Jump to ContentJump to Main Navigation
Quantum Confined Laser DevicesOptical gain and recombination in semiconductors$
Users without a subscription are not able to see the full content.

Peter Blood

Print publication date: 2015

Print ISBN-13: 9780199644513

Published to Oxford Scholarship Online: November 2015

DOI: 10.1093/acprof:oso/9780199644513.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see www.oxfordscholarship.com/page/privacy-policy).date: 19 January 2019

Rate equations for laser operation

Rate equations for laser operation

(p.215) 13 Rate equations for laser operation
Quantum Confined Laser Devices

Peter Blood

Oxford University Press

Rate equations for the electron and photon populations provide insight into the variation of light output with current and the high-frequency modulation response of the laser. Above threshold the average photon lifetime exceeds the cavity round-trip time. The steady-state solution of these equations shows that the gain never becomes exactly equal to the optical loss, as assumed in the traditional description of threshold, the small difference being made up by the spontaneous emission coupled into the lasing mode given by the spontaneous emission factor. Steady-state solutions are also obtained for quantum dot lasers in the random population regime, where quasi-equilibrium is not established, by solving electron, photon, and phonon coupled rate equations. Rate equations also give the small signal modulation response of the laser and the resonance frequency, including the influence of carrier transport in quantum well devices. The chapter ends with remarks on what constitutes evidence for laser action.

Keywords:   rate equation, photon lifetime, round-trip time, spontaneous emission factor, quantum dot, random population, resonance frequency, carrier transport

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .