Jump to ContentJump to Main Navigation
Quantum Confined Laser DevicesOptical gain and recombination in semiconductors$

Peter Blood

Print publication date: 2015

Print ISBN-13: 9780199644513

Published to Oxford Scholarship Online: November 2015

DOI: 10.1093/acprof:oso/9780199644513.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 23 October 2018

Rate equations for laser operation

Rate equations for laser operation

Chapter:
(p.215) 13 Rate equations for laser operation
Source:
Quantum Confined Laser Devices
Author(s):

Peter Blood

Publisher:
Oxford University Press
DOI:10.1093/acprof:oso/9780199644513.003.0013

Abstract and Keywords

Rate equations for the electron and photon populations provide insight into the variation of light output with current and the high-frequency modulation response of the laser. Above threshold the average photon lifetime exceeds the cavity round-trip time. The steady-state solution of these equations shows that the gain never becomes exactly equal to the optical loss, as assumed in the traditional description of threshold, the small difference being made up by the spontaneous emission coupled into the lasing mode given by the spontaneous emission factor. Steady-state solutions are also obtained for quantum dot lasers in the random population regime, where quasi-equilibrium is not established, by solving electron, photon, and phonon coupled rate equations. Rate equations also give the small signal modulation response of the laser and the resonance frequency, including the influence of carrier transport in quantum well devices. The chapter ends with remarks on what constitutes evidence for laser action.

Keywords:   rate equation, photon lifetime, round-trip time, spontaneous emission factor, quantum dot, random population, resonance frequency, carrier transport

Calculation of the intrinsic threshold current through the gain–current relation is based on a definition of threshold in Section 5.2 in which current due to stimulated emission is neglected by assuming the photon density at threshold is negligible. The cavity enters simply as an optical loss and it is not necessary to know the photon density. This approach gives no information about operation above threshold such as the light output or the differential quantum efficiency. To do this it is necessary to take account of the ever-increasing photon density above threshold and include the coupling between carriers and photons by stimulated emission. This is achieved by formulating coupled rate equations for the carrier and photon populations.

In this chapter these rate equations are solved in the steady state to obtain the light–current characteristic. Steady-state solutions are also obtained for quantum dot lasers in the random regime where quasi-equilibrium is not established. An important application of these equations is the study of the small signal modulation response of the laser, and the influence of carrier transport in quantum confined devices. The chapter ends with remarks on what constitutes evidence for laser action.

13.1 Formulation of the photon and carrier rate equations

We consider a slab waveguide with a quantum confined gain region (wells or dots) lying in the (x,y) plane and with the optical mode propagating in the y direction, as illustrated in Fig. 13.1. The carrier and photon distributions in the z direction have areal densities n and Nph respectively in the (x,y) plane, the latter obtained by integration over the mode profile. The overlap between them in the z direction is contained within the modal gain G(n), which is a function of carrier density. The carrier scattering rates into the well and within the well are sufficiently fast to maintain a global quasi-equilibrium.

Rate equations for laser operation

Fig. 13.1 Schematic device geometry used to formulate the rate equations. A uniform current density ηinjJ is injected from the top contact into the gain region and this establishes carrier and photon densities n and Nph per unit (x,y) area respectively.

Modal gain is the fractional increase in energy in the mode per unit distance (Section 2.1.2); therefore, for a monochromatic beam of photon (p.216) density Nph, the increase in photon density per unit distance is G(n)Nph. The rate of increase per unit time is

(13.1)
dNphdtnet=vgNphG(n)

where vg is the group velocity.1 This is the net stimulated emission rate due to the net effects of stimulated emission and absorption: Rstimnet is equal to [dNph/dt]net, so

(13.2)
Rstimnet=vgNphG(n)=Nphτphstim

The product vgG(n) has dimensions [T]−1 and is the average net stimulated rate per photon, 1/τphstim. Since the gain depends on the carrier density, eqn 13.1 expresses the coupling of photons and carriers.

Carriers

A current density J is driven into the top contact and of this a fraction ηinj enters the gain medium (Section 5.5.1), as illustrated in Fig. 13.1. The injection efficiency and the fraction of injected current lost by current spreading are not the same below and above threshold (Section 5.5.2) and their relation depends upon the device structure. We therefore formulate the rate equation for the carrier density in terms of the current entering the well, Jwell. Electrons are lost from the active region by recombination by net stimulated emission (eqn 13.2), recombination producing spontaneous emission, Rspon(n), and non-radiative recombination, Rnr(n). The competition between these rates determines the carrier density in the well represented by the reservoir, illustrated in Fig. 13.2.

Rate equations for laser operation

Fig. 13.2 Schematic diagram of the coupled carrier and photon populations. Carriers are added by injection from the contact, Jwell, and lost by non-radiative, spontaneous, and net stimulated recombination. Photons (wavy lines) are gained by the fraction of spontaneous emission in the mode, βsponRspon, and by net stimulated emission and are lost by internal scattering, αi, and through the end mirrors, αm, which is the laser light output of the device, L. The stimulated rate is controlled by gain G(n) and by the photon density, the latter being indicated by the dashed line with solid arrows.

The net rate of change of the area density of electrons in the gain region is therefore

(13.3)
dndt=JwellRspon(n)Rnr(n)Rstimnet(n,Nph)

(p.217) Below transparency the net stimulated rate is negative and electrons are added to the system by absorption of spontaneous emission.

Photons

Photons are lost from the mode by internal scattering, specified by the internal mode loss αi, and from the end mirrors, specified by the distributed mirror loss αm.2 We define a photon lifetimethat represents the average rate at which photons are lost from the mode and which is a property of the cavity (eqn 5.12):

(13.4)
1τph0=vg(αi+αm)

This is the loss in the absence of any amplification, sometimes called a “cold cavity”. When photons are added by amplification their average lifetime in the cavity is increased.

Photons are added to the mode by stimulated emission and by the fraction of spontaneous emission, βspon, that enters the mode. The rate equation for the photon density is

(13.5)
dNphdt=Rstimnet+βsponRspon(n)Nphτph0=vgG(n)1τph0Nph+βsponRspon(n)

By writing these equations in terms of densities per unit area and modal gain, the “thickness” of the gain layer and volume of the mode are not required. The overlap of the mode with the gain region is taken into account in the modal gain.

The treatment here considers all the laser emission to be in a single mode. This is a simplification and for a full understanding of the laser (p.218) emission spectrum it is necessary to formulate multimode equations that are themselves coupled through the homogeneous linewidth.

In the following sections we examine the steady-state and small signal modulation solutions of eqns 13.3 and 13.5.

13.2 Steady-state solutions

13.2.1 The steady-state equations

For a given current density the light output in the steady state is calculated by setting the time derivatives of eqns 13.3 and 13.5 to zero. Then eqn 13.5 can be written

(13.6)
Nph=βsponRspon(n)1τph0vgG(n)

and eqn 13.3 becomes

(13.7)
Jwell=Rspon(n)+Rnr(n)+vgG(n)Nph

The modal gain G(n) and spontaneous recombination rate Rspon(n) are given by calculations described in Chapter 9 (dots) and Chapters 11 and 12 (wells).3 An appropriate model must be adopted to calculate the non-radiative recombination rate and usually this is written in terms of a non-radiative lifetime τnr (Section 15.3.1 and eqn E.29):

(13.8)
Rnr=nτnr

though a value for τnr may not be known.

Starting with a value for n, G, Rspon, and Rnr are determined and Nph is given by eqn 13.6; eqn 13.7 gives the current density Jwell.

The external light output from one end mirror can be calculated as follows. The total number of photons in the lasing mode is NphLcw, where w is the width of the gain region, and from the definition of photon lifetime (eqn 13.4) the rate at which photons are lost from the mode is NphLcw/τph0=NphLcwvg(αi+αm). Of this loss, a fraction αm/(αm+αi) is lost through the mirrors (eqn 5.24). The power emittedfrom one mirror (assuming R1=R2) is therefore

(13.9)
PLout=12hναmvgNphLcw=12hνvgNphwlnR1

where we have used eqns 13.4 and 5.12. It is assumed that there are no transmission losses in the mirrors.

13.2.2 Light–current curve

Figure 13.3 shows a light–current curve calculated with these equations using typical relations for G(n) and Rspon(n) as functions of carrier (p.219) density in a quantum well. We illustrate the general principles with numerical results for a specific example. The cavity loss is 53.2 cm−1, αi=5 cm−1, non-radiative recombination in the well is included.

Rate equations for laser operation

Fig. 13.3 Calculated external light output power from one mirror as a function of current density, Jwell. A non-radiative contribution is included in the current, the stripe width and cavity length are w=10μm and Lc=250μm, and βspon=104. The relations between peak gain, current, and carrier density are for a typical GaAs well, calculated as described in Section 12.3.

Extrapolation of this curve to zero output gives a thresholdcurrent density of 410 A cm−2 compared with a radiative threshold current density of 250 A cm−2 obtained from the input data, giving an internal spontaneous quantum efficiency at threshold of about 0.55 (eqn 5.21).

The external differential efficiency (eqn 5.26) from the slope above threshold is 0.91 and, using the extraction factor (eqn 5.24), the internal differential efficiency ηintd is found to be unity, as should occur when the Fermi levels pin above threshold (Section 5.2.4).4

Figure 13.4 shows the calculated emission rates into the lasermode due to spontaneous emission and net induced emission, and their total produces the light output. Initially the net induced rate Rstimnet is negative: this is absorption of photons when the population is not inverted. It becomes positive above transparency. The spontaneous emission rate increases with current as the carrier density builds up, then pins just above threshold owing to the rapid increase in photon density causing an increase in the stimulated rate (Section 5.2.4). Figure 13.4 also shows that gain is first produced at a transparency current of about 240 A cm−2, compared with the threshold current density of 410 A cm−2. The extra current generates the gain to overcome the optical loss (Fig. 5.9).5

Rate equations for laser operation

Fig. 13.4 Calculated variation of the spontaneous and induced emission rates into the laser mode and the light output as functions of current density. The transparency current density is about 240 A cm−2.

13.2.3 Spontaneous emission and threshold

The threshold condition derived in Section 5.2.1 is that the threshold gain is equal to the cavity losses (eqn 5.13). However, close scrutiny of the rate equation results shows that the gain never reaches a value exactly equal to the optical loss (Exercise 13.3): if it did so, eqn 13.6 shows (p.220) that the photon density would be infinitely large. At twice the threshold current the gain is 53.156 cm−1, compared with a loss of 53.158 cm−1. The difference is due to the contribution of spontaneous emission to the photons in the mode (eqn 13.5), as can be seen in Fig. 13.4. The difference between the gain at the upturn of the LI curve and optical loss is sufficiently small that for most purposes the definition of threshold as the pumping rate when they are equal is satisfactory.

13.2.4 The influence of βspon

The form of the LI curve near threshold is influenced by the fraction of spontaneous emission that is coupled into the laser mode. Figure 13.5 shows that the higher the value of βspon the more gradual is the upturn of light output near threshold.

Rate equations for laser operation

Fig. 13.5 Calculated LI curves for different values of βspon: 1×104 and 3×103, illustrating the effect of the turn-on near threshold.

The influence of βspon is shown more clearly in Figure 13.6, which is a log–log plot of Fig. 13.3, with straight lines through the the data below and above threshold. At high current above threshold the calculated LI curve is linear with a slope of one extra photon out for one extra electron in; a fraction Fext=0.91 of these appear externally.

Rate equations for laser operation

Fig. 13.6 Logarithmic plot of the light output versus total current shown in Fig. 13.3, with straight lines drawn through the data points below and above threshold.

Below threshold the light in the mode is due to a fraction βspon of the total spontaneous emission rate, of which the same fraction, 0.91, appears externally. As the current increases, the spontaneous emission rate (n2) increases faster than the non-radiative rate (n), so the spontaneous quantum efficiency increases with current, causing the LI curve to be super-linear, as manifest in the slope of the log–log plot.

By extrapolating the two portions of the LI curve to threshold it is possible to compare the spontaneous and stimulated rates in the mode at the same carrier density. All stimulated emission above threshold enters the lasing mode, which is equivalent to a β‎ of unity, whereas spontaneous emission is “stimulated” into all free-space modes. Therefore the ratio of the intercepts of the LI extrapolations on a vertical line at threshold is approximately equal to the fraction of spontaneous emission that enters the laser mode, βspon. As the value of βspon is increased, this ratio decreases, and if βspon could be made equal to unity, the LI curve would be linear, though there would still be a “threshold” for production of coherent stimulated emission.

13.2.5 Cavity round-trip time

The time for a single round trip of the cavity is 2Lc×(n/c), which for the structure modelled here is 5.8×1012 s. The photon lifetime τph0, which is a measure of the optical loss of the cavity (eqn 13.4), is about 2.2×1012 s, so, in the absence of gain, on average the photons are unable to complete a round trip. Above threshold the average time for net loss of photons from the cavity is increased owing to addition of photons by stimulated emission, and photons make many round trips, thereby maintaining the coherence of the emission (Exercise 13.2).

(p.221) 13.2.6 Intraband relaxation

It is implicit in the rate equations in Section 13.1 that quasi-equilibrium is maintained in the upper and lower bands even above threshold. It is therefore assumed that the carrier–carrier intraband relaxation processes are much faster than the sum of recombination rates between bands.6 The stimulated rate per carrier (eqn 13.2) is about 1011 s−1 at 10 × threshold whereas intraband relaxation rates are of order 1012 s−1, which is much faster. However, at very high currents the photon density builds up and the stimulated recombination rate is very large, suppressing the carrier density. Rapid intraband relaxation is responsible for pinning the global Fermi levels and carrier density above threshold, as shown in Fig. 13.4. Laser emission occurs over a narrow band, but nevertheless rapid relaxation of carriers between higher states resupplies the lasing process and maintains the whole carrier distribution in quasi-equilibrium.

Most aspects of laser diode operation considered in this book fall into the regime where intraband relaxation is sufficiently rapid that quasi-equilibrium is maintained. The exception is quantum dots at low temperature, which is examined in the next section.

13.3 Laser operation of quantum dots

13.3.1 Quasi-equilibrium

The LI characteristic of quantum dot lasers can be calculated using rate equations as described in Section 13.2. In quasi-equilibrium the modal gain and spontaneous recombination rate as functions of the dot carrier density can be calculated for an inhomogeneous distribution of dots as described in Chapter 9 using Fermi functions. It is shown in Section 10.3.2 that the primary requirement for this to be so is that the emission rate from dot states to the wetting layer is much faster the recombination rate. This is usually the case at room temperature.

13.3.2 Rate equations for a non-thermal carrier distribution

At low temperature the emission rate to the wetting layer is so slow that quasi-equilibrium is not established and Fermi statistics cannot be used; instead the occupation probability is obtained from the rate equations for the dot and wetting layer system interacting with a thermal distribution of phonons, as described in Chapter 10. The net stimulated rate is incorporated as a carrier loss in eqn 10.8:

(13.10)
dfgdtNd=RRRsponRstimnet

(p.222) where R and R are the phonon-induced rates of capture and emission of electrons in the wetting layer at the ground state. This is combined with the photon rate equation (eqn 13.5)

(13.11)
dNphdt=Rstimnet+βsponRspon(n)Nphτph0

using the gain for the dot system as a function of carrier density to give Rstimnet from eqn 13.2. Figure 13.7 shows Fig. 13.2 modified to show the exchange of carriers between the dots and wetting layer. These equations are solved in the steady state, first for identical dots then for an inhomogeneous distribution.

Rate equations for laser operation

Fig. 13.7 Modification of Fig. 13.2 to include the phonon-mediated rates of exchange of carriers between dots and wetting layer, R and R, controlling the occupation of dot states, fg. The fgNd carriers on the dots are coupled to the photon population through stimulated emission. Carriers are injected into the wetting layer by the current J, which, by current continuity, corresponds to the net rate of capture at the dots and the recombination rate within the dots. Wetting layer recombination is not included.

Identical dots

Consider the ground states of identical dots occupied by electron–hole pairs (Section 10.2). The average occupation probability of the conduction state at energy Eg is fg and the hole occupation is also equal to fg, so the electron occupation of the valence state is 1fg and f(Ec)f(Ev)=2fg1. The modal gain for a single ground state transition is (eqn 9.18)

(13.12)
G=γtransσNdwmode(2fg1)

where σ‎ is the optical cross section of the dot. The spontaneous recombination rate is

(13.13)
Rspon=Ndfgτspon

(p.223) Therefore, starting with a chosen value for fg, these equations give G(fg) and Rspon(fg); the photon density is given by eqn 13.6, from which the light output can be calculated (eqn 13.9). Since the recombination terms are known, the current can be calculated.

The continuous line in Fig. 13.8 shows the LI curve for identical dots in a cavity 1.2 mm long at 300 K, where occupation is thermal. The cavity loss is not temperature-dependent and since we are considering the ground state only of a system of identical dots without homogeneous broadening, the threshold current is not temperature-dependent, and this is confirmed by the calculation at 10 K also shown in the figure. Random occupation at 10 K has no consequences for identical dots.

Rate equations for laser operation

Fig. 13.8 Calculated LI curve for identical dots using rate equations, without assuming quasi-equilibrium. The continuous line is at 300 K and open circles at 10 K.

The dot occupation probability fg as a function of current is shown in Fig. 13.9. At both 300 and 10 K fg is clamped above threshold at the value necessary to produce the threshold gain.

Rate equations for laser operation

Fig. 13.9 Calculated occupations of dots (fg) and wetting layer (fw) as functions of the current relative to threshold at 300 and 10 K, corresponding to Fig. 13.8. The lines are at 300 K and open circles at 10 K.

The wetting layer population is given by eqn 10.20 with the occupation factor of the wetting layer, fw, to maintain the required fg. This is achieved through the relative capture and emission rates at the dot state, R and R, controlled by fw. Figure 13.9 shows that at 300 K the carrier density in the wetting layer increases with current, then clamps above threshold: this is because at 300 K the emission rate of electrons from dots to wetting layer is much faster than the stimulated recombination rate, so the dots and wetting layer are in quasi-equilibrium with a common Fermi level (Section 10.3.2).

At 10 K the dot occupation fg is also clamped above threshold to give a gain equal to the cavity loss. However, the emission rate to the wetting layer is very slow and the dot occupation is given by the ratio of the capture rate to the recombination rate (eqn 10.19) with τspon replaced by the total recombination rate per carrier, 1/τrec=1/τstim+1/τspon:

(13.14)
fg=11+τcap0τrec

(p.224) As the stimulated rate increases above threshold the capture rate must increase to maintain the value of fg required to produce the threshold gain and this is achieved by increasing the wetting layer carrier population. Consequently at 10 K the wetting layer population is not pinned above threshold: the system is not in quasi-equilibrium.

Random population of an inhomogeneous dot distribution

This treatment can be extended to an inhomogeneous distribution of dots in the low-temperature regime, and illustrative results are given for a distribution of ground states with a standard deviation of 20 meV in a cavity with an optical loss of 15 cm−1.

As the wetting layer population fwNw is increased, τcap decreases for all dots (eqn 10.5) and fg rises. The dot occupation is given by eqn 10.19 and below threshold τrec=τspon and fg is the same for all ground states. Consequently the gain spectrum follows the inhomogeneous distribution and laser action is first initiated at the peak of this distribution, as illustrated in Fig. 13.10 The laser emission is a narrow line.

Rate equations for laser operation

Fig. 13.10 Illustration of the onset of laser action at low temperature. The solid line is the energy distribution of dot states and the line with open circles is the gain spectrum corresponding to the dot occupation probability shown in the lower plot, also as a function of state energy.

The gain is controlled by fg, whereas the stimulated recombination rate is also proportional to the photon density (eqn 13.2). As the wetting layer carrier density is increased further and the photon density increases, the capture rate increases to supply the increasing stimulated rate at lasing dots, thereby maintaining their occupation probability. The gain produced by these dots matches the optical loss of the cavity.

The capture rate at dots that do not contribute to lasing also increases, because they are fed from the wetting layer, and since recombination at these dots is due only to spontaneous emission, their occupation rises with increasing wetting layer carrier density. Eventually in these dots fg is sufficient to produce gain to match the loss and the gain spectrum (and emission spectrum) broadens, clamped at the cavity loss.

(p.225) This is illustrated in Fig. 13.11, which shows gain spectra and occupation probability distributions for increasing drive current above threshold. The gain of those dots that contribute to laser action is clamped at the cavity loss and their occupation probability increases with energy away from the peak to compensate for the decreasing dot density. Their occupation does not change once lasing is initiated. The occupation of dots that are not lasing increases with increasing wetting layer carrier density until their gain matches the optical loss, when their occupation is then fixed. The carriers required to invert more dots are provided by the external current and not by depleting the occupation of other dots.

Rate equations for laser operation

Fig. 13.11 Gain spectra and occupation probability of an inhomogeneous dot distribution at low temperature for three currents above threshold. The wetting layer occupation fw is given on the figure: this supplies all dots. For the dots contributing to laser action their occupation is the inverse of the dot distribution, clamping their gain at the same value, equal to the cavity loss. Their occupation does not change once lasing is initiated. The occupation of dots that are not lasing increases with increasing drive current and gradually these also contribute to lasing.

In contrast to dots in thermal equilibrium, the laser emission spectrum broadens with increasing current above threshold, as is observed experimentally, for example by Sugawara et al. 2000.

True random population occurs only at low temperatures; however, once the stimulated emission rate of a group of dots exceeds the emission rate to the wetting layer, the system departs from quasi-equilibrium. In such situations clamping of the wetting layer population is not complete, with implications for the external differential efficiency.

13.4 Small signal modulation

Many practical applications of laser diodes, particularly for transmission and storage of digital information, require the light output to be modulated, usually as quickly as possible! The most direct way to do this is by modulating the drive current; however, the modulation is not applied directly to the active region where the light is produced, but to a pair of contacts from which the electrons and holes are transported though the structure to the gain layer. In quantum well and quantum (p.226) dot lasers carrier transport through the barrier alongside the well influences the modulation response. The modulation in current produces a modulation in the carrier density, which modulates the effective index. In order to satisfy the phase condition for laser action (eqn 5.16) this brings about small changes in the laser wavelength over each cycle of the modulation, known as chirp, increasing the linewidth. This presents a serious difficulty for direct modulation of diode lasers in optical fibre communication systems, which has led to the development of integrated modulators.

Rate equations are the means by which these matters are analysed and the topic is covered in many textbooks. Here we give a short summary of the key results and then consider the influence of carrier transport in quantum well lasers. This gives further insight into relaxation oscillations and resonance frequency introduced in Section 5.2.4.

These concepts also apply to quantum dot lasers, though an explicit account of the modulation response of these devices is not given here.

13.4.1 Small signal equations

Through the rate equations, we analyse the light output PLout in response to a small modulation of the drive current, ΔJ(t), about an average value J0: J(t)=J0+ΔJ(t), as illustrated in Fig. 13.12. This produces modulations7 in the carrier density n(t)=n0+Δn(t) and in the gain G(t)=G0+G(n0)Δn(t), where G0 is the gain at n0 and G(n0) is the change in gain for a change in carrier density at the carrier density n0, known as the differential gain. This produces a modulation in the photon density Nph(t)=Nph0+ΔNph(t) and light output, ΔPLout. We seek the modulation response: the ratio of the amplitude of the modulated output to the amplitude of the current modulation as a function of the modulation frequency. Small signal modulation implies all the changes are linear with respect to the change in carrier density.

Rate equations for laser operation

Fig. 13.12 Illustration of the modulation of the light output, ΔPLout, in response to a modulation in the drive current, ΔJ.

To ease the notation we combine the spontaneous and non-radiative carrier recombination into a single carrier lifetime τn(n):

(13.15)
Rspon(n,p)+Rnr(n)=nτn(n)

Although the lifetime is dependent upon carrier density, for calculation of the small signal response n is taken to be constant over the amplitude of the modulation and τn(n) in this equation is the differential lifetime introduced in Section E.2.2. The value of τn(n) may be an input parameter or calculated for assumed radiative and non-radiative processes.

The values n0 and Nph0 correspond to the steady-state solutions at the current density J0 and are related by eqns 13.6 and 13.7.

When the time-dependent quantities are substituted into the rate equations the steady-state terms cancel, leaving the time-dependent (p.227) terms. Writing Rstimnet in terms of the gain (eqn 13.2), eqn 13.3 becomes

(13.16)
dΔndt=ηinjeΔJ(t)ΔnτnvgNph0GΔnvgG0ΔNph

and eqn 13.5 becomes

(13.17)
dΔNphdt=vgNph0GΔn+vgG0ΔNphΔNphτph0+βsponΔnτn

where it is understood that G is evaluated at n0. There are two contributions to the modulation in the stimulated emission rate: modulations in carrier density and photon density.

13.4.2 Modulation response

The modulations are represented by a sinusoidal time dependence of the form Δn(t)=Δn0(ω)eiωt, where Δn0(ω) is the frequency-dependent amplitude of the modulation. The light output is proportional to the photon density (eqn 13.9), so the response is expressed as the ratio of the amplitude of modulation in photon density to the amplitude of modulation in current:

(13.18)
|M(ω)|=|ΔNph(ω)||ΔJ(ω)|/e

The time constants controlling the carrier and photon densities may not permit them to respond promptly at the modulation frequency, which results in a phase shift of the light output relative to the current, and this is indicated by the presence of an imaginary term in the equation for ΔNph: M(ω) is therefore complex.

The amplitude of the modulation response is given by |M|2=MM (Exercise 13.7),

(13.19)
|M(ω)|=ηinjvgNph0G1(ωr2ω2)2+γm2ω21/2

and the phase shift is

(13.20)
ϕ(ω)=tan1γmωωr2ω2

The new terms in these equations are the resonance frequency, given by

(13.21)
ωr2=vgG(n0)vgNph0G(n0)

and the damping rate, given by

(13.22)
γm=1τn+vgNph0G

(p.228) To a very close approximation G(n0) can be represented by the threshold gain, which at threshold is equal to the cavity loss, so vgG(n0)=vg(αi+αm), which from eqn 13.4 is equal to 1/τph0. The second term in eqn 13.21 is also a rate, characteristic of the coupling between carriers and photons, which we write as 1/τnN; then the resonance frequency can be seen to be controlled by these two rates:

(13.23)
ωr2=1τph01τnN

The modulation characteristics are illustrated in Fig. 13.13, for the relative modulation amplitude M(ω)/M(0), using input values obtained from gain calculations for four drive currents above threshold.

Rate equations for laser operation

Fig. 13.13 Log–log plot of the calculated modulation response (eqn 13.19) as a function of frequency (Hz) for four values of drive current giving approximately order-of-magnitude steps in photon density, with values labelled on the figure. The results are given relative to the response at low frequency in each case, M(ω)/M(0). The resonant frequencies are fr=2.3×109, 9.4×109, 3.3×1010, and 1.0×1011 Hz.

The response is flat at low frequencies, has a sharp peak at the resonance frequency, and then falls off at higher frequencies. Generally the damping rate γm is less than ωr, so when ωωr the frequency-dependent term in eqn 13.19 is constant and equal to 1/ωr2. Above the resonance frequency ω2γm2 and the response falls off as 1/ω2.

The damping rate is proportional to ωr2, so, as the photon density and modulation frequency increase, the damping rate increases such that at high drive current the resonance peak is completely damped and the response rolls off monotonically with increasing frequency.

To achieve a flat modulation response over a wide frequency range the resonance frequency should be as high as possible. Usually ωr is limited by the vgNph0G term, which is about two orders of magnitude smaller than vgG; therefore the critical parameter is the differential gain G, which should be as large as possible.

(p.229) 13.4.3 The resonance or relaxation frequency

When the drive current is increased there is an initial increase in carrier density and from eqn 13.17 this causes an increase in the rate at which photons are stimulated into the laser mode. The increase in Nph increases the rate at which carriers recombine by stimulated emission and this causes a decrease in the rate of change of carrier density (eqn 13.16). The resonance arises from the coupling of photons to carrier density through τnN and carriers to photons through τph0, as in eqn 13.23.

Equation 13.21 shows that ωr2 is proportional to Nph0, so ωr increases with increasing steady current. If the LI curve is linear above threshold, Nph0(IIth), so ωrIIth.

13.4.4 Gain compression

We have assumed that the gain coefficient itself is not modified by the high photon density that builds up above threshold. Intraband relaxation is fast, but at high photon density not sufficiently fast to supply stimulated emission, so the gain coefficient is suppressed, or compressed. Although the effect of gain compression on threshold itself is negligible, above threshold, where there is only a small difference between the gain and the cavity loss (eqn 13.6), its effect becomes significant.

The dependence of G on photon density is incorporated into the small signal rate equations using a compression factor εG as8

(13.24)
G(Nph)=G(n0)1+ϵGNph0

After neglecting small terms the relaxation frequency becomes9

(13.25)
ωr2=vgG(n0)vgNph0G(n0)1+ϵGNph0

At high current, once NphϵG1, gain compression reduces the resonant frequency and increases the damping rate, as in Fig. 13.14.

Rate equations for laser operation

Fig. 13.14 Relative modulation response without (lines) and with (lines with symbols) gain compression (eqn 13.24), illustrating the effects of decreasing the resonance frequency and increasing the damping rate.

(p.230) 13.5 Carrier transport

The rate equation for carriers (eqn 13.3) assumes the carrier population in the gain material responds instantly to a change in current at the contacts. Figure 3.15 shows the band diagram of a forward-biased quantum well laser, reproduced in simplified form in Fig. 13.15. This is a separate confinement heterostructure (SCH), because the light and carriers are confined by two different double heterostructures, forming the waveguide and the well. The waveguide core is the barrier of the well.

Rate equations for laser operation

Fig. 13.15 Schematic energy diagram of a separate confinement heterostructure quantum well laser, under forward bias, simplified from Fig. 3.15. The quantum well and the separate confinement core/barrier region have widths Lw and Ls respectively.

Electrons are injected from the N-cladding layer into the SCH region and are transported to the well, where they are captured and thermalise to the lowest sub-band. To calculate the response of the light output to modulation of current at the terminals it is necessary to take account of the time for carriers to be transported through the SCH region. This was set out by Nagarajan et al. (1992) for quantum wells and his approach is summarised here.

13.5.1 Transport time

At high carrier densities the distribution of electrons and holes in the SCH region is controlled by the ambipolar diffusion length La (see Wolfe et al. 1989, Section 8.3.1). The current flowing into the well, Jw (Fig. 13.15), is given by the concentration gradient of carriers in the SCH at the position of the well, and the small signal response of the well current to the SCH current Js is

(13.26)
|Mtrans(ω)|=|ΔJw(ω)||ΔJs(ω)|=11+iω(Ls/2)22Da

where it is assumed that the half-width of the SCH region, Ls/2, is less than the ambipolar diffusion length; Da is the ambipolar diffusion constant. The magnitude of this transport response function is

(13.27)
|Mtrans|=MtransMtrans=11+ω2τs2

which shows that the modulation of the current entering the well is controlled by an ambipolar transport time given by (eqn 13.26)

(13.28)
τs=(Ls/2)22Da

The ambipolar diffusion constant for AlGaAs is about 10 cm2 s−1, so if the full-width of the waveguide core is about 300 nm, τs is about 10 ps.

(p.231) 13.5.2 Rate equations

The response of the output to modulation in the external current Js is obtained by solving three rate equations, for the SCH, for the quantum well, and for the photons, using the same principles as in Section 13.1 and quantities per unit area as in Fig. 13.1.

SCH

It is assumed the carrier capture time into the well is much shorter than the transport time through the SCH and can be neglected. The loss rate of carriers from the SCH is therefore ns/τs, where ns is the population per unit area. Carriers are re-emitted from the well to the SCH at a rate nw/τe and the rate equation for the SCH carrier population is10

(13.29)
dnsdt=Jsensτs+nwτe

Carrier recombination in the SCH is ignored: it could be included as a further loss term in the rate equation.

Quantum well

Electrons are added to the well from the SCH and lost by re-emission, they are also lost by recombination represented by a lifetime τn (radiative and non-radiative, eqn 13.15), and by stimulated emission. Including gain compression, the rate equation in the well is

(13.30)
dnwdt=nsτsnwτenwτnvgG(n)Nph1+ϵGNph

Photons

Photons are added to the mode by stimulated emission and lost by scattering and through the mirrors, represented by the photon lifetime τph0. As these equations are only used above threshold, spontaneous emission into the mode (βsponRspon(n)) is neglected (eqn 13.5). The photon rate equation with gain compression is therefore

(13.31)
dNphdt=vgG(n)Nph1+ϵGNphNphτph0

13.5.3 Solution

These three equations contain the essential physics of the problem. They can be can put into the small signal form and the modulations represented by terms such as, for the current, ΔJ(t)=ΔJ(ω)eiωt and, for the photons, Nph(t)=ΔNph(ω)eiωt, as in Section 13.4. A full solution involves a third-order polynomial in ω‎; however, by making a number (p.232) of reasonable approximations it is possible to obtain an expression for the modulation response in a similar form to eqn 13.19, with modified expressions for the resonance frequency and damping rate. The response relative to that at low frequency is

(13.32)
Mrel(ω)=11+ω2τs21/21(ωr2ω2)2+ω2γm2)1/2

with

(13.33)
(ωr)2=1τph0vgG(n0)χNph01+ϵGNph01+ϵGvgG(n0)τn

and

(13.34)
γm=vgG(n0)χNph01+ϵGNph0+1τph0ϵGNph01+ϵGNph0+1χτn

The transport effects appear through the factor

(13.35)
χ=1+τsτe

which is related to the lifetimes for carrier loss and gain between the well and SCH region. This becomes large when τsτe.

Carrier transport through the SCH modifies the modulation response in several ways, producing the net effects illustrated in Fig. 13.16

Rate equations for laser operation

Fig. 13.16 The modulation response of a quantum well modified by carrier transport is shown as the line with open circles. The response in the absence of transport effects is the line with open triangles calculated with gain compression alone (the same data as in Fig. 13.14). The transport term in eqn 13.32 is the dashed line. The transport time constant is τs=30 ps and the transport factor χ‎ is 1.2.

:
  • The response is modified by a roll-off given by the first square bracket of eqn 13.32 due to the transport time alone, shown as the dashed line in the figure. This term is indistinguishable from the effects of capacitance in the electrical circuit of the diode.

  • (p.233) The second term of the response function, eqn 13.32, is modified through the effect of the transport factor on the resonance frequency. Comparison with eqn 13.25 shows that the effective differential gain, represented by the square bracket in eqn 13.33, is reduced by the factor 1/χ.

13.6 What is a laser?

Imagine the scenario: after weeks toiling making a device, you rush to a colleague, proclaiming with excitement: “I’ve made a laser!”. Without looking up from the desk, the reply comes back “How can you tell?”11

Indeed, how can you tell?

The coupling between the photon and carrier populations through stimulated emission and optical feedback to maintain coherence are key distinguishing features of the lasing process. These are incorporated in the rate equations, so it is appropriate here to revisit briefly the evidence for laser action, following the remarks in Section 1.2.

Light–current threshold

The evidence usually cited is an abrupt upturn of the light output as a function of drive current (Fig. 13.3), or the incident power when optical excitation is used. However, the output due simply to amplification along a pumped stripe, with no optical feedback, also increases super-linearly with the pumping rate owing to amplified spontaneous emission (ASE) (Section 5.1.2) from the facet of the laser, as illustrated in Fig. 13.17. When presented with real experimental data with scatter the optimistic investigator may be tempted to draw a line through the points at high current and conclude that this is a laser with a soft turn-on due to a high value of βspon (Fig. 13.5). Several approaches are available to check whether or not an LI characteristic is due to laser action:

Rate equations for laser operation

Fig. 13.17 Light output as a function of pumping rate from the end of a stripe, due to amplification but with no optical feedback, with some scatter and error bars added to simulated data.

  • When presented as a log–log plot the LI curve of a laser has a characteristic S shape shown in Fig. 13.6. Figure 13.18 shows such plots for a normal laser with optical feedback, R=0.3, and a structure with effectively no optical feedback, having R=0.3×105. Non-radiative recombination is not included in the calculation, so the LI curve due to spontaneous emission alone should be linear (Section 15.5). Both structures have a super-linear characteristic due to stimulated emission, but this only develops into an S shape in the device with optical feedback. There is stimulated emission into the guided mode of the structure without feedback: this is amplified spontaneous emission; but in the absence of feedback the photon density does not build up to develop the S shape characteristic of a laser.

    Rate equations for laser operation

    Fig. 13.18 Calculated log–log LI plots for a laser with normal optical feedback, R=0.3, and a structure with effectively no optical feedback, R=0.3×105, plotted up to currents of about 104 A cm−2. There is no radiative recombination, so at very low injection the output is proportional to current, as indicated by the dashed lines.

  • The threshold is a determined by the cavity loss, so changing the loss, for example by taking a device of different cavity length, (p.234) changes the threshold current density if it is indeed a laser. The ASE intensity also changes (increases) with pumped length (Section 18.2.1) but the shape of the LI characteristic is not changed.

  • Laser action is accompanied by Fermi level pinning, which causes a change of slope in the current–voltage characteristic at threshold, which is usually detected as the second derivative of the voltage with respect to current (Section 15.1.2). This arises from coupling of carrier and photon densities above threshold and is good evidence for laser action.

Linewidth and fringes

Stimulated emission produces an increasing number of photons at the same energy, causing a narrowing of the emission spectrum. This was the evidence presented in one of the first reports of laser action in a semiconductor junction by Nathan et al. 1962, reproduced in Fig. 13.19; see also Nathan (2012). This is accompanied by closely spaced fringes within the spectral envelope of the laser emission. Such features are characteristic of the coherent feedback necessary for laser action, but fringes also appear below threshold as the stimulated emission overtakes spontaneous emission in the mode (Fig. 13.4) and are seen in round-trip amplified spontaneous emission spectra (Section 17.2) below threshold. How sharp must the line be and what fringe contrast defines laser action?

Rate equations for laser operation

Fig. 13.19 Linewidth as a function of injection current presented by Nathan et al. 1962 in 1962.

Reproduced with permission, © AIP Publishing LLC.

Coherence

While interference fringes are an indicator of coherence, the quantitative evidence for laser action is provided by the second-order correlation function of the intensity, which has a value of unity for perfectly coherent light (Fox (2006), Section 6.3). This has been discussed by Chow (2013), and Chow et al. 2014 have examined both the form of the LI curve and the coherence of nanolasers.12

(p.235) In conclusion . . .

. . . an abrupt LI characteristic is satisfactory evidence for laser action in most cases, but is not definitive. It is not satisfactory for lasers with high βspon, or for nanolasers, and must be replaced by methods based on the statistical properties of the light, such as the correlation function. Claims of laser action in new materials such as organic semiconductors has aroused debate how best to recognise laser action, as has been described by Samuel et al. 2009.

Chapter summary

  • The light output as a function of current is given by the solutions of rate equations in the steady state, which show that the carrier density is pinned above threshold for a system in quasi-equilibrium.

  • Solutions for carriers on inhomogeneous dot states interacting with a bath of phonons show that when quasi-equilibrium is not established pinning does not occur over the whole distribution. This causes a broadening of the laser emission spectrum in the random population regime.

  • The rate equations give the response of the light output to a small modulation in drive current. The response rolls off above the resonance frequency.

  • A high resonance frequency requires a high differential gain (rate of change of gain with carrier density).

  • The resonance frequency, and modulation response, are modified by the transport time between the contact and the gain region.

Further reading

Bibliography references:

A full derivation of the modulation response is given by Chuang (2009), Chapter 12, and Coldren and Corzine 1995, Chapter 5. A fuller account of some of the issues that surround the question “What is a laser?” is to be found in the group of papers by Blood (2013), Chow (2013), Coldren (2013), and Ning (2013)

Exercises

The first six exercises are a linked sequence. Use the following relations for Rspon(n) and G(n), typical of a quantum well with a transition energy of 1.54 eV:

(13.36)
Rspon=3.3×104n21017n3  cm2s1
(13.37)
G=104lnn2900  cm1

with n in units of cm−2. Unless stated otherwise, use a refractive index of 3.5, βspon=104, and a Fabry–Perot cavity with αi=5 cm−1, R=0.3, and Lc=300μm.

The photon density is given by the reciprocal of the difference between 1/τph0 and vgG(n) (eqn 13.6), so it is necessary to work to six figures to obtain accurate (p.236) values above threshold. Construct a table of the results while working through the exercises.

  1. (13.1) What are the cavity loss and cold-cavity photon lifetime?

    What are the threshold carrier density and radiative recombination current obtained by equating the gain to the optical loss?

    What is the fraction of light extracted from this cavity through both end mirrors? If the Fermi levels pin above threshold, what is the external differential quantum efficiency measured from one mirror above threshold?

  2. (13.2) What is the expression for the average lifetime of a photon in the presence of optical gain?

    Calculate the photon lifetime when the carrier density is n=1.98000×1012 cm−2, which is slightly less than nth obtained by equating gain and loss. On average how many round trips of the cavity are made by photons at this injection and is this device operating as a laser at this carrier density? Compare this with the number of round trips in a cold cavity.

    (Take vg=c/n=8.57143×109 cm s−1 and the cold cavity photon lifetime from Exercise 13.1.)

  3. (13.3) The “threshold” carrier density obtained in Exercise 13.1 by equating the gain to the cavity loss is 1.98886×1012 cm−2; however, when used in eqn 13.6 these values give an infinite photon density because 1/τph0=vgG(nth). The rate equations show that the gain never becomes exactly equal to the loss, as illustrated by this exercise.

    1. (1) Calculate the gain and photon density for the cavity loss in Exercise 13.1 for a carrier density of n=1.98884×1012 cm−2. Work to six figures.

    2. (2) Calculate the average number of round trips of the cavity and compare the spontaneous and stimulated emission rates into the laser mode. Is this device operating as a laser, even though the gain is slightly less than the optical loss?

    3. (3) Show that the value of the rate of loss of photons is equal to the sum of the stimulated rate and spontaneous rate into the mode.

    4. (4) What is the total radiative recombination current density at this carrier density and at “threshold” (gain = loss)?

  4. (13.4) What is the laser output from one facet under the pumping conditions in Exercise 13.3 (carrier density of n=1.98884×1012 cm−2) for a cavity length of 300 μ‎m, R=0.3 (as in previous exercises), and a stripe width of 10 μ‎m?

    Calculate the overall external quantum efficiency of emission in the lasing mode (both facets) (photons out divided by electron–hole pairs in) at this carrier density. There is no non-radiative recombination or leakage in this example, so why is this external efficiency not equal to unity?

  5. (13.5) To determine the modulation response it is necessary to know the differential gain. What is the differential gain for n=1.988×1012 cm−2.

  6. (13.6) The resonance frequency increases with photon density. At a carrier density of 1.98884×1012 cm−2 as used in Exercise 13.3, and using data collected in the table from other relevant exercises, calculate the rates 1/τph0 and 1/τnN (eqn 13.23) and hence calculate the resonance frequency and damping rate.

  7. (13.7) § Derive eqn 13.19 for the small signal modulation response from eqns 13.16 and 13.17.

    Begin with the time dependence of the photon density and show that by assuming certain terms are small enough to be neglected,

    (13.38)
    Δn(ω)iωvgNph0G ΔNph(ω)

    Then obtain the modulation response (eqn 13.18) using the carrier rate equation and quantities defined in Section 13.4.2.

  8. (13.8) At what frequency do you expect carrier transport to cause a roll-off in the modulation response of a GaAs/AlGaAs quantum well laser? (If necessary, do a search for any numbers required.) Will a resonance peak still appear in the response function? If the emission time of electrons from the well is about 30 ps, what is the effect of transport on the resonance frequency.

Notes:

(1) We assume the energy velocity is equal to the group velocity, which is reasonable for weak guiding (Sections 4.1.3 and 4.4.3).

(2) Here we take this to represent the loss from both ends of the device. See Section 5.2.

(3) In some publications for quantum wells this is done by writing Rspon=Bn2, which reduces the calculation to simply choosing a value for the radiative recombination coefficient B (Section 11.6.2). However, the value for B must be consistent with the band structure used to calculate the gain.

(4) αm/αcav=48.2/53.2=0.906. Since the current density is that entering the well, the relation between the slope efficiency and internal differential efficiency is not modified by current spreading and carrier injection (Section 5.5.2) in this example.

(5) In this calculation the LI curve is linear above threshold. This does not occur if the gain is non-uniform along the length of the cavity. Owing to amplification, the photon density is not uniform, and if the stimulated rate is sufficiently high to suppress the local carrier density then the gain in that region is also reduced (see Section 13.2.6). This gain non-uniformity is manifest as a reduction in the slope of the LI curve at high current.

(6) Carrier recombination that attempts to restore equilibrium between conduction and valence bands is interband relaxation.

(7) The modulations are represented as a frequency-dependent amplitude and an oscillating, time-dependent term; e.g. for the carrier density Δn(t)=Δn(ω)eiωt.

(8) In this book the gain compression factor is defined in terms of the number of photons per unit area. It therefore has dimensions [L]2.

(9) See Chuang (2009), Section 12.2.2. This is the same as the “approximate" result obtained by Coldren and Corzine 1995, eqn 5.51.

(10) Since we are dealing with a sub-band in the well and a band of states in the SCH, it is assumed that there are ample empty states in both regions to accept electrons captured into the well or emitted to the SCH.

(11) Calvin Coolidge, the 30th president of the United States, was a man of few words and a reputation for laissez-faire government, qualities encapsulated by a campaign poster: “Stay cool with Coolidge”. On hearing of his death, Dorothy Parker (1893–1967), critic and satirist, proclaimed: “How can they tell?”

(12) At the 2014 International Conference on Semiconductor Lasers this work was presented under the title “Searching for lasing threshold in the thresholdless laser”!