Jump to ContentJump to Main Navigation
Understanding Flowers and Flowering, Second Edition$

Beverley Glover

Print publication date: 2014

Print ISBN-13: 9780199661596

Published to Oxford Scholarship Online: April 2014

DOI: 10.1093/acprof:oso/9780199661596.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 18 October 2017

(p.247) References

(p.247) References

Understanding Flowers and Flowering, Second Edition
Oxford University Press

Bibliography references:

Aarts, M., R. Hodge, K. Kalantidis, D. Florack, Z. Wilson, B. Mulligan, W. Stiekema, R. Scott, and A. Pereira. (1997). The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant Journal12:615–623.

Abbott, R. J., P. A. Ashton, and D. G. Forbes. (1992). Introgressive origin of the radiate groundsel, Senecio vulgaris L. var. hibernicus Syme: Aat3 evidence. Heredity60:295–299.

Abe, M., Y. Kobayashi, S. Yamamoto, Y. Daimon, A. Yamaguchi, Y. Ikeda, H. Ichinoki, A. Notaguchi, K. Goto, and T. Araki. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science309:1052–1056.

Achard, P., H. Cheng, L. de Grauwe, J. Decat, H. Schoutteten, T. Moritz, D. V. D. Straeten, J. Peng, and N. P. Harberd. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science311:91–94.

Ache, B., and J. Young. (2005). Olfaction: diverse species, conserved principles. Neuron48:417–430.

Ackerman, J. (2000). Abiotic pollen and pollination: ecological, functional and evolutionary perspectives. Plant Systematics and Evolution222:167–185.

Ackerman, J., and A. Montalvo. (1990). Short- and long-term limitations to fruit production in a tropical orchid. Ecology71:263–272.

Ahmad, M., and A. R. Cashmore. (1993). HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature366:162–166.

Ahn, J. H., D. Miller, V. J. Winter, M. J. Banfield, J. H. Lee, S. Y. Yoo, S. R. Henz, R. L. Brady, and D. Weigel. (2006). A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO Journal25:605–614.

Aigner, P. (2004). Floral specialisation without trade-offs: optimal corolla flare in contrasting pollination environments. Ecology85:2560–2569.

Aigner, P. (2006). The evolution of specialised floral phenotypes in a fine-grained pollination environment. In N. Waser and J. Ollerton (eds), Plant–Pollinator Interactions, pp. 23–46. University of Chicago Press, London.

Ainsworth, C. (2000). Boys and girls come out to play: the molecular biology of dioecious plants. Annals of Botany86:211–221.

Ainsworth, C., S. Crossley, V. Buchanan-Wollaston, M. Thangavelu, and J. Parker. (1995). Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression. Plant Cell7:1583–1598.

Ainsworth, C., A. Rahman, J. Parker, and G. Edwards. (2005). Intersex inflorescences of Rumex acetosa demonstrate that sex determination is unique to each flower. New Phytologist165:711–720.

Airoldi, C., S. Bergonzi, and B. Davies. (2010). Single amino acid change alters the ability to specify male or female organ identity. Proceedings of the National Academy of Sciences of the USA107:18898–18902.

Aizen, M., and D. Vázquez. (2006). Flowering phonologies of hummingbird plants from the temperate forest of southern South America: is there evidence of competitive displacement? Ecogeography29:357–366.

Alabadi, D., T. Oyama, M. Yanovsky, F. Harmon, P. Mas, and S. Kay. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science293:880–883.

Al-Babili, S., J. Lintig, H. Haubruck, and P. Beyer. (1996). A novel, soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplasts is Hsp70-complexed and competent for flavinylation, membrane association and enzymatic activation. Plant Journal9:601–612.

Albert, N., D. Lewis, H. Zhang, K. Schwinn, P. Jameson, and K. Davies. (2011). Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant Journal65:771–784.

Alcorn, K., H. Whitney, and B. J. Glover. (2012). Flower movement increases pollinator preference for flowers with better grip. Functional Ecology26:941–947.

Alexandre, C., and L. Hennig. (2008). FLC or not FLC: the other side of vernalization. Journal of Experimental Botany59:1127–1135.

(p.248) Alfenito, M., E. Souer, C. Goodman, R. Buell, J. Mol, R. Koes, and V. Walbot. (1998). Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell10:1135–1149.

Allen, A., C. Thorogood, M. Hegarty, C. Lexer, and S. Hiscock. (2011). Pollen-pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus. Annals of Botany108:687–698.

Almeida, J., R. Carpenter, T. P. Robbins, C. Martin, and E. S. Coen. (1989). Genetic interactions underlying flower colour patterns in Antirrhinum majus. Genes and Development3:1758–1767.

Alvarez-Buylla, E., S. Liljegren, S. Pelaz, S. Gold, C. Burgeff, G. Ditta, F. Vergara-Silva, and M. Yanofsky. (2000). MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant Journal24:457–466.

Alvarez-Buylla, E., B. Garcia-Ponce, and A. Garay-Arroyo. (2006). Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes. Journal of Experimental Botany57:3099–3107.

Ambrose, B., D. Lerner, P. Ciceri, C. Padilla, M. Yanofsky, and R. Schmidt. (2000). Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell5:569–579.

Anastasiou, E., S. Kenz, M. Gerstung, D. Maclean, J. Timmer, C. Fleck, and M. Lenhard. (2007). Control of plant organ size by KLUH/CYP78A5-dependent intercellular signalling. Developmental Cell13:843–856.

Andersen, C. H., C. S. Jensen, and K. Petersen. (2004). Similar genetic switch systems might integrate the floral inductive pathways in dicots and monocots. Trends in Plant Science9:105–107.

Andersen, O., and M. Jordheim. (2006). The anthocyanins. In: Anderson O.M., Markham K.R. (eds) Flavonoids: Chemistry, biochemistry and applications, pp. 471–530. CRC Press, Boca Raton, FL.

Anderson, M., E. Cornish, S. Mau, E. Williams, R. Hoggart, A. Atkinson, I. Boenig, B. Grego, R. Simpson, P. Roche, J. Haley, J. Penschow, H. Niall, G. Treager, J. Coughlan, R. Crawford, and A. Clarke. (1986). Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature321:38–44.

Angenent, G., J. Franken, M. Busscher, A. Vandijken, J. Vanwent, H. Dons, and A. van Tunen. (1995). A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell7:1569–1582.

Angiosperm Phylogeny Group. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society161:105–121.

Anon. (1921). Letters to Editor. Nature107:301.

Arber, A. (1937). The interpretation of the flower: a study of some aspects of morphological thought. Biological Reviews12:157–184.

Arber, A. (1946). Goethe’s botany. Chronica Botanica10:63–126.

Armbruster, W. S., M. Edwards, and E. Debevec. (1994). Floral character displacement generates an assemblage structure of Western Australian triggerplants (Stylidium). Ecology75:315–329.

Ashman, T., T. Knight, J. Steets, P. Amarasekare, M. Burd, D. Campbell, M. Dudash, M. Johnston, S. Mazer, R. Mitchell, M. Morgan, and W. Wilson. (2004). Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology85:2408–2421.

Ashman, T., M. Bradburn, D. Cole, B. Blaney, and R. Raguso. (2005). The scent of a male: the role of floral volatiles in pollination of a gender dimorphic plant. Ecology86:2099–2105.

Aubert, D., L. Chen, Y. Moon, D. Martin, L. Castle, C. Yang, and Z. R. Sung. (2001). EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell13:1865–1875.

Auckerman, M. J., I. Lee, D. Weigel, and R. M. Amasino. (1999). The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant Journal18:195–203.

Ausin, I., C. Alonso-Blanco, J. Jarillo, L. Ruiz-Garcia, and J. Martinez-Zapater. (2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature Genetics36:162–166.

Ayasse, M., F. P. Schiestl, H. F. Paulus, F. Ibarra, and W. Francke. (2003). Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proceedings of the Royal Society B: Biological Sciences270:517–522.

Ayasse, M., J. Stoekl, and W. Franke. (2011). Chemical ecology and pollinator-driven speciation in sexually deceptive orchids. Phytochemistry72:1667–1677.

Baker, C., P. Sieber, F. Wellmer, and E. Meyerowitz. (2005). The early extra petals 1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Current Biology15:303–315.

Balasubramanian, S., S. Sureshkumar, J. Lempe, and D. Weigel (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genetics2:e106.

Barak, S., E. Tobin, C. Andronis, S. Sugano, and R. Green. (2000). All in good time: the Arabidopsis circadian clock. Trends in Plant Science5:517–522.

Barrett, P. M., and K. J. Willis. (2001). Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biological Reviews of the Cambridge Philosophical Society76:411–447.

(p.249) Barrett, S. C. H. (2002). The evolution of plant sexual diversity. Nature Reviews Genetics3:274–284.

Barrett, S. C. H., L. K. Jesson, and A. M. Baker. (2000). The evolution and function of stylar polymorphisms in flowering plants. Annals of Botany85:A253–A265.

Bartlett, M., and C. Specht. (2011). Changes in expression pattern of the TEOSINTE BRANCHED1-line genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. American Journal of Botany98:1–17.

Bascompte, J., P. Jordano, C. Melian, and J. Olesen. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences of the USA100:9383–9387.

Bastow, R., J. S. Mylne, C. Lister, Z. Lippman, R. A. Martienssen, and C. Dean. (2004). Vernalization requires epigenetic silencing of FLC by histone methylation. Nature427:164–167.

Battey, N. H., and F. Tooke. (2002). Molecular control and variation in the floral transition. Current Opinion in Plant Biology5:62–68.

Baum, D. A. (1998). The evolution of plant development. Current Opinion in Plant Biology1:79–86.

Baurle, I., L. Smith, D. Baulcombe, and C. Dean. (2007). Widespread role for the flowering time regulators FCA and FPA in RNA-mediated chromatin silencing. Science318:109–112.

Becker, A., and G. Theissen. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution29:464–489.

Beld, M., C. Martin, H. Huits, A. Stuitje, and A. G. M. Gerats. (1989). Flavonoid synthesis in Petunia; partial characterisation of dihydroflavonol 4-reductase genes. Plant Molecular Biology13:491–502.

Bell, C., D. Soltis, D, and P. Soltis. (2005a). The age of the angiosperms: A molecular timescale without a clock. Evolution59:1245–1258.

Bell, C., D. Soltis, and P. Soltis. (2010). The age and diversification of the angiosperms re-revisited. American Journal of Botany97:1296–1303.

Bell, J., J. Karron, and R. Mitchell. (2005b). Interspecific competition for pollination lowers seed production and outcrossing in Mimulus ringens. Ecology86:762–771.

Bennett, A., and M. Thery. (2007). Avian colour vision and colouration: multidisciplinary evolutionary biology. American Naturalist169:S1–S6.

Bereterbide, A., M. Hernould, S. Castera, and A. Mouras. (2001). Inhibition of cell proliferation, cell expansion and differentiation by the Arabidopsis SUPERMAN gene in transgenic tobacco plants. Planta214:22–29.

Berger, F., and D. Twell. (2011). Germline specification and function in plants. Annual Reviews in Plant Biology62:461–484.

Bernier, G., and C. Perilleux. (2005). A physiological overview of the genetics of flowering time control. Plant Biotechnology Journal3:3–16.

Bertin, R. (1993). Incidence of monoecy and dichogamy in relation to self-fertilization in angiosperms. American Journal of Botany80:557–560.

Bertin, R., and C. Newman. (1993). Dichogamy in angiosperms. Botanical Review59:112–152.

Beveridge, C., and I. Murfet. (1996). The gigas mutant in pea is deficient in the floral stimulus. Physiologia Plantarum96:637–645.

Bey, M., K. Stuber, K. Fellenberg, Z. Schwarz-Sommer, H. Sommer, H. Saedler, and S. Zachgo. (2004). Characterisation of Antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. Plant Cell16:3197–3215.

Blazquez, M., and D. Weigel. (2000). Integration of floral inductive signals in Arabidopsis. Nature404:889–892.

Blazquez, M., R. Green, O. Nilsson, M. Sussman, and D. Weigel. (1998). Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell10:791–800.

Blazquez, M., J. Ahn, and D. Weigel. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics33:168–171.

Blazquez, M., C. Ferrandiz, F. Madueno, and F. Parcy. (2006). How floral meristems are built. Plant Molecular Biology60:855–870.

Bodson, M. (1985). Changes in adenine nucleotide content in the apical bud of Sinapis alba L. during floral transition. Planta163:34–37.

Bodson, M., and W. Outlaw (1985). Elevation in the sucrose content of the shoot apical meristem of Sinapis alba at floral evocation. Plant Physiology79:420–424.

Boggs, N., K. Dwyer, M. Nasrallah, and J. Nasrallah. (2009). In vivo detection of residues required for ligand-selective activation of the S-locus receptor in Arabidopsis. Current Biology19:786–791.

Böhlenius, H., T. Huang, L. Charbonnel-Campaa, A. Brunner, S. Jansson, S. Strauss, and O. Nilsson. (2006). CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science312:1040–1043.

Bond, D., E. Dennis, and J. Finnegan. (2011). The low temperature response pathways for cold acclimation and vernalization are independent. Plant Cell and Environment34:1737–1748.

Borner, R., G. Kampnann, J. Chandler, R. Gleissner, E. Wisman, K. Apel, and S. Melzer. (2000). A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant Journal24:591–599.

Borthwick, H. A., Hendricks, S. B., Parker, M. W., Toole, E. H. and Toole, V. K. (1952). A reversible photoreaction controlling seed germination. Proceedings of the National Academy of Sciences of the USA38:662–666.

(p.250) Boualem, A., C. Troadec, I. Kovalski, M. Sari, R. Perl-Treves, and A. Bendahmane. (2009). A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS One4:e6144.

Bowman, J., D. Smyth, and E. Meyerowitz. (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development112:1–20.

Bowman, J., H. Sakai, T. Jack, D. Weigel, U. Mayer, and E. Myerowitz. (1992). Superman, a regulator of floral homeotic genes in Arabidopsis. Development114:599–615.

Bowman, J., J. Alvarez, D. Weigel, E. Meyerowitz, and D. Smyth. (1993). Control of flower development in Arabidopis thaliana by APETALA1 and interacting genes. Development119:721–743.

Box, M., R. Bateman, B. Glover, and P. Rudall. (2008). Floral ontogenetic evidence of repeated speciation via paedomorphosis in subtribe Orchidinae (Orchidaceae). Botanical Journal of the Linnean Society157:429–454.

Box, M., and B. Glover. (2010). A plant developmentalist’s guide to paedomorphosis. Trends in Plant Science15:241–246.

Box, M. S., S. Dodsworth, P. Rudall, R. Bateman, and B. Glover. (2011). Characterisation of Linaria KNOX genes suggests a role in petal spur development. Plant Journal608:703–714.

Box, M., S. Dodsworth, P. Rudall, R. Bateman, and B. Glover. (2012). Flower-specific KNOX phenotype in the orchid Dactylorhiza fuchsia. Journal of Experimental Botany63:4811–4819.

Bradley, D., R. Carpenter, H. Sommer, N. Hartley, and E. Coen. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the PLENA locus of Antirrhinum. Cell72:85–95.

Bradley, D., R. Carpenter, L. Copsey, C. Vincent, S. Rothstein, and E. Coen. (1996). Control of inflorescence architecture in Antirrhinum. Nature379:791–797.

Bradley, D., O. Ratcliffe, C. Vincent, R. Carpenter, and E. Coen. (1997). Inflorescence commitment and architecture in Arabidopsis. Science275:80–83.

Bradshaw, E., P. Rudall, D. Devey, M. Thomas, B. Glover, and R. Bateman. (2010). Comparative labellum micromorphology of the sexually deceptive temperate orchid genus Ophrys: diverse epidermal cell types and multiple origins of structural colour. Botanical Journal of the Linnean Society162:504–540.

Bradshaw, H., and D. Schemske. (2003). Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature426:176–178.

Brenner, G. J. (1996). Evidence for the earliest stages of angiosperm pollen evolution: a paleoequatorial section from Israel. In D. W. Taylor and L. J. Hickey (eds) Flowering Plant Origin, Evolution and Phylogeny, pp. 91–115. Chapman and Hall, New York.

Breuil-Broyer, S., P. Morel, J. Almeida-Engler, V. Coustham, I. Negrutiu, and C. Trehin. (2004). High-resolution boundary analysis during Arabidopsis thaliana flower development. Plant Journal38:182–192.

Brioudes, F., C. Joly, J. Szecsi, E. Varaud, J. Leroux, F. Bellvert, C. Bertrand, and M. Bendahmane. (2009). Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant Journal60:1070–1080.

Brockington, S., R. Walker, B. Glover, P. Soltis, and D. Soltis. (2011). Complex evolution of pigmentation in the Caryophyllales. New Phytologist190:854–864.

Brockington, S., P. Rudall, M. Frohlich, D. Oppenheimer, P. Soltis, and D. Soltis. (2012). “Living stones” reveal alternative petal identity programmes within the core eudicots. Plant Journal69:193–203.

Brockington, S., R. Alvarez-Fernandez, J. Landis, K. Alcorn, R. Walker, M. Thomas, L. Hileman, and B. Glover. (2013). Evolutionary analysis of the MIXTA gene family highlights potential targets for the study of cellular differentiation. Molecular Biology and Evolution30:526–540.

Broholm, S., S. Tahtiharju, R. Laitinen, V. Albert, T. Teeri, and P. Elomaa. (2008). A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proceedings of the National Academy of Sciences of the USA105:9117–9122.

Brown, B. J., R. J. Mitchell, and S. A. Graham. (2002). Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology83:2328–2336.

Brugliera, F., G. Barr-Rewell, T. Holton, and J. Mason. (1999). Isolation and characterisation of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant Journal19:441–451.

Bumrungsri, S., E. Sripaoraya, T. Chongsiri, K. Sridith, and P. A. Racey. (2009). The pollination ecology of durian (Durio zibethinus, Bombacaceae) in southern Thailand. Journal of Tropical Ecology25:85–92.

Busch, A., and S. Zachgo. (2007). Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceedings of the National Academy of Sciences of the USA104:16714–16719.

Busch, M., K. Bomblies, and D. Weigel. (1999). Activation of a floral homeotic gene in Arabidopsis. Science285:585–587.

Buzgo, M., P. Soltis, and D. Soltis. (2004). Floral development and morphology of Amborella trichopoda (Amborellaceae). International Journal of Plant Science165:925–947.

Byzova, M., J. Franken, M. Aarts, J. de Almeida-Engler, G. Engler, C. Mariani, M. Campagne, and G. Angenent. (1999). Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower and ovule development. Genes and Development13:1002–1014.

(p.251) Cabrillac, D., J. Cock, C. Dumas, and T. Gaude. (2001). The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature410:220–223.

Campbell, D. (1996). Evolution of floral traits in a hermaphroditic plant: field measurements of heritabilities and genetic correlations. Evolution50:1442–1453.

Campbell, D., and K. Halama. (1993). Resource and pollen limitations to lifetime seed production in a natural plant population. Ecology74:1043–1051.

Campbell, D., N. Waser, M. Price, E. Lynch, and R. Mitchell. (1991). Components of phenotypic selection: pollen export and flower corolla width in Ipomopsis aggregata. Evolution45:1458–1467.

Carlsbecker, A., K. Tandre, U. Johanson, M. Englund, and P. Engstrom. (2004). The MADS box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant Journal40:546–557.

Carpenter, R., and E. Coen. (1990). Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes and Development4:1483–1493.

Cartolano, M., R. Castillo, N. Efremova, M. Kuckenberg, J. Zethof, T. Gerats, Z. Schwarz-Sommer, and M. Vandenbussche. (2007). A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nature Genetics39:901–905.

Cashmore, A., J. Jarillo, Y. Wu, and D. Liu. (1999). Cryptochromes: blue light receptors for plants and animals. Science284:760–765.

Castillejo, C., and S. Pelaz. (2008). The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Current Biology18:1338–1343.

Causier, B., R. Catillo, J. Zhou, R. Ingram, Y. Xue, Z. Schwarz-Sommer, and B. Davies. (2005). Evolution in action: following function in duplicated floral homeotic genes. Current Biology15:1508–1512.

Causier, B., D. Bradley, H. Cook, and B. Davies. (2009). Conserved intragenic elements were critical for the evolution of the floral C-function. Plant Journal58:41–52.

Chae, E., Q. Tan, T. Hill, and V. Irish. (2008). An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development135:1235–1245.

Chanderbali, A., V. Albert, J. Leebens-Mack, N. Altman, D. Soltis, and Soltis, P. (2009). Transcriptional signatures of ancient floral developmental genetics in avocado (Persea americana, Laureaceae). Proceedings of the National Academy of Sciences of the USA106:8929–8934.

Chandler, J., J. M. Martinez-Zapater, and C. Dean. (2000). Mutations causing defects in the biosynthesis and response to gibberellins, abscisic acid and phytochrome B do not inhibit vernalization in Arabidopsis fca-1. Planta210:677–682.

Chang, F., Y. Wang, S. Wang, and H. Ma. (2011). Molecular control of microsporogenesis in Arabidopsis. Current Opinion in Plant Biology14:66–73.

Chanvivattana, Y., A. Bishopp, D. Schubert, C. Stock, Y. Moon, Z. R. Sung, and J. Goodrich. (2004). Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development131:5263–5276.

Chapman, M., S. Tang, D. Draeger, S. Nambeesan, H. Shaffer, J. Barb, S. Knapp, and J. Burke. (2012). Genetic analysis of floral symmetry in Van Gogh’s sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLoS Genetics8:e1002628.

Chappell, J. (1995). Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Anuual Review of Plant Physiology and Plant Molecular Biology46:521–547.

Charlesworth, D. (2002). Self-incompatibility: how to stay incompatible. Current Biology12:R424–R426.

Charlesworth, D. (2006). Evolution of plant breeding systems. Current Biology16:R726–R735.

Chaw, S., C. Parkinson, Y. Cheng, T. Vincent, and J. Palmer. (2000). Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers. Proceedings of the National Academy of Sciences of the USA97:4086–4091.

Chen, D., J. Collins, and T. Goldsmith. (1984). The ultraviolet receptor of bird retinas. Science285:337–340.

Chen, D., B. Guo, S. Hexige, T. Zhang, D. Shen, and F. Ming. (2007). SQUA-like genes in the orchid Phalaenopsis are expressed in both vegetative and reproductive tissues. Planta226:369–380.

Chen, H., Y. Shen, X. Tang, L. Yu, J. Wang, L. Guo, Y. Zhang, H. Zhang, S. Feng, E. Strickland, N. Zeng, and X. Deng. (2006). Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell18:1991–2004.

Chen, H., X. Huang, G. Gusmaroli, W. Terzhagi, O. Lau, Y. Yanagawa, Y. Zhang, J. Li, J. Lee, D. Zhu, and X. Deng. (2010). Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell22:108–123.

Chen, M., and J. Chory. (2011). Phytochrome signalling mechanisms and the control of plant development. Trends in Cell Biology21:664–671.

Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science303:2022–2025.

Chen, Z. J., and L. Tian. (2007). Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochimica et Biophysica Acta1769:295–307.

(p.252) Chittka, L. (1996). Does bee colour vision predate the evolution of flower colour? Naturwissenschaften83:136–138.

Chittka, L., and N. M. Waser. (1997). Why red flowers are not invisible to bees. Israel Journal of Plant Sciences45:169–183.

Chittka, L., and S. Schürkens. (2001). Successful invasion of a floral market. An exotic Asian plant has moved in on Europe’s river-banks by bribing pollinators. Nature146:653.

Chittka, L., and N. Raine. (2006). Recognition of flowers by pollinators. Current Opinion in Plant Biology9:428–435.

Choi, K., J. Kim, H. Hwang, S. Kim, C. Park, S. Kim, and I. Lee. (2011). The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. The Plant Cell23:289–303.

Christinet, L., F. Burdet, M. Zaiko, U. Hinz, and J. Zryd. (2004). Characterization and functional identification of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiology134:265–274.

Chuck, G., R. Meeley, E. Irish, H. Sakai, and S. Hake. (2007). The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nature Genetics39:1517–1521.

Ciaffi, M., A. Paolacci, O. Tanzarella, and E. Porceddu. (2011). Molecular aspects of flower development in grasses. Sexual Plant Reproduction24:247–282.

Citerne, H., R. T. Pennington, and Q. C. B. Cronk. (2006). An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proceedings of the National Academy of Sciences of the USA103:12017–12020.

Clack, T., A. Shokry, M. Moffet, P. Liu.M. Faul, and R. Sharrock. (2009). Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor. Plant Cell21:786–799.

Clegg, M., and M. Durbin. (2003). Tracing floral adaptations from ecology to molecules. Nature Reviews Genetics4:206–215.

Clough, S. J., and A. F. Bent. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal16:735–743.

Coe, E. H., S. McCormick, and S. A. Modena. (1981). White pollen in maize. Journal of Heredity72:318–320.

Coen, E., and E. Meyerowitz. (1991). The war of the whorls: genetic interactions controlling flower development. Nature353:31–37.

Coen, E. S., R. Carpenter, and C. Martin. (1986). Transposable elements generate novel patterns of gene expression in Antirrhinum majus. Cell47:285–296.

Coen, E., J. M. Romero, S. Doyle, R. Elliott, G. Murphy, and R. Carpenter. (1990). floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell63:1311–1322.

Colasanti, J., and V. Sundaresan. (2000). “Florigen” enters the molecular age: long-distance signals that cause plants to flower. Trends in Biochemical Sciences25:236–240.

Colcombet, J., A. Boisson-Cernier, R. Ros-Palau, C. Vera, and J. Schroeder. (2005). Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES 1 and 2 are essential for tapetum development and microspore maturation. Plant Cell17:3350–3361.

Colombo, L., J. Franken, E. Koetje, J. van Went, H. Dons, G. Angenent, and A. van Tunen. (1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell7:1859–1868.

Comba, L., S. A. Corbet, H. Hunt, S. Outram, J. S. Parker, and B. J. Glover. (2000). The role of genes influencing the corolla in pollination of Antirrhinum majus. Plant, Cell and Environment23:639–647.

Conner, J., and Z. Liu. (2000). LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proceedings of the National Academy of Sciences of the USA97:12902–12907.

Corbesier, L., and G. Coupland. (2005). Photoperiodic flowering of Arabidopsis: integrating genetic and physiological approaches to characterisation of the floral stimulus. Plant, Cell and Environment28:54–66.

Corbesier, L., C. Vincent, S. Jang, F. Fornara, Q. Fan, I. Searle, A. Giakountis, S. Farrona, L. Gissot, C. Turnbull, and Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science316:1030–1033.

Corley, S. B., R. Carpenter, L. Copsey, and E. Coen. (2005). Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences of the USA102:5068–5073.

Coupland, G. (1995). Genetic and environmental control of flowering time in Arabidopsis. Trends in Genetics11:393–397.

Cox, P. A. (1988). Hydrophilous pollination. Annual Reviews in Ecology and Systematics19:261–280.

Cox, P. (1991). Abiotic pollination—an evolutionary escape for animal-pollinated angiosperms. Philosophical Transactions of the Royal Society of London Series B333:217–224.

Crane, P. (1985). Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of the Missouri Botanical Garden72:716–793.

Crane, P. R., E. M. Friis, and K. R. Pedersen. (1995). The origin and early diversification of angiosperms. Nature374:27–33.

Crawford, B. C. W., U. Nath, R. Carpenter, and E. S. Coen. (2004). CINCINNATA controls both cell differentiation (p.253) and growth in petal lobes and leaves of Antirrhinum. Plant Physiology135:244–253.

Cronk, Q. C. B. (2001). Plant evolution and development in a post-genomic context. Nature Reviews Genetics2:607–619.

Cubas, P. (2003). Floral zygomorphy, the recurring evolution of a successful trait. BioEssays26:1175–1184.

Cubas, P., C. Vincent, and E. S. Coen. (1999). An epigenetic mutation responsible for natural variation in floral symmetry. Nature401:157–161.

Culley, T., S. Weller, and A. Sakai. (2002). The evolution of wind pollination in angiosperms. Trends in Ecology and Evolution17:361–369.

Danieli-Silva, A., J. de Souza, A. Donatti, R. Campos, J. Vicente-Silva, L. Freitas, and I. Varassin. (2011). Do pollination syndromes cause modularity and predict interactions in a pollination network in tropical high-altitude grasslands? Oikos121:35–43.

Danyluk, J., N. Kane, G. Breton, A. Limin, D. B. Fowler, and F. Sarhan. (2003). TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiology132:1849–1860.

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. Murray, London.

Das, P., T. Ito, F. Wellmer, T. Vernoux, A. Dedieu, J. Traas, and E. Meyerowitz. (2009). Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA. Development136:1605–1611.

Davis, C., P. Endress, and D. Baum. (2008). The evolution of floral gigantism. Current Opinion in Plant Biology11:49–57.

Davis, S., J. Kurepa, and R. Vierstra. (1999). The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proceedings of the National Academy of Sciences of the USA96:6541–6546.

de Bodt, S., J. Raes, K. Florquin, S. Rombauts, P. Rouze, G. Theissen, and Y. Van de Peer. (2003). Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. Journal of Molecular Evolution56:573–586.

Delgado-Vargas, F., and O. Paredes-Lopez. (2002). Anthocyanins and betalains. In: Natural Colorants for Food and Nutraceutical Uses, pp. 167–219. CRC Press, Boca Raton, FL.

Dellaporta, S., and A. Calderon-Urrea. (1994). The sex determination process in maize. Science266:1501–1505.

Deng, X., M. Matsui, N. Wei, D. Wagner, A. Chu, K. Feldmann, and P. Quail. (1992). COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell71:791–801.

de Vetten, N., F. Quattrocchio, J. Mol, and R. Koes. (1997). The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants and animals. Genes and Development11:1422–1434.

de Vlaming, P., A. W. Scram, and H. Wiering. (1983). Genes affecting flower colour and pH of flower limb homogenates in Petunia hybrida. Theoretical and Applied Genetics66:271–278.

Dewitte, W., C. Riou-Khamlichi, S. Scofield, J. M. S. Healy, A. Jacqmard, N. J. Kilby, and J. A. H. Murray. (2003). Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. Plant Cell15:79–92.

Diggle, P., V. Di Stilio, A. Gschwend, E. Golenberg, R. Moore, J. Russell, and J. Sinclair. (2011). Multiple developmental processes underlie sex differentiation in angiosperms. Trends in Genetics27:368–376.

Dilcher, D. (2000). Towards a new synthesis: major evolutionary trends in the angiosperm fossil record. Proceedings of the National Academy of Sciences of the USA97:7030–7036.

Dinh, T., T. Girke, X. Liu, L. Yant, M. Schmid, and X. Chen. (2012). The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element. Development139:1978–1986.

Disch, S., E. Anastasiou, V. Sharma, T. Laux, J. Fletcher, and M. Lenhard. (2006). The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Current Biology16:272–279.

Distelfeld A., C. Li, and J. Dubcovsky (2009). Regulation of flowering in temperate cereals. Current Opinion in Plant Biology12:178–184.

Di Stilio, V., E. Kramer, and D. Baum. (2005). Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae)—a new model for the study of dioecy. The Plant Journal41:755–766.

Di Stilio, V., C. Martin, A. Schulfer, and C. Connelly. (2009). An ortholog of MIXTA-like 2 controls epidermal cell shape in flowers of Thalictrum. New Phytologist183:718–728.

Ditta, G., A. Pinyopich, P. Robles, S. Pelaz, and M. Yanofsky. (2004). The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology14:1935–1940.

Dobson, H., E. Danielson, and I. van Wesep. (1999). Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant Species Biology14:153–166.

Doi, K., T. Izawa, T. Fuse, U. Yamanouchi, T. Kubo, Z. Shimatani, M. Yano, and A. Yoshimura. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes and Development18:926–936.

(p.254) Dong, C., M. Agarwal, Y. Zhang, Q. Xie, and J. Zhu. (2006). The negative regulator of plant cold responses, HOS1, is a ring E3 ligase that mediates the ubiquitination and degradation of ICE1. Proceedings of the National Academy of Sciences of the USA103:8281–8286.

Dooner, H. K. (1983). Coordinate genetic regulation of flavonoid biosynthetic enzymes in maize. Molecular and General Genetics189:136–141.

Dornelas, M., and A. Rodriguez. (2005). A FLORICAULA/LEAFY gene homolog is preferentially expressed in developing female cones of the tropical pine Pinus caribaea var. caribaea. Genetics and Molecular Biology28:299–307.

Doyle, J., and M. Donoghue. (1986). Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Review52:321–431.

Dresselhaus, T. (2006). Cell–cell communication during double fertilization. Current Opinion in Plant Biology9:41–47.

Drews, G., J. Bowman, and E. Meyerowitz. (1991). Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell65:991–1002.

Drews, G., D. Wang, J. Steffen, K. Schumaker, and R. Yadegari. (2011). Identification of genes expressed in the angiosperm female gametophye. Journal of Experimental Botany62:1593–1599.

Dudareva, N., and E. Pichersky. (2006). Biology of Floral Scent. Taylor and Francis, Boca Raton, FL.

Duek, P., M. Elmer, V. Van Oosten, and C. Fankhauser. (2004). The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Current Biology14:2296–2301.

Dyer, A. G., H. M. Whitney, S. E. J. Arnold, B. J. Glover, and L. Chittka. (2006). Bees associate warmth with floral colour. Nature442:525.

Dyer, A. G., H. M. Whitney, S. E. J. Arnold, B. J. Glover, and L. Chittka. (2007). Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod Plant Interactions1:45–55.

Ebel, C., L. Mariconti, and W. Gruissem. (2004). Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature429:776–780.

Eckardt, N. (2003). A component of the cryptochrome blue light signalling pathway. Plant Cell15:1051–1052.

Eckhart, V., N. Rushing, G. Hart, and J. Hansen. (2006). Frequency-dependent pollinator foraging in polymorphic Clarkia xantiana ssp. xantiana populations: implications for flower colour evolution and pollinator interactions. Oikos112:412–421.

Egea-Cortines, M., H. Saedler, and H. Sommer. (1999). Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO Journal18:5370–5379.

Eiskowitch, D. (1980). The role of dark flowers in the pollination of certain Umbelliferae. Journal of Natural History14:737–742.

Ellis, A., and S. Johnson. (2010). Floral mimicry enhances pollen export: the evolution of pollination by sexual deceit outside of the Orchidaceae. American Naturalist176:E143–E151.

Emborg, T., J. Walker, B. Noh, and R. Viestra. (2006). Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Plant Physiology140:856–868.

Endress, P. K. (1987). The early evolution of the angiosperm flower. Trends in Ecology and Evolution2:300–304.

Endress, P. K. (1996). Structure and function of female and bisexual organ complexes in Gnetales. International Journal of Plant Science157:S113–S125.

Endress, P. K. (2001). Evolution of floral symmetry. Current Opinion in Plant Biology4:86–91.

Endress, P., and A. Igersheim. (2000). The reproductive structures of the basal angiosperm Amborella trichopoda (Amborellaceae). International Journal of Plant Science161:S237–S248.

Epperson, B., and M. Clegg. (1987). Frequency-dependent variation for outcrossing rate among flower colour morphs of Ipomoea purpurea. Evolution41:1302–1311.

Eriksson, S., H. Bohlenius, T. Moritz, and O. Nilsson. (2006). GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell18:2172–2181.

Eriksson, S., L. Stransfield, N. Adamski, H. Breuninger, and M. Lenhard. (2010). KLUH/CYP78A5 dependent growth signalling coordinates floral organ growth in Arabidopsis. Current Biology20:527–532.

Faegri, K., and L. van der Pijl. (1966). The Principles of Pollination Ecology. Pergamon Press, Oxford.

Fan, H., Y. Hu, M. Tudor, and H. Ma. (1997). Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant Journal12:999–1010.

Fankhauser, C., K. Yeh, J. C. Lagarias, H. Zhang, T. Elich, and J. Chory. (1999). PKS1, a substrate phosphorylated by phytochrome that modulates light signalling in Arabidopsis. Science284:1539–1541.

Farre, G., C. Bai, R. Twyman, T. Capell, P. Christou, and C. Zhu. (2011). Nutritious crops producing multiple carotenoids—a metabolic balancing act. Trends in Plant Science16:532–540.

Farzad, M., R. Griesbach, and M. R. Weiss. (2002). Floral colour change in Viola cornuta L. (Violaceae): a model system to study regulation of anthocyanin production. Plant Science162:225–231.

(p.255) Favaro, R., A. Pinyopich, R. Battaglia, M. Kooiker, L. Borghi, G. Ditta, M. Yanofsky, M. Kater, and L. Colombo. (2003). MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell15:2603–2611.

Feinsinger, P. (1987). Effects of plant species on each other’s pollination: is community structure influenced? Trends in Ecology and Evolution2:123–126.

Feng, C., X. Liu, Y. Yu, D. Xie, R. Franks, and J. Wang. (2012). Evolution of bract development and B-class MADS box gene expression in petaloid bracts of Cornus s.l. (Cornaceae). New Phytologist196:631–643.

Feng, W., Y. Jacob, K. Veley, L. Ding, X. Yu, G. Choe, and S. Michaels. (2011). Hypomorphic alleles reveal FCA-independent roles for FY in the regulation of FLOWERING LOCUS C. Plant Physiology155:1425–1434.

Feng, X., Z. Zhao, Z. Tian, et al. (2006). Control of petal shape and floral zygomorphy in Lotus japonicus. Proceedings of the National Academy of Sciences of the USA103:4970–4975.

Fenster, C., W. S. Armbruster, P. Wilson, M. Dudash, and J. Thomson. (2004). Pollination syndromes and floral specialization. Annual Reviews in Ecology, Evolution and Systematics35:375–403.

Feyissa, D., T. Lovdal, K. Olsen, R. Slimestad, and C. Lillo. (2009). The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves. Planta230:747–754.

Figueiredo, P., M. Elhabiri, K. Toki, N. Saito, O. Dangles, and R. Brouillard. (1996). New aspects of anthocyanin complexation. Intramolecular copigmentation as a means for colour loss? Phytochemistry41:301–308.

Finnegan, E. J., R. K. Genger, K. Kovac, W. J. Peacock, and E. S. Dennis. (1998). DNA methylation and the promotion of flowering by vernalization. Proceedings of the National Academy of Sciences of the USA95:5824–5829.

Finnegan, E. J., K. A. Kovac, E. Jaligot, C. C. Sheldon, W. J. Peacock, and E. S. Dennis. (2005). The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant Journal44:420–432.

Finnegan, J., and E. Dennis. (2007). Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Current Biology17:1978–1983.

Flanagan, C., and H. Ma (1994). Spatially and temporally regulated expression of the MADS box gene AGL2 in wild type and mutant Arabidopsis flowers. Plant Molecular Biology26:581–595.

Fleming, T. (2006). Reproductive consequences of early flowering in organ pipe cactus, Stenocereus thurberi. International Journal of Plant Sciences167:473–481.

Flores-Renteria, L., A. Vazquez-Lobo, A. Whipple, D. Pinero, J. Marquez-Guzman, and C. Dominguez. (2011). Functional bisporangiate cones in Pinus johannis (Pinaceae): implications for the evolution of bisexuality in seed plants. American Journal of Botany98:130–139.

Foote, H., J. Ride, V. Franklin-Tong, E. Walker, M. Lawrence, and C. Franklin. (1994). Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. Proceedings of the National Academy of Sciences of the USA91:2265–2269.

Fowler, S., K. Lee, H. Onouchi, A. Samach, K. Richardson, B. Morris, G. Coupland, and J. Putterill. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO Journal18:4679–4688.

Franklin-Tong, V., and C. Franklin. (2003). Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends in Plant Science8:598–605.

Franks, R., C. Wang, J. Levin, and Z. Liu. (2002). SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development129:253–263.

Franks, R. G., Z. Liu, and R. L. Fischer. (2006). SEUSS and LEUNIG regulate cell proliferation, vascular development and organ polarity in Arabidopsis petals. Planta224:801–811.

Free, J. (1968). Dandelion as a competitor to fruit trees for bee visits. Journal of Applied Ecology5:169–178.

Freeman, D. C., E. D. McArthur, K. Harper, and A. Blauer. (1981). Influence of environment on the floral sex ratio of monoecious plants. Evolution35:194–197.

Freeman, D., J. Doust, A. El-Keblawy, K. Miglia, and E. McArthur. (1997). Sexual specialization and inbreeding avoidance in the evolution of dioecy. Botanical Review63:65–92.

Friedman, J., and S. Barrett. (2008). A phylogenetic analysis of the evolution of wind pollination in the angiosperms. International Journal of Plant Sciences169:49–58.

Friedman, W. (1990). Double fertilisation in Ephedra, a nonflowering seed plant: its bearing on the origin of angiosperms. Science247:951–954.

Friedman, W. E. (2006). Embryological evidence for developmental lability during early angiosperm evolution. Nature441:337–340.

Friedman, W., and K. Ryerson. (2009). Reconstructing the ancestral female gametophyte of angiosperms: insights from Amborella and other ancient lineages of flowering plants. American Journal of Botany96:129–143.

Friis, E. M., K. R. Pedersen, and P. R. Crane. (1999). Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early (p.256) Cretaceous floras from Portugal. Annals of the Missouri Botanical Garden86:259–296.

Friis, E., K. Pedersen, and P. Crane. (2001). Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature410:357–360.

Friis, E., K. Pedersen, and P. Crane. (2005). When Earth started blooming: insights from the fossil record. Current Opinion in Plant Biology8:5–12.

Frohlich, M. W. (2002). The Mostly Male theory of flower origins: summary and update regarding the Jurassic pteridosperm Pteroma. In: Q. C. B. Cronk, R. M. Bateman, and J. A. Hawkins (eds) Developmental Genetics and Plant Evolution, pp. 85–108. Taylor and Francis, London.

Frohlich, M. W., and D. S. Parker. (2000). The mostly male theory of flower evolutionary origins: from genes to fossils. Systematic Botany25:155–170.

Fukada-Tanaka, S., Y. Inagaki, T. Yamaguchi, N. Saito, and S. Iida. (2000). Colour-enhancing protein in blue petals. Nature407:581.

Fulton, M., and S. Hodges. (1999). Floral isolation between Aquilegia formosa and Aquilegia pubescens. Proceedings of the Royal Society of London Series B266:2247–2252.

Furner, I. J., and M. Matzke. (2010). Methylation and demethylation of the Arabidopsis genome. Current Opinion in Plant Biology14:137–141.

Furner, I. J., J. Ainscough, J. Pumfrey, and L. Petty. (1996). Clonal analysis of the late flowering fca mutant of Arabidopsis thaliana: cell fate and cell autonomy. Development122:1041–1050.

Furness, C., P. Rudall, and F. B. Sampson. (2002). Evolution of microsporogenesis in angiosperms. International Journal of Plant Science163:235–260.

Galego, L., and J. Almeida. (2002). Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes and Development16:880–891.

Galen, C. (1996a). Rates of floral evolution: adaptation to bumblebee pollination in an alpine wildflower, Polemonium viscosum. Evolution50:120–125.

Galen, C. (1996b). The evolution of floral form: insights from an alpine wildflower, Polemonium viscosum (Polemoniaceae). In: D. Lloyd and S. Barrett (eds), Floral Biology, pp. 273–291. Chapman and Hall, New York.

Galen, C., and M. Stanton. (1989). Bumble bee pollination and floral morphology: factors influencing pollen dispersal in the alpine sky pilot, Polemonium viscosum (Polemoniaceae). American Journal of Botany76:419–426.

Galen, C., and J. Cuba (2001). Down the tube: pollinators, predators and the evolution of flower shape in the alpine skypilot, Polemonium viscosum. Evolution55:1963–1971.

Galizia, C. G., J. Kunze, A. Gumbert, A. K. Borg-Karlson, S. Sachse, C. Markl, and R. Menzel. (2005). Relationship of visual and olfactory signal parameters in a food-deceptive flower mimicry system. Behavioural Ecology16:159–168.

Garner, W., and H. Allard. (1920). Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Journal of Agricultural Research18:553–606.

Garray-Arroyo, A., A. Pineyro-Nelson, B. Garcia-Ponce, M. Sanchez, and E. Alvarez-Buylla. (2012). When ABC becomes ACB. Journal of Experimental Botany63:2377–2395.

Gendall, A. R., Y. Y. Levy, A. Wilson, and C. Dean. (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell107:525–535.

Ghazoul, J. (2006). Floral diversity and the facilitation of pollination. Journal of Ecology94:295–304.

Gigord, L., M. Macnair, and A. Smithson. (2001). Negative frequency-dependent selection maintains a dramatic flower colour polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soo. Proceedings of the National Academy of Sciences of the USA98:6253–6255.

Giurfa, M., B. Eichmann, and R. Menzel. (1996). Symmetry perception in an insect. Nature382:458–461.

Giurfa, M., A. Dafni, and P. Neal. (1999). Floral symmetry and its role in plant-pollinator systems. International Journal of Plant Sciences160:S41–S50.

Glover, B. J., and C. Martin. (1998). The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. Heredity80:778–784.

Glover, B. J., M. Perez-Rodriguez, and C. Martin. (1998). Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development125:3497–3508.

Gocal, G., C. Sheldon, F. Gubler, T. Moritz, D. Bagnall, C. MacMillan, S. Li, R. Parish, E. Dennis, D. Weigel, and R. King. (2001). GAMYB-like genes, flowering, and gibberellin signalling in Arabidopsis. Plant Physiology127:1682–1693.

Goldraij, A., K. Kondo, C. Lee, C. Hancock, M. Sivaguru, S. Vazquez-Santana, S. Kim, T. Phillips, F. Cruz-Garcia, and B. McClure. (2006). Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature439:805–810.

Goldsmith, T., and K. Goldsmith. (1979). Discrimination of colours by the black-chinned hummingbird, Archilochus alexandri. Journal of Comparative Physiology A130:209–220.

Golz, J. F., E. J. Keck, and A. Hudson. (2002). Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum. Current Biology12:515–522.

Gomez, J., F. Perfectti, and J. Camacho. (2006). Natural selection on Erysimum mediohispanicum flower shape: insights into the evolution of zygomorphy. American Naturalist168:531–545.

Gomi, K., and M. Matsuoka. (2003). Gibberellin signalling pathway. Current Opinion in Plant Biology6:489–493.

(p.257) Gonthier, R., A. Jacqmard, and G. Bernier. (1987). Changes in cell cycle duration and growth fraction in the shoot meristem of Sinapis during floral transition. Planta170:55–59.

Goodman, C., P. Casati, and V. Walbot. (2004) A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell16:1812–1826.

Goodrich, J., R. Carpenter, and E. S. Coen. (1992). A common gene regulates pigmentation pattern in diverse plant species. Cell68:955–964.

Goodwin, T. W. (1980). The Biochemistry of the Carotenoids. Volume 1. Chapman and Hall, New York.

Goremykin, V. V., K. I. Hirsch-Ernst, S. Wolfl, and F. H. Hellwig. (2003). Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Molecular Biology and Evolution20:1499–1505.

Gorton, H. L., and T. C. Vogelmann. (1996). Effects of epidermal cell shape and pigmentation on optical properties of Antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiology112:879–888.

Goto, K., and E. Meyerowitz. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes and Development8:1548–1560.

Goto, K., J. Kyozuka, and J. Bowman. (2001). Turning floral organs into leaves, leaves into floral organs. Current Opinion in Genetics and Development11:449–456.

Goto, N., T. Kumagai, and M. Koornneef. (1991). Flowering responses to light breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiologia Plantarum83:209–215.

Gramzow, L., M. Ritz, and G. Theissen. (2010). On the origin of MADS-domain transcription factors. Trends in Genetics26:149–153.

Grant, S., B. Hunkirchen, and H. Saedler. (1994). Developmental differences between male and female flowers in the dioecious plant Silene latifolia. Plant Journal6:471–480.

Grant-Downton, R., S. Hafidh, D. Twell, and H. Dickinson. (2009). Small RNA pathways are present and functional in the Arabidopsis male gametophyte. Molecular Plant2:500–512.

Gray, J., B. McClure, I. Boenig, M. Anderson, and A. Clarke. (1991). Action of the style product of the self-incompatibility gene of Nicotiana alata (S-RNase) on in vitro-grown pollen tubes. Plant Cell3:271–283.

Green, R., and E. Tobin. (1999). Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proceedings of the National Academy of Sciences of the USA96:4176–4179.

Grigorova, B., C. Mara, C. Hollender, P. Sijacic, X. Chen, and Z. Liu. (2011). LEUNIG and SEUSS co-repressors regulate miR172 expression in Arabidopsis flowers. Development138:2451–2456.

Gross, C. (2005). A comparison of the sexual systems in the trees from the Australian tropics with other tropical biomes—more monoecy but why? American Journal of Botany92:907–919.

Grotewold, E. (2006). The genetics and biochemistry of floral pigments. Annual Review of Plant Biology57:761–780.

Gu, T., M. Mazzurco, W. Sulaman, D. Matias, and D. Goring. (1998). Binding of an arm-repeat protein to the kinase domain of the S-locus receptor kinase. Proceedings of the National Academy of Sciences of the USA95:382–387.

Guerrieri, F., M. Schubert, J. Sandoz, and M. Giurfa. (2005). Perceptual and neural olfactory similarity in honeybees. PLoS Biology3:e60.

Gustafson-Brown, C., B. Savidge, and M. Yanofsky. (1994). Regulation of the Arabidopsis floral homeotic gene Apetala1. Cell76:131–143.

Gyula, P., E. Schafer, and F. Nagy. (2003). Light perception and signalling in higher plants. Current Opinion in Plant Biology6:446–452.

Hallem, E., A. Dahanukar, and J. Carlson. (2006). Insect odor and taste receptors. Annual Review of Entomology51:113–135.

Hamès, C., D. Ptchelkine, C. Grimm, E. Thevenon, E. Moyroud, F. Gerard, J. Martiel, R. Benlloch, F. Parcy, and C. Müller. (2008). Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO Journal27:2628–2637.

Hamilton, A.J., and D.C. Baulcombe. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science286:950–952.

Hanano, S., and K. Goto. (2011). Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell23:3172–3184.

Hanzawa, Y., T. Money, and D. Bradley. (2005). A single amino acid converts a repressor to an activator of flowering. Proceedings of the National Academy of Sciences of the USA102:7748–7753.

Hargreaves, A., S. Johnson, and E. Nol. (2004). Do floral syndromes predict specialisation in plant pollination systems? An experimental test in an ‘ornithophilous’ African Protea. Oecologia140:295–301.

Harmer, S. (2009). The circadian system in higher plants. Annual Review of Plant Biology60:357–377.

Haseloff, J., and B. Amos. (1995). GFP in plants. Trends in Genetics11:328–329.

Hayama, R., T. Izawa, and K. Shimamoto. (2002). Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiology43:494–504.

Hayama, R., S. Yokoi, S. Tamaki, M. Yano, and K. Shimamoto. (2003). Adaptation of photoperiodic control (p.258) pathways produces short-day flowering in rice. Nature422:719–722.

Hazebroek, J. P., J. D. Metzger, and E. R. Mansager. (1993). Thermoinductive regulation of gibberellin metabolism in Thlaspi arvensei. Plant Physiology102:547–552.

He, Y., and R. M. Amasino. (2005). Role of chromatin modification in flowering-time control. Trends in Plant Science10:30–35.

He, Y., S. D. Michaels, and R. M. Amasino. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science302:1751–1754.

He, Y., M. Doyle, and R. M. Amasino. (2004). PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes and Development18:2774–2784.

Hecht, V., R. Laurie, J. Vander Schoor, S. Ridge, C. Knowles, L. Liew, F. Sussmilch, I. Murfet, R. Macknight, and J. Weller. (2011). The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell23:147–161.

Heidmann, I., N. Efremova, H. Saedler, and Z. Schwarz-Sommer. (1998). A protocol for transformation and regeneration of Antirrhinum majus. Plant Journal13:723–728.

Heijmans, K., P. Morel, and M. Vandenbussche. (2012a). MADS-box genes and floral development: the dark side. Journal of Experimental Botany63:5397–5404.

Heijmans, K., K. Ament, A. Rijpkema, J. Zethof, M. Wolters-Arts, T. Gerats, and M. Vandenbussche. (2012b). Redefining C and D in the Petunia ABC. Plant Cell24:2305–2317.

Helliwell, C. A., C. C. Wood, M. Robertson, W. J. Peacock, and E. S. Dennis. (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant Journal46:183–192.

Henderson, I. R., F. Liu, S. Drea, G. G. Simpson, and C. Dean. (2005). An allelic series reveals essential roles for FY in plant development in addition to flowering-time control. Development132:3597–3607.

Henschel, K., R. Kofuji, M. Hasebe, H. Saedler, T. Munster, and G. Theissen. (2002). Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Molecular Biology and Evolution19:801–814.

Hepworth, S. R., F. Valverde, D. Ravenscroft, A. Mouradov, and G. Coupland. (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO Journal21:4327–4337.

Hepworth, S. R., J. E. Klenz, and G. W. Haughn. (2006). UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta223:769–778.

Herrera, C. (1993). Selection on floral morphology and environmental determinants of fecundity in a hawk moth-pollinated violet. Ecological Monographs63:251–275.

Herrera, C. (1996). Floral traits and plant adaptation to insect pollinators: a devil’s advocate approach. In: D. Lloyd and S. Barrett (eds), Floral Biology, pp. 65–87. Chapman and Hall, New York.

Heyer, A., M. Raap, B. Schroeer, B. Marty, and L. Willmitzer. (2004). Cell wall invertase expression at the apical meristem alters floral, architectural and reproductive traits in Arabidopsis thaliana. Plant Journal39:161–169.

Hicks, K., A. Millar, I. Carre, D. Somers, M. Straume, D. Meeks-Wagner, and S. Kay. (1996). Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science274:790–792.

Hicks, K., T. Albertson, and D. Wagner (2001). EARLY FLOWERING 3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell13:1281–1292.

Hileman, L., E. Kramer, and D. Baum (2003). Differential regulation of symmetry genes and the evolution of flower morphologies. Proceedings of the National Academy of Sciences of the USA100:12814–12819.

Hingston, A., and P. McQuillan. (2000). Are pollination syndromes useful predictors of floral visitors in Tasmania? Austral Ecology25:600–609.

Hirschberg, J. (1999). Production of high-value compounds: carotenoids and vitamin E. Current Opinion in Biotechnology10:186–191.

Hisamatsu, T., and R. King. (2008). The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellins. Journal of Experimental Botany59:3821–3829.

Hiscock, S., and S. McInnis. (2003). Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends in Plant Science8:606–613.

Hiscock, S., and D. Tabah. (2003). The different mechanisms of sporophytic self-incompatibility. Philosophical Transactions of the Royal Society of London, Series B358:1037–1045.

Hiscock, S., S. McInnis, D. Tabah, C. Henderson, and A. Brennan. (2003). Sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae)—the search for S. Journal of Experimental Botany54:169–174.

Hoballah, M., T. Gubitz, J. Stuurman, L. Broger, M. Barone, T. Mandel, A. Dell’Olivo, M. Arnold, and C. Kuhlemeier. (2007). Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell19:779–790.

Hodges, S., and N. Derieg. (2009). Adaptive radiations: from field to genomic studies. Proceedings of the National Academy of Sciences of the USA106:9947–9954.

(p.259) Hoffmann-Benning, S., D. Gage, L. McIntosh, H. Kende, and J. Zeevaart. (2002). Comparison of peptides in the phloem sap of flowering and non-flowering Perilla and lupine plants using microbore HPLC followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Planta216:140–147.

Holton, T. A., F. Brugliera, and Y. Tanaka. (1993). Cloning and expression of flavonol synthase from Petunia hybrida. Plant Journal4:1003–1010.

Honma, T., and K. Goto. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature409:525–529.

Honys, D., and D. Twell. (2003). Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiology132:640–652.

Hopkins, R., and M. Rausher. (2011). Identification of two genes causing reinforcement in the Texas wildflower Phlox drummondii. Nature469:411–414.

Hopkins, R., and M. Rausher. (2012). Pollinator-mediated selection on flower colour alleles drives reinforcement. Science335:1090–1092.

Hord, C., C. Chen, B. Deyoung, S. Clark, and H. Ma. (2006). The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell18:1667–1680.

Hornyik, C., L. Terzi, and G. Simpson. (2010). The Spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Developmental Cell18:203–213.

Horridge, G. (1996). The honeybee (Apis mellifera) detects bilateral symmetry and discriminates its axis. Journal of Insect Physiology42:755–764.

Horvitz, C., and D. Schemske. (1988). A test of the pollinator limitation hypothesis for a neotropical herb. Ecology69:200–206.

Howarth, D., and M. Donoghue. (2006). Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots. Proceedings of the National Academy of Sciences of the USA103:9101–9106.

Howarth, D., T. Martins, E. Chimney, and M. Donoghue. (2011). Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Annals of Botany107:1521–1532.

Hsu, C-Y., J. Adams, H. Kim, K. No, C. Ma, S. Strauss, J. Drnevich, L. Vandervelde, J. Ellis, B. Rice, N. Wickett, L. Gunter, G. Tuskan, A. Brunner, G. Page, A. Barakat, J. Carlson, C. dePamphilis, D. Luthe, and C. Yuceer. (2011). FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proceedings of the National Academy of Sciences of the USA108:10756–10761.

Hu, Y., Q. Xie, and N. Chua. (2003). The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell15:1951–1961.

Hu, Y., H. Poh, and N. Chua. (2006). The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. Plant Journal47:1–9.

Huanca-Mamani, W., M. Garcia-Aguilar, G. Leon-Martinez, U. Grossniklaus, and J. Vielle-Calzada. (2005). CHR11, a chromatin-remodeling factor essential for nuclear proliferation during female gametogenesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA102:17231–17236.

Huang, T., H. Boehlenius, S. Eriksson, F. Parcy, and O. Nilsson. (2005). The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science309:1694–1696.

Huang, T., F. Lopez-Giraldez, J. Townsend, and V. Irish. (2012). RBE controls microRNA164 expression to effect floral organogenesis. Development139:2161–2169.

Hughes, N. F. (1994). The Enigma of Angiosperm Origins. Cambridge University Press, Cambridge.

Huijser, P., J. Klein, W. Lonnig, H. Meijer, H. Saedler, and H. Sommer. (1992). Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO Journal11:1239–1249.

Hun, S., I. Shogo, and I. Takato. (2010). Similarities in the circadian clock and photoperiodism in plants. Current Opinion in Plant Biology13:594–603.

Hunaca-Mamani, W., M. Garcia-Aguilar, G. Leon-Martinez, U. Grossniklaus, and J. Vielle-Calzada. (2005). CHR11, a chromatin-remodeling factor essential for nuclear proliferation during female gametogenesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA102:17231–17236.

Huq, E., J. Tepperman, and P. Quail. (2000). GIGANTEA is a nuclear protein involved in phytochrome signalling in Arabidopsis. Proceedings of the National Academy of Sciences of the USA97:9789–9794.

Immink, R., I. Tonaco, S. de Folter, A. Schchennikova, A. van Dijk, J. Busscher-Lange, J. Borst, and G. Angenent. (2009). SEPALLATA3: the “glue” for MADS box transcription factor complex formation. Genome Biology10:R24.

Ingram, G., J. Goodrich, M. Wilkinson, R. Simon, G. Haughn, and E. Coen. (1995). Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell7:1501–1510.

Ingram, G., S. Doyle, R. Carpenter, E. Schultz, R. Simon, and E. Coen. (1997). Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum. EMBO Journal16:6521–6534.

Internicola, A., and L. Harder. (2012). Bumble-bee learning selects for both early and long flowering in food-deceptive plants. Proceedings of the Royal Society B: Biological Sciences279:1538–1543.

(p.260) Irish, V., and Y. Yamamoto. (1995). Conservation of floral homeotic gene function between Arabidopsis and Antirrhinum. Plant Cell7:1635–1644.

Ishiguro, K., M. Taniguchi, and Y. Tanaka. (2012). Functional analysis of Antirrhinum kelloggii flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes; critical role in flower colour and evolution in the genus Antirrhinum. Journal of Plant Research125:451–456.

Ishikawa, R., S. Tamaki, S. Yokoi, N. Inagaki, T. Shinomura, M. Takano, and K. Shimamoto. (2005). Suppression of the floral activator Hd3a is the principle cause of the night break effect in rice. Plant Cell17:3326–3336.

Ishikawa, R., T. Shinomura, M. Takano, and K. Shimamoto. (2009). Phytochrome dependent quantitative control of Hd3a transcription is the basis of the night break effect in rice flowering. Genes and Genetic Systems84:179–184.

Ito, T., H. Sakai, and E. Meyerowitz. (2003). Whorl-specific expression of the SUPERMAN gene of Arabidopsis is mediated by cis elements in the transcribed region. Current Biology13:1524–1530.

Itoh, H., Y. Nonoue, M. Yano, and T. Izawa (2010). A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nature Genetics42:635–638.

Iwano, M., and S. Takayama. (2012). Self/non-self discrimination in angiosperm self-incompatibility. Current Opinion in Plant Biology15:78–83.

Iwata, H., A. Gaston, A. Remay, T. Thouroude, J. Jeauffre, K. Kawamura, L. Oyant, T. Araki, B. Denoyes, and F. Foucher. (2012). The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant Journal69:116–125.

Izawa, T., T. Oikawa, S. Tokutomi, K. Okuno, and K. Shimamoto. (2000). Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant Journal22:391–399.

Izawa, T., T. Oikawa, N. Sugiyama, T. Tanisaka, M. Yano, and K. Shimamoto. (2002). Phytochrome mediates the external light signal to repress FT orthologues in photoperiodic flowering of rice. Genes and Development16:2006–2020.

Izawa, T., Y. Takahashi, and Yano, M. (2003). Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Current Opinion in Plant Biology6:113–120.

Jack, T. (2001). Relearning our ABCs: new twists on an old model. Trends in Plant Science6:310–316.

Jack, T. (2004). Molecular and genetic mechanisms of floral control. Plant Cell16:S1–S17.

Jack, T., L. Brockman, and E. Meyerowitz. (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell68:683–697.

Jackson, D. (1992). In situ hybridization in plants. In: D.J. Bowles, S.J. Gurr and M. McPhereson (eds) Molecular Plant Pathology: a practical approach, pp. 163–174. Oxford University Press, Oxford.

Jacobsen, S. E., and N. E. Olszewski. (1993). Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell5:887–896.

Jacobsen, S., K. Binkowski, and N. Olszewski. (1996). SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proceedings of the National Academy of Sciences of the USA93:9292–9296.

Jacqmard, A., J. Miksche, and G. Bernier. (1972). Quantitative study of nucleic acids and proteins in the shoot apex of Sinapis alba during transition from the vegetative to the reproductive condition. American Journal of Botany59:714–721.

Jaeger, K., and Wigge, P. (2007). FT protein acts as a long-range signal in Arabidopsis. Current Biology17:1050–1054.

Jefferson, R., T. Kavanagh, and M. Bevan. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal6:3901–3907.

Jeon, J., S. Jang, S. Lee, J. Nam, C. Kim, S. Lee, Y. Chung, S. Kim, Y. Lee, Y. Cho, and G. An. (2000). leafy hull sterile 1 is a homeotic mutation in a rice MADS box gene affecting flower development. Plant Cell12:871–884.

Jesson, L. K., and S. C. H. Barrett. (2002). Solving the puzzle of mirror-image flowers. Nature417:707.

Jesson, L., and S. Barrett. (2005). Experimental tests of the function of mirror-image flowers. Biological Journal of the Linnean Society85:167–179.

Jia, G., X. Liu, H. Owen, and D. Zhao. (2008). Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proceedings of the National Academy of Sciences of the USA105:2220–2225.

Jofuku, K., B. Denboer, M. Van Montagu, and J. Okamuro. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell6:1211–1225.

Johanson, U., J. West, C. Lister, S. Michaels, R. Amasino, and C. Dean,. (2000). Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science290:344–347.

Johnson, S. D., and J. J. Midgley. (1997). Fly pollination in Gorteria diffusa (Asteraceae) and a possible mimetic function for dark spots on the capitulum. American Journal of Botany84:429–436.

Johnson, S., and K. Steiner. (1997). Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution51:45–53.

Johnson S., and A. Jürgens. (2010). Convergent evolution of carrion and faecal scent mimicry in fly-pollinated (p.261) angiosperm flowers and a stinkhorn fungus. South African Journal of Botany76:796–807.

Jones, A. M., K. H. Im, M. A. Savka, M. J. Wu, N. G. DeWitt, R. Shillito, and A. N. Binns. (1998). Auxin-dependent cell expansion mediated by overexpressed auxin binding protein 1. Science282:1114–1117.

Jones, K. N., and J. S. Reithel. (2001). Pollinator-mediated selection on a flower colour polymorphism in experimental populations of Antirrhinum (Scrophulariaceae). American Journal of Botany88:447–454.

Jones, M., K. Pierce, and D. Ward (2007). Avian vision: a review of form and function with special consideration to birds of prey. Journal of Exotic Pet Medicine16:69–87.

Joy, R., M. Sugiyama, H. Fukuda, and A. Komamine. (1995). Cloning and characterization of polyphenol oxidase cDNAs of Phytolacca americana. Plant Physiology107:1083–1089.

Judd, W., C. Campbell, E. Kellogg, P. Stevens, and M. Donoghue. (2007). Plant Systematics: A phylogenetic approach, 3rd edition. Sinauer Associates, Sunderland, MA.

Juergens, A., S. Doetterl, and U. Meve. (2006). The chemical nature of fetid floral odors in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). New Phytologist172:452–468.

Jung, J., Y. Ju, P. Seo, J. Lee, and C. Park. (2012). The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant Journal69:577–588.

Kajiwara, S., P. D. Fraser, K. Kondo, and N. Misawa. (1997). Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochemical Journal324:421–426.

Kalisz, S., A. Randle, D. Chaiffetz, M. Faigeles, A. Butera, and C. Beight. (2012). Dichogamy correlates with outcrossing rate and defines the selfing syndrome in the mixed-mating genus Collinsia. Annals of Botany109:571–582.

Kandasamy, M., D. Paolillo, C. Faraday, J. Nasrallah, and M. Nasrallah. (1989). The S-locus specific glycoproteins of Brassica accumulate in the cell wall of developing stigma papillae. Developmental Biology134:462–472.

Kandori, I., T. Hirao, S. Matsunaga, and T. Kurosaki. (2009). An invasive dandelion unilaterally reduces the reproduction of a native congener through competition for pollination. Oecologia159:559–569.

Kang, H., J. Jeon, S. Lee, and G. An. (1998). Identification of class B and class C floral organ identity genes from rice plants. Plant Molecular Biology38:1021–1029.

Kanno, A., H. Saeki, T. Kameya, H. Saedler, and G. Theissen. (2003). Heterotropic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Molecular Biology52:831–841.

Kardailsky, I., V. Shukla, J. Ahn, N. Dagenais, S. Christensen, J. Nguyen, J. Chory, M. Harrison, and D. Weigel. (1999). Activation tagging of the floral inducer FT. Science286:1962–1965.

Kaufmann, K., R. Melzer, and G. Theissen. (2005). MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene347:183–198.

Kaufmann, K., F. Wellmer, J. Muino, T. Ferrier, S. Wuest, V. Kumar, A. Serrano-Mislata, F. Madueno, P. Krajewski, E. Meyerowitz, G. Angenent, and J. Riechmann. (2010). Orchestration of floral initiation by APETALA1. Science328:85–89.

Kay, Q. O. N. (1976). Preferential pollination of yellow-flowered morphs of Raphanus raphanistrum by Pieris and Ersistralis spp. Nature261:230–232.

Kay, Q. O. N., H. S. Daoud, and C. H. Stirton. (1981). Pigment distribution, light reflection and cell structure in petals. Botanical Journal of the Linnean Society83:57–84.

Kazama, Y., M. Fujiwara, A. Koizumi, K. Nishihara, R. Nishiyama, E. Kifune, T. Abe, and S. Kawano. (2009). A SUPERMAN-like gene is exclusively expressed in female flowers of the dioecious plant Silene latifolia. Plant and Cell Physiology50:1127–1141.

Keck, E., P. McSteen, R. Carpenter, and E. Coen. (2003). Separation of genetic functions controlling organ identity in flowers. EMBO Journal22:1058–1066.

Kempin, S., B. Savidge, and M. Yanovsky. (1995). Molecular basis of the cauliflower phenotype in Arabidopsis. Science267:522–525.

Kenrick, P. (1999). The family tree flowers. Nature402:358–359.

Kessler, D., C. Diezel, and I. Baldwin. (2010). Changing pollinators as a means of escaping herbivores. Current Biology20:237–242.

Kevan, P. G., and M. A. Lane. (1985). Flower petal microtexture is a tactile cue for bees. Proceedings of the National Academy of Sciences of the USA82:4750–4752.

Kevan, P., M. Giurfa, and L. Chittka. (1996). Why are there so many and so few white flowers? Trends in Plant Science1:280–284.

Khanna, R., E. Huq, E. Kikis, B. Al-Sady, C. Lanzatella, and P. Quail. (2004). A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell16:3033–3044.

Kim, M., M. Cui, P. Cubas, A. Gillies, K. Lee, M. Chapman, R. Abbott, and E. Coen. (2008). Regulatory genes control a key morphological and ecological trait transferred between species. Science322:1116–1119.

Kim, S., J. Koh, M. Yoo, H. Kong, Y. Hu, H. Ma, P. Soltis, and D. Soltis. (2005). Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant Journal43:724–744.

(p.262) Kim, S., K. Choi, C. Park, H. Hwang, and I. Lee. (2006). SUPPRESSOR OF FRIGIDA 4, encoding a C2H2-type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell18:2985–2998.

King, J. (1997). Reaching for the Sun. Cambridge University Press, Cambridge.

Klahre, U., A. Gurba, K. Hermann, M. Saxenhofer, E. Bossolini, P. Guerin, and C. Kuhlemeier. (2011). Pollinator choice in Petunia depends on two major genetic loci for floral scent production. Current Biology21:730–739.

Knight, T., J. Steets, J. Vamosi, S. Mazer, M. Burd, D. Campbell, M. Dudash, M. Johnston, R. Mitchell, and T. Ashman. (2005). Pollen limitation of plant reproduction: pattern and process. Annual Reviews of Ecology, Evolution and Systematics36:467–497.

Knudsen, J., R. Eriksson, J. Gershenzon, and B. Stahl. (2006). Diversity and distribution of floral scent. Botanical Review72:1–120.

Kobayashi, Y., H. Kaya, K. Goto, M. Iwabuchi, and T. Araki. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science286:1960–1962.

Koelewijn, H., and J. van Damme. (1996). Gender variation, partial male sterility and labile sex expression in gynodioecious Plantago coronopus. New Phytologist132:67–76.

Koes, R. E., C. E. Spelt, H. J. Reif, P. van den Elzen, E. Veltkamp, and J. N. M. Mol. (1986). Floral tissue of Petunia hybrida (V30) expresses only one member of the chalcone synthase multigene family. Nucleic Acids Research14:5229–5239.

Kohchi, T., K. Mukougawa, N. Frankenberg, M. Masuda, A. Yokota, and J. Lagarias. (2001). The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell13:425–436.

Kojima, S., Y. Takahashi, Y. Kobayashi, L. Monna, T. Sasaki, T. Araki, and M. Yano. (2002). Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiology43:1096–1105.

Komiya, R., S. Yokoi, and K. Shimamoto (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450.

Kondo, T., Y. Toyama-Kato, and K. Yoshida. (2005). Essential structure of co-pigment for blue sepal-color development of hydrangea. Tetrahedron Letters46:6645–6649.

Kotilainen, M., P. Elomaa, A. Uimari, V. Albert, D. Yu, and T. Teeri. (2000). GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell12:1893–1902.

Koornneef, M., C. J. Hanhart, and J. H. van der Veen. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Molecular and General Genetics229:57–66.

Koornneef, M., C. Alonso-Blanco, H. Blankestijn-DeVries, C. J. Hanhart, and A. J. Peeters. (1998). Genetic interactions among late-flowering mutants of Arabidopsis. Genetics148:885–892.

Kowyama, Y., K. Kakeda, K. Kondo, T. Imada, and T. Hattori. (1996). A putative receptor protein kinase gene in Ipomoea trifida. Plant Cell Physiology37:681–685.

Kramer, E. M., and V. F. Irish. (1999). Evolution of genetic mechanisms controlling petal development. Nature399:144–148.

Kramer, E. M., M. A. Jaramillo, and V. S. Di Stilio. (2004). Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics166:1011–1023.

Kramer, E. M., H. Su, C. Wu, and J. Hu. (2006). A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evolutionary Biology6:30.

Kramer, E., L. Holappa, B. Gould, M. Jaramillo, D. Setnikov, and P. Santiago. (2007). Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia (Ranunculaceae). Plant Cell19:750–766.

Krassilov, V. A., and I. A. A. Dobruskina. (1995). Angiosperm fruit from the Lower Cretaceous of Israel and origins in rift valleys. Paleontological Journal29:110–115.

Krizek, B., and E. Meyerowitz. (1996). The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development122:11–22.

Krizek, B. A., M. W. Lewis, and J. C. Fletcher. (2006). RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant Journal45:369–383.

Kubo, K., T. Entani, A. Takara, N. Wang, A. Fields, Z. Hua, M. Toyoda, S. Kawashima, T. Ando, A. Isogai, T. Kao, and S. Takayama. (2010). Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science330:796–799.

Kunin, W. (1993). Sex and the single mustard: population density and pollinator behaviour effects on seed set. Ecology74:2145–2160.

Kusaba, M., C. Tung, M. Nasrallah, and J. Nasrallah. (2002). Monoallelic expression and dominance interactions in anthers of self-incompatible Arabidopsis lyrata. Plant Physiology128:17–20.

Kwantes, M., D. Liebsch, and W. Verelst. (2012). How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of (p.263) vascular plant gametophytes. Molecular Biology and Evolution29:293–302.

Labandeira, C. C. (1997). Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Reviews in Ecology and Systematics28:153–193.

Lai, Z., W. Ma, B. Han, L. Liang, Y. Zhang, G. Hng, and Y. Xue. (2002). An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Molecular Biology50:29–42.

Lariguet, P., I. Schepens, D. Hodgson, U. V. Pedmale, M. Trevisan, C. Kami, M. Carbonnel, J. M. Alonso, J. R. Ecker, E. Liscum, and C. Fankhauser. (2006). PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proceedings of the National Academy of Sciences of the USA103:10134–10139.

Larson, R. L., and E. H. Coe. (1977). Gene-dependent flavonoid glucosyltransferase in maize. Biochemical Genetics15:153–156.

Laurie, R., P. Diwadkar, M. Jaudal, L. Zhang, V. Hecht, J. Wen, M. Tadege, K. Mysore, J. Putterill, J. Weller, and R. Macknight. (2011). The Medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of flowering time. Plant Physiology156: 2207–2224.

Laux, T., K. Mayer, J. Berger, and G. Jurgens. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development122:87–96.

Lázaro, A., A. Gómez-Zambrano, L. López-González, M. Piñeiro, and J. Jarillo. (2008). Mutations in the Arabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development. Journal of Experimental Botany59:653–666.

Le Corre, V., F. Roux, and X. Reboud. (2002). DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: extensive nonsynonymous variation is consistent with local selection for flowering time. Molecular Biology and Evolution19:1261–1271.

Lee, H., S. Huang, and T. Kao. (1994a). S proteins control rejection of incompatible pollen in Petunia inflata. Nature367:560–563.

Lee, H., S. Suh, E. Park, E. Cho, J. Ahn, S. Kim, J. Lee, Y. Kwon, and I. Lee. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes and Development14:2366–2376.

Lee, H., L. Xiong, Z. Gong, M. Ishitani, B. Stevenson, and J. Zhu. (2001). The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes and Development15:912–924.

Lee, I., and R. Amasino. (1995). Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene. Plant Physiology108:157–162.

Lee, I., M. Auckerman, S. Gore, K. Lohman, S. Michaels, L. Weaver, M. John, K. Feldmann, and R. Amasino. (1994b). Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell6:75–83.

Lee, I., D. Wolfe, O. Nilsson, and D. Weigel. (1997). A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Current Biology7:95–104.

Lee, J., S. Yoo, S. Park, I. Hwang, J. Lee, and J. Ahn. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes and Development21:397–402.

Lee, S., J. Kim, J. Han, M. Han, and G. An. (2004). Functional analyses of the flowering time gene OsMADS50, the putative SUPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS LIKE 20 (SOC1/AGL20) ortholog in rice. Plant Journal38:754–764.

Leivar, P., and P. Quail. (2011). PIFs: pivotal components in a cellular signalling hub. Trends in Plant Science16:19–28.

Leleji, O. (1973). Apparent preference by bees for different flower colours in cowpeas (Vigna sinensis (L) Savi ex Hassk. Euphytica22:150–153.

Lenhard, M., A. Bohnert, G. Jürgens, and T. Laux. (2001). Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell105:805–814.

Leonard, A., and D. Papaj. (2011). ‘X’ marks the spot: the possible benefits of nectar guides to bees and plants. Functional Ecology25:1293–1301.

Leseberg, C., A. Li, H. Kang, M. Duvall, and L. Mao. (2006). Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene378:84–94.

Levin, J., and E. Meyerowitz. (1995). UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell7:529–548.

Levy, Y. Y., S. Mesnage, J. S. Mylne, A. R. Gendall, and C. Dean. (2002). Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science297:243–246.

Li, C., and J. Dubcovsky. (2008). Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant Journal55:543–554.

Li, D., C. Liu, L. Shen, Y. Wu, H. Chen, M. Robertson, C. Helliwell, T. Ito, E. Meyerowitz, and H. Yu. (2008). A repressor complex governs the integration of flowering signals in Arabidopsis. Developmental Cell15:110–120.

Li, J., M. Webster, M. Smith, and P. Gilmartin. (2011). Floral heteromorphy in Primula vulgaris: progress towards isolation and characterisation of the S locus. Annals of Botany108:715–726.

(p.264) Li, Z., B. Li, W. Shen, H. Huang, and A. Dong. (2012). TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana. Plant Journal71:99–107.

Liang, H., and L. Mahadevan. (2011). Growth, geometry and mechanics of a blooming lily. Proceedings of the National Academy of Sciences of the USA108:5516–5521.

Liljegren, S., C. Gustafson-Brown, A. Pinyopich, G. Ditta, and M. Yanofsky. (1999). Interactions among APETALA1, LEAFY and TERMINAL FLOWER 1 specify meristem fate. Plant Cell11:1007–1018.

Lim, M., J. Kim, Y. Kim, K. Chung, Y. Seo, I. Lee, J. Kim, C. Hong, H. Kim, and C. Park. (2004). A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell16:731–740.

Lin, C. (2000). Plant blue-light receptors. Trends in Plant Science5:337–342.

Lin, C., H. Yang, H. Guo, T. Mockler, J. Chen, and A. Cashmore. (1998). Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proceedings of the National Academy of Sciences of the USA95:2686–2690.

Litt, A. (2007). An evaluation of A function: evidence from the APETALA1 and APETALA2 gene lineages. International Journal of Plant Sciences168:73–91.

Liu, C., F. Lu, X. Cui, and X. Cao. (2010a). Histone methylation in higher plants. Annual Review of Plant Biology61:395–420.

Liu, F., V. Quesada, P. Crevillen, I. Baurle, S. Swiezewski, and C. Dean. (2007). The Arabidopsis RNA binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC. Molecular Cell28:398–407.

Liu, F., S. Marquardt, C. Lister, S. Swiezewski, and C. Dean. (2010b). Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science327:94–97.

Liu, H., X. Yu, K. Li, J. Klejnot, H. Yang, D. Lisiero, and C. Lin. (2008). Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science322:1535–1539.

Liu, H., B. Liu, C. Zhao, M. Pepper, and C. Lin. (2011a). The action mechanisms of plant cryptochromes. Trends in Plant Science16:684–691.

Liu, J., S. Gilmour, M. Thomashow, and S. van Nocker. (2002). Cold signalling associated with vernalization in Arabidopsis thaliana does not involve CBF1 or abscisic acid. Physiologia Plantarum114:125–134.

Liu, X., Y. Kim, R. Mueller, R. Yumul, C. Liu, Y. Pan, X. Cao, J. Goodrich, and X. Chen. (2011b). AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. Plant Cell23:3654–3670.

Liu, Z., and E. Meyerowitz. (1995). LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development121:975–991.

Liu, Z., and C. Mara. (2010). Regulatory mechanisms for floral homeotic gene expression. Seminars in Cell and Developmental Biology21:80–86.

Lobo, J., M. Quesada, K. Stoner, E. Fuchs, Y. Herrerias-Diego, J. Rojas, and G. Saborio. (2003). Factors affecting phonological patterns of bombacaceous trees in seasonal forests in Costa Rica and Mexico. American Journal of Botany90:1054–1063.

Locke, J. C. W., L. Kozma-Bognar, P. D. Gould, B. Fehér, É. Kevei, F. Nagy, M. S. Turner, A. Hall, and A. J. Millar. (2006). Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Molecular Systems Biology2:59.

Lockhart, P., and D. Penny.(2005). The place of Amborella within the radiation of angiosperms. Trends in Plant Science10:201–202.

Lohmann, J., R. Hong, M. Hobe, M. Busch, F. Parcy, R. Simon, and D. Weigel. (2001). A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell105:793–803.

Lotz, C., C. Martinez del Rio, and S. Nicolson. (2003). Hummingbirds pay a high cost for a warm drink. Journal of Comparative Physiology B173:455–462.

Loukoianov, A., L. Yan, A. Blechl, A. Sanchez, and J. Dubcovsky. (2005). Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiology138:2364–2373.

Lowman, A., and M. Purugganan. (1999). Duplication of the Brassica oleracea APETALA1 floral homeotic gene and the evolution of domesticated cauliflower. Journal of Heredity90:514–520.

Luo, D., R. Carpenter, C. Vincent, L. Copsey, and E. Coen. (1996). Origin of floral asymmetry in Antirrhinum. Nature383:794–799.

Luo, Y., and Widmer, A. (2013). Herkogamy and its effects on mating patterns in Arabidopsis thaliana. PLoS ONE8:e57902.

Luu, D., X. Qin, D. Morse, and M. Cappadocia. (2000). S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility. Nature407:649–651.

Ma, H. (2005). Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annual Reviews of Plant Biology56:393–434.

McClure, B., and V. Franklin-Tong. (2006). Gametophytic self-incompatibility: understanding the cellular mechanisms involved in ‘self’ pollen tube inhibition. Planta224:233–245.

McClure, B., F. Cruz-Garcia, and C. Romero. (2011). Compatibility and incompatibility in S-RNase-based systems. Annals of Botany108:647–658.

(p.265) McCormick, S. (2004). Control of male gametophyte development. Plant Cell16:S142–S153.

Macknight, R., I. Bancroft, T. Page, C. Lister, R. Schmidt, K. Love, L. Westphal, G. Murphy, S. Sherson, C. Cobbett, and C. Dean. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell89:737–745.

Macknight, R., M. Duroux, R. Laurie, P. Dijkwel, G. Simpson, and C. Dean. (2002). Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell14:877–888.

McSteen, P., C. Vincent, S. Doyle, R. Carpenter, and E. Coen. (1998). Control of floral homeotic gene expression and organ morphogenesis in Antirrhinum. Development125:2359–2369.

Machado, I., and A. Lopes. (2004). Floral traits and pollination systems in the Caatinga, a Brazilian tropical dry forest. Annals of Botany94:365–376.

Magnani, E., K. Sjolander, and S. Hake. (2004). From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell16:2265–2277.

Maier, A., S. Stehling-Sun, H. Wollmann, M. Demar, R. Hong, S. Haubeiss, D. Weigel, and J. Lohmann. (2009). Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression. Development136:1613–1620.

Maizel, A., M. A. Busch, T. Tanahashi, J. Perkovic, M. Kato, M. Hasebe, and D. Weigel. (2005). The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science308:260–263.

Makino, S., T. Kiba, A. Imamura, N. Hanaki, A. Nakamura, T. Suzuki, M. Taniguchi, C. Ueguchi, T. Sugiyama, and T. Mizuno. (2000). Genes encoding pseudo-response regulators: insight into his-to-asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiology41:791–803.

Makkena, S., E. Lee, F. Sack, and R. Lamb. (2012). The R2R3 MYB transcription factors FOUR LIPS and MYB88 regulate female reproductive development. Journal of Experimental Botany63:5545–5558.

Malcomber, S., and E. Kellog. (2005). SEPALLATA gene diversification: brave new whorls. Trends in Plant Science10:427–435.

Mallory, A., D. Dugas, D. Bartel, and B. Bartel. (2004). MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative and floral organs. Current Biology14:1035–1046.

Mandel, M. A., and M. Yanofsky. (1995). A gene triggering flower formation in Arabidopsis. Nature377:522–524.

Mandel, M., and M. Yanofsky. (1998). The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sexual Plant Reproduction11:22–28.

Mandel, M. A., C. Gustafson-Brown, B. Savidge, and M. Yanofsky. (1992). Molecular characterisation of the Arabidopsis floral homeotic gene APETALA1. Nature360:273–277.

Manzano, D., S. Marquardt, A. Jones, I. Baurle, F. Liu, and C. Dean. (2009). Altered interactions within FY/AtCPSF complexes required for Arabidopsis FCA-mediated chromatin silencing. Proceedings of the National Academy of Sciences of the USA106:8772–8777.

Mara, C., T. Huang, and V. Irish. (2010). The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. Plant Cell22:690–702.

Marinova, K., L. Pourcel, B. Weder, M. Schwarz, D. Barron, J. Routaboul, I. Debeaujon, and M. Klein. (2007). The Arabidopsis MATE transport TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell19:20232038.

Markham, K. R., K. S. Gould, C. S. Winefield, K. A. Mitchell, S. J. Bloor, and M. R. Bloase. (2000). Anthocyanic vacuolar inclusions—their nature and significance in flower colouration. Phytochemistry55:327–336.

Markovic, J., N. Petranovic, and J. Baranac. (2005). The copigmentation effect of sinapic acid on malvin: a spectroscopic investigation on colour enhancement. Journal of Photochemistry and Photobiology B78:223–228.

Marrs, K. A., M. R. Alfenito, A. M. Lloyd, and V. Walbot. (1995). A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature375:397–400.

Martin, C., and T. Gerats. (1993). The control of flower coloration. In: B. R. Jordan (ed.), The Molecular Biology of Flowering, pp. 219–255. CAB International, Wallingford.

Martin, C., R. Carpenter, H. Sommer, H. Saedler, and E. Coen. (1985). Molecular analysis of instability in flower pigmentation of Antirrhinum majus following isolation of the PALLIDA locus by transposon tagging. EMBO Journal4:1625–1630.

Martin, C., A. Prescott, S. Mackay, J. Bartlett, and E. Vrijlandt. (1991). The control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant Journal1:37–49.

Martin, W., A. Gierl, and H. Saedler. (1989). Molecular evidence for pre-Cretaceous angiosperm origins. Nature339:46–48.

Martin, W., O. Deusch, N. Stawski, N. Grunheit, and V. Goremykin. (2005). Chloroplast genome phylogenetics: why we need independent approaches to plant molecular evolution. Trends in Plant Science10:203–209.

Martin-Trillo, M., A. Lazaro, R. S. Poethig, C. Gomez-Mena, M. A. Pineiro, J. M. Martinez-Zapater, and J. A. Jarillo. (2006). EARLY IN SHORT DAYS 1 (ESD1) encodes ACTIN-RELATED PROTEIN 6 (AtARP6), a putative component of chromatin remodelling complexes (p.266) that positively regulates FLC accumulation in Arabidopsis. Development133:1241–1252.

Martinez, M., J. Jørgensen, M. Lawton, C. Lamb, and P. Doerner. (1992). Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proceedings of the National Academy of Sciences of the USA89:7360–7364.

Martinez-Garcia, J., E. Huq, and P. Quail. (2000). Direct targeting of light signals to a promoter element-bound transcription factor. Science288:859–863.

Martinez-Garcia, J., J. Garcia-Martinez, J. Bou, and S. Prat. (2001). The interaction of gibberellins and photoperiod in the control of potato tuberization. Journal of Plant Growth Regulation20:377–386.

Martins, T., J. Berg, S. Blinka, M. Rausher, and D. Baum. (2013). Precise spatio-temporal regulation of the anthocyanin biosynthetic pathway leads to petal spot formation in Clarkia gracilis. New Phytologist197:958–969.

Mas, P., F. Devlin, S. Panda, and S. A. Kay. (2000). Functional interaction of phytochrome B and cryptochrome 2. Nature408:207–211.

Mas, P., W. Kim, D. Somers, and S. Kay. (2003). Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature426:567–570.

Masiero, S., L. Colombo, P. Grini, A. Schnittger, and M. Kater. (2011). The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell23:865–872.

Massinga, P., S. Johnson, and L. Harder. (2005). Heteromorphic incompatibility and efficiency of pollination in two distylous Pentanisia species (Rubiaceae). Annals of Botany95:389–399.

Mast, A., and E. Conti. (2006). The primrose path to heterostyly. New Phytologist171:439–442.

Mathews, S. (2010). Evolutionary studies illuminate the structural-functional model of plant phytochromes. Plant Cell22:4–16.

Mathieu, J., N. Warthmann, F. Kuttner, and Schmid, M. (2007). Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Current Biology17:1055–1060.

Matias-Hernandez, L., R. Battaglia, F. Galbiati, M. Rubes, C. Eichenberger, U. Grossniklaus, M. Kater, and L. Colombo. (2010). VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis. Plant Cell22:1702–1715.

Mayfield, M., N. Waser, and M. Price. (2001). Exploring the ‘most effective pollinator principle’ with complex flowers: bumblebees and Ipomopsis aggregata. Annals of Botany88:591–596.

Mazzurco, M., W. Sulaman, H. Elina, J. M. Cock, and D. Goring. (2001). Further analysis of the interactions between the Brassica S receptor kinase and three interacting proteins (ARC1, THL1 and THL2) in the yeast two-hybrid system. Plant Molecular Biology45:365–376.

Medrano, M., C. Herrera, and S. Barrett. (2005). Herkogamy and mating patterns in the self-compatible daffodil Narcissus longispathus. Annals of Botany95:1105–1111.

Mello, C.C., and D. Conte. (2004). Revealing the world of RNA interference. Nature431:338–342.

Melzer, R., Y. Wang, and G. Theissen. (2010). The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Seminars in Cell and Developmental Biology21:118–128.

Meyerowitz, E. M. (1996). Plant development: local control, global patterning. Current Opinion in Genetics and Development6:475–479.

Michaels, S. D., and R. M. Amasino. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell11:949–956.

Michaels, S. D., and R. M. Amasino. (2001). Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell13:935–941.

Michaels, S. D., I. C. Bezerra, and R. M. Amasino. (2004). FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis. Proceedings of the National Academy of Sciences of the USA101:3281–3285.

Millar, A. J., I. A. Carre, C. A. Strayer, N. Chua, and S. A. Kay. (1995). Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science267:1161–1163.

Ming, R., A. Bendahmane, and S. Renner. (2011). Sex chromosomes in land plants. Annual Reviews in Plant Biology62:485–514.

Mitchell, R., and R. Shaw. (1993). Heritability of floral traits for the perennial wild flower Penstemon centranthifolius (Scrophulariaceae): clones and crosses. Heredity71:185–192.

Mizoguchi, T., K. Wheatley, Y. Hanzawa, L. Wright, M. Mizoguchi, H. Song, I. Carre, and G. Coupland. (2002). LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Developmental Cell2:629–641.

Mizoguchi, T., L. Wright, S. Fujiwara, F. Cremer, K. Lee, H. Onouchi, A. Mouradov, S. Fowler, H. Kamada, J. Putterill, and G. Coupland. (2005). Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell17:2255–2270.

Mizukami, Y. (2001). A matter of size: developmental control of organ size in plants. Current Opinion in Plant Biology4:533–539.

Mizukami, Y., and R. L. Fischer. (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences of the USA97:942–947.

(p.267) Mockler, T., H. Yang, X. Yu, D. Parikh, Y. Cheng, S. Dolan, and C. Lin. (2003). Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proceedings of the National Academy of Sciences of the USA100:2140–2145.

Moehs, C. P., L. Tian, K. W. Osteryoung, and D. DellaPenna. (2001). Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Molecular Biology45:281–293.

Moise, A. R., J. von Lintig, and K. Palczewski. (2005). Related enzymes solve evolutionarily recurrent problems in the metabolism of carotenoids. Trends in Plant Science10:178–186.

Mol, J. N. M., M. P. Robbins, R. A. Dixon, and E. Veltkamp. (1985). Spontaneous and enzymic rearrangement of naringenin chalcone to flavanone. Phytochemistry24:2267–2269.

Mol, J., E. Grotewold, and R. Koes. (1998). How genes paint flowers and seeds. Trends in Plant Science3:212–217.

Mondragon-Palomino, M., and G. Theissen. (2008). MADS about the evolution of orchid flowers. Trends in Plant Science13:51–59.

Mondragon-Palomino, M., and G. Theissen. (2011). Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS box genes in the flowers of Orchidaceae: refining the “orchid code”. Plant Journal66:1008–1019.

Momonoi, K., K. Yoshida, S. Mano, H. Takahashi, C. Nakamori, K. Shoji, A. Nitta, and M. Nishimura. (2009). A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. Plant Journal59:437–447.

Montalvo, A., and J. Ackermann. (1987). Limitations to fruit production in Ionopsis utricularioides (Orchidaceae). Biotropica19:24–31.

Moon, J., S. Suh, H. Lee, K. Choi, C. Hong, N. Paek, S. Kim, and I. Lee. (2003). The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant Journal35:613–623.

Moon, J., H. Lee, M. Kim, and I. Lee. (2005). Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiology46:292–299.

Mooney, M., T. Desnos, K. Harrison, J. Jones, R. Carpenter, and E. Coen. (1995). Altered regulation of tomato and tobacco pigmentation genes caused by the delila gene of Antirrhinum. Plant Journal7:333–339.

Moran, N., and T. Jarvik. (2010). Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science328:624–627.

Motte, P., H. Saedler, and Z. Schwarz-Sommer. (1998). STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis. Development125:71–84.

Mouradov, A., T. Glassick, B. Hamdorf, L. Murphy, B. Fowler, S. Marla, and R. D. Teasdale. (1998). NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proceedings of the National Academy of Sciences of the USA95:6537–6542.

Mouradov, A., F. Cremer, and G. Coupland. (2002). Control of flowering time: interacting pathways as a basis for diversity. Plant Cell14:S111–S130.

Moyano, E., J. F. Martinez-Garcia, and C. Martin. (1996). Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in Antirrhinum flowers. Plant Cell8:1519–1532.

Moyroud, E., E. Kusters, M. Monniaux, R. Koes, and F. Parcy. (2010). LEAFY blossoms. Trends in Plant Science15:346–352.

Moyroud, E., E. Minguet, F. Ott, L. Yant, D. Pose, M. Monniaux, S. Blanchet, O. Bastien, E. Thevenon, D. Weigel, M. Schmid, and F. Parcy. (2011). Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Plant Cell23:1293–1306.

Mudalige, R., A. Kuehnle, and T. Amore. (2003). Pigment distribution and epidermal cell shape in Dendrobium species and hybrids. HortScience38:573–577.

Müller, R., A. Fernández, A. Hiltbrunner, E. Schäfer, and T. Kretsch. (2009). The histidine kinase-related domain of Arabidopsis phytochrome A controls the spectral sensitivity and the subcellular distribution of the photoreceptor. Plant Physiology150:1297–1309.

Murfett, J., T. Atherton, B. Mou, C. Gasser, and B. McClure. (1994). S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature367:563–566.

Munster, T., J. Pahnke, A. DiRosa, J. Kim, W. Martin, H. Saedler, and G. Theissen. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proceedings of the National Academy of Sciences of the USA94:2415–2420.

Mylne, J. S., L. Barrett, F. Tessadori, S. Mesnage, L. Johnson, Y. V. Bernatavichute, S. E. Jacobsen, P. Fransz, and C. Dean. (2006). LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN 1, is required for epigenetic silencing of FLC. Proceedings of the National Academy of Sciences of the USA103:5012–5017.

Nagasawa, N., M. Miyoshi, Y. Sano, H. Satoh, H. Hirano, H. Sakai, and Y. Nagato. (2003). SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development130:705–718.

Nagatani, A. (2010). Phytochrome: structural basis for its functions. Current Opinion in Plant Biology13:565–570.

Nageli, C. (1884). Mechanisch-physiologische Theorie der Abstammungslehre.

(p.268) Nagy, F., and E. Schafer. (2002). Phytochromes control photomorphogenesis by differentially regulated, interacting signalling pathways in higher plants. Annual Review of Plant Biology53:329–355.

Nair, S., N. Wang, Y. Turuspekov, M. Pourkheirandish, S. Sinsuwongwat, G. Chen, M. Sameri, A. Tagiri, I. Honda, Y. Watanabe, H. Kanamori, T. Wicker, N. Stein, Y. Nagamura, T. Matsumoto, and T. Komatsuda. (2010). Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proceedings of the National Academy of Sciences of the USA107:490–495.

Nakajima, M., A. Shimada, Y. Takashi, Y. Kim, S. Park, M. Ueguchi-Tanaka, H. Suzuki, E. Katoh, S. Iuchi, M. Kobayashi, T. Maeda, M. Matsuoka, and I. Yamaguchi. (2006). Identification and characterisation of Arabidopsis gibberellin receptors. Plant Journal46:880–889.

Nakayama, T. (2002). Enzymology of aurone biosynthesis. Journal of Bioscience and Bioengineering94:487–491.

Nakayama, T., K. Yonekura-Sakakibara, T. Sato, S. Kikuchi, Y. Fukui, M. Fukuchi-Mizutani, T. Ueda, M. Nakao, Y. Tanaka, T. Kusumi, and T. Nishino. (2000). Aureusidin synthase: a polyphenol oxidase homolog responsible for flower colouration. Science290:1163–1166.

Nasrallah, J., T. Kao, M. Goldberg, and M. Nasrallah. (1985). A cDNA clone encoding an S-locus-specific glycoprotein from Brassica oleracea. Nature318:263–267.

Nath, U., B. C. W. Crawford, R. Carpenter, and E. Coen. (2003). Genetic control of surface curvature. Science299:1404–1407.

Navarro, C., N. Efremova, J. Golz, R. Rubiera, M. Kuckenberg, R. Castillo, O. Tietz, H. Saedler, and Z. Schwarz-Sommer. (2004). Molecular and genetic interactions between STYLOSA and GRAMINIFOLIA in the control of Antirrhinum vegetative and reproductive development. Development131:3649–3659.

Newman, D. A., and J. D. Thomson. (2005). Effects of nectar robbing on dynamics and bumblebee foraging strategies in Linaria vulgaris (Scrophulariaceae). Oikos110:309–320.

Ni, M., J. Tepperman, and P. Quail. (1998). PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell95:657–667.

Niklas, K. (1985). The aerodynamics of wind pollination. Botanical Review51:328–386.

Nobutoshi, Y., Y. Ayako, A. Mitsutomo, D. Wagner, and Y. Komeda. (2012). LEAFY controls Arabidopsis pedicel length and orientation by affecting adaxial-abaxial cell fate. Plant Journal69:844–856.

Noda, K., B. J. Glover, P. Linstead, and C. Martin. (1994). Flower colour intensity depends on specialised cell shape controlled by a MYB-related transcription factor. Nature369:661–664.

Noh, Y., and R. Amasino. (2003). PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell15:1671–1682.

Oh, S., H. Zhang, P. Ludwig, and S. van Nocker. (2004). A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family. Plant Cell16:2940–2953.

Oh, S., A. JohnsonA. Smertenko, D. Rahman, S. Park, P. Hussey, and D. Twell. (2005). A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Current Biology15:2107–2111.

Oh, S., V. Bourdon, M. Pal, H. Dickinson, and D. Twell. (2008). Arabidopsis kinesins HINKEL and TETRASPORE act redundantly to control cell plate expansion during cytokinesis in the male gametophyte. Molecular Plant1:794–799.

Ohme-Takagi, M., and H. Shinshi. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell7:173–182.

Ohmori, S., M. Kimizu, M. Sugita, A. Miyao, H. Hirochika, E. Uchida, Y. Nagato, and H. Yoshida. (2009). MOSAIC FLORAL ORGANS I, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell21:3008–3025.

Ohnishi, M., S. Fukada-Tanaka, A. Hoshino, J. Takada, Y. Inagaki, and S. Iida. (2005). Characterisation of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower colouration by increasing the vacuolar pH in the Japanese morning glory. Plant Cell Physiology46:259–267.

Ohshima, S., M. Murata, W. Sakamoto, Y. Ogura, and F. Motoyoshi. (1997). Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Molecular and General Genetics254:186–194.

Ojeda, I., J. Francisco-Ortega, and Q. Cronk. (2009). Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity. Annals of Botany104:1099–1110.

Ojeda, I., A. Santos-Guerra, J. Caujape-Castells, R. Jaen-Molina, A. Marrero, and Q. Cronk. (2012). Comparative micromorphology of petals in Macaronesian Lotus (Leguminosae) reveals a loss of papillose conical cells during the evolution of bird pollination. International Journal of Plant Sciences173:365–374.

Okada, K., T. Saito, T. Kakagawa, M. Kawamukai, and Y. Kamiya. (2000). Five geranylgeranyl diphosphate synthases expressed in different organs are localised into three subcellular compartments in Arabidopsis. Plant Physiology122:1045–1056.

Okamuro, J., B. Caster, R. Villarroel, M. van Montagu, and K. D. Jofuku. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of the USA94:7076–7081.

(p.269) Ollerton, J. (1998). Sunbird surprise for syndromes. Nature394:726–727.

Ollerton, J., A. Stott, E. Allnutt, S. Shove, C. Taylor, and E. Lamborn. (2007). Pollination niche overlap between a parasitic plant and its host. Oecologia, 151:473–485.

Ollerton, J., R. Alarcon, N. Waser, M. Price, S. Watts, L. Cranmer, A. Hingston, C. Peter, and J. Rotenberry. (2009). A global test of the pollination syndrome hypothesis. Annals of Botany103:1471–1480.

Olmedo-Monfil, V., N. Duran-Figueroa, M. Arteaga-Vazquez, E. Demesa-Arevalo, D. Autran, D. Grimanelli, R. Slotkin, R. Martienssen, and J. Vielle-Calzada. (2010). Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature464:628–632.

Osorio, D., and M. Vorobyev. (2008). A review of the evolution of animal colour vision and visual communication signals. Vision Research48:2042–2051.

Osterlund, M., C. Hardtke, N. Wei, and X. Deng. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature405:462–466.

Oyama, T., Y. Shimura, and K. Okada. (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes and Development11:2983–2995.

Pabon-Mora, N., B. Ambrose, and A. Litt. (2012). Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiology158:1685–1704.

Padysakova, E., M. Bartos, R. Tropek, and S. Janecek. (2013). Generalization versus specialization in pollination systems: visitors, thieves and pollinators of Hypoestes aristata (Acanthaceae). PLoS One4:e59299.

Pagnussat, G., H. Yu, Q. Ngo, S. Rajani, S. Mayalagu, C. Johnson, A. Capron, L. Xie, D. Ye, and V. Sundaresan. (2005). Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development132:603–614.

Pagnussat, G., M. Alandete-Saez, J. Bowman, and V. Sundaresan. (2009). Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science324:1684–1689.

Pannell, J. (2002). The evolution and maintenance of androdioecy. Annual Reviews of Ecology and Systematics33:397–425.

Parcy, F., O. Nilsson, O., M. Busch, I. Lee, and D. Weigel. (1998). A genetic framework for floral patterning. Nature395:561–566.

Parenicova, L., S. de Folter, M. Kieffer, D. Horner, C. Favalli, J. Busscher, H. Cook, R. Ingram, M. Kater, B. Davies, G. Angenent, and L. Colombo. (2003). Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell15:1538–1551.

Park, D., D. Somers, Y. Kim, Y. Choy, H. Lim, M. Soh, H. Kim, S. Kay, and H. Nam. (1999). Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science285:1579–1582.

Park, S., R. Howden, and D. Twell. (1998). The Arabidopsis thaliana gametophytic mutation gemini pollen 1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development125:3789–3799.

Pastore, J., A. Limpuangthip, N. Yamaguchi, M. Wu, Y. Sang, S. Han, L. Malaspina, N. Chavdaroff, A. Yamaguchi, and D. Wagner. (2011). LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1. Development138:3189–3198.

Pauw, A. (1998). Pollen transfer on birds’ tongues. Nature394:731–732.

Pauw, A. (2006). Floral syndromes accurately predict pollination by a specialised oil-collecting bee (Rediviva peringueyi, Melittidae) in a guild of South African orchids (Coryciinae). American Journal of Botany93:917–926.

Pazhouhandeh, M., J. Molinier, A. Berr, and P. Genschik. (2011). MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. Proceedings of the National Academy of Sciences of the USA108:3430–3435.

Pedersen, M. W. (1967). Cross-pollination studies involving three purple-flowered alfalfas, one white-flowered line, and two pollinator species. Crop Science7:59–62.

Pelaz, S., G. Ditta, E. Baumann, E. Wisman, and M. Yanofsky. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature405:200–202.

Pellegrini, L., T. Song, and T. Richmond. (1995). Structure of serum response factor core bound to DNA. Nature376:490–498.

Pena, L., M. Martin-Trillo, J. Juarez, J. A. Pina, L. Navarro, and J. M. Martinez-Zapater. (2001). Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotechnology19:263–267.

Perez-Rodriguez, M., F. Jaffe, E. Butelli, B. J. Glover, and C. Martin. (2005). Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development132:359–370.

Perl-Treves, R., A. Kahana, N. Rosenman, Y. Xiang, and L. Silberstein. (1998). Expression of multiple AGAMOUS-like genes in male and female flowers of cucumber (Cucumis sativus L.). Plant Cell Physiology39:701–710.

Piatelli, M. (1981). The betalains: structure, biosynthesis, and chemical taxonomy. In: E. Conn (ed.), The Biochemistry of Plants: A comprehensive treatise, pp. 557–575. Academic Press, New York.

Pin, P., R. Benlloch, D. Bonnet, E. Wremerth-Weich, T. Kraft, J. Gielen, and O. Nilsson. (2010). An antagonistic (p.270) pair of FT homologs mediates the control of flowering time in sugar beet. Science330:1397–1400.

Pinyopich, A., G. Ditta, B. Savidge, S. Liljegren, E. Baumann, E. Wisman, and M. Yanofsky. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature424:85–88.

Ponomarenko, A. G. (1995). The geological history of beetles. In: J. Pakaluk and S. A. Slipinski (eds), Biology, Phylogeny and Classification of Coleoptera. Muzeum I Instytut Zoologii PAN, Warsaw.

Portereiko, M., L. Sandaklie-Nikolova, A. Lloyd, C. Dever, D. Otsuga, and G. Drews. (2006). NUCLEAR FUSION DEFECTIVE 1 encodes the Arabidopsis RPL21M protein and is required for karyogamy during female gametophyte development and fertilisation. Plant Physiology141:957–965.

Preston, J., and E. Kellogg. (2006). Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics174:421–437.

Preston, J., and L. Hileman. (2012). Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo3:6.

Preston, J., C. Martinez, and L. Hileman. (2011). Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome. Proceedings of the National Academy of Sciences of the USA108:2343–2348.

Prum, B., R. Seidl, H. Bohn, and T. Speck. (2012). Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata). Beilstein Journal of Nanotechnology3:57–64.

Putterill, J. (2001). Flowering in time: genes controlling photoperiodic flowering in Arabidopsis. Philosophical Transactions of the Royal Society of London Series B356:1761–1767.

Putterill, J., F. Robson, K. Lee, R. Simon, and G. Coupland. (1995). The CONSTANS gene of Arabidopsis pomotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell80:847–857.

Putterill, J., R. Laurie, and R. Macknight. (2004). It’s time to flower: the genetic control of flowering time. BioEssays26:363–373.

Puzey, J., S. Gerbode, S. Hodges, E. Kramer, and L. Mahadevan. (2012). Evolution of spur length diversity in Aquilegia petals is achieved solely through cell shape anisotropy. Proceedings of the Royal Society Series B279:1640–1645.

Qiao, H., F. Weng, L. Zhao, J. Zhou, Z. Lai, Y. Zhang, T. Robbins, and Y. Xue. (2004). The F-box protein AhSLF-S2 controls the pollen function of S-RNase-based self incompatibility. Plant Cell16:2307–2322.

Qiu, Y., J. Lee, F. Bernasconi-Quadroni, D. E. Soltise, P. Soltis, M. Zanis, E. A. Zimmer, Z. Chen, V. Savolainen, and M. W. Chase. (1999). The earliest angiosperms. Nature402:404–407.

Quail, P. H. (2002). Phytochrome photosensory signalling networks. Nature Reviews Molecular Cell Biology3:85–93.

Quattrocchio, F., J. F. Wing, K. van der Woude, J. N. M. Mol, and R. Koes. (1998). Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant Journal13:475–488.

Quattrocchio, F., J. Wing, K. van der Woude, E. Souer, N. de Vetten, J. Mol, and R. Koes. (1999). Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower colour. Plant Cell11:1433–1444.

Quattrocchio, F., W. Verweij, A. Kroon, C. Spelt, J. Mol, and R. Koes. (2006). PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyaninin pathway. Plant Cell18:1274–1291.

Quesada, V., R. Macknight, C. Dean, and G. G. Simpson. (2003). Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO Journal22:3142–3152.

Rahmann, M., K. Uchiyama, M. Kuno, N. Hirashima, K. Suwabe, T. Tsuchiya, Y. Kagaya, I. Kobayashi, K. Kakeda, and Y. Kowyama. (2007). Expression of stigma- and anther-specific genes located in the S locus region of Ipomoea trifida. Sexual Plant Reproduction20:73–85.

Ramsay, N. A., and B. J. Glover. (2005). MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science10:63–70.

Ramsay, N. A., A. R. Walker, M. Mooney, and J. C. Gray. (2003). Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white flowered Matthiola incana mutant. Plant Molecular Biology52:679–688.

Ramsey, J., H. D. Bradshaw, and D. Schemske. (2003). Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution57:1520–1534.

Rands, S., B. Glover, and H. Whitney. (2011). Floral epidermal structure and flower orientation: getting to grips with awkward flowers. Arthropod–Plant Interactions5:279–285.

Rao, N., K. Prasad, P. Kumar, and U. Vijayraghavan. (2008). Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proceedings of the National Academy of Sciences of the USA105:3646–3651.

Ratcliffe, O., I. Amaya, C. Vincent, S. Rothstein, R. Carpenter, E. Coen, and D. Bradley. (1998). A common mechanism controls the life cycle and architecture of plants. Development125:1609–1615.

(p.271) Ratcliffe, O., D. Bradley, and E. Coen. (1999). Separation of shoot and floral identity in Arabidopsis. Development126:1109–1120.

Rathcke, B. J. (2000). Hurricane causes resource and pollination limitation of fruit set in a bird-pollinated shrub. Ecology81:1951–1958.

Raven, P. (1972). Why are bird-visited flowers predominantly red? Evolution26:674.

Razafimandimbison, S., S. Ekman, T. McDowell, and B. Bremer. (2012). Evolution of growth habit, inflorescence architecture, flower size, and fruit type in Rubiaceae: its ecological and evolutionary implications. PLoS One7:e40851.

Razem, F. A., A. El-Kereamy, S. R. Abrams, and R. D. Hill. (2006). The RNA-binding protein FCA is an abscisic acid receptor. Nature439:290–294.

Reale, L., A. Porceddu, L. Lanfaloni, C. Moretti, S. Zenoni, M. Pezzotti, B. Romano, and F. Ferranti. (2002). Patterns of cell division and expansion in developing petals of Petunia hybrida. Sexual Plant Reproduction15:123–132.

Redei, G. P. (1973). Arabidopsis as a genetic tool. Annual Reviews of Genetics9:111–127.

Reichmann, J., B. Krizek, and E. Meyerowitz, (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Proceedings of the National Academy of Sciences of the USA93:4793–4798.

Richards, A. (1997). Plant Breeding Systems, 2nd edn. Chapman and Hall, London.

Riffell, J., H. Lei, L. Abrell, and J. Hildebrand. (2013). Neural basis of a pollinator’s buffet: olfactory specialisation and learning in Manduca sexta. Science339:200–204.

Rijpkema, A., J. Zethof, T. Gerats, and M. Vandenbussche. (2009). The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant Journal60:1–9.

Robertson, H., and K. Wanner. (2006). The chemoreceptor superfamily in the honeybee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Research16:1395–1403.

Rodriguez-Girones, M., and L. Santamaria. (2004). Why are so many bird flowers red? PLoS Biology2:e306.

Rolland-Lagan, A., A. J. Bangham, and E. Coen. (2003). Growth dynamics underlying petal shape and symmetry. Nature422:161–163.

Ronse de Craene, L. (2007). Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Annals of Botany100:621–630.

Ronse de Craene, L., P. Soltis, and D. Soltis. (2003). Evolution of floral structures in basal angiosperms. International Journal of Plant Science164:S329–S363.

Rosati, C., A. Cadic, M. Duron, M. Amiot, M. Tacchini, S. Martens, and G. Forkmann. (1998). Flavonoid metabolism in Forsythia flowers. Plant Science139:133–140.

Rouse, D. T., C. C. Sheldon, D. J. Bagnall, W. J. Peacock, and E. S. Dennis. (2002). FLC, a repressor of flowering, is regulated by genes in different inductive pathways. Plant Journal29:183–191.

Rubio, V., and X. Deng. (2005). Phy tunes: phosphorylation status and phytochrome-mediated signalling. Cell120:290–292.

Rudall, P. J. (2006). How many nuclei make an embryo sac in flowering plants? BioEssays28:1067–1071.

Rudall, P., and R. Bateman. (2007). Developmental bases for key innovations in the seed plant microgametophyte. Trends in Plant Science12:317–326.

Rudall, P., J. Hilton, F. Vergara-Silva, and R. Bateman. (2011). Recurrent abnormalities in conifer cones and the evolutionary origins of flower-like structures. Trends in Plant Science16:151–159.

Ruiz-Sola, M.A., and M. Rodríguez-Concepción (2012). Carotenoid biosynthesis in Arabidopsis: a colorful pathway. The Arabidopsis Book10:e0158.

Rukolainen, S., Y. Ng, V. Albert, P. Elomaa, and T. Teeri. (2010). Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins. BMC Plant Biology10:129.

Rutishauser, R., and B. Isler. (2001). Developmental genetics and morphological evolution of flowering plants, especially bladderworts (Utricularia): fuzzy Arberian morphology complements classical morphology. Annals of Botany88:1173–1202.

Rutledge, R., S. Regan, O. Nicolas, P. Fobert, C. Cote, W. Bosnich, C. Kauffeldt, G. Sunohara, A. Seguin, and D. Stewart. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant Journal15:625–634.

Saddic, L. A., B. Huvermann, S. Bezhani, Y. Su, C. M. Winter, C. S. Kwon, R. P. Collum, and D. Wagner. (2006). The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development133:1673–1682.

Sakai, H., L. Medrano, and E. Meyerowitz. (1995). Role of Superman in maintaining Arabidopsis floral whorl boundaries. Nature378:199–203.

Samach, A., H. Onouchi, S. Gold, G. Ditta, Z. Schwarz-Sommer, M. Yanofsky, and G. Coupland. (2000). Distinct roles of CONSTANS target genes in reproductive development in Arabidopsis. Science288:1613–1616.

Sanchez, M. (2011). Taste perception in honeybees. Chemical Senses36:675–692.

Sanda, S., and R. M. Amasino. (1996). Ecotype-specific expression of a flowering mutant phenotype in Arabidopsis thaliana. Plant Physiology111:641–644.

(p.272) Sanderson, M., J. Thorne, N. Wikström, and K. Bremer. (2004). Molecular evidence on plant divergence times. American Journal of Botany91:1656–1665.

Sandring, C., and J. Agren. (2009). Pollinator mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata. Evolution63:1292–1300.

Sargent, R., and S. Otto. (2004). A phylogenetic analysis of pollination mode and the evolution of dichogamy in angiosperms. Evolutionary Ecology Research6:1183–1199.

Sargent, R., M. Mandegar, and S. Otto. (2006). A model of the evolution of dichogamy incorporating sex-ratio selection, anther-stigma interference and inbreeding depression. Evolution60:934–944.

Sargent, R., C. Goodwillie, S. Kalisz, and R. Ree. (2007). Phylogenetic evidence for a flower size and number trade-off. American Journal of Botany94:2059–2062.

Sato, T., T. Nakayama, S. Kikuchi, Y. Fukui, K. Yonekura-Sakakibara, T. Ueda, T. Nishino, Y. Tanaka, and T. Kusumi. (2001). Enzymatic formation of aurones in the extracts of yellow snapdragon flowers. Plant Science160:229–236.

Savidge, B., S. Rounsley, and M. Yanofsky. (1995). Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell7:721–733.

Sawa, M., D. Nusinow, S. Kay, and T. Imaizuma. (2007). FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science318:261–265.

Schaefer, H., and S. Renner. (2010). A three-genome phylogeny of Momordica (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia. Molecular Phylogenetics and Evolution54:553–560.

Schemske, D., and H. Bradshaw. (1999). Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proceedings of the National Academy of Sciences of the USA96:11910–11915.

Schemske, D., and P. Bierzychudek. (2001). Evolution of flower colour in the desert annual Linanthus parryae: Wright revisited. Evolution55:1269–1282.

Schlüter, P., and F. Schiestl. (2008). Molecular mechanisms of floral mimicry in orchids. Trends in Plant Science13:228–235.

Schoenrock, N., R. Bouveret, O. Leroy, L. Borghi, C. Koehler, W. Gruissem, and L. Hennig. (2006). Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes and Development20:1667–1678.

Schomburg, F. M., D. A. Patton, D. W. Meinke, and R. M. Amasino. (2001). FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell13:1427–1436.

Schopfer, C., M. Nasrallah, and J. Nasrallah. (1999). The male determinant of self-incompatibility in Brassica. Science286:1697–1700.

Schreiber, H., A. Swink, and T. Godsey. (2010). The chemical mechanism for Al3+ complexing with delphinidin: a model for the bluing of hydrangea sepals. Journal of Inorganic Biochemistry104:732–739.

Schruff, M., M. Spielman, S. Tiwari, S. Adams, N. Fenby, and R. Scott. (2006). The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development133:251–261.

Schwarz-Sommer, Z., I. Hue, P. Huijser, P. Flor, H. Hansen, F. Tetens, W. Lonnig, H. Saedler, and H. Sommer. (1992). Characterisation of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO Journal11:251–263.

Schwinn, K., J. Venail, Y. Shang, S. Mackay, V. Alm, E. Butelli, R. Oyama, P. Bailey, K. Davies, and C. Martin. (2006). A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell18:831–851.

Scora, R. (1964). Dependency of pollination on patterns in Monarda (Labiatae). Nature204:1011–1012.

Searle, I., Y. He, F. Turck, C. Vincent, F. Fornara, S. Kroeber, R. A. Amasino, and G. Coupland. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signalling in Arabidopsis. Genes and Development20:898–912.

Seitz, C., C. Eder, B. Deiml, S. Kellner, S. Martens, and G. Forkmann. (2006). Cloning, functional identification and sequence analysis of flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase cDNAs reveals independent evolution of flavonoid 3′,5′-hydroxylase in the Asteraceae family. Plant Molecular Biology61:365–381.

Seo, H.S., J. Y. Yang, M. Ishikawa, C. Bolle, M. L. Ballesteros, and N. H. Chua. (2003). LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature423:995–999.

Shalitin, D., H. Yang, T. Mockler, M. Maymon, H. Guo, G. Whitelam, and C. Lin. (2002). Regulation of Arabidopsis cryptochrome by blue-light-dependent phosphorylation. Nature417:763–767.

Shalitin, D., X. Yu, M. Maymon, T. Mockler, and C. Lin. (2003). Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell15:2421–2429.

Shang, Y., J. Venail, S. Mackay, P. Bailey, K. Schwinn, P. Jameson, C. Martin, and K. Davies. (2011). The molecular basis for venation patterning of pigmentation (p.273) and its effect on pollinator attraction in flowers of Antirrhinum. New Phytologist189:602–615.

Sharma, B., and E. Kramer. (2013). Sub- and neo-functionalization of APETALA3 paralogs have contributed to the evolution of novel floral organ identity in Aquilegia (columbine, Ranunculaceae). New Phytologist197:949–957.

Sharma, B., C. Guo, H. Kong, and E. Kramer. (2011). Petal-specific subfunctionalization of an APETALA3 paralog in the Ranunculales and its implications for petal evolution. New Phytologist90:870–883.

Sheldon, C., J. E. Burn, P. P. Perez, J. Metzger, J. A. Edwards, W. J. Peacock, and E. S. Dennis. (1999). The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell11:445–458.

Sheldon, C., E. J. Finnegan, D. T. Rouse, M. Tadege, D. J. Bagnall, C. A. Helliwell, W. J. Peacock, and E. S. Dennis. (2000a). The control of flowering by vernalization. Current Opinion in Plant Biology3:418–422.

Sheldon, C., D. T. Rouse, E. J. Finnegan, W. J. Peacock, and E. S. Dennis. (2000b). The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences of the USA97:3753–3758.

Sheldon, C., A. Conn, E. S. Dennis, and W. J. Peacock. (2002). Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell14:2527–2537.

Sheldon, C., E. J. Finnegan, E. S. Dennis, and W. J. Peacock. (2006). Quantitative effects of vernalization on FLC1 and SOC1 expression. Plant Journal45:871–883.

Shiba, H., M. Iwano, T. Entani, K. Ishimoto, H. Shimosato, F. Che, Y. Satta, A. Ito, Y. Takada, M. Watanabe, A. Isogai, and S. Takayama. (2002). The dominance of alleles controlling self-incompatibility in Brassica pollen is regulated at the RNA level. Plant Cell14:491–504.

Shimada, S., Y. Inoue, and M. Sakuta. (2005). Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species. Plant Journal58:950959.

Shinomura, T., K. Uchida, and M. Furuya. (2000). Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis. Plant Physiology122:147–156.

Shindo, S., K. Sakakibara, R. Sano, K. Ueda, and M. Hasebe. (2001). Characterization of a FLORICAULA/LEAFY homologue of Gnetum parvifolium and its implications for the evolution of reproductive organs in seed plants. International Journal of Plant Science162:11991209.

Shiono, M., N. Matsugaki, and K. Takeda. (2005). Structure of the blue cornflower pigment. Nature436:791.

Shoji, K., N. Miki, N. Nakajima, K. Momonoi, C. Kato, and K. Yoshida. (2007). Perianth bottom-specific blue color development in tulip cv. Murasakizuisho requires ferric ions. Plant & Cell Physiology48:243–251.

Shpak, E. D., C. T. Berthiaume, E. J. Hill, and K. U. Torii. (2003). Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development131:1491–1501.

Sicard, A., N. Stacey, K. Hermann, J. Dessoly, B. Nueffer, I. Baurle, and M. Lenhard. (2011). Genetics, evolution and adaptive significance of the selfing syndrome in the genus Capsella. Plant Cell23:3156–3171.

Sieber, P., F. Wellmer, J. Gheyselinck, J. Reichmann, and E. Meyerowitz. (2007). Redundancy and specialization among plant microRNAs: role of the miR164 family in developmental robustness. Development134:1051–1060.

Sieburth, L., and E. Meyerowitz. (1997). Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell9:355–365.

Sijacic, P., X. Wang, A. Skirpan, Y. Wang, P. Dowd, A. McCubbin, S. Huang, and T. Kao. (2004). Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature429:302–305.

Simon, R., R. Carpenter, S. Doyle, and E. Coen. (1994). Fimbriata controls flower development by mediating between meristem and organ identity genes. Cell78:99–107.

Simon, R., M. Igeno, and G. Coupland. (1996). Activation of floral meristem identity genes in Arabidopsis. Nature84:59–62.

Simpson, G. G. (2003). Evolution of flowering in response to day length: flipping the CONSTANS switch. BioEssays25:829–832.

Simpson, G. G. (2004). The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology7:570–574.

Simpson, G. G., and C. Dean. (2002). Arabidopsis, the rosetta stone of flowering time? Science296:285–289.

Simpson, G. G., P. P. Dijkwel, V. Quesada, I. Henderson, and C. Dean. (2003). FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell113:777–787.

Smaczniak, C., R. Immink, J. Muino, R. Blanvillain, M. Busscher, J. Busscher-Lange, Q. Dinh, S. Liu, A. Westphal, S. Boeren, F. Parcy, L. Xu, C. Carles, G. Angenent, and K. Kaufmann. (2012). Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proceedings of the National Academy of Sciences of the USA109:1560–1565.

Smith, R., and M. Rausher. (2008). Experimental evidence that selection favours character displacement in the ivyleaf morning glory. American Naturalist171:1–9.

(p.274) Smith, S., and M. Donoghue. (2008). Rates of molecular evolution are linked to life history in flowering plants. Science322:86–89.

Smith, S., and M. Rausher. (2011). Gene loss and parallel evolution contribute to species differences in flower colour. Molecular Biology and Evolution28:2799–2810.

Soltis, D., and P. Soltis. (2004). Amborella not a “basal angiosperm”? Not so fast. American Journal of Botany91:997–1001.

Soltis, D., V. Albert, V. Savolainen, K. Hilu, Y. Qiu, M. Chase, J. Farris, S. Stefanovic, D. Rice, J. Palmer, and P. Soltis. (2004). Genome-scale data, angiosperm relationships, and ‘ending incongruence’: a cautionary tale in phylogenetics. Trends in Plant Science9:477–483.

Soltis, D., P. Soltis, P. Endress, and M. Chase. (2005). Phylogeny and Evolution of Angiosperms. Sinauer Associates, Sunderland, MA.

Soltis, D., A. Chanderbali, S. Kim, M. Buzgo, and P. Soltis. (2007). The ABC model and its applicability to basal angiosperms. Annals of Botany100:155–163.

Soltis, P., S. Brockington, M. Yoo, A. Piedrahita, M. Latvis, M. Moore, A. Chanderbali, and D. Soltis. (2009). Floral variation and floral genetics in basal angiosperms. American Journal of Botany96:110–128.

Somers, D., P. Devlin, and S. A. Kay. (1998). Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science282:1488–1490.

Somers, D., T. Schultz, M. Milnamow, and S. A. Kay. (2000). ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell101:319–329.

Sommer, H., P. Beltran, P. Huijser, H. Pape, W. Lonnig, H. Saedler, and Z. Schwarz-Sommer. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO Journal9:605–613.

Song, Y. H., S. Ito, and T. Imaizumi. (2010). Similarities in the circadian clock and photoperiodism in plants. Current Opinion in Plant Biology13:594–603.

Sonmez, C., I. Baurle, A. Magusin, R. Dreos, S. Laubinger, D. Weigel, and C. Dean. (2011). RNA 3′ processing functions of Arabidopsis FCA and FPA limit intergenic transcription. Proceedings of the National Academy of Sciences of the USA108:8508–8513.

Sonneveld, T., K. Tobutt, S. Vaughan, and T. Robbins. (2005). Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell17:37–51.

Souer, E., A. van der Krol, D. Kloos, C. Spelt, M. Bliek, J. Mol, and R. Koes. (1998). Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development125:733–742.

Souer, E., A. B. Rebocho, M. Bliek, E. Kusters, R. A. M. de Bruin, and R. Koes. (2008). Patterning of inflorescences and flowers by the F box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell20:2033–2048.

Southwick, S., and T. Davenport. (1986). Characterization of water stress and low temperature effects on flower induction in citrus. Plant Physiology81:26–29.

Spaethe, J., and A. Briscoe. (2005). Molecular characterisation and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. Journal of Experimental Biology208:2347–2361.

Spaethe, J., J. Tautz, and L. Chittka. (2001). Visual constraints in foraging bumblebees: flower size and colour affects search time and flight behaviour. Proceedings of the National Academy of Sciences of the USA98:3898–3903.

Specht, C., and M. Bartlett. (2009). Flower evolution: the origin and subsequent diversification of the angiosperm flower. Annual Review of Ecology, Evolution and Systematics40:217–243.

Spelt, C., F. Quattrocchio, J. N. M. Mol, and R. Koes. (2000). anthocyanin1 of Petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell12:1619–1631.

Spelt, C., F. Quattrocchio, J. N. M. Mol, and R. Koes. (2002). ANTHOCYANIN1 of Petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell14:2121–2135.

Srinivasan, M. (2010). Honeybees as a model for vision, perception and cognition. Annual Review of Entomology55:267–284.

Stacey, M., S. Hicks, and A. von Arnim. (1999). Discrete domains mediate the light-responsive nuclear and cytoplasmic localization of Arabidopsis COP1. Plant Cell11:349–363.

Stahl, Y., and R. Simon. (2010). Plant primary meristems: shared functions and regulatory mechanisms. Current Opinion in Plant Biology13:53–58.

Stanton, M., A. Snow, and S. Handel. (1986). Floral evolution: attractiveness to pollinators increases male fitness. Science232:1625–1627.

Stebbins, G. L. (1970). Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annual Reviews in Ecology and Systematics1:307–326.

Stefanović, S., D. Rice, and J. Palmer. (2004). Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? BMC Evolutionary Biology4:35.

Stein, J., B. Howlett, D. Boyes, M. Nasrallah, and J. Nasrallah. (1991). Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proceedings of the National Academy of Sciences of the USA88:8816–8820.

(p.275) Stein, J., R. Dixit, M. Nasrallah, and J. Nasrallah. (1996). SRK, the stigma-specific S locus receptor kinase of Brassica, is targeted to the plasma membrane in transgenic tobacco. Plant Cell8:429–445.

Steiner, U., W. Schliemann, H. Bohm, and D. Strack. (1999). Tyrosinase involved in betalain biosynthesis of higher plants. Planta208:114124.

Stellari, G., M. A. Jaramillo, and E. M. Kramer. (2004). Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Molecular Biology and Evolution21:506–519.

Stewart, R. N., K. H. Norris, and S. Asen. (1975). Microspectrophotometric measurement of pH and pH effect on color of petal epidermal cells. Phytochemistry14:937–942.

Stinchcombe, J., C. Weinig, M. Ungerer, K. Olsen, C. Mays, S. Halldorsdottir, M. Purugganan, and J. Schmitt. (2004). A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proceedings of the National Academy of Sciences of the USA101:4712–4717.

Stone, G., P. Willmer, and J. A. Rowe. (1998). Partitioning of pollinators during flowering in an African Acacia community. Ecology79:2808–2827.

Stone, S., M. Arnoldo, and D. Goring. (1999). A breakdown of Brassica self-incompatibility in ARC1 antisense transgenic plants. Science286:1729–1731.

Stone, S., E. Anderson, R. Mullen, and D. Goring. (2003). ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell15:885–898.

Stotz, G., P. de Vlaming, H. Wiering, A. W. Schram, and G. Forkman. (1985). Genetic and biochemical studies on flavonoid 3′-hydroxylation in flowers of Petunia hybrida. Theoretical and Applied Genetics70:300–305.

Strack, D., T. Vogt, and W. Schliemann. (2003). Recent advances in betalain research. Phytochemistry62:247–269.

Strange, A., P. Li, C. Lister, J. Anderson, N. Warthmann, C. Shindo, J. Irwin, M. Nordborg, and C. Dean. (2011). Major-effect alleles at relatively few loci underlie distinct vernalization and flowering variation in Arabidopsis accessions. PLoS One6:e199949.

Strayer, C., T. Oyama, T. Schultz, R. Raman, D. Somers, P. Mas, S. Panda, J. Kreps, and S. Kay. (2000). Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science289:768–771.

Stromberg, M., and P. Johnsen. (1990). Hummingbird sweetness preferences; taste or viscosity? The Condor92:606–612.

Suarez-Lopez, P., K. Wheatley, F. Robson, H. Onouchi, F. Valverde, and G. Coupland. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature410:1116–1120.

Subramanian, C., B. Kim, N. Lyssenko, X. Xu, C. Johnson, and A. von Arnim. (2004). The Arabidopsis repressor of light signalling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer. Proceedings of the National Academy of Sciences of the USA101:6798–6802.

Sugimoto-Shirasu, K., and K. Roberts. (2003). ‘Big it up’: endoreduplication and cell cycle control in plants. Current Opinion in Plant Biology6:544–553.

Sun, G., D. L. Dilcher, S. Zheng, and Z. Zhou. (1998). In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science282:1692–1695.

Sun, G., Q. Ji, D. Dilcher, S. Zheng, K. Nixon, and X. Wang. (2002). Archaefructaceae, a new basal angiosperm family. Science296:899–904.

Sun, G., D. Dilcher, H. Wang, and Z. Chen. (2011). A eudicot from the Early Cretaceous of China. Nature471:625–628.

Sundstrom, J., and P. Engstrom. (2002). Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordia. Plant Journal31:161–169.

Sundstrom, J. F., N. Nakayama, K. Glimelius, and V. Irish. (2006). Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis. Plant Journal46:593–600.

Sung, S., and R. M. Amasino. (2004a). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature427:159–163.

Sung, S., and R. M. Amasino. (2004b). Vernalization and epigenetics: how plants remember winter. Current Opinion in Plant Biology7:4–10.

Sung, S., Y. He, T. W. Eshoo, Y. Tamada, L. Johnson, K. Nakahigashi, K. Goto, S. E. Jacobsen, and R. M. Amasino. (2006). Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nature Genetics38:706–710.

Szecsi, J., C. Joly, K. Bordji, E. Varaud, J. Cock, C. Dumas, and M. Bedahmane. (2006). BIGPETALp, a bHLH transcription factor, in involved in the control of Arabidopsis petal size. EMBO Journal25:3912–3920.

Tadege, M., C. Sheldon, C. Helliwell, N. Upadhyaya, E. Dennis, and W.J. Peacock. (2003). Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotechnology Journal1:361–369.

Takasaki, T., K. Hatakeyama, G. Suzuki, M. Watanabe, A. Isogai, and K. Hinata. (2000). The S receptor kinase determines self-incompatibility in Brassica stigma. Nature403:913–916.

Takayama, S., H. Shiba, M. Iwano, H. Shimosato, F. Che, N. Kai, M. Watanabe, G. Suzuki, K. Hinata, and A. Isogai. (2000). The pollen determinant of self-incompatibility in (p.276) Brassica campestris. Proceedings of the National Academy of Sciences of the USA97:1920–1925.

Takayama, S., H. Shimosato, H. Shiba, M. Funato, F. Che, M. Watanabe, M. Iwano, and A. Isogai. (2001). Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature413:534–538.

Takebayashi, N., D. Wolf, and L. Delph. (2006). Effect of variation in herkogamy on outcrossing within a population of Gilia achilleifolia. Heredity96:159–165.

Takeda, S., N. Matsumoto, and K. Okada. (2003). RABBIT EARS, encoding a SUPERMAN-like zinc-finger protein, regulates petal development in Arabidopsis thaliana. Development131:425–434.

Tanabe, Y., M. Hasebe, H. Sekimoto, T. Nishiyama, M. Kitani, K. Henschel, T. Muenster, G. Theissen, H. Nozaki, and M. Ito. (2005). Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes. Proceedings of the National Academy of Sciences of the USA102:2436–2441.

Tanahashi, T., N. Sumikawa, M. Ato, and M. Hasebe. (2005). Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens. Development132:1727–1736.

Tanaka, Y., N. Sasaki, and A. Ohmiya. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant Journal54:733–749.

Tandre, K., M. Svenson, M. E. Svensson, and P. Engstrom. (1998). Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant Journal15:615–623.

Tarutani, Y., H. Shiba, M. Iwano, T. Kakizaki, G. Suzuki, M. Watanabe, A. Isogai, and S. Takayama. (2010). Trans-acting small RNA determines dominance relationships in Brassica self-incompatibility. Nature466:983–986.

Tavares, R., M. Cagnon, I. Negrutiu, and D. Mouchiroud (2010). Testing the recent theories for the origin of the hermaphrodite flower by comparison of the transcriptomes of gymnosperms and angiosperms. BMC Evolutionary Biology10:240.

Teeri, T., V. Albert, P. Elomaa, J. Hamalainen, M. Kotilainen, E. Pollanen, and A. Uimari. (2002). Involvement of non-ABC MADS-box genes in determining stamen and carpel identity in Gerbera hybrida (Asteraceae). In: Q. C. B. Cronk, R. M. Bateman, and J. A. Hawkins (eds), Developmental Genetics and Plant Evolution, pp. 173–205. Taylor and Francis, London.

Tepperman, J., T. Zhu, H. Chang, X. Wang, and P. H. Quail. (2001). Multiple transcription factor genes are early targets of phytochrome A signalling. Proceedings of the National Academy of Sciences of the USA98:9437–9442.

The Arabidopsis Genome Initiative. (2000). Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature408:796–815.

Theissen, G., and H. Saedler. (2001). Plant biology—floral quartets. Nature409:469–471.

Theissen, G., and A. Becker. (2004). Gymnosperm orthologues of class B Floral homeotic genes and their impact on understanding flower origin. Critical Reviews in Plant Sciences23:129–148.

Theissen, G., A. Becker, A. Di Rosa, A. Kanno, J. T. Kim, T. Münster, K. U. Winter, and H. Saedler. (2000). A short history of MADS-box genes in plants. Plant Molecular Biology42:115–149.

Theissen, G., A. Becker, K. Winter, T. Munster, C. Kirchner, and H. Saedler. (2002). How the land plants learned their floral ABCs: the role of MADS-box genes in the evolutionary origin of flowers. In: Q. C. B. Cronk, R. M. Bateman, and J. A. Hawkins (eds), Developmental Genetics and Plant Evolution, pp. 173–205. Taylor and Francis, London.

Thien, L. B., H. Azuma, and S. Kawano. (2000). New perspectives on the pollination biology of basal angiosperms. International Journal of Plant Sciences161:S225–S235.

Thompson, B., L. Bartling, C. Whipple, D. Hall, H. Sakai, R. Schmidt, and S. Hake. (2009). bearded-ear encodes a MADS box transcription factor critical for maize floral development. Plant Cell21:2578–2590.

Thornton, T., S. Swain, and N. Olszewski. (1999). Gibberellin signal transduction presents the SPY who O-GlcNAc’d me. Trends in Plant Science4:424–428.

Tilney-Bassett, R. (1986). Plant Chimeras. Edward Arnold, London.

Todesco, M., S. Balasubramanian, T. Hu, B. Traw, M. Horton, P. Epple, C. Kuhns, S. Sureshkumar, C. Schwartz, C. Lanz, R. Laitinen, J. Chory, V. Lipka, J. Borevitz, J. Dangl, J. Bergelson, M. Nordborg, and D. Weigel. (2010). Natural allelic variation underlying a major fitness tradeoff in Arabidopsis thaliana. Nature465:632–636.

Torti, S., F. Fornara, C. Vincent, F. Andres, K. Nordström, U. Göbel, D. Knoll, H. Schoof, and G. Coupland. (2012). Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell24:444–462.

Trevaskis, B., D. Bagnall, M. Ellis, W. J. Peacock, and E. Dennis. (2003). MADS box genes control vernalization-induced flowering in cereals. Proceedings of the Natioanl Academy of Sciences of the USA100:13099–13104.

Trobner, W., L. Ramirez, P. Motte, I. Hue, P. Huijser, W. Lonnig, H. Saedler, H. Sommer, and Z. Schwarz-Sommer. (1992). GLOBOSA—a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO Journal11:4693–4704.

(p.277) Tsaftaris, A., K. Pasentsis, P. Madesis, and A. Argiriou. (2012). Sequence characterization and expression analysis of three APETALA2-like genes from saffron crocus. Plant Molecular Biology Reporter30:443–452.

Tsuchimatsu, T., K. Suwabe, R. Shimizu-Inatsuqi, S. Isokawa, P. Pavlidis, T. Stadler, G. Suzuki, S. Takayama, M. Watanabe, and K. Shimizu. (2010). Evolution of self-compatibility in Arabidopsis by a mutation in the male specificity gene. Nature464:1342–1346.

Tsuji, H., K. Taoka, and K. Shimamoto. (2011). Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Current Opinion in Plant Biology14:45–52.

Tucker, M., T. Okada, Y. Hu, A. Scholefield, J. Taylor, and A. Koltunow. (2012). Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development139:1399–1404.

Tuskan, G., S. DiFazio, S. Janssonet al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science313:1596–1604.

Twell, D. (2011). Male gametogenesis and germline specification in flowering plants. Sexual Plant Reproduction24:149–160.

Twell, D., S. Park, T. Hawkins, D. Schubert, R. Schmidt, A. Smertenko, and P. Hussey. (2002). Mor1/Gem1 has an essential role in the plant-specific cytokinetic phragmoplast. Nature Cell Biology4:711–714.

Uehara, S., and H. Morita. (1972). The effect of temperature on the labellar chemoreceptors of the blowfly. Journal of General Physiology59:213–226.

Uimari, A., and J. Strommer. (1997). Myb26: a MYB-like protein of pea flowers with affinity for promoters of phenylpropanoid genes. Plant Journal12:1273–1284.

Uimari, A., M. Kotilainen, P. Elomaa, D. Yu, V. A. Albert, and T. H. Teeri. (2004). Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proceedings of the Natioanl Academy of Sciences of the USA101:15817–15822.

Urzay, J., S. Llewellyn Smith, E. Thompson, and B. Glover. (2009). Wind gusts and plant aeroelasticity effects on the dynamics of pollen shedding: a hypothetical turbulence-initiated wind-pollination mechanism. Journal of Theoretical Biology259:785–792.

Valverde, F., A. Mouradov, W. Soppe, D. Ravenscroft, A. Samach, and G. Coupland. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science303:1003–1006.

Vamosi, J., T. Knight, J. Steets, S. Mazer, M. Burd, and T. Ashman. (2006). Pollination decays in biodiversity hotspots. Proceedings of the National Academy of Sciences of the USA103:956–961.

Vandenbussche, M., G. Theissen, Y. Van de Peer, and T. Gerats. (2003a). Structural diversification and neo-functionalization during floral MADS box gene evolution by C-terminal frameshift mutations. Nucleic Acids Research31:4401–4409.

Vandenbussche, M., J. Zethof, E. Souer, R. Koes, G. Tornielli, M. Pezzotti, S. Ferrario, G. Angenent, and T. Gerats. (2003b). Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell15:2680–2693.

Vanoosthuyse, V., G. Tichtinsky, C. Dumas, T. Gaude, and J. M. Cock. (2003). Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S locus receptor kinase. Plant Physiology133:919–929.

van Tunen, A. J., R. E. Koes, C. E. Spelt, A. R. van der Krol, A. R. Stuitje, and J. N. M. Mol. (1988). Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light regulated and differential expression of flavonoid genes. EMBO Journal7:1257–1263.

Varela, F., A. Palacios, and T. Goldsmith. (1993). Colour vision of birds. In: H. Zeigler (ed.), Vision, Brain and Behaviour in Birds. MIT Press, Cambridge, MA.

Vazquez, D., N. Bluthgen, L. Cagnolo, and N. Chacoff. (2009). Uniting pattern and process in plant–animal mutualistic networks: a review. Annals of Botany103:1445–1457.

Vazquez-Lobo, A., A. Carlsbecker, F. Vergara-Silva, E. Alvarez-Bullya, D. Pinero, and P. Engström. (2007). Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: implications for current evo-devo hypotheses for gymnosperms. Evolution and Development9:446–459.

Verdonk, J., M. Haring, A. van Tunen, and R. Schuurink. (2005). ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell17:1612–1624.

Vert, G., C. Walcher, J. Chory, and J. Nemhauser. (2008). Integration of auxin and brassinosteroid pathways by AUXIN RESPONSE FACTOR 2. Proceedings of the National Academy of Sciences of the USA105:9829–9834.

Verweij, W., C. Spelt, G. Di Sansebastiano, J. Vermeer, L. Reale, F. Ferranti, R. Koes, and F. Quattrocchio. (2008). An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nature Cell Biology10:1456–1462.

Vignolini, S., M. Thomas, M. Kolle, T. Wenzel, P. Rudall, J. Baumberg, B. Glover, and U. Steiner. (2012). Directional scattering from Ranunculus acris: how the buttercup lights up your chin. Journal of the Royal Society Interface9:1295–1301.

Voinnet, O. (2009). Origin, biogenesis and activity of plant microRNAs. Cell136:669–687.

(p.278) Vyskot, B., and R. Hobza. (2004). Gender in plants: sex chromosomes are emerging from the fog. Trends in Genetics20:432–438.

Waelti, M., J. Muhlemann, A. Widmer, and F. Schiestl. (2007). Floral odour and reproductive isolation in two species of Silene. Journal of Evolutionary Biology21:111–121.

Wagner, D., R. Sablowski, and E. Meyerowitz. (1999). Transcriptional activation of APETALA1 by LEAFY. Science285:582–584.

Wagner, J., J. Brunzelle, K. Forest, and R. Viestra. (2005). A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature438:325–331.

Waites, R., and A. Hudson. (2001). The Handlebars gene is required with Phantastica for dorsoventral asymmetry of organs and for stem cell activity in Antirrhinum. Development128:1923–1931.

Walker, A. R., R. A. Davison, A. C. Bolognesi-Winfield, C. M. James, N. Srinivasan, T. Blundell, J. J. Esch, M. D. Marks, and J. C. Gray. (1999). The TRANSPARENT TESTA GLABRA 1 locus which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis encodes a WD40 repeat protein. Plant Cell11:1337–1345.

Wang, H., and X. Deng. (2003). Dissecting the phytochrome A-dependent signalling network in higher plants. Trends in Plant Science8:172–178.

Wang, H., L. Ma, J. Li, H. Zhao, and X. Deng. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science294:154–158.

Wang, R., S. Farrona, C. Vincent, A. Joecker, H. Schoof, F. Turck, C. Alonso-Blanco, G. Coupland, and M. Albani. (2009). PEP1 regulates perennial flowering in Arabis alpina. Nature459:423–427.

Wang, X., P. Zhang, Q. Du, H. He, L. Zhao, Y. Ren, and P. Endress. (2012). Heterodichogamy in Kingdonia (Circaesteraceae, Ranunculales). Annals of Botany109:1125–1132.

Wang, Z., Y. Luo, X. Li, L. Wang, S. Xu, J. Yang, L. Weng, S. Sato, S. Tabata, M. Ambrose, C. Rameau, X. Feng, X. He, and D. Luo. (2008). Genetic control of floral zygomorphy in pea (Pisum sativum). Proceedings of the National Academy of Sciences of the USA105:10414–10419.

Warner, K. A., P. J. Rudall, and M. W. Frohlich. (2008). Differentiation of perianth organs in Nymphaeales. Taxon57:1096–1109.

Waser, N. (1978). Competition for hummingbird pollination and sequential flowering in two Colorado wildflowers. Ecology59:934–944.

Waser, N. (2006). Specialization and generalization in plant–pollinator interactions: a historical perspective. In: N. Waser and J. Ollerton (eds), Plant–Pollinator Interactions, pp. 3–17. University of Chicago Press, Chicago.

Waser, N., and M. Price. (1981). Pollinator choice and stabilizing selection for flower colour in Delphinium nelsonii. Evolution35:376–390.

Waser, N., and J. Ollerton. (2006). Plant–Pollinator Interactions. University of Chicago Press, Chicago.

Waser, N., L. Chittka, M. Price, N. Williams, and J. Ollerton. (1996). Generalization in pollination systems, and why it matters. Ecology77:1043–1060.

Wasserthal, L. (1997). The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. sororium, and A. compactum and the evolution of extremely long spurs by pollinator shift. Botanica Acta110:343–359.

Watanabe, M., G. Suzuki, S. Takayama, A. Isogai, and K. Hinata. (2000). Genomic organization of the SLG/SRK region of the S locus in Brassica species. Annals of Botany85:155–160.

Weigel, D., and E. Meyerowitz. (1993). Activation of floral homeotic genes in Arabidopsis. Science261:1723–1726.

Weigel, D., and O. Nilsson. (1995). A developmental switch sufficient for flower initiation in diverse plants. Nature377:495–500.

Weigel, D., J. Alvarez, D. Smyth, M. Yanofsky, and E. Meyerowitz. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell69:843–859.

Weiss, D., A. van der Luit, J. Kroon, J. Mol, and J. Kooter. (1993). The petunia homologue of the Antirrhinum majus candi and Zea mays A2 flavonoid genes; homology to flavanone 3-hydroxylase and ethylene-forming enzyme. Plant Molecular Biology22:893–897.

Weiss, M. R. (1991). Floral colour changes as cues for pollinators. Nature354:227–229.

Wellensiek, S. J. (1962). Dividing cells as the locus for vernalization. Nature195:307–308.

Weller, J., J. Reid, S. Taylor, and I. Murfet. (1997). The genetic control of flowering in pea. Trends in Plant Science2:412–418.

Weller, J., V. Hecht, L. Liew, F. Sussmilch, B. Wenden, C. Knowles, and J. Vander Schoor. (2009). Update on the genetic control of flowering in garden pea. Journal of Experimental Botany60:2493–2499.

Wellmer, F., J. Reichmann, M. Alves-Ferreira, and E. Meyerowitz. (2004). Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell16:1314–1326.

Wesselingh, R. (2007). Pollen limitation meets resource allocation: towards a comprehensive methodology. New Phytologist174:26–37.

Wessinger, C., and M. Rausher. (2012). Lessons from flower colour evolution on targets of selection. Journal of Experimental Botany63:5741–5749.

Wessler, S. R. (2005). Homing into the origin of the AP2 DNA binding domain. Trends in Plant Science10:54–56.

Weston, E., and K. Pyke. (1999). Developmental ultrastructure of cells and plastids in the petals of wallflower (Erysimum cheiri). Annals of Botany84:763–769.

Weterings, K., and S. Russell. (2004). Experimental analysis of the fertilisation process. Plant Cell16:S107–S118.

(p.279) Wheeler, M., B. de Graaf, N. Hadjiosif, R. Perry, N. Poulter, K. Osman, S. Vatovec, A. Harper, F. Franklin, and V. Franklin-Tong. (2009). Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature459:992–995.

Wheeler, M., S. Vatovec, and V. Franklin-Tong. (2010). The pollen S-determinant in Papaver: comparisons with known plant receptors and protein ligand partners. Journal of Experimental Botany61:2015–2025.

Whibley, A., N. Langlade, C. Andalo, A. Hanna, A. Bangham, C. Thebaud, and E. Coen. (2006). Evolutionary paths underlying flower color variation in Antirrhinum. Science313:963–966.

Whipple, C., P. Ciceri, C. Padilla, B. Ambrose, S. Bandong, and R. Schmidt. (2004). Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development131:6083–6091.

Whipple, C., M. Zanis, E. Kellogg, and R. Schmidt. (2007). Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. Proceedings of the National Academy of Sciences of the USA104:1081–1086.

Whitney, H., L. Chittka, T. Bruce, and B. Glover. (2009a). Conical epidermal cells allow bees to grip flowers and increase foraging efficiency. Current Biology19:1–6.

Whitney, H., M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. Glover. (2009b). Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science323:130–133.

Whitney, H., K.M.V. Bennett, M. Dorling, L. Sandbach, D. Prince, L. Chittka, and B. Glover. (2011). Why do so many petals have conical epidermal cells? Annals of Botany108:609–616.

Whitney, H., G. Milne, S. Rands, S. Vignolini, C. Martin, and B. Glover. (2013). The influence of pigmentation patterning on bumblebee foraging from flowers of Antirrhinum majus. Naturwissenscaften100:249–256.

Whittall, J., and S. Hodges. (2007). Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature447:706–709.

Whittall, J., C. Voelckel, D. Kliebenstein, and S. Hodges. (2006). Convergence, constraint and the role of gene expression during adaptive radiation: Floral anthocyanins in Aquilegia. Molecular Ecology15:4645–4657.

Wienand, U., H. Sommer, Z. Schwarz, N. Shephard, H. Saedler, F. Kreuzaler, H. Ragg, K. Hahlbrock, R. Harrison, and P. A. Peteson. (1982). A general method to identify plant structural genes among genomic DNA clones using transposable element induced mutations. Molecular and General Genetics187:195–201.

Wigge, P. A., M. C. Kim, K. E. Jaeger, W. Busch, M. Schmid, J. U. Lohmann, and D. Weigel. (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science309:1056–1059.

Wilkinson, M., and G. Haughn. (1995). UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate. Plant Cell7:1485–1499.

Willis, K. J., and J. C. McElwain. (2002). The Evolution of Plants. Oxford University Press, Oxford.

Willmer, P., D. Stanley, K. Steijven, I. Matthews, and C. Nuttman. (2009). Bidirectional flower color and shape changes allow a second opportunity for pollination. Current Biology19:919923.

Wilson, P., M. Castellanos, J. Hogue, J. Thomson, and W. S. Armbruster. (2004). A multivariate search for pollination syndromes among penstemons. Oikos104:345–361.

Winter, K., C. Weiser, K. Kaufmann, A. Bohne, C. Kirchner, A. Kanno, H. Saedler, and G. Theissen. (2002). Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Molecular Biology and Evolution19:587–596.

Wolfe, K. H., M. Gouy, Y. Yang, P. Sharp, and W. Li. (1989). Date of the monocot–dicot divergence estimated from chloroplast DNA sequence data. Proceedings of the National Academy of Sciences of the USA86:6201–6205.

Wollmann, H., E. Mica, M. Todesco, J. Long, and D. Weigel. (2010). On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development137:3633–3642.

Wood, C. C., M. Robertson, G. Tanner, W. J. Peacock, E. S. Dennis, and C. A. Helliwell. (2006). The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proceedings of the National Academy of Sciences of the USA103:14631–14636.

Wuerschum, T., R. Gross-Hardt, and T. Laux. (2006). APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell18:295–307.

Wuest, S., D. O’Maoileidigh, L. Rae, K. Kwasniewska, A. Raganelli, K. Hanczaryk, A. Lohan, B. Loftus, E. Graciet, and F. Wellmer. (2012). Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proceedings of the National Academy of Sciences of the USA109:13452–13457.

Xu, L., Z. Zhao, A. Dong, L. Soubigou-Taconnat, J. Renou, A. Steinmetz, and W. Shen. (2008). Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Molecular and Cellular Biology28:1348–1360.

Xu, Y., L. Teo, J. Zhou, P. Kumar, and Yu, H. (2006). Floral organ identity genes in the orchid Dendrobium crumenatum. Plant Journal46:54–68.

Yadav, V., C. Mallappa, S. Gangappa, S. Bhatia, and S. Chattopadhyay. (2005). A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell17:1953–1966.

(p.280) Yadegari, R., and G. Drews. (2004). Female gametophyte development. Plant Cell16:S133–S141.

Yamaguchi, T., S. Fukada-Tanaka, Y. Inagaki, N. Saito, K. Yonekura-Sakakibara, Y. Tanaka, T. Kusumi, and S. Iida. (2001). Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant and Cell Physiology42:451–461.

Yamaguchi, T., D. Lee, A. Kiyao, H. Hirochika, G. An, and H. Hirano. (2006). Functional diversification of the two C-class MADS box genes OsMADS3 and OsMADS58 in Oryza sativa. Plant Cell18:15–28.

Yamaguchi, N., A. Yamaguchi, M. Abe, D. Wagner, and Y. Komeda. (2012). LEAFY controls Arabidopsis pedicel length and orientation by affecting adaxial-abaxial cell fate. Plant Journal69:844–856.

Yamamoto, Y., M. Matsui, L. Ang, and X. Deng. (1998). Role of a COP1 interactive protein in mediating light-regulated gene expression in Arabidopsis. Plant Cell10:1083–1094.

Yan, L., A. Loukoianov, G. Tranquilli, M. Helguera, T. Fahima, and J. Dubcovsky. (2003). Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the USA100:6263–6268.

Yan, L., A. Loukoianov, A. Blechl, G. Tranquilli, W. Ramakrishna, P. SanMiguel, J. Bennetzen, V. Echenique, and J. Dubcovsky. (2004). The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science303:1640–1644.

Yan, L., D. Fu, C. Li., A. Blechl, G. Tranquilli, M. Bonafede, A. Sanchez, M. Valarik, S. Yasuda, and J. Dubcovsky. (2006). The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences of the USA103:19581–19586.

Yang, C., M. Spielman, J. Coles, Y. Li, S. Ghelani, V. Bourdon, R. Brown, B. Lemmon, R. Scott, and H. Dickinson. (2003a). TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant Journal34:220–240.

Yang, H., Y. Wu, R. Tang, D. Liu, Y. Liu, and A. Cashmore. (2000). The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell103:815–827.

Yang, J., R. Lin, J. Sullivan, U. Hoecker, B. Liu, L. Xu, X. Deng, and H. Wang. (2005). Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signalling in Arabidopsis. Plant Cell17:804–821.

Yang, S., L. Xie, H. Mao, C. Puah, W. Yang, L. Jiang, V. Sundaresan, and D. Ye. (2003b). TAPETUM DETERMINANT 1 is required for cell specialisation in the Arabidopsis anther. Plant Cell15:2792–2804.

Yano, M., Y. Katayose, M. Ashikari, U. Yamanouchi, L. Monna, T. Fuse, T. Baba, K. Yamamoto, Y. Umehara, Y. Nagamura, and T. Sasaki. (2000). Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell12:2473–2483.

Yanofsky, M., H. Ma, J. Bowman, G. Drews, K. Feldmann, and E. Meyerowitz. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature346:35–39.

Yanovsky, M. J., and S. A. Kay. (2003). Living by the calendar: how plants know when to flower. Nature Reviews Molecular Cell Biology4:265–275.

Yant, L., J. Mathieu, T. Dinh Thanh, F. Ott, C. Lanz, H. Wollmann, X. Chen, and M. Schmid. (2010). Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell22:2156–2170.

Yoshida, H. (2012). Is the lodicule a petal: Molecular evidence? Plant Science184:121–128.

Yoshida, K., T. Kondo, Y. Okazaki, and K. Katou. (1995). Cause of blue petal colour. Nature373:291.

Yoshida, K., M. Kawachi, M. Mori, M. Maeshima, M. Kondo, M. Nishimura, and T. Kondo. (2005). The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal colour during flower opening of morning glory, Ipomoea tricolor cv. Heavenly Blue. Plant and Cell Physiology46:407–415.

Yoshida, K., S. Kitahara, D. Ito, and T. Kondo. (2006). Ferric ions involved in the flower colour development of the Himalayan blue poppy Meconopsis grandis. Phytochemistry67:992–998.

Yu, C., X. Liu, M. Luo, C. Chen, X. Lin, G. Tian, Q. Lu, Y Cui, and K. Wu. (2011). HISTONE DEACETYLASE 6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiology156:173–184.

Yu, D., M. Kotilainen, E. Pollanen, M. Mehto, P. Elomaa, Y. Helariutta, V. A. Albert, and T. H. Teeri. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant Journal17:51–62.

Yu, H., T. Ito, Y. Zhao, J. Peng, P. Kumar, and E. Meyerowitz. (2004). Floral homeotic genes are targets of gibberellin signaling in flower development. Proceedings of the National Academy of Sciences of the USA101:7827–7832.

Yun, H., Y. Hyun, M. Kang, Y. Noh, B. Noh, and Y. Choi. (2011). Identification of regulators required for the reactivation of FLOWERING LOCUS C during Arabidopsis reproduction. Planta234:1237–1250.

Zachgo, S., E. Andrade Silva, P. Motte, W. Trobner, H. Saedler, and Z. Schwarz-Sommer. (1995). Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development121:2861–2875.

Zahn, L., J. Leebens-Mack, C. dePamphlis, H. Ma, and G. Theissen. (2005). To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. Journal of Heredity9:225–240.

(p.281) Zeevart, J. (1976) Physiology of flower formation. Annual Review of Plant Physiology and Plant Molecular Biology27:321–348.

Zhang, F., A. Gonzalez, M. Zhao, C. Payne, and A. Lloyd. (2003). A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development130:4859–4869.

Zhang, H., and S. van Nocker. (2002). The VERNALIZATION INDEPENDENCE 4 gene encodes a novel regulator of FLOWERING LOCUS C. Plant Journal31:663–673.

Zhang, L., S. C. Barrett, J. Y. Gao, J. Chen, W. W. Cole, Y. Liu, Z. L. Bai, and Q. J. Li. (2005). Predicting mating patterns from pollination syndromes: the case of “sapromyophily” in Tacca chantrieri (Taccaceae). American Journal of Botany92:517–524.

Zhang, P., H. T. W. Tan, K.-H. Pwee, and P. P. Kumar. (2004). Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant Journal37:566–577.

Zhang, W., E. Kramer, and C. Davis. (2010). Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proceedings of the National Academy of Sciences of the USA107:6388–6393.

Zhang, W., E. Kramer, and C. Davis. (2012). Similar genetic mechanisms underlie the parallel evolution of floral phenotypes. PLoS One7:e36033.

Zhang, Y., S. Gong, Q. Li, Y. Sang, and H. Yang. (2006). Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. Plant Journal46:971–983.

Zhao, D.-Z., G.-F. Wang, B. Speal, and H. Ma. (2002). The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes & Development16:2021–2031.

Zhu, Y., J. M. Tepperman, C. D. Fairchild, and P. H. Quail. (2000). Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. Proceedings of the National Academy of Sciences of the USA97:13419–13424.

Zik, M., and V. Irish. (2003). Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant Cell15:207–222.

Zupan, J., T. R. Muth, O. Draper, and P. Zambryski. (2000). The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant Journal23:11–28. (p.282)