Jump to ContentJump to Main Navigation
Theories of Molecular Reaction DynamicsThe Microscopic Foundation of Chemical Kinetics$
Users without a subscription are not able to see the full content.

Niels E. Henriksen and Flemming Y. Hansen

Print publication date: 2008

Print ISBN-13: 9780199203864

Published to Oxford Scholarship Online: January 2010

DOI: 10.1093/acprof:oso/9780199203864.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy).date: 19 April 2018

Static solvent effects, transition-state theory

Static solvent effects, transition-state theory

Chapter:
(p.241) 10 Static solvent effects, transition-state theory
Source:
Theories of Molecular Reaction Dynamics
Author(s):

Niels E. Henriksen

Flemming Y. Hansen

Publisher:
Oxford University Press
DOI:10.1093/acprof:oso/9780199203864.003.0010

This chapter discusses static solvent effects on the rate constant for chemical reactions in solution. It starts with a brief discussion of the thermodynamic formulation of transition-state theory. The static equilibrium structure of the solvent will modify the potential energy surface for the chemical reaction. This effect is analyzed within the framework of transition-state theory. The rate constant is expressed in terms of the potential of mean force at the activated complex. Various definitions of this potential and their relations to n-particle- and pair-distribution functions are considered. The potential of mean force may, for example, be defined such that the gradient of the potential gives the average force on an atom in the activated complex, Boltzmann averaged over all configurations of the solvent. It concludes with a discussion of a relation between the rate constants in the gas phase and in solution.

Keywords:   thermodynamic formulation, transition-state theory, potential of mean force, pair-distribution function

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .