Jump to ContentJump to Main Navigation
Sasakian Geometry$
Users without a subscription are not able to see the full content.

Charles Boyer and Krzysztof Galicki

Print publication date: 2007

Print ISBN-13: 9780198564959

Published to Oxford Scholarship Online: January 2008

DOI: 10.1093/acprof:oso/9780198564959.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy).date: 20 July 2018

Structures on Manifolds

Structures on Manifolds

Chapter:
(p.9) Chapter 1 Structures on Manifolds
Source:
Sasakian Geometry
Author(s):

Charles P. Boyer

Krzysztof Galicki

Publisher:
Oxford University Press
DOI:10.1093/acprof:oso/9780198564959.003.0002

This chapter begins by introducing various geometries that play important roles in the way they relate to Sasakian structures. It espouses the point of view that a geometric structure is best described as a G-structure which may or may not be (partially) integrable. Some selected topics include: Riemannian metrics, complex structures, symplectic structures, contact structures, quaternionic structures, group actions, pseudogroups, sheaves, bundles, connections, holonomy, curvature and integrability.

Keywords:   G-structures, complex structures, symplectic structures, contact structures, quaternionic structures, group actions, pseudogroups, sheaves, Riemannian metrics, holonomy

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .