Jump to ContentJump to Main Navigation
Kinetic Theory of Granular Gases$

Nikolai V. Brilliantov and Thorsten Pöschel

Print publication date: 2004

Print ISBN-13: 9780198530381

Published to Oxford Scholarship Online: January 2010

DOI: 10.1093/acprof:oso/9780198530381.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 15 August 2018

References

References

Source:
Kinetic Theory of Granular Gases
Publisher:
Oxford University Press

Bibliography references:

(p.317) Abramowitz, M. and Stegun, A. (1965). Handbook of Mathematical Functions. Dover Publications, New York.

Allen, M. P. and Tildesley, D. J. (1987). Computer Simulations of Liquids. Clarendon Press, Oxford.

Baeza-Yates, R., Marín, M., and Cordero, P. (1994). Analysis of an improved priority queue for discrete event simulation of many moving objects. In Proceedings of the XIV International Conference of the Chilean Computer Science Society (ed. C. Isaac and R. Peralta), Chile, pp. 29.

Baker, G. A. (1970). The Padé Approximant in Theoretical Physics. Academic Press, New York.

Baxter, G. W. and Olafsen, J. S. (2003). Gaussian statistics in granular gases. Nature, 425, 680.

Ben-Naim, E. and Krapivsky, P. (2000). Multiscaling in inelastic collisions. Phys. Rev. E, 61, R5.

Berne, B. J. (1977). Molecular dynamics of the rough sphere fluids. II. Kinetic models of partially sticky spheres, structured spheres, and rough screwballs. J. Chem. Phys., 66, 2821.

Berne, B. J. and Harp, G. D. (1970). On the calculation of time correlation functions. Advan. Chem. Phys., 17, 63.

Blair, D. L. and Kudrolli, A. (2001). Velocity correlations in dense granular gases. Phys. Rev. E, 64, R050301.

Blair, D. L. and Kudrolli, A. (2003). Collision statistics of driven granular materials. Phys. Rev. E, 67, 041301.

Bobylev, A. V., Carrillo, J. A., and Gamba, I. M. (2000). On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys., 98, 743.

Boltzmann, L. (1896). Vorlesungen über Gastheorie. J. A. Barth, Leipzig.

Borderies, N. B., Goldreich, P., and Tremaine, S. (1984). Unsolved problems in planetary ring dynamics. In Planetary Rings (ed. R. Greenberg and A. Brahic), Tucson, AZ, pp. 713. Arizona University Press.

Brahic, A. (2001). Dynamical evolution of viscous disks: Astrophysical applications to the formation of planetary systems and to the confinement of planetary rings and arcs. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 281. Springer.

Brey, J. J. and Cubero, D. (2001). Hydrodynamic transport coefficients of granular gases. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 59. Springer.

Brey, J. J., Cubero, D., and Ruiz-Montero, M. J. (1996). Homogeneous cooling state of low-density granular flow. Phys. Rev. E, 54, 3664.

(p.318) Brey, J. J., Cubero, D., and Ruiz-Montero, M. J. (1999a). High energy tail in the velocity distribution of a granular gas. Phys. Rev. E, 59, 1256.

Brey, J. J., Dufty, J. W., Kim, C. S., and Santos, A. (1998). Hydrodynamics for granular flow at low density. Phys. Rev. E, 58, 4638.

Brey, J. J., Dufty, J. W., and Santos, A. (1999b). Kinetic models for granular flow. J. Stat. Phys., 97, 281.

Brey, J. J. and Ruiz-Montero, M. J. (1999). Direct Monte Carlo simulation of dilute granular gas. Computer Physics Communications, 121/122, 278.

Brey, J. J., Ruiz-Montero, M. J., and Cubero, D. (1999a). Origin of density clustering in a freely evolving granular gas. Phys. Rev. E, 60, 3150.

Brey, J. J., Ruiz-Montero, M. J., Cubero, D., and Garcia-Rojo, R. (2000). Self-diffusion in freely evolving granular gases. Physics of Fluids, 12, 876.

Brey, J. J., Ruiz-Montero, M. J., and Garcia-Rojo, R. (1999b). Brownian motion in granular gases. Phys. Rev. E, 60, 7174.

Bridges, F., Supulver, K., and Lin, D. N. C. (2001). Energy loss and aggregation processes in low speed collisions of ice particles coated with frost or methanol/water mixtures. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 153. Springer.

Bridges, F. G., Hatzes, A., and Lin, D. N. C. (1984). Structure, stability and evolution of Saturn's rings. Nature, 309, 333.

Brilliantov, N. V. and Pöschel, T. (1998). Rolling friction of a soft sphere on a hard plane. Europhys. Lett., 42, 511.

Brilliantov, N. V. and Pöschel, T. (2000a). Deviation from Maxwell distribution in granular gases with constant restitution coefficient. Phys. Rev. E, 61, 2809.

Brilliantov, N. V. and Pöschel, T. (2000b). Diffusion in granular gases of vis-coelastic particles. In Stochastic Processes in Physics, Chemistry, and Biology (ed. J. A. Freund and T. Pöschel), Volume 557 of Lecture Notes in Physics, Berlin, pp. 107. Springer.

Brilliantov, N. V. and Pöschel, T. (2000c). Self-diffusion in granular gases. Phys. Rev. E, 61, 1716.

Brilliantov, N. V. and Pöschel, T. (2000d). Velocity distribution of granular gases of viscoelastic particles. Phys. Rev. E, 61, 5573.

Brilliantov, N. V. and Pöschel, T. (2001). Granular gases with impact-velocity dependent restitution coefficient. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 100. Springer.

Brilliantov, N. V. and Pöschel, T. (2003). Hydrodynamics and transport coefficients for dilute granular gases. Phys. Rev. E, 67, 061304.

Brilliantov, N. V. and Revokatov, O. P. (1984). Relation between momentum and angular momentum correlation times. Analysis of the uncorrelated successive binary collision approximation. Chem. Phys. Lett., 104, 444.

Brilliantov, N. V., Salueña, C., Schwager, T., and Pöschel, T. (2003). Transient structures in a granular gas. cond-mat/0312616.

Brilliantov, N. V., Spahn, F., Hertzsch, J.-M., and Pöschel, T. (1996). Model for collisions in granular gases. Phys. Rev. E, 53, 5382.

(p.319) Brito, R. and Ernst, M. H. (1998a). Extension of Haff's cooling law in granular flows. Europhys. Lett., 43, 497.

Brito, R. and Ernst, M. H. (1998b). Noise reduction and pattern formation in granular flows. Int. J. Mod. Phys. C, 8, 1339.

Busse, W. F. and Starr, F. C. (1960). Change of viscoelastic sphere to a torus by random impacts. Am. J. Phys., 28, 19.

Cafiero, R., Luding, S., and Herrmann, H.J. (2002). Rotationally driven gas of inelastic rough spheres. Europhys. Lett., 60, 854.

Carnahan, N. F. and Starling, K. E. (1969). Equation of state for nonattractive rigid spheres. J. Chem. Phys., 51, 635.

Chandler, D. (1975). Rough hard sphere theory of the self-diffusion constant for molecular liquids. J. Chem. Phys., 62, 1358.

Chapman, S. and Cowling, T. G. (1970). The Matematical Theory of Nonuniform Gases. Cambridge University Press, New York.

Clement, E. and Labous, L. (2001). Pattern formation in a vibrated granular layer. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 233. Springer.

Constantin, P., Grossman, E., and Mungan, M. (1995). Inelastic collision of three particles on a line as a two-dimensional billiard. Physica D, 83, 409.

Deltour, P. and Barrat, J.-L. (1997). Quantitative study of a freely cooling granular medium. J. Physique I, 7, 137.

Du, Y., Li, H., and Kadanoff, L. P. (1995). Breakdown of hydrodynamics in a one-dimensional system of inelastic particles. Phys. Rev. Lett., 74, 1268.

Dufty, J. W. and Brey, J. J. (1999). Comment on ‘Rapid granular flows as mesoscopic systems’. Phys. Rev. Lett., 82, 4566.

Ernst, M. H. and Dorfman, J. R. (1972). Non-analytic dispersion relations in classical fluids. I. The hard-sphere gas. Physica A, 61, 157.

Ernst, M. H., Dorfman, J. R., Hoegy, W. R., and van Leeuwen, J. M. J. (1969). Hard-sphere dynamics and binary-collision operators. Physica A, 45, 127.

Esipov, S. E. and Pöschel, T. (1997). The granular phase diagram. J. Stat. Phys., 86, 1385.

Évesque, P., Falcon, E., Wunenburger, R., Fauve, S., Lecoutre-Chabot, C., Garrabos, Y., and Beysens, D. (2001). Gas-cluster transition of granular matter under vibration in microgravity. In International Symposium on Microgravity Research and Applications in Physical Sciences and Biotechnology, Sorrento (Italy), pp. 829. European Space Agency SP-454.

Falcon, E., Fauve, S., and Laroche, C. (1999). Cluster formation, pressure and density measurements in a granular medium fluidized by vibrations. Eur. Phys. J. B, 9, 183.

Falcon, E., Fauve, S., and Laroche, C. (2001). Experimental study of a granular gas fluidized by vibrations. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 182. Springer.

Falcon, E., Wunenburger, R., Evesque, P., Fauve, S., Chabot, C., Garrabos, Y., and Beysens, D. (1999). Cluster formation in a granular medium fluidized by (p.320) vibrations in low gravity. Phys. Rev. Lett., 83, 440.

Feitosa, K. and Menon, N. (2002). Breakdown of energy equipartition in a 2d binary vibrated granular gas. Phys. Rev. Lett., 88, 198301.

Ferziger, J. and Kaper, H. (1972). The Matematical Theory of Transport Processes in Gases. North-Holland, Amsterdam.

Gardiner, C. W. (1983). Handbook of Stochastic Methods, Volume 13 of Springer Series in Synergetics. Springer, Berlin.

Garwin, R. L. (1969). Kinematics of an ultraelastic rough ball. Am. J. Phys., 37, 88.

Garzo, V. and Dufty, J. W. (1999). Dense fluid transport for inelastic hard spheres. Phys. Rev. E, 59, 5895.

Goldhirsch, I. (2001). Granular gases: Probing the boundaries of hydrodynamics. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 79. Springer.

Goldhirsch, I. and Zanetti, G. (1993). Clustering instability in dissipative gases. Phys. Rev. Lett., 70, 1619.

Goldman, D., Shattuck, M. D., Bizon, C., McCormick, W. D., Swift, J. B., and Swinney, H. L. (1998). Absence of inelastic collapse in a realistic three ball model. Phys. Rev. E, 57, 4831.

Goldshtein, A. and Shapiro, M. (1995). Mechanics of collisional motion of granular materials. Part 1: General hydrodynamic equations. J. Fluid Mech., 282, 75.

Grad, H. (1960). Theory of Rarified Gases in Rarified Gas Dynamics. Pergamon Press, New York.

Greenberg, R. and Brahic, A. (ed.) (1984). Planetary Rings, Tucson, AZ. Arizona University Press.

Grossman, E. L. (1997). Effects of container geometry on granular convection. Phys. Rev. E, 56, 3290.

Haff, P. K. (1983). Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech., 134, 401.

Hansen, J. P. and McDonald, I. R. (1986). Theory of Simple Liquids. Academic Press Limited, London.

Herrmann, H. J., Hovi, J.-P., and Luding, S. (ed.) (1998). Physics of Dry Granular Media, NATO ASI Series, Dordrecht. Kluwer.

Hertz, H. (1882). Über die Berührung fester elastischer Körper. J. reine u. angewandte Math., 92, 156.

Hodkinson, E. (1835). Report of the 4th Meeting of the British Association for the Advancement of Science. London.

Huntley, J. M. (1998). Scaling laws for a two-dimensional vibro-fluidized granular material. Phys. Rev. E, 58, 5168.

Huthmann, M., Orza, J. A., and Brito, R. (2000). Dynamics of deviations from the Gaussian state in a freely cooling homogeneous system of smooth inelastic particles. Granular Matter, 2, 189.

Jenkins, J. T. and Louge, M. Y. (1997). Microgravity segregation in binary (p.321) mixtures of inelastic spheres. In Powders and Grains’97 (ed. R. P. Behringer and J. T. Jenkins), Rotterdam, pp. 539. Balkema.

Jenkins, J. T. and Richman, M. W. (1985). Grad's 13-moment system for a dense gas of inelastic spheres. Arch. Particle Mech. Anal., 87, 355.

Kadanoff, L. P. (1999). Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys., 71, 435.

Kudrolli, A. and Henry, J. (2000). Non-gaussian velocity distributions in excited granular matter in the absence of clustering. Phys. Rev. E, 62, R1489.

Kuwabara, G. and Kono, K. (1987). Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys., 26, 1230.

Landau, L. D. and Lifshitz, E. M. (1965). Theory of Elasticity. Oxford University Press, Oxford.

Lebowitz, J. L. (1964). Exact solution of generalized Percus–Yevick equation for a mixture of hard spheres. Phys. Rev. A, 133, 895.

Losert, W., Cooper, D. G. W., Delour, J., Kudrolli, A., and Gollub, J. P. (1999). Velocity statistics in excited granular media. Chaos, 9, 682.

Louge, M. Y. and Adams, M. E. (2002). Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastoplastic plate. Phys. Rev. E, 65, 021303.

Luding, S., Huthmann, M., McNamara, S., and Zippelius, A. (1998). Homogeneous cooling of rough, dissipative particles: theory and simulations. Phys. Rev. E, 58, 3416.

Luding, S. and McNamara, S. (1998). How to handle the inelastic collapse of a dissipative hard-sphere gas with the TC model. Granular Matter, 1, 113.

Luding, S. and Strauss, O. (2001). The equation of state for almost elastic, smooth, polydisperse granular gases for arbitrary density. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 389. Springer.

Lun, C. K. K., Savage, S. B., Jeffrey, D. J., and Chepurniy, N. (1984). Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech., 140, 223.

Marín, M. (1998, Oct.). On the pending event set and binary tournaments. In Proceedings of the 10th SCS European Simulation Symposium (ed. A. Bargiela and E. Kerckhoffs), Nottingham, pp. 110. Society for Computer Simulation Europe Publishing House.

Marín, M., Risso, D., and Cordero, P. (1993). Efficient algorithms for many body hard particle molecular dynamics. J. Comp. Phys., 109, 306.

McNamara, S. (1993). Hydrodynamic modes of a uniform granular medium. Phys. Fluids A, 5, 3056.

McNamara, S. and Young, W. R. (1992). Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A, 4, 496.

McNamara, S. and Young, W. R. (1993). Inelastic collapse in two dimensions. Phys. Rev. E, 50, R28.

(p.322) Morgado, W. A. M. and Oppenheim, I. (1997). Energy dissipation for quasielas-tic granular particle collisions. Phys. Rev. E, 55, 1940.

Olafsen, J. S. and Urbach, J. S. (1998). Clustering, order, and collapse in a driven granular monolayer. Phys. Rev. Lett., 81, 4369.

Olafsen, J. S. and Urbach, J. S. (1999). Velocity distribution and density fluctuations in a granular gas. Phys. Rev. E, 60, R2468.

Olafsen, J. S. and Urbach, J. S. (2001). Experimental observations of non-equilibrium distributions and transitions in a 2d granular gas. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 410. Springer.

Pagonabarraga, I., Trizac, E., van Noije, T. P. C., and Ernst, M. H. (2002). Randomly driven granular fluids: collisional statistics and short scale structure. Phys. Rev. E, 65, 011303.

Piel, A. and Melzer, A. (2002). Dusty plasmas – the state of understanding from an experimentalist's view. Adv. Space Res., 29, 1255.

Pöschel, T. (1999). Dynamik granularer Systeme – Theorie, Experimente und numerische Experimente. Logos, Berlin.

Pöschel, T. and Brilliantov, N. V. (2001). Extremal collision sequences of particles on a line: optimal transmission of kinetic energy. Phys. Rev. E, 63, 021505.

Pöschel, T. and Brilliantov, N. V. (ed.) (2003). Granular Gas Dynamics, Volume 624 of Lecture Notes in Physics, Berlin. Springer.

Pöschel, T., Brilliantov, N. V., and Schwager, T. (2002). Violation of molecular chaos in dissipative gases. Int. J. Mod. Phys. C, 13, 1263.

Pöschel, T. and Luding, S. (ed.) (2001). Granular Gases, Volume 564 of Lecture Notes in Physics, Berlin. Springer.

Pöschel, T. and Schwager, T. (2004). Granular Dynamics: Models and Algorithms. Springer, Berlin.

Ramírez, R. and Cordero, P. (1999). Kinetic description of a fluidized one-dimensional granular system. Phys. Rev. E, 59, 656.

Ramírez, R., Pöschel, T., Brilliantov, N. V., and Schwager, T. (1999). Coefficient of restitution for colliding viscoelastic spheres. Phys. Rev. E, 60, 4465.

Ramírez, R., Risso, D., Soto, R., and P., Cordero (2000). Hydrodynamic theory for granular gases. Phys. Rev. E, 62, 2521.

Rapaport, D. C. (1980). The event scheduling problem in molecular dynamic simulations. J. Comp. Phys., 34, 184.

Resibois, P. and de Leener, M. (1977). Classical Kinetic Theory of Fluids. Wiley & Sons, New York.

Risken, H. (1996). The Fokker–Planck Equation: Methods of Solution and Applications, Volume 18 of Springer Series in Synergetics. Springer, Berlin.

Rouyer, F. and Menon, N. (2000). Velocity fluctuations in a homogeneous 2d granular gas in steady state. Phys. Rev. Lett., 85, 3676.

Salo, H. (1992). Gravitational wakes in Saturn's rings. Science, 359, 619.

Salo, H. (2001). Numerical simulations of the collisional dynamics of planetary (p.323) rings. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 330. Springer.

Salo, H., Lukkari, J., and Hanninen, J. (1988). Velocity dependent coefficient of restitution and the evolution of collisional systems. Earth, Moon, Planets, 43, 33.

Scheffler, T. and Wolf, D. E. (2002). Collision rates in charged granular gases. Granular Matter, 4, 103.

Schram, P. P. J. M. (1991). Kinetic Theory of Gases and Plasmas. Kluwer Academic Publishers, AA Dordrecht, The Netherlands.

Schwager, T. and Pöschel, T. (1998). Coefficient of restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E, 57, 650.

Sela, N. and Goldhirsch, I. (1998). Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech., 361, 41.

Shida, K. and Kawai, T. (1989). Cluster formation by inelastically colliding particles in one-dimensional space. Physica A, 162, 145.

Soto, R. and Mareschal, M. (2001). Statistical mechanics of fluidized granular media: short range velocity correlations. Phys. Rev. E, 63, 041303.

Spahn, F., Petzschmann, O., Schmidt, J., Sremcevic, M., and Hertzsch, J.-M. (2001). Granular viscosity, planetary rings and inelastic particle collisions. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 363. Springer.

Stroink, G. (1983). Super ball problem. The Physics Teacher, 21, 466.

Stronge, W. I. (1990). Rigid body collision with friction. Proc. Roy. Soc. A, 431, 169.

Sture, S., Costes, N. C., Batiste, S. N., Lankton, M. R., Alshibli, K. A., Jeremic, B., Swanson, R. A., and Frank, M. (1998). Mechanics of granular materials at low effective stresses. J. of Aerospace Eng., 11, 67.

Taguchi, Y. (1992). Powder turbulence: Direct onset of turbulent flow. J. Physique, 2, 2103.

Tan, M.-L. and Goldhirsch, I. (1998). Rapid granular flows as mesoscopic systems. Phys. Rev. Lett., 81, 3022.

Tanaka, T., Ishida, T., and Tsuji, Y. (1991). Direct numerical simulatin of granular plug flow in a horizontal pipe: The case of cohesionless particles (in Japanese). For an English presentation of this work see (Taguchi, 1992).

Trans. Jap. Soc. Mech. Eng., 57, 456.

Thornton, C. and Ning, Z. (1998). A theoretical model for the stick/bounce behaviour of adhesive, elastic–plastic spheres. Powder Technol., 99, 154.

Thornton, C., Ning, Z., Wu, C., and Nasrullah, M. (2001). Contact mechanics and coefficients of restitution. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 184. Springer.

van Kampen, N. (1992). Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam.

van Noije, T. P. C. and Ernst, M. H. (1998). Velocity distributions in homogeneous granular fluids: The free and the heated case. Granular Matter, 1, (p.324) 57.

van Noije, T. P. C. and Ernst, M. H. (2000). Cahn–Hillard theory for unstable granular fluids. Phys. Rev. E, 61, 1765.

van Noije, T. P. C., Ernst, M. H., and Brito, R. (1998). Ring kinetic theory for an idealized granular gas. Physica A, 251, 266.

van Noije, T. P. C., Ernst, M. H., Brito, R., and Orza, J. A. G. (1997). Meso-scopic theory of granular fluids. Phys. Rev. Lett., 79, 411.

Vranjes, J., Tanaka, M. Y., and Pandey, B. P. (2002). Electrostatic interaction in dusty plasma. Phys. Rev. E, 66, 037401.

Weidenschilling, S. J. (1995). Can gravitation instability form planetesimals? Icarus, 116, 433.

Wildman, R. D., Huntley, J. M., and Hansen, J.-P. (1999). Self-diffusion of grains in a two-dimensional vibrofluidized bed. Phys. Rev. E, 60, 7066.

Wildman, R. D., Huntly, J. M., and Hansen, J.-P. (2001). Experimental studies of vibro-fluidised granular beds. In Granular Gases (ed. T. Pöschel and S. Luding), Volume 564 of Lecture Notes in Physics, Berlin, pp. 215. Springer.

Zhou, T. and Kadanoff, L. P. (1996). Inelastic collapse of three particles. Phys. Rev. E, 54, 623.