Jump to ContentJump to Main Navigation
The Intelligent Movement MachineAn Ethological Perspective on the Primate Motor System$

Michael Graziano

Print publication date: 2009

Print ISBN-13: 9780195326703

Published to Oxford Scholarship Online: May 2009

DOI: 10.1093/acprof:oso/9780195326703.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 27 February 2017

(p.199) Literature Cited

(p.199) Literature Cited

The Intelligent Movement Machine
Oxford University Press

Bibliography references:

Aflalo, TN., and Graziano, M.S.A. (2006a). Partial tuning of motor cortex neurons to final posture in a free-moving paradigm. Proc. Natl. Acad. Sci. 103: 2909–2914.

Aflalo, T.N., and Graziano, M.S.A. (2006b). Possible origins of the complex topographic organization of motor cortex: reduction of a multidimensional space onto a 2-dimensional array. J. Neurosci. 26: 6288–6297.

Aflalo, T.N., and Graziano, M.S.A. (2007). Relationship between unconstrained arm movement and single neuron firing in the macaque motor cortex. J. Neurosci. 27: 2760–2780.

Ahsgren, I., Baldwin, I., Goetzinger-Falk, C., Erikson, A., Flodmark, O., and Gillberg, C. (2005). Ataxia, autism, and the cerebellum: a clinical study of 32 individuals with congenital ataxia. Dev. Med. Child Neurol. 47: 193–198.

Andrew, R.J. (1962). The origin and evolution of the calls and facial expressions of the primates. Behaviour 20: 1–107.

Argyle, M., and Cooke, M. (1976). Gaze and mutual gaze. Cambridge, UK: Cambridge University Press.

Asanuma, H. (1975). Recent developments in the study of the columnar arrangement of neurons within the motor cortex. Physiol. Rev. 55: 143–156.

Asanuma, H., and Arnold. A.P. (1975). Noxious effects of excessive currents used for intracortical microstimulation. Brain Res. 96: 103–107.

Asanuma, H., and Rosen, I. (1972). Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey. Exp. Brain Res. 14: 243–256.

Asanuma, H., and Sakata, H. (1967). Functional organization of a cortical efferent system examined with focal depth stimulation in cats. J. Neurophysiol. 30: 35–54.

Asanuma, H., and Ward, J.E. (1971). Pattern of contraction of distal forelimb muscles produced by intracortical stimulation in cats. Brain Res. 27: 97–109.

Asatrayan, D.G., and Feldman, A.G. (1965). Functional tuning of the nervous system with control of movements or maintenance of a steady posture: I. Mechanographic analysis of the work of the joint on execution of a postural task. Biophysics 10: 925–935.

Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., Montgomery, M., Rutter, M., and Lantos, P. (1998). A clinicopathological study of autism. Brain 121: 889–905.

Baron-Cohen, S., Knickmeyer, R.C., and Belmonte, M.K. (2005). Sex differences in the brain: implications for explaining autism. Science 310: 819–823

Bates, J.F., and Goldman-Rakic, P.S. (1993). Prefrontal connections of medial motor areas in the rhesus monkey. J. Comp. Neurol. 336: 211–228.

Beevor, C. (1888). A further minute analysis by electrical stimulation of the so-called motor region of the cortex cerebri in the monkey (Macacus sinicus). Phil. Trans. R. Soc. Lond. B 179: 205–256.

(p.200) Beevor, C., and Horsley, V. (1887). A minute analysis (experimental) of the various movements produced by stimulating in the monkey different regions of the cortical centre for the upper limb, as defined by Professor Ferrier. Phil. Trans. R. Soc. Lond. B 178: 153–167.

Beevor, C., and Horsley, V. (1890). An experimental investigation into the arrangement of excitable fibres of the internal capsule of the bonnet monkey (Macacus sinicus). Phil. Trans. R. Soc. Lond. B 181: 49–88.

Beisteiner, R., Windischberger, C., Lanzenberger, R., Edward, V., Cunnington, R., Erdler, M., Gartus, A., Streibl, B., Moser, E., and Deecke, L. (2001). Finger somatotopy in human motor cortex. Neuroimage 13: 1016–1026.

Bizzi, E., and Mussa-Ivaldi, F.A. (1989). Motor control. In: Handbook of Neuropsychology, Vol. 2. Boller, F., and Grafman, J. (Eds.), pp. 229–244. The Netherlands: Elsevier.

Bortoff, G.A., and Strick, P.L. (1993). Corticospinal terminations in two new-world primates: further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J. Neurosci. 13: 5105–5118.

Boussaoud, D. (1995). Primate premotor cortex: modulation of preparatory neuronal activity by gaze angle. J. Neurophysiol. 73: 886–890.

Brasted, P.J., and Wise, S.P. (2004). Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum. Eur. J. Neurosci. 19: 721–740.

Brecht, M., Schneider, M., Sakmann, B., and Margrie, T.W. (2004). Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427: 704–710.

Brinkman, C. (1981). Lesions in supplementary motor area interfere with a monkey’s performance of a bimanual coordination task. Neurosci. Lett. 27: 267–270.

Broca, P. (1960). Remarks on the seat of the faculty of articulate language, followed by an observation of aphemia (Tr. G. von Bonin). In: Some papers on the cerebral cortex, von Bonin, G. (Ed.). Springfield, IL: Charles C Thomas, pp. 49–72. (Original work published 1861 in Bulletin de la Societe Anatomique de Paris 6: 330–357)

Brodmann, K. (1909). Vergleichende Lokalisationslehre der grosshirnrinde [Comparative localization in the cerebral hemispheres]. Leipzig, Germany: J. A. Barth.

Bruce, C.J., Goldberg, M.E., Bushnell, M.C., and Stanton, G.B. (1985). Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54: 714–734.

Bucy, P.C. (1933). Electrical excitability and cyto-architecture of the premotor cortex in monkeys. Arch. Neurol. Psychiat. 30: 1205–1225.

Bucy, P.C. (1935). A comparative cytoarchitectonic study of the motor and premotor areas in the primate. J. Comp. Neurol. 62: 293–331.

Caggiula, A.R., and Hoebel, B.G. (1966). “Copulation-reward site” in the posterior hypothalamus. Science 153: 1284–1285.

Caminiti, R., Johnson, P.B., and Urbano, A. (1990). Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J. Neurosci. 10: 2039–2058.

Campbell, A.W. (1905). Histological studies on the localization of cerebral function. Cambridge, UK: Cambridge University Press.

Chakrabarty, S., and Martin, J.H. (2000). Postnatal development of the motor representation in primary motor cortex. J. Neurophysiol. 84: 2582–2594.

Charman, T., Swettenham, J., Baron-Cohen, S., Cox, A., Baird, G., and Drew, A. (1997). Infants with autism: an investigation of empathy, pretend play, joint attention, and imitation. Dev. Psychol. 33: 781–789.

(p.201) Chen, L.L. (2006). Head movements evoked by electrical stimulation in the frontal eye field of the monkey: evidence for independent eye and head control. J. Neurophysiol. 95: 3528–3542.

Chen, L.L., and Walton, M.M. (2005). Head movement evoked by electrical stimulation in the supplementary eye field of the rhesus monkey. J. Neurophysiol. 94: 4502–4519.

Cheney, P.D., and Fetz, E.E. (1985). Comparable patterns of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: evidence for functional groups of CM cells. J. Neurophysiol. 53: 786–804.

Cheney, P.D., Fetz, E.E., and Palmer, S.S. (1985). Patterns of facilitation and suppression of antagonist forelimb muscles from motor cortex sites in the awake monkey. J. Neurophysiol. 53: 805–820.

Churchland, M.M., and Shenoy, K.V. (2007). Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. J. Neurophysiol. 97: 4235–4257.

Churchland, M.M., Yu, B.M., Ryu, S.I., Santhanam, G., and Shenoy, K.V. (2006). Neural variability in premotor cortex provides a signature of motor preparation. J. Neurosci. 26: 3697–3712.

Cisik, P., and Kalaska, J.F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45: 801–814.

Classen, J., Liepert, J., Wise, S.P., Hallett, M., and Cohen, L.G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J. Neurophysiol. 79: 1117–1123.

Cohen, J., Cohen, P., West, S.G., and Aiken, L.S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences, 3rd ed. Mahwah, NJ: Lawrence Erlbaum Associates.

Colby, C.L., Duhamel, J.R., and Goldberg, M.E. (1993). Ventral intraparietal area of the macaque: anatomic location and visual response properties. J. Neurophysiol. 69: 902–914.

Cooke, D.F., and Graziano, M.S.A. (2003). Defensive movements evoked by air puff in monkeys. J. Neurophysiol. 90: 3317–3329.

Cooke, D.F., and Graziano, M.S.A. (2004a). Sensorimotor integration in the precentral gyrus: Polysensory neurons and defensive movements. J. Neurophysiol. 91: 1648–1660.

Cooke, D.F., and Graziano, M.S.A. (2004b). Super-flinchers and nerves of steel: Defensive movements altered by chemical manipulation of a cortical motor area. Neuron 43: 585–593.

Cooke, D.F., Taylor, C.S.R., Moore, T., and Graziano, M.S.A. (2003). Complex movements evoked by microstimulation of Area VIP. Proc. Natl. Acad. Sci. USA 100: 6163–6168.

Courchesne, E., Saitoh, O., Yeung-Courchesne, R., Press, G.A., Lincoln, A.J., Haas, R.H., and Schreibman, L. (1994). Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. Am. J. Roentgenol. 162: 123–130.

Courchesne, E., Townsend, J., Akshoomoff, N.A., Saitoh, O., Yeung-Courchesne, R., Lincoln, A.J., James, H.E., Haas, R.H., Schreibman, L., and Lau, L. (1994). Impairment in shifting attention in autistic and cerebellar patients. Behav. Neurosci. 108: 848–865.

(p.202) Courchesne, E., Yeung-Courchesne, R., Press, G.A., Hesselink, J.R., and Jernigan, T.L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. N. Engl. J. Med. 318: 1349–1354.

Cramer, N.P., and Keller, A. (2006). Cortical control of a whisking central pattern generator. J. Neurophysiol. 96: 209–217.

Crammond, D.J., and Kalaska, J.F. (1996). Differential relation of discharge in primary motor cortex and premotor cortex to movements versus actively maintained postures during a reaching task. Exp. Brain Res. 108: 45–61.

Dalton, K.M., Nacewicz, B.M., Johnstone, T., Schaefer, H.S., Gernsbacher, M.A., Goldsmith, H.H., Alexander, A.L., and Davidson, R.J. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nat. Neurosci. 8: 519–526.

Dapretto, M., Davies, M.S., Pfeifer, J.H., Scott, A.A., Sigman, M., Bookheimer, S.Y., and Iacoboni, M (2006). Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat. Neurosci. 9: 28–30.

Darwin, C. (1873). The expression of the emotions in man and animals. New York: D. Appleton and Company.

D’Avella, A., Saltiel, P., and Bizzi, E. (2003). Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6: 300–308.

Davis, M. (1984). The mammalian startle response. In: Neural mechanisms of startle behavior. Eaton, R.C. (Ed.). New York: Plenum Press, pp. 287–351.

Dawkins, R., and Krebs, J.R. (1978). Animal signals: information or manipulation? In: Behavioral ecology: An evolutionary approach. Krebs, R., and Davies, N.B. (Eds.). Oxford, UK: Blackwell, pp. 282–309.

Dean, P., Redgrave, P., and Westby, G.W. (1989). Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci. 12: 137–147.

Dechent, P., and Frahm, J. (2003). Functional somatotopy of finger representations in human primary motor cortex. Hum. Brain. Mapp. 18: 272–283.

di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., and Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Exp. Brain Res. 91: 176–180.

Donoghue, J.P., Leibovic, S., and Sanes, J.N. (1992). Organization of the forelimb area in squirrel monkey motor cortex: representation of digit, wrist, and elbow muscles. Exp. Brain Res. 89: 1–19.

Dosey, M.A., and Meisels, M. (1969). Personal space and self-protection. J. Pers. Soc. Psychol. 11: 93–97.

Douglas, R.J., and Martin, K.A. (1991). A functional microcircuit for cat visual cortex. J. Physiol. 440: 735–769.

Duhamel, J.R., Colby, C.L., and Goldberg, M.E. (1998). Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J. Neurophysiol. 79: 126–136.

Dum, R.P., and Strick, P.L. (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. J. Neurosci. 11: 667–689.

Dum, R.P., and Strick, P.L. (2002). Motor areas in the frontal lobe of the primate. Physiol. Behav. 77: 677–682.

Dum, R.P., and Strick, P.L. (2005). Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J. Neurosci. 25: 1375–1386.

Durbin, R., and Mitchison, G. (1990). A dimension reduction framework for understanding cortical maps. Nature 343: 644–647.

(p.203) Ekman, P., Davidson, R.J., and Friesen, W.V. (1990). The Duchenne smile: emotional expression and brain physiology. II. J. Pers. Soc. Psychol. 58: 342–353.

Ethier, C., Brizzi, L., Darling, W.G., and Capaday, C. (2006). Linear summation of cat motor cortex outputs. J. Neurosci. 26: 5574–5581.

Evarts, E.V. (1968). Relation of pyramidal tract activity to force exerted during voluntary movement. J. Neurophysiol. 31: 14–27.

Fatemi, S.H., Halt, A.R., Realmuto, G., Earle, J., Kist, D.A., Thuras, P., and Merz, A. (2002). Purkinje cell size is reduced in cerebellum of patients with autism. Cell. Mol. Neurobiol. 22: 171–175.

Feldman, A.G. (1966). Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics 11: 565–578.

Feldman, A.G., and Latash, M.L. (2005). Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesis. Exp. Brain Res. 161: 91–103.

Felipe, N.J., and Sommer, R. (1966). Invasions of personal space. Social Problems 14: 206–214.

Ferrier, D. (1873). Experimental researches in cerebral physiology and pathology. West Riding Lunatic Asylum Medical Reports 3: 30–96.

Ferrier, D. (1874). Experiments on the brain of monkeys – No. 1. Proc. R. Soc. Lond. 23: 409–430.

Finkenstadt, T., and Ewert, J.P. (1983). Visual pattern discrimination through interactions of neural networks: a combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra, J. Comp. Physiol. 153: 99–110.

Flash, T., and Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed experimental model. J. Neurosci. 5: 1688–1703.

Flourens, P. (1960). Investigations of the properties and the functions of the various parts which compose the cerebral mass [Recherches sur la structure de la couche corticale des circonvolutions du cerveau] (Tr. G. von Bonin). In: Some papers on the cerebral cortex. Von Bonin, G. (Ed.). Springfield, IL: Charles C Thomas Publisher, pp. 3–21. (Original work published 1824)

Foerster, O. (1936). The motor cortex of man in the light of Hughlings Jackson’s doctrines. Brain 59: 135–159.

Fogassi, L., Gallese, V., Buccino, G., Craighero, L., Fadiga, L., and Rizzolatti, G. (2001). Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. Brain 124: 571–586.

Fogassi, L., Gallese, V., Fadiga, L., Luppino, G., Matelli, M., and Rizzolatti, G. (1996). Coding of peripersonal space in inferior premotor cortex (area F4). J. Neurophysiol. 76: 141–157.

Freedman, E.G., Stanford, T.R., and Sparks, D.L. (1996). Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys. J. Neurophysiol. 76: 927–952.

Fritsch, G., and Hitzig, E. (1960). Uber die elektrishe Erregbarkeit des Grosshirns [On the electrical excitability of the cerebrum]. Tr. G. von Bonin. In: Some papers on the cerebral cortex. Von Bonin, G. (Ed.). Springfield, IL: Charles C Thomas Publisher, pp. 73–96. (Original work published 1870 in Arch. f. Anat., Physiol und wissenchaftl. Mediz., Leipzig, 300–332)

(p.204) Fu, Q.G., Suarez, J.I., and Ebner, T.J. (1993). Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys. J. Neurophysiol. 70: 2097–2116.

Fujii, N., Mushiake, H., and Tanji, J. (2000). Rostrocaudal distinction of the dorsal premotor area based on oculomotor involvement. J. Neurophysiol. 83: 1764–1769.

Fulton, J. (1934). Forced grasping and groping in relation to the syndrome of the premotor area. Arch. Neurol. Psychiat. 31: 221–235.

Fulton, J. (1935). A note on the definition of the “motor” and “premotor” areas. Brain 58: 311–316.

Gaffney, G.R., Tsai, L.Y., Kuperman, S., and Minchin, S. (1987). Cerebellar structure in autism. Am. J. Dis. Child. 141: 1330–1332.

Galea, M.P., and Darian-Smith, I. (1994). Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb. Cortex 4: 166–194.

Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain 119: 593–609.

Gallese, V., Keysers, C., and Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends Cogn. Sci. 8: 396–403.

Galvani, L. (1791). De viribus electricitatis in motu musculari commentarius [Commentary on the effect of electricity on muscular motion]. De Bononiensi Scientiarum et Artium Instituto atque Academia commentarii 7: 363–418.

Gaymard, B., Pierrot-Deseilligny, C., and Rivaud, S. (1990). Impairment of sequences of memory-guided saccades after supplementary motor area lesions. Ann. Neurol. 28: 622–626.

Gentilucci, M., Fogassi, L., Luppino, G., Matelli, M., Camarda, R., and Rizzolatti, G. (1988). Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp. Brain Res. 71: 475–490.

Gentilucci, M., Scandolara, C., Pigarev, I.N., and Rizzolatti, G. (1983). Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position. Exp. Brain Res. 50: 464–468.

Georgopoulos, A.P., Ashe, J., Smyrnis, N., and Taira, M. (1992). The motor cortex and the coding of force. Science 256: 1692–1695.

Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., and Massey, J.T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2: 1527–1537.

Georgopoulos, A.P., Kettner, R.E., and Schwartz, A.B. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J. Neurosci. 8: 2928–2937.

Georgopoulos, A.P., Schwartz, A.B., and Kettner, R.E. (1986). Neuronal population coding of movement direction. Science 233: 1416–1419.

Gerloff, C., Corwell, B., Chen, R., Hallett, M., and Cohen, L.G. (1997). Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain 120: 1587–1602.

Gernsbacher, M.A. (2004). Language is more than speech: A case study. J. Developmental and Learning Disorders 8: 81–98.

Gierer, A., and Muller, C.M. (1995). Development of layers, maps and modules. Curr. Opin. Neurobiol. 5: 91–97.

Giszter, S.F., Mussa-Ivaldi, F.A., and Bizzi, E. (1993). Convergent force fields organized in the frog’s spinal cord. J. Neurosci. 13: 467–491.

(p.205) Goldberg, M.C., Lasker, A.G., Zee, D.S., Garth, E., Tien, A., and Landa, R.J. (2002). Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high functioning autism. Neuropsychologia 40: 2039–2049.

Gottlieb, J.P., Bruce, C.J., and MacAvoy, M.G. (1993). Smooth eye movements elicited by microstimulation in the primate frontal eye field. J. Neurophysiol. 69: 786–799.

Gould, H.J. 3rd, Cusick, C.G., Pons, T.P., and Kaas, J.H. (1986). The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. J. Comp. Neurol. 247: 297–325.

Grafton, S.T., Arbib, M.A., Fadiga, L., and Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp. Brain Res. 112: 103–111.

Graziano, M.S.A. (2006). The organization of behavioral repertoire in motor cortex. Ann. Rev. Neurosci. 29: 105–134.

Graziano, M.S.A., and Aflalo, T.N. (2007), Mapping behavior repertoire onto the cortex. Neuron 56: 239–251.

Graziano, M.S.A., Aflalo, T., and Cooke, D.F. (2005). Arm movements evoked by electrical stimulation in the motor cortex of monkeys. J. Neurophysiol. 94: 4209–4223.

Graziano, M.S.A., Alisharan, S.A., Hu, X., and Gross, C.G. (2002a). The clothing effect: Tactile neurons in the precental gyrus do not respond to the touch of the familiar primate chair. Proc. Natl. Acad. Sci. USA 99: 11930–11933.

Graziano, M.S.A., and Botvinick, M.M. (2002). How the brain represents the body: insights from neurophysiology and psychology. In: Common mechanisms in perception and action: attention and performance XIX. Prinz, W., and Hommel, B. (Eds.). Oxford, UK: Oxford University Press, pp. 136–157.

Graziano, M.S.A., and Cooke, D.F. (2006). Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia 44: 845–859.

Graziano, M.S.A., Cooke, D.F., Taylor, C.S.R., and Moore, T. (2004). Distribution of hand location in monkeys during spontaneous behavior. Exp. Brain Res. 155: 30–36.

Graziano, M.S.A., and Gandhi, S. (2000). Location of the polysensory zone in the precentral gyrus of anesthetized monkeys. Exp. Brain Res. 135: 259–266.

Graziano, M.S.A., and Gross, C.G. (1998). Spatial maps for the control of movement. Curr. Opin. Neurobiol. 8: 195–201.

Graziano, M.S.A., Hu, X.T., and Gross, C.G. (1997a). Visuo-spatial properties of ventral premotor cortex. J. Neurophysiol. 77: 2268–2292.

Graziano, M.S.A., Hu, X.T., and Gross, C.G. (1997b). Coding the locations of objects in the dark. Science 277: 239–241.

Graziano, M.S.A., Patel, K.T., and Taylor, C.S.R. (2004). Mapping from motor cortex to biceps and triceps altered by elbow angle. J. Neurophysiol. 92: 395–407.

Graziano, M.S.A., Reiss, L.A., and Gross, C.G. (1999). A neuronal representation of the location of nearby sounds. Nature 397: 428–430.

Graziano, M.S.A., Taylor, C.S.R., and Moore, T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron 34: 841–851.

Graziano, M.S.A., Yap, G.S., and Gross, C.G. (1994). Coding of visual space by premotor neurons. Science 266: 1054–1057.

Gross, C.G. (1997). Emanual Swedenborg: A neuroscientist before his time. Neuroscientist 3: 142–147.

Grunbaum, A., and Sherrington, C. (1901). Observations on the physiology of the cerebral cortex of some of the higher apes (Preliminary communication). Proc. R. Soc. Lond. 69: 206–209.

(p.206) Grunbaum, A., and Sherrington, C. (1903). Observations on the physiology of the cerebral cortex of the anthropoid apes. Proc. R. Soc. Lond. 72: 152–155.

Guitton, D., Crommelinck, M., and Roucoux, A. (1980). Stimulation of the superior colliculus in the alert cat. I. Eye movements and neck EMG activity evoked when the head is restrained. Exp. Brain Res. 39: 63–73.

Haiss, F., and Schwarz, C. (2005). Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex. J. Neurosci. 25: 1579–1587.

Hall, E.T. (1966). The hidden dimension. Garden City, NY: Anchor Books.

Hallett, M., Lebiedowska, M.K., Thomas, S.L., Stanhope, S.J., Denckla, M.B., and Rumsey, J. (1993). Locomotion of autistic adults. Arch. Neurol. 50: 1304–1308.

Halsband, U., Matsuzaka, Y., and Tanji, J. (1994). Neuronal activity in the primate supplementary, pre-supplementary and premotor cortex during externally and internally instructed sequential movements. Neurosci. Res. 20: 149–155.

Hardan, A.Y., Kilpatrick, M., Keshavan, M.S., and Minshew, N.J. (2003). Motor performance and anatomic magnetic resonance imaging (MRI) of the basal ganglia in autism. J. Child Neurol. 18: 317–324.

Hashimoto, T., Tayama, M., Miyazaki, M., Murakawa, K., and Kuroda, Y. (1993). Brainstem and cerebellar vermis involvement in autistic children. J. Child Neurol. 8: 149–153.

He, S.Q., Dum, R.P., and Strick, P.L. (1993). Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J. Neurosci. 13: 952–980.

He, S.Q., Dum, R.P., and Strick, P.L. (1995). Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J. Neurosci. 15: 3284–3306.

Hediger, H. (1955). Studies of the psychology and behavior of captive animals in zoos and circuses. New York: Criterion Books.

Heffner, R., and Masterton, B. (1975). Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav. Evol. 12: 161–200.

Heffner, R., and Masterton, B. (1983). The role of the corticospinal tract in the evolution of human digital dexterity. Brain Behav. Evol. 23: 165–183.

Hess, W.R. (1957). Functional organization of the diencephalons. New York Grune and Stratton.

Hines, M. (1929). On cerebral localization. Physiol. Rev. 9: 462–574.

Hitzig, E. (1900). Houghlings Jackson and the cortical motor centres in the light of physiological research. Brain 23: 545–581.

Hocherman, S., and Wise, S.P. (1991). Effects of hand movement path on motor cortical activity in awake, behaving rhesus monkeys. Exp. Brain Res. 83: 285–302.

Hoebel, B.G. (1969). Feeding and self-stimulation. Ann. NY Acad. Sci. 157: 758–778.

Hoff, E.C., and Hoff, H.E. (1934). Spinal terminations of the projection fibres from the motor cortex of primates. Brain 57: 454–474.

Hoffman, J.E., and Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Percept. Psychophys. 57: 787–795.

Holdefer, R.N., and Miller, L.E. (2002). Primary motor cortical neurons encode functional muscle synergies. Exp. Brain Res. 146: 233–243.

Horowitz, M.J., Duff, D.F., and Stratton, L.O. (1964). Body-buffer zone: exploration of personal space. Arch. Gen. Psychiat. 11: 651–656.

Horsley, V., and Schaffer, E.A. (1888). A record of experiments upon the functions of the cerebral cortex. Phil. Trans. 179: 1–45.

(p.207) Huang, C.S., Hiraba, H., Murray, G.M., and Sessle, B.J. (1989). Topographical distribution and functional properties of cortically induced rhythmical jaw movements in the monkey (Macaca fascicularis). J. Neurophysiol. 61: 635–650.

Hubel, D., and Wiesel, T. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160: 106–154.

Huntley, G.W., and Jones, E.G. (1991). Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. J. Neurophysiol. 66: 390–413.

Iacoboni, M., and Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nat. Rev. Neurosci. 7: 942–951.

Iacoboni, M., Woods, R.P., Brass, M., Bekkering, H., Mazziotta, J.C., and Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science 286: 2526–2528.

Ingudomnukul, E., Baron-Cohen, S., Wheelwright, S., and Knickmeyer, R. (2007). Elevated rates of testosterone-related disorders in women with autism spectrum conditions. Horm. Behav. 51: 597–604.

Jackson, J.H. (1870). Study of convulsions (St. Andrews Reports Vol. 3). In: Selected writings of John Houghlings Jackson, Vol. 1. Taylor, J. (Ed.). London: Hodder and Stoughton, pp. 8–36.

Jackson, J.H. (1875). On the anatomical and physiological localization of movements in the brain. In: Selected writings of John Houghlings Jackson, Vol. 1. Taylor, J. (Ed.). London: Hodder and Stoughton, pp. 37–76.

Jackson, J.H. (1890). On convulsive seizures. Lancet 1: 685–688, 735–738, 785–788.

Jankowska, E., Padel, Y., and Tanaka, R. (1975). The mode of activation of pyramidal tract cells by intracortical stimuli. J. Physiol. 249: 617–636.

Jeannerod, M. (1986). The formation of finger grip during prehension. A cortically mediated visuomotor pattern. Behav. Brain Res. 19: 99–116.

Jenkins, I.H., Brooks, D.J., Nixon, P.D., Frackowiak, R.S., and Passingham, R.E. (1994). Motor sequence learning: a study with positron emission tomography. J. Neurosci. 14: 3775–3790.

Johnson, P.B., Ferraina, S., Bianchi, L., and Caminiti, R. (1996). Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb. Cortex 6: 102–119.

Kaas, J.H., and Catania, K.C. (2002). How do features of sensory representations develop? Bioessays 24: 334–343.

Kakei, S., Hoffman, D., and Strick, P. (1999). Muscle and movemet representations in the primary motor cortex. Science 285: 2136–2139.

Kakei, S., Hoffman, D., and Strick, P. (2001). Direction of action is represented in the ventral premotor cortex. Nat. Neurosci. 4: 969–970.

Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child 2: 217–250.

Karni, A., Meyer, G., Jezzard, P., Adams, M.M., Turner, R., and Ungerleider, L.G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377: 155–158.

Kastner, S., DeSimone, K., Konen, C.S., Szczepanski, S.M., Weiner, K.S., and Schneider, K.A. (2007). Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks. J. Neurophysiol. 97: 3494–3507.

Kaufmann, W.E., Cooper, K.L., Mostofsky, S.H., Capone, G.T., Kates, W.R., Newschaffer, C.J., Bukelis, I., Stump, M.H., Jann, A.E., and Lanham, D.C. (2003). Specificity of cerebellar vermian abnormalities in autism: a quantitative magnetic resonance imaging study. J. Child Neurol. 18: 463–470.

(p.208) Kellaway, P. (1946). The part played by electric fish in the early history of bioelectricity and electrotherapy. Bull. Hist. Med. 20: 112–137.

Kennard, M.A. (1935). Corticospinal fibres arising in the premotor area of the monkey. Arch. Neurol. Psychiat. 33: 698–711.

Kettner, R.E., Schwartz, A.B., and Georgopoulos, A.P. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. Positional gradients and population coding of movement direction from various movement origins. J. Neurosci. 8: 2938–2947.

Kimmel, D.L., and Moore, T. (2007). Temporal patterning of saccadic eye movement signals. J. Neurosci. 27: 7619–7630.

King, M.B., and Hoebel, B.G. (1968). Killing elicited by brain stimulation in rats. Comm. Behav. Biol. 2: 173–177.

Kleim, J.A., Barbay, S., and Nudo, R.J. (1998). Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol. 80: 3321–3325.

Kleinschmidt, A., Nitschke, M.F., and Frahm, J. (1997). Somatotopy in the human motor cortex hand area. A high-resolution functional MRI study. Eur. J. Neurosci. 9: 2178–2186.

Knight, T.A., and Fuchs, A.F. (2007). Contribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: effects of microstimulation. J. Neurophysiol. 97: 618–634.

Kohen-Raz, R., Volkmar, F.R., and Cohen, D.J. (1992). Postural control in children with autism. J. Autism Dev. Disord. 22: 419–432.

Kohonen, T. (1982). Self-organizing formation of topologically correct feature maps. Biol. Cybern. 43: 59–69.

Kohonen, T. (2001). Self-organizing maps. Berlin, Germany: Springer.

Kowler, E., Anderson, E., Dosher, B., and Blaser, E. (1995). The role of attention in the programming of saccades. Vis. Res. 35: 1897–1916.

Kurylo, D.D., and Skavenski, A.A. (1991). Eye movements elicited by electrical stimulation of area PG in the monkey. J. Neurophysiol. 65: 1243–1253.

Kuypers, H.G.J.M., and Brinkman, J. (1970). Precental projections to different parts of the spinal intermediate zone in the rhesus monkey. Brain Res. 24: 29–48.

Kwan, H.C., MacKay, W.A., Murphy, J.T., and Wong, Y.C. (1978). Spatial organization of precentral cortex in awake primates. II. Motor outputs. J. Neurophysiol. 41: 1120–1131.

Lan, N., and Crago, P.E. (1994). Optimal control of antagonistic muscle stiffness during voluntary movements. Biol. Cybern. 71: 123–135.

Landgren, S., Phillips, C.G., and Porter, R. (1962). Cortical fields of origin of the monosynaptic pyramidal pathways to some alpha motoneurones of the baboon’s hand and forearm. J. Physiol. 161: 112–125.

Landis, C., and Hunt, W.A. (1939). The startle pattern. New York: Farrar and Rinehart Inc.

Lassek, A.M. (1941). The pyramidal tract of the monkey. J. Comp. Neurol. 74: 193–202.

Leary, M.R., and Hill, D.A. (1996). Moving on: autism and movement disturbance. Ment. Retard. 34: 39–53.

Lee, D., and Quessy, S. (2003). Activity in the supplementary motor area related to learning and performance during a sequential visuomotor task. J. Neurophysiol. 89: 1039–1056.

Lemon, R.N., Johansson, R.S., and Westling, G. (1995). Corticospinal control during reach, grasp, and precision lift in man. J. Neurosci. 15: 6145–6156.

(p.209) Lewis, J.W., and Van Essen, D.C. (2000). Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428: 112–137.

Li, W., Todorov, E., and Pan, X. (2005). Hierarchical feedback and learning for multi-joint arm movement control. Conf. Proc. IEEE Eng. Med. Biol. Soc. 4: 4400–4403.

Liberman, A.M., Cooper, F.S., Shankweiler, D.P., and Studdert-Kennedy, M. (1967). Perception of the speech code. Psychol. Rev. 74: 431–461.

Liu, D., and Todorov, E. (2007). Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J. Neurosci. 27: 9354–9368.

Loeb, E.P., Giszter, S.F., Borghesani, P., and Bizzi, E. (1993). Effects of dorsal root cut on the forces evoked by spinal microstimulation in the spinalized frog. Somatosens. Mot. Res. 10: 81–95.

Logothetis, N., Sultan, F., Murayama, Y., Augath, M., Steudel, T., and Oeltermann, A. (2006). Microstimulation and fMRI in anesthetized and alert monkeys: conditions for transsynaptic BOLD activation. Soc. Neurosci. Abstr. 114.10.

Lu, X., and Ashe, J. (2005). Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron 45: 967–973.

Lu, M.T., Preston, J.B., and Strick, P.L. (1994). Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J. Comp. Neurol. 341: 375–392.

Luppino, G., Matelli, M., Camarda, R.M., Gallese, V., and Rizzolatti, G. (1991). Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J. Comp. Neurol. 311: 463–482.

Luppino, G., Matelli, M., Camarda, R., and Rizzolatti, G. (1993). Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J. Comp. Neurol. 338: 114–140.

Luppino, G., Murata, A., Govoni, P., and Matelli, M. (1999). Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp. Brain Res. 128: 181–187.

Macpherson, J., Marangoz, C., Miles, T.S., and Wiesendanger, M. (1982). Microstimulation of the supplementary motor area (SMA) in the awake monkey. Exp. Brain Res. 45: 410–416.

Macpherson, J., Wiesendanger, M., Marangoz, C., and Miles, T.S. (1982). Corticospinal neurones of the supplementary motor area of monkeys. A single unit study. Exp. Brain Res. 48: 81–88.

Macrae, C.N., Hood, B.M., Milne, A.B., Rowe, A.C., and Mason, M.F. (2002). Are you looking at me? Eye gaze and person perception. Psychol. Sci. 13: 460–464.

Maier, M.A., Olivier, E., Baker, S.N., Kirkwood, P.A., Morris, T., and Lemon, R.N. (1997). Direct and indirect corticospinal control of arm and hand motoneurons in the squirrel monkey (Saimiri sciureus). J. Neurophysiol. 78: 721–733.

Maier, M.A., Shupe, L.E., and Fetz, E.E. (2005). Dynamic neural network models of the premotoneuronal circuitry controlling wrist movements in primates. J. Comput. Neurosci. 19: 125–146.

Mari, M., Castiello, U., Marks, D., Marraffa, C., and Prior, M. (2003). The reach-to-grasp movement in children with autism spectrum disorder. Phil. Trans. R. Soc. Lond. B Biol. Sci. 358: 393–403.

Martin, J.H., Engber, D., and Meng, Z. (2005). Effect of forelimb use on postnatal development of the forelimb motor representation in primary motor cortex of the cat. J. Neurophysiol. 93: 2822–2831.

(p.210) Martinez-Trujillo, J.C., Wang, H., and Crawford, J.D. (2003). Electrical stimulation of the supplementary eye fields in the head-free macaque evokes kinematically normal gaze shifts. J. Neurophysiol. 89: 2961–2974.

Marzke, M.W., and Marzke, R.F. (2000). Evolution of the human hand: approaches to acquiring, analysing and interpreting the anatomical evidence. J. Anat. 197: 121–140.

Matelli, M., and Luppino, G. (2001). Parietofrontal circuits for action and space perception in the macaque monkey. Neuroimage 14: S27–S32.

Matelli, M., Luppino, G., and Rizzolatti, G. (1985). Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav. Brain Res. 18: 125–136.

Matelli, M., Luppino, G., and Rizzolatti, G. (1991). Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J. Comp. Neurol. 311: 445–462.

Matsuzaka, Y., Aizawa, H., and Tanjii, J. (1992). A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J. Neurophysiol. 68: 653–662.

Meier, J.D., Aflalo, T.N.S., Kastner, S., and Graziano, M.S.A. (2007). Complex somatotopic organization in human motor cortex. Soc. Neurosci. Abs. 292.22.

Mennie, N., Hayhoe, M., and Sullivan, B. (2007). Look-ahead fixations: anticipatory eye movements in natural tasks. Exp. Brain Res. 179: 427–442.

Messier, J., and Kalaska, J.F. (2000). Covariation of primate dorsal premotor cell activity with direction and amplitude during a memorized-delay reaching task. J. Neurophysiol. 84: 152–165.

Minshew, N.J., Luna, B., and Sweeney, J.A. (1999). Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism. Neurology 52: 917–922.

Minshew, N.J., Sung, K., Jones, B.L., and Furman, J.M. (2004). Underdevelopment of the postural control system in autism. Neurology 63: 2056–2061.

Mitz, A.R., and Wise, S.P. (1987). The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. J. Neurosci. 7: 1010–1021.

Moore, T., and Armstrong, K.M. (2003). Selective gating of visual signals by microstimulation of frontal cortex. Nature 421: 370–373.

Moore, T., and Fallah, M. (2004). Microstimulation of the frontal eye field and its effects on covert spatial attention. J. Neurophysiol. 91: 152–162.

Moran, D.W., and Schwartz, A.B., (1999). Motor cortical representation of speed and direction during reaching. J. Neurophysiol. 82: 2676–2692.

Muakkassa, K.F., and Strick, P.L. (1979). Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized “premotor” areas. Brain Res. 177: 176–182.

Muhammad, R., Wallis, J.D., and Miller, E.K. (2006). A comparison of abstract rules in the prefrontal cortex, premotor cortex, inferior temporal cortex, and striatum. J. Cog. Neurosci. 18: 974–989.

Muller, J.R., Philiastides, M.G., and Newsome, W.T. (2005). Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc. Natl. Acad. Sci. USA 102: 524–529.

Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., and Rizzolatti, G. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. J. Neurophysiol. 78: 2226–2230.

Murray, E.A., and Coulter, J.D. (1981). Organization of corticospinal neurons in the monkey. J. Comp. Neurol. 195: 339–365.

(p.211) Mushiake, H., Inase, M., and Tanjii, J. (1990). Selective coding of motor sequence in the supplementary motor area of the monkey cerebral cortex. Exp. Brain Res. 82: 208–210.

Napier, J.R. (1956). The prehensile movements of the human hand. J. Bone Joint Surg. 38B: 902–913.

Nudo, R.J., and Masterton, R.B. (1990). Descending pathways of the spinal cord, III: Sites of origin of the corticospinal tract. J. Comp. Neurol. 296: 559–583.

Nudo, R.J., and Milliken, G.W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J. Neurophys. 75: 2144–2149.

Nudo, R.J., Milliken, G.W., Jenkins, W.M., and Merzenich, M.M. (1996). Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci. 16: 785–807.

O’Leary, D.D., and McLaughlin, T. (2005). Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity. Prog. Brain Res. 147: 43–65.

Olds, J., and Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47: 419–427.

Paninski, L., Fellows, M.R., Hatsopoulos, N.G., and Donoghue, J.P. (2004). Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J. Neurophysiol. 91: 515–532.

Park, M.C., Belhaj-Saif, A., and Cheney, P.D. (2004). Properties of primary motor cortex output to forelimb muscles in rhesus macaques. J. Neurophysiol. 92: 2968–2984.

Park, M.C., Belhaj-Saif, A., Gordon, M., and Cheney, P.D. (2001). Consistent features in the forelimb representation of primary motor cortex in rhesus macaques. J. Neurosci. 21: 2784–2792.

Pascual-Leone, A., Nguyet, D., Cohen, L.G., Brasil-Neto, J.P., Cammarota, A., and Hallett, M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophys. 74: 1037–1045.

Passingham, R.E. (1985). Premotor cortex: sensory cues and movement. Behav. Brain Res. 18: 175–185.

Passingham, R.E. (1986). Cues for movement in monkeys (Macaca mulatta) with lesions in premotor cortex. Behav. Neurosci. 100: 695–703.

Penfield, W. (1959). The interpretive cortex. Science 129: 1719–1725.

Penfield, W., and Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60: 389–443.

Penfield, W., and Rasmussen, T. (1950). The cerebral cortex of man. a clinical study of localization of function. New York: Macmillan.

Penfield, W., and Welch, K. (1951). The supplementary motor area of the cerebral cortex: A clinical and experimental study. Am. Med. Ass. Arch. Neurol. Psychiat. 66: 289–317.

Picard, N., and Strick, P.L. (2003). Activation of the supplementary motor area (SMA) during performance of visually guided movements. Cereb. Cortex 13: 977–986.

Piven, J., Nehme, E., Simon, J., Barta, P., Pearlson, G., and Folstein, S.E. (1992). Magnetic resonance imaging in autism: measurement of the cerebellum, pons, and fourth ventricle. Biol. Psychiat. 31: 491–504.

Polit, A., and Bizzi, E. (1979). Characteristics of motor programs underlying arm movements in monkeys. J. Neurophysiol. 42: 183–194.

(p.212) Preuschoft, S. (1992). “Laughter” and “smile” in Barbary macaques (Macaca sylvanus). Ethology 91: 220–236.

Preuss, T.M., Stepniewska, I., and Kaas, J.H. (1996). Movement representation in the dorsal and ventral premotor areas of owl monkeys: a microstimulation study. J. Comp. Neurol. 371: 649–676.

Ramanathan, D., Conner, J.M., and Tuszynski, M.H. (2006). A form of motor cortical plasticity that correlates with recovery of function after brain injury. Proc. Natl. Acad. Sci. USA 103: 11370–11375.

Ranck, J.B. (1974). Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 98: 417–440.

Raos, V., Umilta, M.A., Murata, A., Fogassi, L., and Gallese, V. (2006). Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J. Neurophysiol. 95: 709–729.

Rathelot, J.A., and Strick, P.L. (2006). Muscle representation in the macaque motor cortex: an anatomical perspective. Proc. Natl. Acad. Sci. USA 103: 8257–8262.

Reina, G.A., Moran, D.W., and Schwartz, A.B. (2001). On the relationship between joint angular velocity and motor cortical discharge during reaching. J. Neurophysiol. 85: 2576–2589.

Reynolds, E.H. (2004). Todd, Faraday, and the electric basis of epilepsy. Epilepsia 45: 985–992.

Richter, C., and Hines, M. (1932). The production of the “grasp reflex” in adult macaques by experimental frontal lobe lesions. Proc. Assoc. Res. Nerv. Ment. Dis. 13: 211–224.

Ritvo, E.R., Freeman, B.J., Scheibel, A.B., Duong, T., Robinson, H., Guthrie, D., and Ritvo, A. (1986). Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC Autopsy Research Report. Am. J. Psychiat. 143: 862–866.

Rizzolatti, G., and Arbib, M.A. (1998). Language within our grasp. Trends Neurosci. 21: 188–194.

Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., and Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp. Brain Res. 71: 491–507.

Rizzolatti, G., and Craighero, L. (2004). The mirror-neuron system. Ann. Rev. Neurosci. 27: 169–192.

Rizzolatti, G., and Luppino, G. (2001). The cortical motor system. Neuron 31: 889–901.

Rizzolatti, G., Riggio, L., Dascola, I., and Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25: 31–40.

Rizzolatti, G., Scandolara, C., Matelli, M., and Gentilucci, M. (1981). Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav. Brain Res. 2: 147–163.

Robinson, D.A. (1972). Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res. 12: 1795–1808.

Robinson, D.A., and Fuchs, A.F. (1969). Eye movements evoked by stimulation of the frontal eye fields. J. Neurophysiol. 32: 637–648.

Rogers, S.J., Hepburn, S.L., Stackhouse, T., and Wehner, E. (2003). Imitation performance in toddlers with autism and those with other developmental disorders. J. Child Psychol. Psychiat. 44: 763–781.

(p.213) Roland, P.E., and Larsen, B. (1976). Focal increase of cerebral blood flow during stereognostic testing in man. Arch. Neurol. 33: 551–558.

Roland, P.E., Larsen, B., Lassen, N.A., and Skinhoj, E. (1980). Supplementary motor area and other cortical areas in organization of voluntary movements in man. J. Neurophysiol. 43: 118–136.

Roland, P.E., Skinhoj, E., Lassen, N.A., and Larsen, B. (1980). Different cortical areas in man in organization of voluntary movements in extrapersonal space. J. Neurophysiol. 43: 137–150.

Romo, R., Hernandez, A., Zainos, A., and Salinas, E. (1998). Somatosensory discrimination based on cortical microstimulation. Nature 392: 387–390.

Rosa, M.G., and Tweedale, R. (2005). Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Phil. Trans. R. Soc. Lond. B Biol. Sci. 360: 665–691.

Rosenbaum, D.A., Loukopoulos, L.D., Meulenbroek, R.G., Vaughan, J., and Engelbrecht, S.E. (1995). Planning reaches by evaluating stored postures. Psychol. Rev. 102: 28–67.

Russo, G.S., and Bruce, C.J. (2000). Supplementary eye field: representation of saccades and relationship between neural response fields and elicited eye movements. J. Neurophysiol. 84: 2605–2621.

Saarinen, J., and Kohonen, T. (1985). Self-organized formation of colour maps in a model cortex. Perception 14: 711–719.

Salzman, C.D., Britten, K.H., and Newsome, W.T. (1990). Cortical microstimulation influences perceptual judgements of motion direction. Nature 346: 174–177.

Sanes, J.N., Donoghue, J.P., Thangaraj, V., Edelman, R.R., and Warach, S. (1995). Shared neural substrates controlling hand movements in human motor cortex. Science 268: 1775–1777.

Sanes, J.N., Wang, J., and Donoghue, J.P. (1992). Immediate and delayed changes of rat cortical output representation with new forelimb configurations. Cereb. Cortex 2: 141–152.

Schaafsma, S.J., and Duysens, J. (1996). Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. J. Neurophysiol. 76: 4056–4068.

Schieber, M.H., and Hibbard, L.S. (1993). How somatotopic is the motor cortex hand area? Science 261: 489–492.

Schiff, W. (1965). Perception of impending collision: A study of visually directed avoidant behavior. Psychological Monographs: General and Applied 79: 1–26.

Schiff, W., Caviness, J.A., and Gibson, J.J. (1962). Persistent fear responses in rhesus monkeys to the optical stimulus of “looming.” Science 136: 982–983.

Schiller, P.H., and Stryker, M. (1972). Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 35: 915–924.

Schlack, A., Sterbing, S., Hartung, K., Hoffmann, K.P., and Bremmer, F. (2005). Multisensory space representations in the Macaque ventral intraparietal area (VIP). J. Neurosci. 25: 4616–4625.

Schlag, J., and Schlag-Rey, M. (1987). Evidence for a supplementary eye field. J. Neurophysiol. 57: 179–200.

Schneider, C., Devanne, H., Lavoie, B.A., and Capaday, C. (2002). Neural mechanisms involved in the functional linking of motor cortical points. Exp. Brain Res. 146: 86–94.

(p.214) Schwartz, A.B., Kettner, R.E., and Georgopoulos, A.P. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J. Neurosci. 8: 2913–2927.

Scott, S.H., and Kalaska, J.F. (1995). Changes in motor cortex activity during reaching movements with similar hand paths but different arm postures. J. Neurophysiol. 73: 2563–2567.

Scott, S.H., and Kalaska, J.F. (1997). Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J. Neurophysiol. 77: 826–852.

Seidemann, E., Arieli, A., Grinvald, A., and Slovin, H. (2002). Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal. Science 295: 862–865.

Sergio, L.E., and Kalaska, J.F. (2003). Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. J. Neurophysiol. 89: 212–228.

Serrien, D.J., Strens, L.H., Oliviero, A., and Brown, P. (2002). Repetitive transcranial magnetic stimulation of the supplementary motor area (SMA) degrades bimanual movement control in humans. Neurosci. Lett. 328: 89–92.

Sessle, B.J., and Wiesendanger, M. (1982). Structural and functional definition of the motor cortex in the monkey (Macaca fascicularis). J. Physiol. 323: 245–265.

Shadmehr, R. (1993). Control of equilibrium position and stiffness through postural modules. J. Mot. Behav. 25: 228–241.

Shadmehr, R., and Moussavi, Z.M. (2000). Spatial generalization from learning dynamics of reaching movements. J. Neurosci. 20: 7807–7815.

Shepherd, M., Findlay, J.M., and Hockey, R.J. (1986). The relationship between eye movements and spatial attention. Q. J. Exp. Psychol. A. 38: 475–491.

Sherrington, C.S. (1939). On the motor area of the cerebral cortex. In: Selected writings of Sir Charles Sherrington. Denny-Brown, D. (Ed.). London: Hamish Hamilton Medical Books, pp. 397–439.

Shibutani, H., Sakata, H., and Hyvarinen, J. (1984). Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp. Brain Res. 55: 1–8.

Shik, M.L., Severin, F.V., and Orlovsky, G.N. (1969). Control of walking and running by means of electrical stimulation of the mesencephalon. Electroencephalogr. Clin. Neurophysiol. 26: 549.

Shimazu, H., Maier, M.A., Cerri, G., Kirkwood, P.A., and Lemon, R.N. (2004). Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons. J. Neurosci. 24: 1200–1211.

Slovin, H., Strick, P., Hildesheim, R., and Grinvald, A. (2003). Voltage sensitive dye imaging in the motor cortex I. Intra- and intercortical connectivity revealed by microstimulation in the awake monkey. Soc. Neurosci. Abs. 554.8.

Smith, B. (1998). Moving ’em. Kamuela, HI: Graziers Hui Publisher.

Snyder, L.H., Batista, A.P., and Andersen, R.A. (1997). Coding of intention in the posterior parietal cortex. Nature 386: 167–170.

Sommer, R. (1959). Studies in personal space. Sociometry 22: 247–260.

Sommer, M.A. and Wurtz, R.H. (2002). A pathway in primate brain for internal monitoring of movements. Science 296: 1480–1482.

Stanford, T.R., Freedman, E.G., and Sparks, D.L. (1996). Site and parameters of microstimulation: evidence for independent effects on the properties of saccades evoked from the primate superior colliculus. J. Neurophysiol. 76: 3360–3381.

(p.215) Stepniewska, I., Fang, P.C., and Kaas, J.H. (2005). Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. Proc. Natl. Acad. Sci. USA 102: 4878–4883.

Stone, W.L., Ousley, O.Y., and Littleford, C.D. (1997). Motor imitation in young children with autism: what’s the object? J. Abnorm. Child Psychol. 25: 475–485.

Strauss, H. (1929). Das Zusammenschrecken [The Startle]. Journal fur Psychologie und Neurologie 39: 111–231.

Strick, P.L. (2002). Stimulating research on motor cortex. Nat. Neurosci. 5: 714–715.

Takada, M., Nambu, A., Hatanaka, N., Tachibana, Y., Miyachi, S., Taira, M., and Inase, M. (2004). Organization of prefrontal outflow toward frontal motor-related areas in macaque monkeys. Eur. J. Neurosci. 19: 3328–3342.

Takarae, Y., Minshew, N.J., Luna, B., Krisky, C.M., and Sweeney, J.A. (2004a). Pursuit eye movement deficits in autism. Brain 127: 2584–2594.

Takarae, Y., Minshew, N.J., Luna, B., Krisky, C.M., and Sweeney, J.A. (2004b). Oculomotor abnormalities parallel cerebellar histopathology in autism. J. Neurol. Neurosurg. Psychiatry 75: 1359–1361.

Taub, E., Goldberg, I.A., and Taub, P. (1975). Deafferentation in monkeys: pointing at a target without visual feedback. Exp. Neurol. 46: 178–186.

Taub, E., Perrella, P.N., and Barro, G. (1973). Behavioral development after forelimb deafferentation on day of birth in monkeys with and without blinding. Science 181: 959–960.

Taylor, C.S.R., Cooke, D.F., and Graziano, M.S.A. (2002). Complex mapping from precentral cortex to muscles. Soc. Neurosci. Abs. 61.12.

Tehovnik, E.J. (1996). Electrical stimulation of neural tissue to evoke behavioral responses. J. Neurosci. Methods 65: 1–17.

Tehovnik, E.J., and Lee, K. (1993). The dorsomedial frontal cortex of the rhesus monkey: topographic representation of saccades evoked by electrical stimulation. Exp. Brain Res. 96: 430–442.

Tehovnik, E.J., Slocum, W.M., Carvey, C.E., and Schiller, P.H. (2005). Phosphene induction and the generation of saccadic eye movements by striate cortex. J. Neurophysiol. 93: 1–19.

Tehovnik, E.J., Tolias, A.S., Sultan, F., Slocum, W.M., and Logothetis, N.K. (2006). Direct and indirect activation of cortical neurons by electrical microstimulation. J. Neurophysiol. 96: 512–521.

Tehovnik, E.J., and Yeomans, J.S. (1987). Circling elicited from the anteromedial cortex and medial pons: refractory periods an summation. Brain Res. 407: 240–252.

Teitelbaum, O., Benton, T., Shah, P.K., Prince, A., Kelly, J.L., and Teitelbaum, P. (2004). Eshkol-Wachman movement notation in diagnosis: the early detection of Asperger’s syndrome. Proc. Natl. Acad. Sci. USA 101: 11909–11914.

Teitelbaum, P., Teitelbaum, O., Nye, J., Fryman, J., and Maurer, R.G. (1998). Movement analysis in infancy may be useful for early diagnosis of autism. Proc. Natl. Acad. Sci. USA 95: 13982–13987.

Thier, P., and Andersen, R.A. (1998). Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. J. Neurophysiol. 80: 1713–1735.

Ting, L.H., and Macpherson, J.M. (2005). A limited set of muscle synergies for force control during a postural task. J. Neurophysiol. 93: 609–613.

Todd, R.B. (1849). On the pathology and treatment of convulsive diseases. Reprinted in 2005, Epilepsia 46: 995–1009.

Todorov, E. (2000). Direct cortical control of muscle activation in voluntary arm movements: a model. Nat. Neurosci. 3: 391–398.

(p.216) Todorov, E., and Jordan, M.I. (2002). Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5: 1226–1235.

Tolias, A.S., Sultan, F., Augath, M., Oeltermann, A., Tehovnik, E.J., Schiller, P.H., and Logothetis, N.K. (2005). Mapping cortical activity elicited with electrical microstimulation using fMRI in the macaque. Neuron 48: 901–911.

Torres-Oviedo, G., and Ting, L.H. (2007). Muscle synergies characterizing human postural responses. J. Neurophys. 98: 2144–2156.

Townsend, J., Harris, N.S., and Courchesne, E. (1996). Visual attention abnormalities in autism: delayed orienting to location. J. Int. Neuropsychol. Soc. 2: 541–550.

Townsend, B.R., Paninski, L., and Lemon, R.N. (2006). Linear encoding of muscle activity in primary motor cortex and cerebellum. J. Neurophysiol. 96: 2578–2592.

Toyoshima, K., and Sakai, H. (1982). Exact cortical extent of the origin of the corticospinal tract (CST) and the quantitative contribution to the CST in different cytoarchitectonic areas. A study with horseradish peroxidase in the monkey. J. Hirnforsch. 23: 257–269.

Tresch, M.C., and Bizzi, E. (1999). Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp. Brain Res. 129: 401–416.

Tresch, M.C., Saltiel, P., and Bizzi, E. (1999). The construction of movement by the spinal cord. Nat. Neurosci. 2: 162–167.

Vercher, J.L., Sarès, F., Blouin, J., Bourdin, C., and Gauthier, G. (2003). Role of sensory information in updating internal models of the effector during arm tracking. Prog. Brain Res. 142: 203–222.

Vilensky, J.A., Damasio, A.R., and Maurer, R.G. (1981). Gait disturbances in patients with autistic behavior: a preliminary study. Arch. Neurol. 38: 646–649.

Vogt, C., and Vogt, O. (1919). Ergebnisse unserer Hirnforschung [Results of our brain research]. Jounrnal Fur Psychologie und Neurologie 25: 277–462.

Vogt, C., and Vogt, O. (1926). Die vergleichend-architektonische und die vergleichend-reizphysiologische Felderung der Grosshirnrinde unter besonderer Berucksichtigung der menschlichen [The comparative architectonic and physiologic divisions of the cerebral cortex with particular emphasis on the human]. Naturwissenchaften 14: 1190–1194.

Volkmar, F., Chawarska, K., and Klin, A. (2005). Autism in infancy and early childhood. Ann. Rev. Psychol. 56: 315–336.

Von Hooff, J.A.R.A.M. (1962). Facial expression in higher primates. Symp. Zool. Soc. Lond. 8: 97–125.

Von Hooff, J.A.R.A.M. (1972). A comparative approach to the phylogeny of laughter and smiling. In: Non verbal communication. Hind, R.A. (Ed.). Cambridge, UK: Cambridge University Press, pp. 209–241.

Walshe, F. (1935). On the “syndrome of the premotor cortex” (Fulton) and the definition of the terms “premotor” and “motor”: with consideration of Jackson’s views on the cortical representation of movements. Brain 58: 49–80.

Weinrich, M., and Wise, S.P. (1982). The premotor cortex of the monkey. J. Neurosci. 2: 1329–1345.

Weinrich, M., Wise, S.P., and Mauritz, K.H. (1984). A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107: 385–414.

Williams, J.H., Whiten, A., Suddendorf, T., and Perrett, D. (2001). I. Imitation, mirror neurons and autism. Neurosci. Biobehav. Rev. 25: 287–295.

(p.217) Wise, S.P., Boussaoud, D., Johnson, P.B., and Caminiti, R. (1997). Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Ann. Rev. Neurosci. 20: 25–42.

Wise, S.P., Weinrich, M., and Mauritz, K.H. (1983). Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey. Brain Res. 260: 301–305.

Wolpert, D.M., Ghahramani, Z., and Jordan, M.I. (1995). An internal model for sensorimotor integration. Science 269: 1880–1882.

Woolsey, C.N., Settlage, P.H., Meyer, D.R., Sencer, W., Hamuy, T.P., and Travis, A.M. (1952). Pattern of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. In: Association for Research in Nervous and Mental Disease, Vol. 30. New York: Raven Press, pp. 238–264.

Yeomans, J.S., Li, L., Scott, B.W., and Frankland, P.W. (2002). Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neurosci. Biobehav. Rev. 26: 1–11.

Zhang, T., Heuer, H.W., and Britten, K.H. (2004). Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron 42: 993–1001. (p.218)