Jump to ContentJump to Main Navigation
Understanding VisionTheory, Models, and Data$

Li Zhaoping

Print publication date: 2014

Print ISBN-13: 9780199564668

Published to Oxford Scholarship Online: August 2014

DOI: 10.1093/acprof:oso/9780199564668.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 20 June 2018

(p.367) References

(p.367) References

Source:
Understanding Vision
Publisher:
Oxford University Press

Bibliography references:

Abbott, L. and Dayan, P. (1999). T ity on the accuracy of a population code, Neural Computation 11(1): 91–101.

Adelson, E. and Bergen, J. (1985). Spatiotemporal energy models for the perception of motion, Journal of the Optical Society of America. A 2: 284–299.

Allman, J., Miezin, F. and McGuinness, E. (1985). Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons, Annual Review of Neuroscience 8: 407–430.

Andrews, T. J. and Coppola, D. M. (1999). Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments, Vision Research 39: 2947–2953.

Anstis, S. M. (1974). A chart demonstrating variations in acuity with retinal position, Vision Research 14: 589–592.

Anzai, A., Bearse, M., Freeman, R. and Cai, D. (1995). Contrast coding by cells in the cat’s striate cortex: monocular vs. binocular detection, Visual Neuroscience 12: 77–93.

Anzai, A., Ohzawa, I. and Freeman, R. (1999). Neural mechanisms for encoding binocular disparity:receptive field position versus phase, Journal of Neurophysiology 82: 874–890.

Arcizet, F., Mirpour, K. and Bisley, J. (2011). A pure salience response in posterior parietal cortex, Cerebral Cortex 21(11): 2498–2506.

Atick, J. (1992). Could information theory provide an ecological theory of sensory processing?, Network: Computation in Neural Systems 3: 213–251.

Atick, J. and Redlich, A. (1990). Towards a theory of early visual processing, Neural Computation 2: 308–320.

Atick, J., Li, Z. and Redlich, A. (1990). Color coding and its interaction with spatiotemporal processing in the retina, Preprint IASSNS-HEP-90/75, Institute for Advanced Study, Princeton, USA.

Atick, J., Li, Z. and Redlich, A. N. (1992). Understanding retinal color coding from first principles, Neural Computation 4: 559–572.

Atick, J. J., Li, Z. and Redlich, A. N. (1993). What does post-adaptation color appearance reveal about cortical color representation?, Vision Research 33(1): 123–129.

Averbeck, B. B., Latham, P. E. and Pouget, A. (2006). Neural correlations, population coding and computation, Nature Reviews Neuroscience 7(5): 358–366.

Awh, E., Armstrong, K. and Moore, T. (2006). Visual and oculomotor selection: links, causes and implications for spatial attention, Trends in Cognitive Sciences 10(3): 124–130.

Bahill, A., Adler, D. and Stark, L. (1975). Most naturally occurring human saccades have magnitudes of 15 degrees or less, Investigative Ophthalmology 14: 468–469.

Bakin, J., Nakayama, K. and Gilbert, C. D. (2000). Visual responses in monkey areas V1 and V2 to three-dimensional surface configurations, The Journal of Neuroscience 20: 8188–8198.

Banks, M., Geisler, W. and Bennett, P. (1987). The physical limits of grating visibility, Vision Research 27(11): 1915–1924.

Barlow, H. (1961). Possible principles underlying the transformations of sensory messages, in W. A. Rosenblith (ed.), Sensory Communication, MIT Press, pp. 217–234.

Barlow, H. (1977). Retinal and central factors in human vision limited by noise, in H. Barlow and P. Fatt (eds), Vertebrate Photoreception, Academic Press, London, pp. 337–358.

Barlow, H. (1981). The Ferrier Lecture, 1980: Critical limiting factors in the design of the eye and visual cortex, Proceedings of the Royal Society of London. Series B 212: 1–34.

Barlow, H. (1985). Cerebral cortex as model builder, in R. D. and V. G. Dobson (eds), Models of the Visual Cortex, John Wiley and Sons Ltd, Chichester, pp. 37–46.

Barlow, H., Fitzhugh, R. and Kuffler, S. (1957). Change of organization in the receptive fields of the cat’s retina during dark adaptation, The Journal of Physiology 137: 338–354.

Battaglia, P., Kersten, D. and Schrater, P. (2011). How haptic size sensations improve distance perception, PLoS Computational Biology 7(6): e1002080.

Becker, W. (1991). Saccades, in R. R (ed.), Eye Movements, Macmillan, London, pp. 95–137.

Bell, A. and Sejnowski, T. (1997). The ‘independent components’ of natural scenes are edge filters, Vision Research 23: 3327–3338.

Ben Hamed, S., Duhamel, J., Bremmer, F. and Graf, W. (2001). Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis, Experimental Brain Research 140(2): 127–144.

(p.368) Bergen, J. and Landy, M. (1991). Computational modeling of visual texture segregation, in M. M and J. Movshon (eds), Computational Models of Visual Processing, MIT Press, Cambridge, MA, USA, pp. 253–271.

Bethge, M. (2006). Factorial coding of natural images: How effective are linear model in removing higher-order dependencies?, Journal of the Optical Society of America. A 23: 1253–1268.

Bialek, W. and DeWeese, M. (1995). Random switching and optimal processing in the perception of ambiguous signals, Physical Review Letters 74(15): 3077–3080.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning, Springer, New York.

Bislay, J. and Goldberg, M. (2011). Attention, intention, and priority in the parietal lobe, Annual Review of Neuroscience 33: 1–21.

Blake, R. (2001). A primer on binocular rivalry, including current controversies, Brain and Mind 2(1): 5–38.

Blatt, G., Andersen, R. and Stoner, G. (1990). Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque, The Journal of Comparative Neurology 299(4): 421–445.

Born, R. and Bradley, D. (2005). Structure and function of visual area {MT, Annual Review of Neuroscience 28: 157–189.

Boussaoud, D., Desimone, R. and Ungerleider, L. (1991). Visual topography of area TEO in the macaque, The Journal of Comparative Neurology 306(4): 554–575.

Box, G. and Draper, N. R. (1987). Empirical Model Building and Response Surfaces, John Wiley & Sons, New York.

Bradley, D., Qian, N. and Andersen, R. (1995). Integration of motion and stereopsis in middle temporal cortical area of macaques, Nature 373(6515): 609–611.

Bradley, D., Chang, G. and Andersen, R. (1998). Encoding of three-dimensional structure-from-motion by primate area MT neurons, Nature 392: 714–717.

Brainard, D. and Freeman, W. (1997). Bayesian color constancy, Journal of the Optical Society of America. A 14(7): 1393–1411.

Braun, J., Niebur, E., Schuster, H. and Koch, C. (1994). Perceptual contour completion: A model based on local, anisotropic, fast-adapting interactions between oriented filters, Society for Neuroscience Abstracts, Vol. 20(1–2), p. 1665.

Bressloff, P., Cowan, J., Golubitsky, M., Thomas, P. and Wiener, M. (2002). What geometric visual hallucinations tell us about the visual cortex, Neural Computation 14(3): 473–491.

Britten, K., Shadlen, M., Newsome, W. and Movshon, J. (1992). The analysis of visual motion: a comparison of neuronal and psychophysical performance, The Journal of Neuroscience 12(12): 4745–4765.

Britten, K., Newsome, W., Shadlen, M., Celebrini, S. and Movshon, J. (1996). A relationship between behavioral choice and the visual responses of neurons in macaque {MT, Visual Neuroscience 13: 87–100.

Broadbent, D. (1958). Perception and Communication, Pergamon Press.

Bruce, C., Friedman, H., Kraus, M. and Stanton, G. (2004). The primate frontal eye field, in L. L and J. Werner (eds), The Visual Neurosciences, MIT Press, pp. 1429–1448.

Bruce, V., Green, P. and Georgeson, M. (2003). Visual Perception, Physiology, Psychology, and Ecology, 4 edn, Psychology Press, New York.

Buccigrossi, R. and Simoncelli, E. (1999). Image compression via joint statistical characterization in the wavelet domain, IEEE Transactions on Image Processing 8(12): 1688–1701.

Buchsbaum, G. and Gottschalk, A. (1983). Trichromacy, opponent colours coding and optimum colour information transmission in the retina, Proceedings of the Royal Society of London. Series B 220(1218): 89–113.

Bullier, J. (2004). Communications between cortical areas of the visual system, in L. L and J. Werner (eds), The Visual Neurosciences, MIT Press, pp. 522–540.

Bullier, J. and Nowak, L. (1995). Parallel versus serial processing: new vistas on the distributed organization of the visual system, Current Opinion Neurobiology 5(4): 497–503.

Carpenter, G. and Grossberg, S. (1987). Art 2: Self-organization of stable category recognition codes for analog input patterns, Applied Optics 26(23): 4919–4930.

Cavanagh, P., Tyler, C. and Favreau, O. (1984). Perceived velocity of moving chromatic gratings, Journal of the Optical Society of America. A 1(8): 893–899.

Cave, K. R. and Bichot, N. P. (1999). Visuospatial attention: Beyond a spotlight model, Psychonomic Bulletin & Review 6(2): 204–223.

Chalupa, L. and Werner, J. (eds) (2004). The Visual Neurosciences, MIT Press.

Chelazzi, L., Miller, E., Duncan, J. and Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex, Nature 363(6427): 345–347.

Cohen, M. and Grossberg, S. (1983). Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Transactions on Systems, Man, & Cybernetics 13: 815–826.

Colby, C. and Goldberg, M. (1999). Space and attention in parietal cortex, Annual Review of Neuroscience 22(1): 319–349.

Corbetta, M. and Shulman, G. (2002). Control of goal-directed and stimulus-driven attention in the brain, Nature Reviews Neuroscience 3: 201–215.

Cumming, B. G. and Parker, A. J. (2000). Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the macaque, The Journal of Neuroscience 20: 4758–4767.

(p.369) Dan, Y., Atick, J. and Reid, R. (1996). Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory, The Journal of Neuroscience 16(10): 3351–3362.

Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM: Society for Industrial and Applied Mathematics.

Dayan, P. (1998). A hierarchical model of binocular rivalry, Neural Computation 10(5): 1119–1135.

Dayan, P. and Abbott, L. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT Press.

Dayan, P., Hinton, G., Neal, R. and Zemel, R. (1995). The Helmholtz machine, Neural Computation 7(5): 889–904.

De Valois, R., Albrecht, D. and Thorell, L. (1982). Spatial frequency selectivity of cells in macaque visual cortex, Vision Research 22(5): 545–559.

DeAngelis, G. C., Freeman, R. D. and Ohzawa, I. (1994). Length and width tuning of neurons in the cat’s primary visual cortex, Journal of Neurophysiology 71: 347–374.

DeAngelis, G., Ohzawa, I. and Freeman, R. (1995). Receptive-field dynamics in the central visual pathways, Trends in Neurosciences 18: 451–458.

DeAngelis, G., Ghose, G., Ohzawa, I. and Freeman, R. (1999). Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons, The Journal of Neuroscience 19(9): 4046–4064.

Deneve, S., Latham, P. and Pouget, A. (2001). Efficient computation and cue integration with noisy population codes, Nature Neuroscience 4: 826–831.

Desimone, R. and Duncan, J. (1995). Neural mechanisms of selective visual attention, Annual Review of Neuroscience 18: 193–122.

Desimone, R. and Schein, S. (1987). Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form, Journal of Neurophysiology 57(3): 835–868.

Desimone, R., Albright, T., Gross, C. and Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque, The Journal of Neuroscience 4(8): 2051–2062.

Deubel, H. and Schneider, W. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism, Vision Research 36(12): 1827–1837.

Deutsch, J. and Deutsch, D. (1963). Attention: Some theoretical considerations, Psychological Review 70(1): 80–90.

Dong, D. and Atick, J. (1995). Temporal decorrelation: a theory of lagged and non-lagged responses in the lateral geniculate nucleus, Network: Computation in Neural Systems 6: 159–178.

Douglas, R., Koch, C., Mahowald, M., Martin, K. and Suarez, H. (1995). Recurrent excitation in neocortical circuits, Science 269(5226): 981–985.

Douglas, R. J. and Martin, K. A. (1990). Neocortex, in G. G (ed.), Synaptic Organization of the Brain, 3 edn, Oxford University Press, pp. 389–438.

Downing, P., Chan, A., Peelen, M., Dodds, C. and Kanwisher, N. (2006). Domain specificity in visual cortex, Cerebral Cortex 16(10): 1453–1461.

Dubner, R. and Zeki, S. (1971). Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey, Brain Research 35(2): 528–532.

Duncan, J. (1980). The locus of interference in the perception of simultaneous stimuli, Psychological Review 87(3): 272–300.

Duncan, J. and Humphreys, G. (1989). Visual search and stimulus similarity, Psychological Review 96(3): 433–458.

Egeth, H. and Yantis, S. (1997). Visual attention: control, representation, and time course, Annual Review of Pyschology 48: 269–297.

Einhäuser, W., Spain, M. and Perona, P. (2008). Objects predict fixations better than early saliency, Journal of Vision 8(14): article 18.

Emerson, R., Bergen, J. and Adelson, E. (1992). Directionally selective complex cells and the computation of motion energy in cat visual cortex, Vision Research 32(2): 203–218.

Enroth-Cugell, C. and Robson, J. (1966). The contrast sensitivity of retinal ganglion cells of the cat, The Journal of Physiology 187: 517–552.

Epstein, R. and Kanwisher, N. (1998). A cortical representation of the local visual environment, Nature 392(6676): 598–601.

Ermentrout, G. and Cowan, J. (1979). A mathematical theory of visual hallucination patterns, Biological Cybernetics 34(3): 137–150.

Ernst, M. and Banks, M. (2002). Humans integrate visual and haptic information in a statistically optimal fashion, Nature 415(6870): 429–433.

Fabre-Thorpe, M., Richard, G. and Thorpe, S. (1998). Rapid categorization of natural images by rhesus monkeys, Neuroreport 9(2): 303–308.

Felleman, D. and van Essen, D. (1991). Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1(1): 1–47.

Field, D. (1987). Relations between the statistics of natural images and the response properties of cortical cells, Journal of the Optical Society of America. A 4(12): 2379–2394.

Field, D. (1989). What the statistics of natural images tell us about visual coding, Proceedings of SPIE, Human Vision, Visual Processing, and Digital Display, Vol. 1077, pp. 269–276.

Field, D., Hayes, A. and Hess, R. (1993). Contour integration by the human visual system: Evidence for a local “association field”, Vision Research 33(2): 173–193.

(p.370) Findlay, J. and Gilchrist, I. (2003). Active Vision, the Psychology of Looking and Seeing, Oxford University Press, UK.

Finlay, B., Schiller, P. and Volman, S. (1976). Quantitative studies of single-cell properties in monkey striate cortex. iv. corticotectal cells, Journal of Neurophysiology 39(6): 1352–1361.

Fiorani, M., Gattass, R., Rosa, M. and Sousa, A. (1989). Visual area MT in the cebus monkey: location, visuotopic organization, and variability, The Journal of Comparative Neurology 287(1): 98–118.

Fiser, J., Berkes, P., Orbán, G. and Lengyel, M. (2010). Statistically optimal perception and learning: from behavior to neural representations, Trends in Cognitive Sciences 14(3): 119–130.

Freeman, W. and Adelson, E. (1991). The design and use of steerable filters, IEEE Transactions on Pattern Analysis and Machine Intelligence 13(9): 891–906.

Freeman, W. T. (1994). The generic viewpoint assumption in a framework for visual perception, Nature 368(6471): 542–545.

Freiwald, W. and Tsao, D. (2010). Functional compartmentalization and viewpoint generalization within the macaque face-processing system, Science 330(6005): 845–851.

Freiwald, W., Tsao, D. and Livingstone, M. (2009). A face feature space in the macaque temporal lobe, Nature Neuroscience 12: 1187–1196.

Friedman, H. S., Zhou, H. and Von der Heydt, R. (2003). The coding of uniform colour figures in monkey visual cortex, The Journal of Physiology 548(2): 593–613.

Friston, K. (2009). The free-energy principle: a rough guide to the brain?, Trends in Cognitive Sciences 13(7): 293–301.

Frith, U. (1974). A curious effect with reverse letters explained by a theory of schema, Perception and Psychophysics 16(1): 113–116.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biological Cybernetics 36(4): 193–202.

Gallant, J. L., Van Essen, D. C. and Nothdurft, H. C. (1995). Two-dimensional and three-dimensional texture processing in visual cortex of the macaque monkey, in T. Papathomas, C. Chubb, A. Gorea and E. Kowler (eds), Early Vision and Beyond, MIT Press, pp. 89–98.

Galletti, C., Battaglini, P. and Fattori, P. (1995). Eye position influence on the parieto-occipital area PO(V6) of the macaque monkey, The European Journal of Neuroscience 7(12): 2486–2501.

Galletti, C., Fattori, P., Gamberini, M. and Kutz, D. (1999). The cortical visual area V6: brain location and visual topography, The European Journal of Neuroscience 11(11): 3922–3936.

Garrigan, P., Ratliff, C., Klein, J., Sterling, P., Brainard, D. and Balasubramanian, V. (2010). Design of a trichromatic cone array, PLoS Computational Biology 6(2): e1000677.

Gattass, R., Sousa, A. and Rosa, M. (1987). Visual topography of V1 in the cebus monkey, The Journal of Comparative Neurology 259(4): 529–548.

Gattass, R., Sousa, A. and Gross, C. (1988). Visuotopic organization and extent of V3 and V4 of the macaque, The Journal of Neuroscience 8(6): 1831–1845.

Gegenfurtner, K. R., Kiper, D. C. and Fenstemaker, S. B. (1996). Processing of color, form, and motion in macaque area V2, Visual Neuroscience 13: 161–172.

Geisler, W. (1989). Sequential ideal-observer analysis of visual discriminations, Psychological Review 96(2): 267–314.

Geisler, W. (2003). Ideal observer analysis, in L. L and J. Werner (eds), The Visual Neurosciences, MIT Press, Cambridge, MA, USA, pp. 826–837.

Geisler, W. and Albrecht, D. (1997). Visual cortex neurons in monkeys and cats: detection, discrimination and identification, Visual Neuroscience 14: 897–919.

Geisler, W., Perry, J., Super, B. and Gallogly, D. (2001). Edge co-occurrence in natural images predicts contour grouping performance, Vision Research 41(6): 711–724.

Gilbert, C. and Wiesel, T. (1983). Clustered intrinsic connections in cat visual cortex, The Journal of Neuroscience 3(5): 1116–1133.

Gilbert, C. and Wiesel, T. (1990). The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat, Vision Research 30(11): 1689–1701.

Goodale, M. and Milner, A. (1992). Separate visual pathways for perception and action, Trends in Neurosciences 15(1): 20–25.

Goodall, M. (1960). Performance of stochastic net, Nature 185: 557–558.

Gottlieb, J., Kusunoki, M. and Goldberg, M. (1998). The representation of visual salience in monkey parietal cortex, Nature 391(6666): 481–484.

Green, D. and Swets, J. (1988). Signal Detection Theory and Psychophysics, Peninsula Publishing, Los Altos, California, USA.

Grossberg, S. and Mingolla, E. (1985). Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations, Perception & Psychophysics 38(2): 141–171.

Grossberg, S. and Raizada, R. (2000). Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex, Vision Research 40(10-12): 1413–1432.

(p.371) Gu, Y., Angelaki, D. and DeAngelis, G. (2008). Neural correlates of multisensory cue integration in macaque MSTd, Nature Neuroscience 11(10): 1201–1210.

Haenny, P. and Schiller, P. (1988). State dependent activity in monkey visual cortex. i. single cell activity in V1 and V4 on visual tasks, Experimental Brain Research 69(2): 225–244.

Hamilton, D., Albrecht, D. and Geisler, W. (1989). Visual cortical receptive fields in monkey and cat: spatial and temporal phase transfer function, Vision Research 29(10): 1285–1308.

Haynes, J.-D., Deichmann, R. and Rees, G. (2005). Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus, Nature 438(7067): 496–499.

He, Z. J. and Nakayama, K. (1995). Visual attention to surfaces in three-dimensional space, Proceedings of the National Academy of Sciences of the USA 92: 11155–11159.

Hebb, D. (1949). The Organization of Behavior: A Neuropsychological Theory, Wiley, New York.

Heeger, D. (1992). Normalization of cell responses in cat striate cortex, Visual Neuroscience 9(02): 181–197.

Hirsch, J. A. and Gilbert, C. D. (1991). Synaptic physiology of horizontal connections in the cat’s visual cortex, The Journal of Neuroscience 11(6): 1800–1809.

Hoffman, J. (1998). Visual attention and eye movements, in H. H (ed.), Attention, Psychology Press, pp. 119–153.

Holub, R. and Morton-Gibson, M. (1981). Response of visual cortical neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions, Journal of Neurophysiology 46(6): 1244–1259.

Hopfield, J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons, Proceedings of the National Academy of Sciences of the USA 81: 3088–3092.

Horwitz, G. and Albright, T. (2005). Paucity of chromatic linear motion detectors in macaque V1, Journal of Vision 5(6): article 4.

Hubel, D. and Wiesel, T. (1968). Receptive fields and functional architecture of monkey striate cortex, The Journal of Physiology 195(1): 215–243.

Hubel, D. H. and Wiesel, T. N. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint, Journal of Neurophysiology 28: 1041–1059.

Hubel, D. H., Wiesel, T. N. and LeVay, S. (1977). Plasticity of ocular dominance columns in monkey striate cortex, Philosophical Transactions of the Royal Society of London, Series B 278: 377–409.

Hung, C., Kreiman, G., Poggio, T. and DiCarlo, J. (2005). Fast readout of object identity from macaque inferior temporal cortex, Science 310(5749): 863–866.

Hupé, J., James, A., Girard, P. and Bullier, J. (2001). Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2, Journal of Neurophysiology 85(1): 146–163.

Isa, T. and Yoshida, M. (2009). Saccade control after V1 lesion revisited, Current Opinion in Neurobiology 19(6): 608–614.

Itti, L. and Baldi, P. (2006). Bayesian surprise attracts human attention, Advances in Neural Information Processing Systems, Vol. 19, MIT Press, Cambridge, MA, USA, pp. 1–8.

Itti, L. and Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention, Vision Research 40(10-12): 1489–1506.

Itti, L. and Koch, C. (2001). Computational modelling of visual attention, Nature Reviews Neuroscience 2(3): 194–203.

Janssen, P., Vogels, R., Liu, Y. and Orban, G. (2003). At least at the level of inferior temporal cortex, the stereo correspondence problem is solved, Neuron 37(4): 693–701.

Jeffreys, D. and Axford, J. (1972). Source locations of pattern-specific components of human visual evoked potentials. i. component of striate cortical origin, Experimental Brain Research 16(1): 1–21.

Jones, H., Grieve, K., Wang, W. and Sillito, A. (2001). Surround suppression in primate V1, Journal of Neurophysiology 86(4): 2011–2028.

Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement, in J. B. Long and A. D. Baddeley (eds), Attention and Performance IX, Lawrence Erlbaum Associates Inc, Hillsdale, NJ, USA, pp. 187–203.

Joo, S. J., Boynton, G. M. and Murray, S. O. (2012). Long-range, pattern-dependent contextual effects in early human visual cortex, Current Biology 22(9): 781–786.

Julesz, B. (1981). Textons, the elements of texture perception, and their interactions, Nature 290(5802): 91–97.

Kadir, T. and Brady, M. (2001). Saliency, scale, and image description, International Journal of Computer Vision 45(2): 83–105.

Kanwisher, N., McDermott, J. and Chun, M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception, The Journal of Neuroscience 17(11): 4302–4311.

Kapadia, M., Ito, M., Gilbert, C. and Westheimer, G. (1995). Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys, Neuron 15(4): 843–856.

Kaplan, E., Marcus, S. and So, Y. (1979). Effects of dark adaptation on spatial and temporal properties of receptive fields in cat lateral geniculate nucleus, The Journal of Physiology 294: 561–580.

(p.372) Kawato, M., Hayakawa, H. and Inui, T. (1993). A forward-inverse optics model of reciprocal connections between visual cortical areas, Network: Computation in Neural Systems 4(4): 415–422.

Kelly, D. H. (1962). Information capacity of a single retinal channel, IRE Transactions on Information Theory 8(3): 221–226.

Kersten, D. (1987). Predictability and redundancy of natural images, Journal of the Optical Society of America. A 4(12): 2395–2400.

Kersten, D., Mamassian, P. and Yuille, A. (2004). Object perception as Bayesian inference, Annual Review of Psychology 55: 271–304.

Knierim, J. and Van Essen, D. (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey, Journal of Neurophysiology 67(4): 961–980.

Knill, D. (2003). Mixture models and the probabilistic structure of depth cues, Vision Research 43(7): 831–854.

Kobatake, E. and Tanaka, K. (1994). Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex, Journal of Neurophysiology 71(3): 856–867.

Koch, C. and Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry, Human Neurobiology 4(4): 219–227.

Koene, A. and Zhaoping, L. (2007). Feature-specific interactions in salience from combined feature contrasts: Evidence for a bottom-up saliency map in V1, Journal of Vision 7(7): article 6.

Kourtzi, Z. and Kanwisher, N. (2001). Representation of perceived object shape by the human lateral occipital complex, Science 293(5534): 1506–1509.

Kowler, E., Anderson, E., Dosher, B. and Blaser, E. (1995). The role of attention in the programming of saccades, Vision Research 35(13): 1897–1916.

Krummenacher, J., Müller, H. and Heller, D. (2001). Visual search for dimensionally redundant pop-out targets: Evidence for parallel-coactive processing of dimensions, Perception & Psychophysics 63(5): 901–917.

Kustov, A. and Robinson, D. (1996). Shared neural control of attentional shifts and eye movements, Nature 384: 74–77.

Lamme, V. (1995). The neurophysiology of figure-ground segregation in primary visual cortex, The Journal of Neuroscience 15(2): 1605–1615.

Lamme, V., Rodriguez-Rodriguez, V. and Spekreijse, H. (1999). Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey, Cerebral Cortex 9(4): 406–413.

Laughlin, S. (2001). Energy as a constraint on the coding and processing of sensory information, Current Opinion in Neurobiology 11(4): 475–480.

Laughlin, S. B. (1981). A simple coding procedure enhances a neuron’s information capacity, Zeitschrift für Naturforschung. Section C 36: 910–912.

Laughlin, S., Howard, J. and Blakeslee, B. (1987). Synaptic limitations to contrast coding in the retina of the blowfly calliphora, Proceedings of the Royal Society of London. Series B 231(1265): 437–467.

Lee, B., Pokorny, J., Smith, V., Martin, P. and Valberg, A. (1990). Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers, Journal of the Optical Society of America. A 7(12): 2223–2236.

Lee, T. (1996). Image representation using 2D gabor wavelets, IEEE Transactions on Pattern Analysis and Machine Intelligence 18: 959–971.

Lee, T., Mumford, D., Romero, R. and Lamme, V. (1998). The role of the primary visual cortex in higher level vision, Vision Research 38(15-16): 2429–2454.

Lee, T., Yang, C., Romero, R. and Mumford, D. (2002). Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency, Nature Neuroscience 5(6): 589–597.

Legge, G. and Yuanchao, G. (1989). Stereopsis and contrast, Vision Research 29(8): 989–1004.

Lehky, S. R. and Maunsell, J. H. (1996). No binocular rivalry in the LGN of alert macaque monkeys, Vision Research 36(9): 1225–1234.

Lennie, P. (1998). Single units and visual cortical organization, Perception 27: 889–935.

Lennie, P. (2003a). The cost of cortical computation, Current Biology 13(6): 493–497.

Lennie, P. (2003b). The physiology of color vision, in S. S (ed.), The Science of Color, 2 edn, Optical Society of America, pp. 217–242.

Lennie, P., Krauskopf, J. and Sclar, G. (1990). Chromatic mechanisms in striate cortex of macaque, The Journal of Neuroscience 10(2): 649–669.

Leopold, D. and Logothetis, N. (1996). Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry, Nature 379(6565): 549–553.

Levi, D. (2008). Crowding—an essential bottleneck for object recognition: a mini-review, Vision Research 48: 635–654.

Levy, W. and Baxter, R. (1996). Energy efficient neural codes, Neural Computation 8(3): 531–543.

Lewis, A. and Zhaoping, L. (2005). Saliency from natural scene statistics, Program No. 821.11. Abstract Viewer/Itinerary Planner, Online, Annual Meeting, Society for Neuroscience, Washington, DC, USA.

Lewis, A. and Zhaoping, L. (2006). Are cone sensitivities determined by natural color statistics?, Journal of Vision 6(3): article 8.

Lewis, A., Garcia, R. and Zhaoping, L. (2003). The distribution of visual objects on the retina: connecting eye movements and cone distributions, Journal of Vision 3(11): article 21.

(p.373) Li, C. and Li, W. (1994). Extensive integration field beyond the classical receptive field of cat’s striate cortical neurons—classification and tuning properties, Vision Research 34(18): 2337–2355.

Li, N., Cox, D., Zoccolan, D. and DiCarlo, J. (2009). What response properties do individual neurons need to underlie position and clutter “invariant” object recognition?, Journal of Neurophysiology 102(1): 360–376.

Li, W., Piëch, V. and Gilbert, C. (2004). Perceptual learning and top-down influences in primary visual cortex, Nature Neuroscience 7: 651–657.

Li, W., Piëch, V. and Gilbert, C. (2006). Contour saliency in primary visual cortex, Neuron 50(6): 951–962.

Li, Z. (1992). Different retinal ganglion cells have different functional goals, International Journal of Neural Systems 3(3): 237–248.

Li, Z. (1995). Understanding ocular dominance development from binocular input statistics, in J. J (ed.), The Neurobiology of Computation, Kluwer Academic Publishers, pp. 397–402.

Li, Z. (1996). A theory of the visual motion coding in the primary visual cortex, Neural Computation 8(4): 705–730.

Li, Z. (1997). Primary cortical dynamics for visual grouping, in K. Wong, I. King and D. Yeung (eds), Theoretical Aspects of Neural Computation: A Multidisciplineary Perspective (proceeding from International Workshop (TANC’97), in May, 1997, Hong Kong), Springer-Verlag, Hong Kong, pp. 155–164.

Li, Z. (1998a). A neural model of contour integration in the primary visual cortex, Neural Computation 10(4): 903–940.

Li, Z. (1998b). Visual segmentation without classification: A proposed function for primary visual cortex, Perception 27: ECVP Abstract supplement, page 45. Proceedings of ECVP, 1998, Oxford, England.

Li, Z. (1999a). Contextual influences in V1 as a basis for pop out and asymmetry in visual search, Proceedings of the National Academy of Sciences of the USA 96(18): 10530–10535.

Li, Z. (1999b). Visual segmentation by contextual influences via intra-cortical interactions in primary visual cortex, Network: Computation in Neural Systems 10(2): 187–212.

Li, Z. (2000a). Can V1 mechanisms account for figure-ground and medial axis effects?, in S. Solla, T. Leen and K.-R. Muller (eds), Advances in Neural Information Processing Systems, Vol. 12, MIT Press,, Cambridge, MA, USA, pp. 136–142.

Li, Z. (2000b). Pre-attentive segmentation in the primary visual cortex, Spatial Vision 13(1): 25–50.

Li, Z. (2001). Computational design and nonlinear dynamics of a recurrent network model of the primary visual cortex, Neural Computation 13(8): 1749–1780.

Li, Z. (2002). A saliency map in primary visual cortex, Trends in Cognitive Sciences 6(1): 9–16.

Li, Z. and Atick, J. J. (1994a). Efficient stereo coding in the multiscale representation, Network: Computation in Neural Systems 5(2): 157–174.

Li, Z. and Atick, J. J. (1994b). Towards a theory of striate cortex, Neural Computation 6: 127–146.

Li, Z. and Dayan, P. (1999). Computational differences between asymmetrical and symmetrical networks, Network: Computation in Neural Systems 10(1): 59–77.

Li, Z. and Hopfield, J. (1989). Modeling the olfactory bulb and its neural oscillatory processings, Biological Cybernetics 61(5): 379–392.

Linsker, R. (1988). Self-organization in a perceptual network, Computer 2193: 105–117.

Linsker, R. (1990). Perceptual neural organization: some approaches based on network models and information theory, Annual Review of Neuroscience 13: 257–281.

Liu, Z., Knill, D. and Kersten, D. (1995). Object classification for human and ideal observers, Vision Research 35(4): 549–568.

Livingstone, M. (1996). Ocular dominance columns in new world monkeys, The Journal of Neuroscience 16(6): 2086–2096.

Livingstone, M. and Hubel, D. (1984). Anatomy and physiology of a color system in the primate visual cortex, The Journal of Neuroscience 4(1): 309–356.

Logothetis, N., Pauls, J. and Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys, Current Biology 5(5): 552–563.

Logothetis, N. K., Leopold, D. A. and Sheinberg, D. L. (1996). What is rivalling during binocular rivalry?, Nature 380: 621–624.

Luck, S., Chelazzi, L., Hillyard, S. and Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex, Journal of Neurophysiology 77(1): 24–42.

Lyu, S. (2011). Dependency reduction with divisive normalization: Justification and effectiveness, Neural Computation 23(11): 2942–2973.

Lyu, S. and Simoncelli, E. P. (2009). Nonlinear extraction of independent components of natural images using radial {Gaussianization, Neural Computation 21(6): 1485–1519.

Ma, W. J., Beck, J. M., Latham, P. E. and Pouget, A. (2006). Bayesian inference with probabilistic population codes, Nature Neuroscience 9(11): 1432–1438.

MacKay, D. (1956). Towards an information flow model of human behavior, British Journal of Psychology 47(1): 30–43.

Maloney, L. and Wandell, B. (1986). Color constancy: a method for recovering surface spectral reflectance, Journal of the Optical Society of America. A 3(1): 29–33.

(p.374) Mamassian, P., Landy, M. S. and Maloney, L. T. (2002). Bayesian modelling of visual perception, in R. Rao, B. Olshausen and M. Lewicki (eds), Probabilistic Models of the Brain: Perception and Neural Function, MIT Press, Cambridge, MA, USA, pp. 13–36.

Mannan, S., Kennard, C. and Husain, M. (2009). The role of visual salience in directing eye movements in visual object agnosia, Current Biology 19(6): R247–8.

Marr, D. (2010). VISION, a computational investigation into the human representation and processing of visual information, MIT Press.

Mart’inez-Trujillo, J. and Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex, Current Biology 14(9): 744–751.

May, K., Zhaoping, L. and Hibbard, P. (2012). Perceived direction of motion determined by adaptation to static binocular images, Current Biology 22: 28–32.

Mazer, J. and Gallant, J. (2003). Goal-related activity in V4 during free viewing visual search: Evidence for a ventral stream visual salience map, Neuron 40(6): 1241–1250.

McCollough, C. (1965). Color adaptation of edge-detectors in the human visual system, Science 149(3688): 1115–1116.

McGurk, H. and MacDonald, J. (1976). Hearing lips and seeing voices, Nature 264: 746–748.

Melloni, L., Van Leeuwen, S., Alink, A. and Müller, N. G. (2012). Interaction between bottom-up saliency and top-down control: how saliency maps are created in the human brain, Cerebral Cortex 22(12): 2943–2952.

Merigan, W. (1996). Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques, Visual Neuroscience 13: 51–60.

Merigan, W., Nealey, T. and Maunsell, J. (1993). Visual effects of lesions of cortical area V2 in macaques, The Journal of Neuroscience 13(7): 3180–3191.

Michael, C. R. (1978). Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields, Journal of Neurophysiology 41(5): 1233–1249.

Mitchison, G. (1992). Axonal trees and cortical architecture, Trends in Neurosciences 15(4): 122–126.

Mohler, C., Goldberg, M. and Wurtz, R. (1973). Visual receptive fields of frontal eye field neurons, Brain Research 61: 385–389.

Molotchnikoff, S., Shumikhina, S. and Moisan, L. (1996). Stimulus-dependent oscillations in the cat visual cortex: differences between bar and grating stimuli, Brain Research 731(1-2): 91–100.

Moran, J. and Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex, Science 229(4715): 782–784.

Moreno-Bote, R., Knill, D. and Pouget, A. (2011). Bayesian sampling in visual perception, Proceedings of the National Academy of Sciences of the USA 108(30): 12491–12496.

Morgan, M. (1979). Perception of continuity in stroboscopic motion: a temporal frequency analysis, Vision Research 19(5): 491–500.

Motter, B. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli, Journal of Neurophysiology 70(3): 909–919.

Motter, B. and Belky, E. (1998). The zone of focal attention during active visual search, Vision Research 38(7): 1007–1022.

Movshon, J., Adelson, E., Gizzi, M. and Newsome, W. (1985). The analysis of moving visual patterns, Pattern Recognition Mechanisms 54: 117–151.

Müller, H. J. and Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption, Journal of Experimental Psychology: Human Perception and Performance 15(2): 315–330.

Nadal, J. and Parga, N. (1993). Information processing by a perceptron in an unsupervised learning task, Network: Computation in Neural Systems 4(3): 295–312.

Nadal, J. and Parga, N. (1994). Nonlinear neurons in the low-noise limit: a factorial code maximizes information transfer, Network: Computation in Neural Systems 5: 565–581.

Nakamura, K. and Colby, C. (2002). Updating of the visual representation in monkey striate and extrastriate cortex during saccades, Proceedings of the National Academy of Sciences of the USA 99(6): 4026–4031.

Nakayama, K. and Mackeben, M. (1989). Sustained and transient components of focal visual attention, Vision Research 29(11): 631–647.

Nakayama, K. and Silverman, G. (1986). Serial and parallel processing of visual feature conjunctions, Nature 320(6059): 264–265.

Nakayama, K., He, Z. and Shimojo, S. (1995). Visual surface representation: A critical link between lower-level and higher-level vision, in S. M. Kosslyn and D. N. Osherson (eds), An Invitation to Cognitive Science: Visual Cognition, Vol. 2, MIT Press, Cambridge, MA, USA, pp. 1–70.

Nelson, J., and Frost, B. (1985). Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex, Experimental Brain Research 61(1): 54–61.

Newsome, W. T. and Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT), The Journal of Neuroscience 8(6): 2201–2211.

Nirenberg, S., Carcieri, S. M., Jacobs, A. L. and Latham, P. E. (2001). Retinal ganglion cells act largely as independent encoders, Nature 411: 698–701.

(p.375) Nothdurft, H. (1994). Common properties of visual segmentation, in G. R. Bock and J. A. Goode (eds), Higher-order Processing in the Visual System, Ciba Foundation Symposium 184, Wiley & Sons, pp. 245–268.

Nothdurft, H. (2000). Salience from feature contrast: variations with texture density, Vision Research 40(23): 3181–3200.

Nothdurft, H. C. (1985). Sensitivity for structure gradient in texture discrimination tasks, Vision Research 25: 1957–1968.

Nothdurft, H. C. (1991). Texture segmentation and pop-out from orientation contrast, Vision Research 31(6): 1073–1078.

Nothdurft, H., Gallant, J. and Van Essen, D. (1999). Response modulation by texture surround in primate area V1: correlates of “popout” under anesthesia, Visual Neuroscience 16: 15–34.

Nowak, L. and Bullier, J. (1997). The timing of information transfer in the visual system, in K. Rockland, J. Kaas and A. Peters (eds), Cerebral Cortex: Extrastriate Cortex in Primate, New York, Plenum Publishing Corporation, pp. 205–242.

Ohzawa, I., DeAngelis, G. and Freeman, R. (1990). Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors, Science 249(4972): 1037–1041.

Oja, E. (1982). A simplified neuron model as a principal component analyzer, Journal of Mathematical Biology 15: 267–273.

Oliveri, M., Zhaoping, L., Mangano, G., Turriziani, P., Smirni, D. and Cipolotti, L. (2010). Facilitation of bottom-up feature detection following rTMS-interference of the right parietal cortex, Neuropsychologia 48: 1003–1010.

Olshausen, B. and Field, D. (1997). Sparse coding with an overcomplete basis set: a strategy employed by V1?, Vision Research 37: 3311–3325.

Palmer, S. (1999). Vision Science: Photons to Phenomenology, MIT Press.

Paninski, L., Pillow, J. and Lewi, J. (2007). Statistical models for neural encoding, decoding, and optimal stimulus design, Progress in Brain Research 165: 493–507.

Pelli, D. (1990). The quantum efficiency in vision, in C. C (ed.), Vision: Coding and Efficiency, Cambridge University Press, Cambridge, pp. 3–24.

Petrov, Y. and Zhaoping, L. (2003). Local correlations, information redundancy, and sufficient pixel depth in natural images, Journal of the Optical Society of America. A 20(1): 56–66.

Petrov, Y., Carandini, M. and McKee, S. (2005). Two distinct mechanisms of suppression in human vision, The Journal of Neuroscience 25(38): 8704–8707.

Pinto, N., Barhomi, Y., Cox, D. and DiCarlo, J. (2011). Comparing state-of-the-art visual features on invariant object recognition tasks, Applications of Computer Vision (WACV), 2011 IEEE Workshop on, IEEE, pp. 463–470.

Pokorny, J. and Smith, V. (1970). Wavelength discrimination in the presence of added chromatic fields, Journal of the Optical Society of America. A 69: 562–569.

Polat, U. and Sagi, D. (1993). Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments, Vision Research 33(7): 993–999.

Pollen, D. and Ronner, S. (1981). Phase relationships between adjacent simple cells in the visual cortex, Science 212(4501): 1409–1411.

Pomerantz, J., Sager, L. and Stoever, R. (1977). Perception of wholes and of their component parts: Some configural superiority effects, Journal of Experimental Psychology: Human Perception and Performance 3(3): 422–435.

Popple, A. (2003). Context effects on texture border localization bias, Vision Research 43(7): 739–743.

Posner, M. I. (1980). Orienting of attention, Quarterly Journal of Experimental Psychology 32(1): 3–25.

Potter, M. (1976). Short-term conceptual memory for pictures, Journal of Experimental Psychology: Human Learning and Memory 2(5): 509–522.

Puchalla, J., Schneidman, E., Harris, R. and Berry, M. (2005). Redundancy in the population code of the retina, Neuron 46(3): 493–504.

Qian, N. (1994). Computing stereo disparity and motion with known binocular cell properties, Neural Computation 6(3): 390–404.

Qian, N. (1997). Binocular disparity and the perception of depth, Neuron 18(3): 359–368.

Qian, N. and Andersen, R. (1994). Transparent motion perception as detection of unbalanced motion signals. ii. physiology, The Journal of Neuroscience 14(12): 7367–7380.

Qian, N. and Andersen, R. (1997). A physiological model for motion-stereo integration and a unified explanation of pulfrich-like phenomena, Vision Research 37(12): 1683–1698.

Qian, N., Andersen, R. and Adelson, E. (1994). Transparent motion perception as detection of unbalanced motion signals. i. psychophysics, The Journal of Neuroscience 14(12): 7357–7366.

Qiu, F. and von der Heydt, R. (2005). Figure and ground in the visual cortex: V2 combines stereoscopic cues with gestalt rules, Neuron 47(1): 155–166.

Qiu, F. and von der Heydt, R. (2007). Neural representation of transparent overlay, Nature Neuroscience 10: 283–284.

Qiu, F., Sugihara, T. and von der Heydt, R. (2007). Figure-ground mechanisms provide structure for selective attention, Nature Neuroscience 10: 1492–1499.

Ramsden, B. M., Hung, C. P. and Roe, A. W. (2001). Real and illusory contour processing in area V1 of the primate: a cortical balancing act, Cerebral Cortex 11(7): 648–665.

(p.376) Rao, R. and Ballard, D. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects, Nature Neuroscience 2: 79–87.

Reynolds, J., Chelazzi, L. and Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4, The Journal of Neuroscience 19(5): 1736–1753.

Reynolds, J., Pasternak, T. and Desimone, R. (2000). Attention increases sensitivity of V4 neurons, Neuron 26(3): 703–714.

Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of object recognition in cortex, Nature Neuroscience 2: 1019–1025.

Robinson, D. and Petersen, S. (1992). The pulvinar and visual salience, Trends in Neurosciences 15(4): 127–132.

Rockland, K. and Lund, J. (1983). Intrinsic laminar lattice connections in primate visual cortex, The Journal of Comparative Neurology 216(3): 303–318.

Rolls, E. T. (2003). Invariant object and face recognition, in L. M. Chalupa and J. S. Werner (eds), The Visual Neurosciences, Vol. 2, MIT Press, Cambridge, MA, USA, pp. 1165–1178.

Rosa, M., Sousa, A. and Gattass, R. (1988). Representation of the visual field in the second visual area in the cebus monkey, The Journal of Comparative Neurology 275(3): 326–345.

Rossi, A., Desimone, R. and Ungerleider, L. (2001). Contextual modulation in primary visual cortex of macaques, The Journal of Neuroscience 21(5): 1698–1709.

Rubenstein, B. and Sagi, D. (1990). Spatial variability as a limiting factor in texture-discrimination tasks: implications for performance asymmetries, Journal of the Optical Society of America. A 7(9): 1632–1643.

Ruderman, D. and Bialek, W. (1994). Statistics of natural images: Scaling in the woods, Physical Review Letters 73(6): 814–817.

Ruderman, D., Cronin, T. and Chiao, C.-C. (1998). Statistics of cone responses to natural images: implications for visual coding, Journal of the Optical Society of America. A 15(8): 2036–2045.

Rudolph, K. and Pasternak, T. (1999). Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey, Cerebral Cortex 9(1): 90–100.

Rust, N. and DiCarlo, J. (2010). Selectivity and tolerance (“invariance”) both increase as visual information propagates from cortical area V4 to IT, The Journal of Neuroscience 30(39): 12978–12995.

Sagi, D. and Julesz, B. (1985). “Where” and “what” in vision, Science 228(4704): 1217–1219.

Salinas, E. and Abbott, L. (2000). Do simple cells in primary visual cortex form a tight frame?, Neural Computation 12(2): 313–335.

Sceniak, M., Ringach, D., Hawken, M. and Shapley, R. (1999). Contrast’s effect on spatial summation by macaque V1 neurons, Nature Neuroscience 2(8): 733–739.

Schall, J. (2004). Selection of targets for saccadic eye movements, in L. L and J. Werner (eds), The Visual Neurosciences, MIT Press, pp. 1369–1390.

Schiller, P. (1993). The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey, Visual Neuroscience 10: 717–746.

Schiller, P. (1998). The neural control of visually guided eye movements, in J. E. Richards (ed.), Cognitive Neuroscience of Attention, a Developmental Perspective, Lawrence Erlbaum Associates, Inc., Mahwah, New Jersey, USA, pp. 3–50.

Schiller, P. and Lee, K. (1991). The role of the primate extrastriate area V4 in vision, Science 251(4998): 1251–1253.

Schiller, P. and Malpeli, J. (1977). Properties and tectal projections of monkey retinal ganglion cells, Journal of Neurophysiology 40: 428–445.

Schiller, P. and Tehovnik, E. (2005). Neural mechanisms underlying target selection with saccadic eye movements, Progress in Brain Research 149: 157–171.

Schiller, P., Stryker, M., Cynader, M. and Berman, N. (1974). Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex, Journal of Neurophysiology 37: 181–184.

Schira, M., Tyler, C., Breakspear, M. and Spehar, B. (2009). The foveal confluence in human visual cortex, The Journal of Neuroscience 29(28): 9050–9058.

Schmolesky, M., Wang, Y., Hanes, D., Thompson, K., Leutgeb, S., Schall, J. and Leventhal, A. (1998). Signal timing across the macaque visual system, Journal of Neurophysiology 79: 3272–3278.

Scholte, H., Jolij, J., Fahrenfort, J. and Lamme, V. (2008). Feedforward and recurrent processing in scene segmentation: Electroencephalography and functional magnetic resonance imaging, Journal of Cognitive Neuroscience 20(11): 2097–2109.

Schwartz, E. L. (1977). Spatial mapping in the primate sensory projection: analytic structure and relevance to perception, Biological Cybernetics 25(4): 181–194.

Schwartz, O. and Simoncelli, E. (2001). Natural signal statistics and sensory gain control, Nature Neuroscience 4(8): 819–825.

Sengpiel, F., Blakemore, C. and Harrad, R. (1995). Interocular suppression in the primary visual cortex: a possible neural basis of binocular rivalry, Vision Research 35(2): 179–195.

Sengpiel, F., Baddeley, R., Freeman, T., Harrad, R. and Blakemore, C. (1998). Different mechanisms underlie three inhibitory phenomena in cat area 17, Vision Research 38(14): 2067–2080.

Shadlen, M. and Carney, T. (1986). Mechanisms of human motion perception revealed by a new cyclopean illusion, (p.377) Science 232(4746): 95–97.

Shadlen, M., Britten, K., Newsome, W. and Movshon, J. (1996). A computational analysis of the relationship between neuronal and behavioral responses to visual motion, The Journal of Neuroscience 16(4): 1486–1510.

Shannon, C. and Weaver, W. (1949). The Mathematical Theory of Communication, University of Illinois Press, Urbana IL, USA.

Shapley, R. and Perry, V. (1986). Cat and monkey retinal ganglion cells and their visual functional roles, Trends in Neurosciences 9: 229–235.

Shepherd, G. (1990). The Synaptic Organization of the Brain, 3 edn, Oxford University Press, Oxford.

Sherman, S. and Guillery, R. (2004). The visual relays in the thalamus, in L. L and J. Werner (eds), The Visual Neurosciences, MIT Press, pp. 565–591.

Sherman, S. and Koch, C. (1986). The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus, Experimental Brain Research 63(1): 1–20.

Shipp, S. (2004). The brain circuitry of attention, Trends in Cognitive Sciences 8(5): 223–230.

Sillito, A., Grieve, K., Jones, H., Cudeiro, J. and Davis, J. (1995). Visual cortical mechanisms detecting focal orientation discontinuities, Nature 378: 492–496.

Simoncelli, E. and Olshausen, B. (2001). Natural image statistics and neural representation, Annual Review of Neuroscience 24: 1193–1216.

Simons, D. and Chabris, C. (1999). Gorillas in our midst: sustained inattentional blindness for dynamic events, Perception 28: 1059–1074.

Smith, V. C. and Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm, Vision Research 15: 161–171.

Somers, D., Todorov, E., Siapas, A., Toth, L., Kim, D. and Sur, M. (1998). A local circuit approach to understanding integration of long-range inputs in primary visual cortex, Cerebral Cortex 8(3): 204–217.

Sommer, M. and Wurtz, R. (2004). What the brain stem tells the frontal cortex. ii. role of the SC-MD-FEF pathway in corollary discharge, Journal of Neurophysiology 91(3): 1403–1423.

Sommer, M. and Wurtz, R. (2006). Influence of the thalamus on spatial visual processing in frontal cortex, Nature 444(7117): 374–377.

Srinivasan, M., Laughlin, S. and Dubs, A. (1982). Predictive coding: a fresh view of inhibition in the retina, Proceedings of the Royal Society of London. Series B 216(1205): 427–459.

Stemmler, M., Usher, M. and Niebur, E. (1995). Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics, Science 269(5232): 1877–1880.

Stocker, A. A. and Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human visual speed perception, Nature Neuroscience 9(4): 578–585.

Stocker, A. A. and Simoncelli, E. P. (2008). A Bayesian model of conditioned perception, in J. C. Platt, D. Koller, Y. Singer and S. Roweis (eds), Advances in Neural Information Processing Systems, Vol. 20, MIT Press, Cambridge, MA, USA, pp. 1409–1416.

Stoner, G. and Albright, T. (1992). Neural correlates of perceptual motion coherence, Nature 358(6385): 412–414.

Stryker, M. (1986). The role of neural activity in rearranging connections in the central visual system, in R. Ruben, T. Van De Water and E. Rubel (eds), The Biology of Change in Otolaryngology, Elsevier Science Amsterdam, pp. 211–224.

Sziklai, G. (1956). Some studies in the speed of visual perception, IRE Transactions on Information Theory 2(3): 125–128.

Tanaka, K. (1996). Inferotemporal cortex and object vision, Annual Review of Neuroscience 19(1): 109–139.

Tanaka, K. (2003). Inferotemporal response properties, in L. M. Chalupa and J. S. Werner (eds), The Visual Neurosciences, Vol. 2, MIT Press, Cambridge, MA, USA, pp. 1151–1164.

Tehovnik, E., Slocum, W. and Schiller, P. (2003). Saccadic eye movements evoked by microstimulation of striate cortex, The European Journal of Neuroscience 17(4): 870–878.

Theeuwes, J. (1992). Perceptual selectivity for color and form, Perception & Psychophysics 51(6): 599–606.

Thomas, O., Cumming, B. and Parker, A. (2002). A specialization for relative disparity in V2, Nature Neuroscience 5(5): 472–478.

Thompson, K. and Bichot, N. (2005). A visual salience map in the primate frontal eye field, Progress in Brain Research 147: 249–262.

Thorpe, S., Fize, D. and Marlot, C. (1996). Speed of processing in the human visual system, Nature 381(6582): 520–522.

Treisman, A. (1985). Preattentive processing in vision, Computer Vision, Graphics, and Image Processing 31(2): 156–177.

Treisman, A. and Gormican, S. (1988). Feature analysis in early vision: evidence from search asymmetries, Psychological Review 95(1): 15–48.

Treisman, A. M. and Gelade, G. (1980). A feature-integration theory of attention, Cognitive Psychology 12(1): 97–136.

Treue, S. and Mart’inez-Trujillo, J. (1999). Feature-based attention influences motion processing gain in macaque visual cortex, Nature 399(9): 575–579.

(p.378) Treue, S. and Maunsell, J. (1999). Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas, The Journal of Neuroscience 19(17): 7591–7602.

Troy, J. and Lee, B. (1994). Steady discharges of macaque retinal ganglion cells, Visual Neuroscience 11(1): 111–118.

Troy, J. and Robson, J. (1992). Steady discharges of X and Y retinal ganglion cells of cat under photopic illuminance, Visual Neuroscience 9(6): 535–553.

Tsotsos, J. (1990). Analyzing vision at the complexity level, Behavioral and Brain Sciences 13(3): 423–445.

Tyler, C. (1974). Stereopsis in dynamic visual noise, Nature 250: 781–782.

Umeno, M. and Goldberg, M. (1997). Spatial processing in the monkey frontal eye field. i. predictive visual responses, Journal of Neurophysiology 78(3): 1373–1383.

Ungerleider, L. and Pasternak, T. (2004). Ventral and dorsal cortical processing streams, in L. L and J. S. Werner (eds), The Visual Neurosciences, Vol. 1, MIT Press, Cambridge, Chapter 34, pp. 541–562.

Ungerleider, L. G. and Mishkin, M. (1982). Two cortical visual systems, in D. Ingle, M. A. Goodale and R. W. Mansfield (eds), Analysis of Visual Behavior, MIT Press, Cambridge, MA, USA, pp. 549–586.

van Essen, D. and Anderson, C. (1995). Information processing strategies and pathways in the primate visual system, in S. Zornetzer, J. Davis, C. Lau and T. McKenna (eds), An Introduction to Neural and Electronic Networks, 2 edn, Academic Press, Florida, USA, pp. 45–76.

van Hateren, J. (1992). A theory of maximizing sensory information, Biological Cybernetics 68(1): 23–29.

van Hateren, J. and Ruderman, D. (1998). Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex, Proceedings. Biological Sciences/ The Royal Society 265(1412): 2315–2320.

von der Heydt, R., Peterhans, E. and Baumgartner, G. (1984). Illusory contours and cortical neuron responses, Science 224: 1260–1262.

von der Heydt, R., Zhou, H. and Friedman, H. S. (2000). Representation of stereoscopic edges in monkey visual cortex, Vision Research 40: 1955–1967.

Vos, J. J. and Walraven, P. L. (1971). On the derivation of the foveal receptor primaries, Vision Research 11: 799–818.

Wachtler, T., Sejnowski, T. and Albright, T. (2003). Representation of color stimuli in awake macaque primary visual cortex, Neuron 37(4): 681–691.

Walker, M., Fitzgibbon, E. and Goldberg, M. (1995). Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements, Journal of Neurophysiology 73(5): 1988–2003.

Wandell, B. A. (1995). Foundations of Vision, Sinauer Associates Inc.

Watanabe, M., Tanaka, H., Uka, T. and Fujita, I. (2002). Disparity-selective neurons in area V4 of macaque monkeys, Journal of Neurophysiology 87(4): 1960–1973.

Watson, A. (1986). Temporal sensitivity, in K. Boff, L. Kaufman and J. Thomas (eds), Handbook of Perception and Human Performance, Vol. 1, Wiley, New York, Chapter 6.

Watson, A. and Ahumada, A. (1985). Model of human visual-motion sensing, Journal of the Optical Society of America. A 2: 322–342.

Webster, M. and Mollon, J. (1991). Changes in colour appearance following post-receptoral adaptation, Nature 349(6306): 235–238.

Weiss, Y., Simoncelli, E. and Adelson, E. (2002). Motion illusions as optimal percepts, Nature Neuroscience 5(6): 598–604.

White, E. (1989). Cortical Circuits, Birkhauser.

Wiesel, T. (1959). Recording inhibition and excitation in the cat’s retinal ganglion cells with intracellular electrodes, Nature 183: 264–265.

Williford, T. and Maunsell, J. (2006). Effects of spatial attention on contrast response functions in macaque area V4, Journal of Neurophysiology 96(1): 40–54.

Wolfe, J. (2001). Asymmetries in visual search: an introduction, Perception & Psychophysics 63(3): 381–389.

Wolfe, J. and Franzel, S. (1988). Binocularity and visual search, Perception & Psychophysics 44(1): 81–93.

Wolfe, J., Cave, K. and Franzel, S. L. (1989). Guided search: an alternative to the feature integration model for visual search, Journal of Experimental Psychology: Human Perception and Performance 15: 419–433.

Wolfe, J. M. (1998). Visual search, a review, in H. H (ed.), Attention, Psychology Press Ltd., Hove, East Sussex, UK, pp. 13–74.

Wolfson, S. and Landy, M. (1995). Discrimination of orientation-defined texture edges, Vision Research 35(20): 2863–2877.

Wurtz, R., Goldberg, M. and Robinson, D. (1982). Brain mechanisms of visual attention, Scientific American 246(6): 124–135.

Yen, S.-C. and Finkel, L. (1998). Extraction of perceptually salient contours by striate cortical networks, Vision Research 38(5): 719–741.

Yuille, A. and Grzywacz, N. (1988). A computational theory for the perception of coherent visual motion, Nature 333(6168): 71–74.

Yuille, A. and Kersten, D. (2006). Vision as Bayesian inference: analysis by synthesis?, Trends in Cognitive Sciences 10(7): 301–308.

Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: (p.379) a theory, The Journal of Neuroscience 16(6): 2112–2126.

Zhang, X., Zhaoping, L., Zhou, T. and Fang, F. (2011). Neural activities in V1 create a bottom-up saliency map, Neuron 73: 183–192.

Zhaoping, L. (2002). Pre-attentive segmentation and correspondence in stereo, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 357(1428): 1877–1883.

Zhaoping, L. (2003). V1 mechanisms and some figure-ground and border effects, Journal of Physiology, Paris 97(4-6): 503–515.

Zhaoping, L. (2004). V1 mechanisms explain filling-in phenomena in texture perception and visual search, Journal of Vision 4(8): article 689.

Zhaoping, L. (2005a). Border ownership from intracortical interactions in visual area V2, Neuron 47(1): 143–153.

Zhaoping, L. (2005b). The primary visual cortex creates a bottom-up saliency map, in L. Itti, G. Rees and J. Tsotsos (eds), Neurobiology of Attention, Elsevier, Chapter 93, pp. 570–575.

Zhaoping, L. (2006a). Overcomplete representation for fast attentional selection by bottom up saliency in the primary visual cortex, Perception 35: ECVP Abstract Supplement, page 233. Presented at European Conference on Visual Perception, August, 2006, St Petersburg, Russia.

Zhaoping, L. (2006b). Theoretical understanding of the early visual processes by data compression and data selection, Network: Computation in Neural Systems 17(4): 301–334.

Zhaoping, L. (2008). Attention capture by eye of origin singletons even without awareness—a hallmark of a bottom-up saliency map in the primary visual cortex, Journal of Vision 8(5): article 1.

Zhaoping, L. (2011). A saliency map in cortex: Implications and inference from the representation of visual space, Perception 40: ECVP Abstract Supplement, page 162. Presented at European Conference on Visual Perception, August, 2011, Toulouse, France.

Zhaoping, L. (2012). Gaze capture by eye-of-origin singletons: Interdependence with awareness, Journal of Vision 12(2): article 17.

Zhaoping, L. (2013a). Different perceptual decoding architectures for the central and peripheral vision revealed by dichoptic motion stimuli, Perception 42: ECVP Abstract Supplement, page 21.

Zhaoping, L. (2013b). A theory of the primary visual cortex (V1): Predictions, experimental tests, and implications for future research, Perception 42: ECVP Abstract Supplement, page 84.

Zhaoping, L. and Anzai, A. (in preparation). A chart demonstrating variations in acuity with retinal position.

Zhaoping, L. and Frith, U. (2011). A clash of bottom-up and top-down processes in visual search: the reversed letter effect revisited, Journal of Experimental Psychology: Human Perception and Performance 37(4): 997–1006.

Zhaoping, L. and Guyader, N. (2007). Interference with bottom-up feature detection by higher-level object recognition, Current Biology 17(1): 26–31.

Zhaoping, L. and Jingling, L. (2008). Filling-in and suppression of visual perception from context: A Bayesian account of perceptual biases by contextual influences, PLoS Computational Biology 4(2): e14.

Zhaoping, L. and May, K. (2007). Psychophysical tests of the hypothesis of a bottom-up saliency map in primary visual cortex, PLoS Computational Biology 3(4): e62.

Zhaoping, L. and Meng, G. (2011). Dichoptic completion, rather than binocular rivalry or binocular summation, i-Perception 2(6): 611–614.

Zhaoping, L. and Snowden, R. (2006). A theory of a saliency map in primary visual cortex (V1) tested by psychophysics of color-orientation interference in texture segmentation, Visual Cognition 14(4-8): 911–933.

Zhaoping, L. and Zhe, L. (2012a). Properties of V1 neurons tuned to conjunctions of visual features: application of the V1 saliency hypothesis to visual search behavior, PLoS One 7(6): e36223.

Zhaoping, L. and Zhe, L. (2012b). V1 saliency theory makes quantitative, zero parameter, prediction of reaction times in visual search of feature singletons, Journal of Vision 12(9): 1160–1160.

Zhaoping, L., Guyader, N. and Lewis, A. (2009). Relative contributions of 2D and 3D cues in a texture segmentation task, implications for the roles of striate and extrastriate cortex in attentional selection, Journal of Vision 9(11): article 20.

Zhaoping, L., Geisler, W. and May, K. (2011). Human wavelength discrimination of monochromatic light explained by optimal wavelength decoding of light of unknown intensity, PLoS One 6(5): e19248.

Zhou, H., Friedman, H. and von der Heydt, R. (2000). Coding of border ownership in monkey visual cortex, The Journal of Neuroscience 20(17): 6594–6611.

Zhou, L. and Zhaoping, L. (2010). The salience of absence: when a hole is more than the sum of its parts, Journal of Vision 10(7): article 1281.

Zigmond, M., Bloom, F. E., Landis, S. C., Roberts, J. L. and Squire, L. R. (1999). Fundamental Neuroscience, Academic Press, New York.

Zucker, S. W., Dobbins, A. and Iverson, L. (1989). Two stages of curve detection suggest two styles of visual computation, Neural Computation 1: 68–81.