Jump to ContentJump to Main Navigation
Neurovascular MedicinePursuing Cellular Longevity for Healthy Aging$
Users without a subscription are not able to see the full content.

Kenneth Maiese

Print publication date: 2009

Print ISBN-13: 9780195326697

Published to Oxford Scholarship Online: January 2010

DOI: 10.1093/acprof:oso/9780195326697.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy).date: 22 July 2018

Brain Inflammation and the Neuronal Fate: from Neurogenesis to Neurodegeneration

Brain Inflammation and the Neuronal Fate: from Neurogenesis to Neurodegeneration

Chapter:
(p.319) Chapter 13 Brain Inflammation and the Neuronal Fate: from Neurogenesis to Neurodegeneration
Source:
Neurovascular Medicine
Author(s):

Maria Antonietta Ajmone-Cat

Emanuele Cacci

Luisa Minghetti

Publisher:
Oxford University Press
DOI:10.1093/acprof:oso/9780195326697.003.0013

Inflammation is a self-defensive reaction that may develop into a chronic state and become a causative factor in the pathogenesis of a broad range of disabling diseases. Similar to peripheral inflammation, brain inflammation is increasingly being viewed as a target for treating neurological diseases, not only infectious and immune-mediated disorders such as meningitis or multiple sclerosis but also stroke, trauma, and neurodegenerative diseases that were originally not considered to be inflammatory. Microglial cells, the resident macrophages of brain parenchyma, are generally viewed as major sources of pro-inflammatory and potentially neurotoxic molecules in the damaged brain, However, a direct link between activated microglia and tissue damage has not been univocally demonstrated in vivo, and recent studies have rather documented exacerbation of injury following selective microglial ablation or anti-inflammatory treatments. Recent studies have implicated inflammation in the regulation of adult neurogenesis, thus broadening the therapeutic potential of strategies aimed at controlling neuroinflammation. This chapter summarizes the main evidence supporting both detrimental and protective roles of inflammation in acute and chronic brain diseases.

Keywords:   macrophages, brain inflammation, microglia, neurogenesis, neurodegenerative diseases, stroke, trauma

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .