Jump to ContentJump to Main Navigation
Soil Ecology and Ecosystem Services$
Users without a subscription are not able to see the full content.

Diana H. Wall, Richard D. Bardgett, Valerie Behan-Pelletier, Jeffrey E. Herrick, T. Hefin Jones, Karl Ritz, Johan Six, Donald R. Strong, and Wim H. van der Putten

Print publication date: 2012

Print ISBN-13: 9780199575923

Published to Oxford Scholarship Online: December 2013

DOI: 10.1093/acprof:oso/9780199575923.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2019. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see www.oxfordscholarship.com/page/privacy-policy).date: 26 April 2019

Applying Soil Ecological Knowledge to Restore Ecosystem Services

Applying Soil Ecological Knowledge to Restore Ecosystem Services

Chapter:
(p.377) Chapter 5.6 Applying Soil Ecological Knowledge to Restore Ecosystem Services
Source:
Soil Ecology and Ecosystem Services
Author(s):

Sara G. Baer

Liam Heneghan

Valerie T. Eviner

Publisher:
Oxford University Press
DOI:10.1093/acprof:oso/9780199575923.003.0032

Ecological restoration is human-facilitated improvement of a degraded environment. This chapter synthesizes the relevance of soil ecological knowledge to restoration along a continuum of ecosystem degradation and in the context of novel ecosystems. At one end of the continuum, mining can result in severe soil degradation and contamination with metals. Restoration of mined sites often focuses on decontamination, and success can be affected by soil heterogeneity, organic matter content, and refugia for soil biota that possess biodegradation pathways. Former agricultural sites can exhibit a wide range of soil and ecosystem legacies, with restoration goals ranging from simply reducing erosion with perennial plants to establishing a suite of historic ecosystem attributes and services through the re-introduction of many species. Although recovery of soil structure and function can coincide with plant establishment, knowledge of soil processes and plant–soil feedbacks have been applied to promote resource heterogeneity and plant diversity, and to reduce non-native species in restored agricultural systems. Even in relatively undisturbed sites with high legacy of native plants and soil, invasions of undesirable species may occur. Restoration of invaded systems may necessitate knowledge of how invaders impact resource availability and capture, as well as potentially complex multi-trophic interactions and feedbacks with soil. Last, restoration of novel ecosystems with new and self-sustaining assemblages of plant species in no-analog environments may require sophisticated consideration of biogeochemistry, plant population and community dynamics, and soil ecology to reintroduce and sustain native species long extirpated from local environments.

Keywords:   agriculture, invasive species, mining, novel ecosystem, plant–soil feedback, restoration, soil ecological knowledge

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .