Jump to ContentJump to Main Navigation
Theories of Molecular Reaction DynamicsThe Microscopic Foundation of Chemical Kinetics$
Users without a subscription are not able to see the full content.

Niels E. Henriksen and Flemming Y. Hansen

Print publication date: 2008

Print ISBN-13: 9780199203864

Published to Oxford Scholarship Online: January 2010

DOI: 10.1093/acprof:oso/9780199203864.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy).date: 24 April 2018

Bimolecular reactions, dynamics of collisions

Bimolecular reactions, dynamics of collisions

Chapter:
(p.52) 4 Bimolecular reactions, dynamics of collisions
Source:
Theories of Molecular Reaction Dynamics
Author(s):

Niels E. Henriksen

Flemming Y. Hansen

Publisher:
Oxford University Press
DOI:10.1093/acprof:oso/9780199203864.003.0004

This chapter discusses the dynamics of bimolecular collisions within the framework of (quasi-)classical mechanics as well as quantum mechanics. The relation between the cross-section and the reaction probability, which can be calculated theoretically from a (quasi-)classical or quantum mechanical description of the collision, is described in terms of classical trajectories and wave packets, respectively. As an introduction to reactive scattering, classical two-body scattering is described and used to formulate simple models for chemical reactions, based on reasonable assumptions for the reaction probability. Three-body (and many-body) quasi-classical scattering is formulated and the numerical evaluation of the reaction probability is described. The relation between scattering angles and differential cross-sections in various frames is emphasized. The chapter concludes with a brief description of non-adiabatic dynamics, that is, situations beyond the Born–Oppenheimer approximation where more than one electronic state is in play. A discussion of the so-called Landau–Zener model is included.

Keywords:   quasi-classical dynamics, reaction probability, cross-section, two-body scattering, many-body scattering, classical trajectory, wave packets, quantum scattering, non-adiabatic dynamics

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .