and application to benzene dimer,’ J. Comput. Chem. 28, 276–291. 145

Smith, W. (1982a) ‘Point multipoles in the Ewald summation,’ CCP5 Quarterly 4, 13–25. 266

Smith, W. (1982b) ‘The program MDMULP,’ Tech. rep., Daresbury Laboratory. 266

Smith, W., Leslie, M. and Forester, T. R. (2003) ‘The DL–POLY–2 user manual,’ Tech. rep., CCLRC, Daresbury Laboratory, Warrington WA4 4AD, UK. 51

Soderhjelm, P., Kongsted, J. and Ryde, U. (2011) ‘Conformational dependence of isotropic polarizabilities,’ J. Chem. Theory Comput. 7, 1404–1414. 224

Soderhjelm, P. and Ryde, U. (2009) ‘How accurate can a force field become? A polarizable multipole model combined with fragment-wise quantum-mechanical calculations,’ J. Phys. Chem. A 113, 617–627. 223

Sokalski, W. A., Hariharan, P. C. and Kaufman, J. J. (1983a) ‘A self-consistent field interaction energy decomposition study of twelve hydrogen-bonded dimers,’ J. Phys. Chem. 87, 2803–2810. 98

Sokalski, W. A. and Poirier, R. A. (1983) ‘Cumulative atomic multipole representation of the molecular charge distribution and its basis set dependence,’ Chem. Phys. Lett. 98, 86–92. 124, 126

(p.319) Sokalski, W. A., Roszak, S., Hariharan, P. C. and Kaufman, J. J. (1983b) ‘Improved SCF interaction energy decomposition scheme corrected for basis set superposition effect,’ Int. J. Quantum Chem. 23, 847–854. 98

Sokalski, W. A. and Sawaryn, A. (1992) ‘Cumulative multicenter multipole moment databases and their applications,’ J. Mol. Struct. 256, 91–112. 139

Solheim, H., Ruud, K. and Åstrand, P.-O. (2004) ‘Atomic dipole moments calculated using analytical molecular second-moment gradients,’ J. Chem. Phys. 120, 10368–10378. 137

Spackman, M. A. (1992) ‘Molecular electric moments from X-ray diffraction data,’ Chemical Reviews 92, 1769– 1797. 136, 241

Spackman, M. A. (2006) ‘The use of the promolecular charge density to approximate the penetration contribution to intermolecular electrostatic energies,’ Chem. Phys. Lett. 418, 158–162. 145

Spackman, M. A. and Jayatilaka, D. (2009) ‘Hirshfeld surface analysis,’ CrystEngComm 11, 19–32. 241

Spackman, M. A., Munshi, P. and Dittrich, B. (2007) ‘Dipole moment enhancement in molecular crystals from X-ray diffraction data,’ ChemPhysChem 8, 2051–2063. 241

Sprik, M. (1991) ‘Hydrogen bonding and the static dielectric constant in liquid water,’ J. Chem. Phys. 95, 6762–6769. 227

Sprik, M. and Klein, M. L. (1988) ‘A polarizable model for water using distributed charge sites,’ J. Chem. Phys. 89, 7556–7560. 209, 227

Steinmann, C., Fedorov, D. G. and Jensen, J. H. (2010) ‘Effective fragment molecular orbital method: A merger of the effective fragment potential and fragment molecular orbital methods,’ J. Phys. Chem. A 114, 8705–8712. 219

Stephens, P. J., Devlin, J. F., Chabalowski, C. F. and Frisch, M. J. (1994) ‘Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,’ J. Phys. Chem. 98, 11623–11627. 79

Stephens, S. L., Walker, N. R. and Legon, A. C. (2011) ‘Internal rotation and halogen bonds in CF3I…NH3 and CF3I…N(CH3)3 probed by broadband rotational spectroscopy,’ Phys. Chem. Chem. Phys 13, 20736–20744. 250

Stevens, R. M., Pitzer, R. and Lipscomb, W. N. (1963) ‘Perturbed Hartree–Fock calculations. I. Magnetic susceptibility and shielding in the HF molecule,’ J. Chem. Phys. 38, 550–560. 85, 170

Stewart, J. J. P. (1989) ‘Optimization of parameters for semi-empirical methods. I. Method. II. Applications,’ J. Comput. Chem. 209–264. 95

Stillinger, F. H. and Rahman, A. (1974) ‘Improved simulation of liquid water by molecular dynamics,’ J. Chem. Phys. 60, 1545. 226

Stogryn, D. E. (1971) ‘Higher order interaction energies for systems of asymmetric molecules,’ Molec. Phys. 22, 81–103. 189

Stone, A. J. (1978a) ‘The description of bimolecular potentials, forces and torques: the S and V function expansions,’ Molec. Phys. 36, 241–256. 70

Stone, A. J. (1978b) ‘Theories of organic reactions,’ Chem. Soc. Spec. Periodical Rep. Theor. Chem. 3, 39–69. 153

Stone, A. J. (1979) ‘Intermolecular forces,’ in The Molecular Physics of Liquid Crystals, eds. G. R. Luckhurst and G. W. Gray, 31–50, Academic Press. 212

Stone, A. J. (1981) ‘Distributed multipole analysis; or how to describe a molecular charge distribution,’ Chem. Phys. Lett. 83, 233–239. 124

Stone, A. J. (1985) ‘Distributed polarizabilities,’ Molec. Phys. 56, 1065–1082. 27, 166

Stone, A. J. (1991) ‘Classical electrostatics in molecular interactions,’ in Theoretical Models of Chemical Bonding, vol. 4, ed. Z. B. Maksié, 103–131, Springer-Verlag. 50, 291

Stone, A. J. (1993) ‘Computation of charge-transfer energies by perturbation theory,’ Chem. Phys. Lett. 211, 101–109. 151, 152, 153, 156

Stone, A. J. (2005) ‘Distributed multipole analysis: Stability for large basis sets,’ J. Chem. Theory Comput. 1, 1128– 1132. 127, 219

Stone, A. J. (2011) ‘Electrostatic damping functions and the penetration energy,’ J. Phys. Chem. A 115, 7017–7027. 144

Stone, A. J. and Alderton, M. (1985) ‘Distributed multipole analysis—methods and applications,’ Molec. Phys. 56, 1047–1064. 123, 124, 127, 129

Stone, A. J. and Erskine, R. W. (1980) ‘Intermolecular self-consistent-field perturbation theory for organic reactions. I. Theory and implementation; nucleophilic attack on carbonyl compounds,’ J. Amer. Chem. Soc. 102, 7185–7192. 107

Stone, A. J., Hättig, C., Jansen, G. and Ángyán, J. G. (1996) ‘Transferability of topologically partitioned polarizabilities: the case of n-alkanes,’ Molec. Phys. 89, 595–605. 173

Stone, A. J. and Misquitta, A. J. (2009) ‘Charge transfer in symmetry-adapted perturbation theory,’ Chem. Phys. Lett. 473, 201–205. 151, 152

Stone, A. J. and Tong, C.-S. (1989) ‘Local and non-local dispersion models,’ Chem. Phys. 137, 121–135. 179, 180

(p.320) Stone, A. J. and Tong, C.-S. (1994) ‘Anisotropy of atom–atom repulsions,’ J. Comput. Chem. 15, 1377–1392. 215, 216

Stone, A. J. and Tough, R. J. A. (1984) ‘Spherical tensor theory of long-range intermolecular forces,’ Chem. Phys. Lett. 110, 123–129. 72

Storer, J. W., Giesen, D. J., Cramer, C. J. and Truhlar, D. G. (1995) ‘Class IV charge models: a new semiempirical approach in quantum chemistry,’ J. Comp.-AidedMolec. Design 9, 87–110. 136

Stouch, T. R. (2012) ‘The errors of our ways: taking account of error in computer-aided drug design to build confidence intervals for our next 25 years,’ J. Comput. Aided Mol. Des. 26, 125–134. 223

Strodel, B. and Wales, D. J. (2008) ‘Implicit solvent models and the energy landscape for aggregation of the amyloidogenic KFFE peptide,’ Phys. Chem. Chem. Phys 4, 657–672. 225

Strømsheim, M. D., Kumar, N., Coriani, S., Sagvolden, E., Teale, A. M. and Helgaker, T. (2011) ‘Dispersion interactions in density-functional theory: An adiabatic-connection analysis,’ J. Chem. Phys. 135, 194109. 93

Suhm, M. A. and Watts, R. O. (1991) ‘Quantum Monte-Carlo studies of vibrational states in molecules and clusters,’ Phys. Reports 204, 293–329. 258, 259

Surjan, P. R. and Mayer, I. (1991) ‘Intermolecular interactions: biorthogonal perturbation theory revisited,’ Theochem 72, 47–58. 108

Surjan, P. R., Mayer, I. and Lukovits, I. (1985) ‘Second-quantization-based perturbation theory for intermolecular interactions without basis set superposition error,’ Chem. Phys. Lett. 119, 538–542. 108

Surjan, P. R. and Poirier, R. A. (1986) ‘Intermolecular interactions using small basis sets: perturbation theory calculations avoiding basis set superposition error,’ Chem. Phys. Lett. 128, 358–362. 108

Svensson, M., Humbel, S., Froese, R. D. J., Matsubara, T., Sieber, S. and Morokuma, K. (1996) ‘ONIOM: A multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. a test for Diels–Alder reactions and Pt(P(t-Bu)3)2+H2 oxidative addition,’ J. Phys. Chem. 100, 19357–19363. 220

Szabo, A. and Ostlund, N. S. (1989) Modern Quantum Chemistry, McGraw-Hill. 74

Szalewicz, K. (2012) ‘Symmetry-adapted perturbation theory of intermolecular forces,’ WIREs Comp. Molec. Sci. 2, 254–272. 117

Szalewicz, K., Cole, S. J., Kołos, W. and Bartlett, R. J. (1988) ‘A theoretical study of the water dimer interaction,’ J. Chem. Phys. 89, 3662–3673. 90, 91

Szalewicz, K., Leforestier, C. and van der Avoird, A. (2009) ‘Towards the complete understanding of water by a first-principles computational approach,’ Chem. Phys. Lett. 482, 1–14. 227

Szalewicz, K., Patkowski, K. and Jeziorski, B. (2005) ‘Intermolecular interactions via perturbation theory: from diatoms to biomolecules,’ in Intermolecular Forces and Clusters II, ed. D. J. Wales, vol. 116 of Structure and Bonding, 43–117. 106

Tang, K. T. (1969) ‘Dynamic polarizabilities and Van der Waals coefficients,’ Phys. Rev. 177, 108–114. 68, 188

Tang, K. T. and Toennies, J. P. (1978) ‘A simple model of the Van der Waals potential at intermediate distances. II. Anisotropic potential of He…H2 and Ne…H2,’ J. Chem. Phys. 68, 5501–5517. 73

Tang, K. T. and Toennies, J. P. (1984) ‘An improved simple model for the Van der Waals potential based on universal damping functions for the dispersion coefficients,’ J. Chem. Phys. 80, 3726–3741. 206

Tekin, A. and Jansen, G. (2007) ‘How accurate is density functional theory combined with symmetry-adapted perturbation theory approach for ch–π and π–πp interactions? a comparison to supermolecular calculations for the acetylene–benzene dimer,’ Phys. Chem. Chem. Phys 9, 1680–1687. 121

Temelso, B., Archer, K. A. and Shields, G. C. (2011) ‘Benchmark structures and binding energies of small water clusters with anharmonicity corrections,’ J. Phys. Chem. A 115, 12034–12046. 185

Thakkar, A. J. (1988) ‘Higher dispersion coefficients: accurate values for the hydrogen atom and simple estimates for other systems,’ J. Chem. Phys. 89, 2092–2098. 73

Thakkar, A. J., Hettema, H. and Wormer, P. E. S. (1992) ‘Ab initio dispersion coefficients for interactions involving rare-gas atoms,’ J. Chem. Phys. 97, 3252–3264. 68

Thole, B. T. (1981) ‘Molecular polarizabilities calculated with a modified dipole interaction,’ Chem. Phys. 59, 341– 350. 164

Thomas, G. F. and Meath, W. J. (1977) ‘Dipole spectrum, sums and properties of ground-state methane and their relation to the molar refractivity and dispersion energy constant,’ Molec. Phys. 34, 113–125. 159

Thompson, K. C., Jordan, M. J. T. and Collins, M. A. (1998) ‘Polyatomic molecular potential energy surfaces by interpolation in local internal coordinates,’ J. Chem. Phys. 108, 8302–8315. 96, 224

Thornley, A. E. and Hutson, J. M. (1992) ‘The intermolecular potential of Ar–acetylene. Information from infrared and microwave spectroscopy,’ Chem. Phys. Lett. 198, 1–8. 263

Tinkham, M. (1964) Group Theory and Quantum Mechanics, McGraw-Hill, New York. 34

Tkatchenko, A., DiStasio, R. A., Jr., Head-Gordon, M. and Scheffler, M. (2009) ‘Dispersion-corrected Møller–Plesset second-order perturbation theory,’ J. Chem. Phys. 131, 094106. 93

(p.321) Tough, R. J. A. and Stone, A. J. (1977) ‘Properties of the regular and irregular solid harmonics,’ J. Phys. A 10, 1261–1269. 19, 45

Townes, C. H., Dousmanis, G. C., White, R. L. and Schwarz, R. F. (1955) ‘Connections between molecular structure and certain magnetic effects in molecules,’ Disc. Faraday Soc. 19, 56–64. 15, 241

Tozer, D. J. and Handy, N. C. (1998a) ‘The development of new exchange-correlation functionals,’ J. Chem. Phys. 108, 2545–2555. 79

Tozer, D. J. and Handy, N. C. (1998b) ‘Improving virtual Kohn–Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities,’ J. Chem. Phys. 109, 10180–10189. 79

Tsuzuki, S. and Lüthi, H. P. (2001) ‘Interaction energies of Van der Waals and hydrogen bonded systems calculated using density functional theory: assessing the PW91 model,’ J. Chem. Phys. 114, 3949–3957. 92

Unsöld, A. (1927) ‘Quantentheorie des Wasserstoffmolekülions und der Born–Landéschen Abstossunskräfte,’ Z. Physik. 43, 563–574. 65

Valiev, M., Bylaska, E. J., Govind, N., Kowalski, K., Straatsma, T. P., van Dam, H. J. J., Wang, D., Nieplocha, J., Apra, E., Windus, T. L. and de Jong, W. A. (2010) ‘NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations,’ Comp. Phys. Comm. 181, 14771489. 91

Van Bladel, J. W. I., Van der Avoird, A., Wormer, P. E. S. and Saykally, R. J. (1992) ‘Computational exploration of the six-dimensional vibration–rotation–tunnelling dynamics of (NH3)2,’ J. Chem. Phys. 97, 4750–4763. 256

Van Caillie, C. and Amos, R. D. (1998) ‘Static and dynamic polarisabilities, Cauchy coefficients and their anisotropies: a comparison of standard methods,’ Chem. Phys. Lett. 291, 71–77. 68

Van Caillie, C. and Amos, R. D. (2000) ‘Static and dynamic polarisabilities, Cauchy coefficients and their anisotropies: an evaluation of DFT functionals,’ Chem. Phys. Lett. 328, 446–452. 68

Van de Streek, J., Neumann, M. A. and Perrin, M.-A. (2010) ‘Energy ranking of molecular crystals using density functional theory calculations and an empirical Van der Waals correction,’ CrystEngComm 12, 3827–3833. 94

Van der Avoird, A. (1967a) ‘Intermolecular interactions by perturbation theory including exchange effects,’ Chem. Phys. Lett. 1, 24–27. 110

Van der Avoird, A. (1967b) ‘Note on a perturbation theory for intermolecular interactions in the wave operator formalism,’ Chem. Phys. Lett. 1, 411–412. 110

Van der Avoird, A. (1967c) ‘A perturbation theory for intermolecular interactions in the wave-operator formalism,’ J. Chem. Phys. 47, 3649–3653. 110

Van der Avoird, A., Olthof, E. H. T. and Wormer, P. E. S. (1994) ‘Is the NH3…NH3 riddle solved?’ Faraday Discussions 97, 43–55. 251

van Duijneveldt, F. B., van Duijneveldt-van de Rijdt, J. G. C. M. and van Lenthe, J. H. (1994) ‘State of the art in counterpoise theory,’ Chem. Rev. 94, 1873–1885. 89, 90

van Eijck, B. P. (2001) ‘Ab initio crystal structure predictions for flexible hydrogen-bonded molecules. Part III. Effect of lattice vibrations,’ J. Comput. Chem. 22, 816–826. 266

van Eijck, B. P., Mooij, W. T. M. and Kroon, J. (2001) ‘Ab initio crystal structure predictions for flexible hydrogen-bonded molecules. Part II. Accurate energy minimization,’ J. Comput. Chem. 22, 805–815. 266

van Gisbergen, S. J. A., Schipper, P. R. T., Gritsenko, O. V., Baerends, E. J., Snijders, J. G., Champagne, B. and Kirtman, B. (1999) ‘Electric field dependence of the exchange–correlation potential in molecular chains,’ Phys. Rev. Lett. 83, 694–697. 68

van Hemert, M. C., Wormer, P. E. S. and van der Avoird, A. (1983) ‘Ab initio calculation of the Heisenberg exchange interaction between O2 molecules,’ Phys. Rev. Lett. 51, 1167–1170. 200

VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T. and Hutter, J. (2005) ‘QuIcKsTep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach,’ Comp. Phys. Comm. 167, 103–128. 82

Varshalovich, D. A., Moskalev, A. N. and Khersonskii, V. K. (1988) Quantum Theory of Angular Momentum, World Scientific, Singapore. 275

Vigné-Maeder, F. and Claverie, P. (1988) ‘The exact multicentre multipolar part of a molecular charge distribution and its simplified representations,’ J. Chem. Phys. 88, 4934–4948. 123, 124

Voisin, C. and Cartier, A. (1993) ‘Determination of distributed polarizabilities to be used for peptide modelling,’ Theochem (J. Mol. Struct.) 105, 35–45. 165

Volkov, A., King, H. F. and Coppens, P. (2006) ‘Dependence of the intermolecular electrostatic interaction energy on the level of theory and the basis set,’ J. Chem. Theory Comput. 2, 81–89. 145

Volkov, A., Koritsanszky, T. and Coppens, P. (2004) ‘Combination of the exact potential and multipole methods (EP/MM) for evaluation of intermolecular electrostatic interaction energies with pseudoatom representation of molecular electron densities,’ Chem. Phys. Lett. 391, 170–175. 145

Vydrov, O. A. and Van Voorhis, T. (2010a) ‘Dispersion interactions from a local polarizability model,’ Phys. Rev. A 81, 062708. 93

Vydrov, O. A. and Van Voorhis, T. (2010b) ‘Nonlocal Van der Waals density functional: the simpler the better,’ J. Chem. Phys. 133, 244103. 93

(p.322) Waldman, M. and Hagler, A. T. (1993) ‘New combining rules for rare gas Van der Waals parameters,’ J. Comput. Chem. 14, 1077–1084. 203

Wales, D. J. (1991) ‘Theoretical study of some small Van der Waals complexes containing inert gas atoms,’ Molec. Phys. 74, 1–25. 229, 236

Wales, D. J. (2003) Energy Landscapes, Cambridge University Press, Cambridge. 251

Wales, D. J. (2004) Energy Landscapes: Applications to Clusters, Biomolecules and Glasses, Cambridge University Press, Cambridge, England. 7

Wales, D. J. (2011) ‘Energy landscapes and structure prediction using basin-hopping,’ in (Oganov 2011), 29–54. 265

Wang, J., Cieplak, P., Li, J., Hou, T., Luo, R. and Duan, Y. (2011) ‘Development of polarizable models for molecular mechanical calculations. I. Parameterization of atomic polarizability,’ J. Phys. Chem. B 115, 3091–3099. 165

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. and Case, D. A. (2004) ‘Development and testing of a general ArmEIL force field,’ J. Comput. Chem. 25, 1157–1174. 221

Wang, Y., Shepler, B. C., Braams, B. J. and Bowman, J. M. (2009) ‘Full-dimensional, ab initio potential energy and dipole moment surfaces for water,’ J. Chem. Phys. 131, 054511. 228, 260

Warshel, A. and Parson, W. W. (1987) ‘Spectroscopic properties of photosynthetic reaction centres,’ J. Amer. Chem. Soc. 109, 6143–6163. 198

Watanabe, A. and Welsh, H. L. (1964) ‘Direct spectroscopic evidence of bound states of (H2)2 complexes at low temperature,’ Phys. Rev. Lett. 13, 810–812. 252

Watson, M. A., Sałek, P., Macak, P. and Helgaker, T. (2004) ‘Linear-scaling formation of the Kohn–Sham Hamiltonian: application to the calculation of excitation energies and polarizabilities of large molecular systems,’ J. Chem. Phys. 121, 2915–2931. 80

Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P. (1984) ‘A new force field for molecular mechanical simulation of nucleic acids and proteins,’ J. Amer. Chem. Soc. 106, 765–784. 221

Weiner, S. J., Kollman, P. A., Nguyen, D. T. and Case, D. A. (1986) ‘An all atom force field for simulations of proteins and nucleic acids,’ J. Comput. Chem. 7, 230–252. 221

Welch, G. W. A., Karamertzanis, P. G., Misquitta, A. J., Stone, A. J. and Price, S. L. (2008) ‘Is the induction energy important for modelling organic crystals?’ J. Chem. Theory Comput. 4, 522–532. 218

Wells, A. F. (1975) Structural Inorganic Chemistry, Clarendon Press, Oxford, 4th edn. 185, 186

Wells, B. H. (1985) ‘The differential Green’s function Monte Carlo method. The dipole moment of LiH,’ Chem. Phys. Lett. 115, 89–94. 259

Wells, B. H. and Wilson, S. (1986) ‘Van der Waals interaction potentials: many-body effects in rare gas mixtures,’ Molec. Phys. 57, 421–426. 190

Wells, B. H. and Wilson, S. (1989a) ‘Van der Waals interaction potentials. Many-body effects in Ne4,’ Molec. Phys. 66, 457–464. 190

Wells, B. H. and Wilson, S. (1989b) ‘Van der Waals potentials: convergence of the many-body expansion,’ Molec. Phys. 65, 1363–1376. 190

Werner, H.-J. and Meyer, W. (1976) ‘PNO–CI and PNO–CEPA studies of electron correlation effects. V. Static dipole polarizabilities of small molecules,’ Molec. Phys. 31, 855–872. 86

Wheatley, R. J. (1993a) ‘Gaussian multipole functions for describing molecular charge distributions,’ Molec. Phys. 79, 597–610. 142

Wheatley, R. J. (1993b) ‘A new distributed multipole procedure for linear molecules,’ Chem. Phys. Lett. 208, 159– 166. 128

Wheatley, R. J. and Lillestolen, T. C. (2007) ‘Calculating intermolecular potentials with SIMPER: the water–nitrogen and water–oxygen interactions, dispersion energy coefficients, and preliminary results for larger molecules,’ Int. Rev. Phys. Chem. 26, 449–485. 219

Wheatley, R. J. and Lillestolen, T. C. (2009) ‘Calculating intermolecular potentials with SIMPER: the water–nitrogen and water–oxygen interactions, dispersion energy coefficients, and preliminary results for larger molecules,’ Int. Rev. Phys. Chem. 26, 449–485. 246

Wheatley, R. J. and Meath, W. J. (1993a) ‘Dispersion energy damping functions, and their relative scale with interatomic separation, for (H, He, Li)–(H, He, Li) interactions,’ Molec. Phys. 80, 25–54. 207

Wheatley, R. J. and Meath, W. J. (1993b) ‘On the relationship between first-order exchange and Coulomb interaction energies for closed shell atoms and molecules,’ Molec. Phys. 79, 253–275. 214

Wheatley, R. J. and Price, S. L. (1990a) ‘An overlap model for estimating the anisotropy of repulsion,’ Molec. Phys. 69, 507–533. 216, 217

Wheatley, R. J. and Price, S. L. (1990b) ‘A systematic intermolecular potential method applied to chlorine,’ Molec. Phys. 71, 1381–1404. 213

Wheatley, R. J., Tulegenov, A. S. and Bichoutskaia, E. (2004) ‘Intermolecular potentials from supermolecule and monomer calculations,’ Int. Rev. Phys. Chem. 23, 151–185. 219

(p.323) White, C. A., Johnson, B. G., Gill, P. M. and Head-Gordon, M. (1994) ‘The continuous fast multipole method,’ Chem. Phys. Lett. 230, 8–16. 80

Wiberg, K. B. and Rablen, P. R. (1993) ‘Comparison of atomic charges derived by different procedures,’ J. Comput. Chem. 14, 1504–1518. 139

Wilkinson, J. H. (1965) The Algebraic Eigenvalue Problem, Clarendon Press, Oxford. 107

Williams, D. B. (1965) ‘Repulsion center of a bonded hydrogen atom,’ J. Chem. Phys. 43, 4424–4426. 210

Williams, D. B. (1967) ‘Non-bonded potential parameters derived from crystalline hydrocarbons,’ J. Chem. Phys. 47, 4680–4684. 211

Williams, D. B. (1993) ‘Net atomic charge and multipole models for the ab initio molecular electrostatic potential,’ Rev. Comput. Chem. 2, 219–271. 54, 139

Williams, D. B. (1999) ‘Improved intermolecular force field for crystalline hydrocarbons containing four- or three-coordinated carbon,’ J. Mol. Struct. 485–486, 321–347. 211

Williams, D. B. (2001) ‘Improved intermolecular force field for molecules containing H, C, N, and O atoms, with applications to nucleoside and peptide crystals,’ J. Comput. Chem. 22, 1154–1166. 211

Williams, G. J. (2004) ‘Molecular distributed polarizabilities,’ Ph.D. thesis, University of Cambridge. 70, 180

Williams, G. J. and Stone, A. J. (2003) ‘Distributed dispersion: a new approach,’ J. Chem. Phys. 119, 4620–4628. 172

Williams, G. J. and Stone, A. J. (2004) ‘Transferable polarizabilities for the alkanes,’ Molec. Phys. 102, 985–991. 173

Williams, H. L. and Chabalowski, C. F. (2001) ‘Using Kohn–Sham orbitals in symmetry-adapted perturbation theory to investigate intermolecular interactions,’ J. Phys. Chem. A 105, 646–659. 119

Williams, H. L., Szalewicz, K., Jeziorski, B., Moszynski, R. and Rybak, S. (1993) ‘Symmetry-adapted perturbation theory calculation of the Ar…H2 intermolecular potential energy surface,’ J. Chem. Phys. 98, 1279–1292. 113, 119

Willis, B. T. M. (1994) ‘Crystallography with a pulsed neutron source,’ Zeit. Krist. 209, 385–389. 264

Willock, D. J., Leslie, M., Price, S. L. and Catlow, C. R. A. (1993) ‘The need for realistic electrostatic models to predict the crystal structures of NLO molecules,’ Mol. Cryst. Liq. Cryst. 234, 499–506. 230

Willock, D. J., Price, S. L., Leslie, M. and Catlow, C. R. A. (1995) ‘The relaxation of molecular crystal structures using a distributed multipole electrostatic model.’ J. Comput. Chem. 16, 628–647. 230, 265

Wilson, B. B., Jr (1968) ‘Some remarks on quantum chemistry,’ in Structural Chemistry and Molecular Biology, eds. A. Rich and N. Davidson, 753–760, W. H. Freeman, San Francisco. 78

Wilson, B. B., Jr, Decius, J. C. and Cross, P. C. (1955) Molecular Vibrations, McGraw-Hill, New York. 8

Wilson, M. and Madden, P. A. (1994) ‘Anion polarization and the stability of layered structures in MX 2 systems,’ J. Phys. Condensed Matter 6, 159–170. 185, 187, 209

Woodward, R. B. and Hoffmann, R. (1970) The Conservation of Orbital Symmetry, Verlag Chemie, Weinheim. 153

Wormer, P. B. S. and Hettema, H. (1992) ‘Many-body perturbation theory of frequency-dependent polarizabilities and Van der Waals coefficients: application to H2O…H2O and Ar…NH3,’ J. Chem. Phys. 97, 5592–5606. 68

Wormer, P. B. S., Kłos, J. A., Groenenboom, G. C. and van der Avoird, A. (2005) ‘Ab initio computed diabatic potential energy surfaces of OH…HCl,’ J. Chem. Phys. 122, 244325. 200

Wormer, P. B. S. and van der Avoird, A. (1984) ‘Heisenberg exchange and electrostatic interactions between O2 molecules: an ab initio study,’ J. Chem. Phys. 81, 1929–1939. 200

Wormer, P. B. S. and van der Avoird, A. (2000) ‘Intermolecular potentials, internal motions, and spectra of Van der Waals and hydrogen-bonded complexes,’ Chem. Rev. 100, 4109–4143. 251

Xantheas, S. S. (1995) ‘Ab initio studies of cyclic water clusters (H2O)n, n = 1–6. III. Comparison of density functional with MP2 results,’ J. Chem. Phys. 102, 4505–4517. 92

Yang, J. and Hättig, C. (2009) ‘Highly accurate CCSD(R12) and CCSD(F12) optical response properties using standard triple-ζ basis sets,’ J. Chem. Phys. 131, 074102. 77

Yang, J. and Hättig, C. (2010) ‘Recent advances in explicitly correlated coupled-cluster response theory for excited states and optical properties,’ Zeit. Phys. Chem. 224, 383–395. 77

Yang, M. B. and Watts, R. O. (1994) ‘The anisotropic potential energy surfaces of H2, N2, and Ar with C2H2 from total differential scattering experiments,’ J. Chem. Phys. 100, 3582–3593. 263

Yashonath, S., Price, S. L. and McDonald, I. R. (1988) ‘A six-site anisotropic atom–atom potential model for the condensed phases of benzene,’ Molec. Phys. 64, 361–376. 134

Zare, R. N. (1988) Angular Momentum, Wiley Interscience. 9, 22, 47, 271, 272, 274, 275, 276

Zuchowski, P. S., Podeszwa, R., Moszynski, R., Jeziorski, B. and Szalewicz, K. (2008) ‘Symmetry-adapted perturbation theory utilizing density functional description of monomers for high-spin open-shell complexes,’ JCP 129, 084101. 200