## Stephen J. Blundell and Katherine M. Blundell

Print publication date: 2009

Print ISBN-13: 9780199562091

Published to Oxford Scholarship Online: February 2010

DOI: 10.1093/acprof:oso/9780199562091.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2016. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 08 December 2016

# (p.481) F Thermodynamic expansion formulae

Source:
Concepts in Thermal Physics
Publisher:
Oxford University Press

Table F.1 Expansion formulae for first-order partial derivatives of thermal variables. (After E.W. Dearden, Eur. J. Phys. 16 76 (1995).)

(*)T

(*)P

(*)V

(*)S

(*)U

(*)H

(*)F

(∂G)

−1

S/V

κ Sα V

α SCp/T

S(T αP κ) − Cp + PV α

S(T α − 1 )− Cp

SP(κ SV α)

(∂F)

κ P

−(S/V ) − P α

κ S

αS − p κ CV/T

S(T αP κ) − P κ CV

S(T α − 1)

0

(∂H)

T α − 1

Cp/V

κ CVV α

Cp/T

P(κ CV + V α)−Cp

0

(∂U)

T αp κ

(Cp/V) − P α

κ CV

P κ CV/T

0

(∂S)

α

Cp/TV

κ CV/T

0

(∂V)

κ

α

0

(∂P)

−1/V

0

Table F.1 contains a listing of various partial derivatives, some of which have been derived in this book. To evaluate a partial differential, one has to take the ratio of two terms in this table using the equation

$Display mathematics$
(F.1)
Note that (∂A)B ≡ −(∂B)A.