Jump to ContentJump to Main Navigation
Applied Longitudinal Data AnalysisModeling Change and Event Occurrence$

Judith D. Singer and John B. Willett

Print publication date: 2003

Print ISBN-13: 9780195152968

Published to Oxford Scholarship Online: September 2009

DOI: 10.1093/acprof:oso/9780195152968.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 17 January 2019

(p.613) References

(p.613) References

Applied Longitudinal Data Analysis
Oxford University Press

Bibliography references:

Aalen, O. O. (1988). Heterogeneity in survival analysis. Statistics in Medicine, 7, 1121–1137.

Abedi, J., & Benkin, E. (1987). The effect of students’ academic, financial and demographic variables on time to the doctorate. Research in Higher Education, 27, 3–14.

Achenbach, T. M. (1991). Manual for the Child Behavior Checklist 4–18 and 1991 Profile. Burlington, VT: University of Vermont Press.

Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second international Symposium on information theory (pp. 267–228). Akademiai Kiado, Budapest, Hungary.

Allison, P.D. (1982). Discrete-time methods for the analysis of event histories. In S. Leinhardt (Ed.), Sociological methodology (pp. 61–98). San Francisco: Jossey-Bass.

Allison, P. D. (1984). Event history analysis: Regression for longitudinal data (Sage University paper series on quantitative applications in the social sciences, Number 07–046). Beverly Hills, CA: Sage.

Allison, P. D. (1995). Survival analysis using the SAS System: A practical guide. Cary, NC: SAS Institute.

Altman, D. G., & de Stavola, B. L. (1994). Practical problems in fitting a proportional hazards model to data with updated measurements of the covariates. Statistics in Medicine, 13, 301–341.

Anderson, P. K., Borgan, O., Gill, R. D., & Keiding, N. (1993). Statistical models based on counting processes. New York: Springer.

Arbuckle, J. L. (1995). Amos for Windows. Analysis of moment structures (Version 3.5) [Computer software]. Chicago: SmallWaters. Available at http://www.smallwaters.com

Aydemir, U., Aydemir, S., & Dirschedl, P. (1999). Analysis of time dependent covariates in failure time data. Statistics in Medicine, 18, 2123–2134.

Barnes, G. M., Farrell, M. P., & Banerjee, S. (1994). Family influences on alcohol abuse and other problem behaviors among black and white adolescents in a general population sample. Journal of Research on Adolescence, 4, 183–201.

(p.614) Bayley, N. (1935). The development of motor abilities during the first three years. Monographs of the Society for Research in Child Development, 1.

Beck, N. (1999). Modelling space and time: The event history approach. In E. Scarbrough & E. Tanenbaum (Eds.), Research strategies in social science. New York: Oxford University Press.

Beck, N., Katz, J. N., & Tucker, R. (1998). Taking time seriously: Time-series-cross-section analysis with a binary dependent variable. American Journal of Political Science, 42, 1260–1288.

Bentler, P. M. (1995). EQS: Structural equations program manual. Encino, CA: Multivariate Software, Inc.

Bereiter, C. (1963). Some persisting dilemmas in the measurement of change. In C. W. Harris (Ed.), Problems in the measurement of change (pp. 3–20). Madison, WI: University of Wisconsin Press.

Berk, R. A., & Sherman, L. W. (1988). Police responses to family violence incidents: An analysis of an experimental design with incomplete randomization. Journal of the American Statistical Association, 83, 70–76.

Blossfeld, H.-P., & Rohwer, G. (1995). Techniques of event history modeling. Mahwah, NJ: Lawrence Erlbaum.

Bolger, N., Downey, G., Walker, E., & Steininger, P. (1989). The onset of suicide ideation in childhood and adolescence. Journal of Youth and Adolescence, 18, 175–189.

Bollen, K. (1989). Structural equations with latent variables. New York: Wiley.

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26, 211–252.

Breslow, N. E. (1974). Covariance analysis of censored survival data. Biometrics, 30, 88–99.

Brown, J. V., Bakeman, R., Coles, C. D., Sexson, W. R., & Demi, A. S. (1998). Maternal drug use during pregnancy: Are preterms and fullterms affected differently? Developmental Psychology, 34, 540–554.

Brown, M. (1996). Refining the risk concept: Decision context as a factor mediating the relation between risk and program effectiveness. Crime and Delinquency, 42, 435–455.

Browne, W. J., & Draper, D. (2000). Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models. Computational Statistics, 15, 391–420.

Bryk, A. S., & Raudenbush, S. W. (1987). Application of hierarchical linear models to assessing change. Psychological Bulletin, 101, 147–158.

Burchinal, M. R., Campbell, F. A., Bryant, D. M., Wasik, B. H., & Ramey, C. T. (1997). Early intervention and mediating processes in cognitive performance of children of low income African American families. Child Development, 68, 935–954.

Burchinal, M. R., Roberts, J. E., Riggins, R., Zeisel, S. A., Neebe, E., & Bryant, D. (2000). Relating quality of center child care to early cognitive and language development longitudinally. Child Development, 71, 339–357.

Burton, R. P. D., Johnson, R. J., Ritter, C., & Clayton. R. R. (1996). The effects of role socialization on the initiation of cocaine use: An event history analysis from adolescence into middle adulthood. Journal of Health and Social Behavior, 37, 75–90.

(p.615) Campbell, R. T., Mutran, E., & Parker, R. N. (1987). Longitudinal design and longitudinal analysis: A comparison of three approaches. Research on Aging, 8, 480–504.

Capaldi, D. M., Crosby, L., & Stoolmiller, M. (1996). Predicting the timing of first sexual intercourse for at-risk adolescent males. Child Development, 67, 344–359.

Cherlin, A.J., Chase-Lansdale, P. L., & McRae, C. (1998). Effects of divorce and mental health through the life course. American Sociological Review, 63, 239–249.

Cleveland, W. S. (1994). The elements of graphing data. Summitt, NJ: Hobart Press.

Coie, J. D., Terry, R., Lenox, K. F., Lochman, J. E., & Hyman, C. (1995). Peer rejection and aggression as predictors of stable risk across adolescence. Development and Psychopathology, 7, 697–713.

Collett, D. (1991). Modeling binary data. London: Chapman and Hall.

Collett, D. (1994). Modeling survival data in medical research. London: Chapman and Hall.

Conger, R. D., Ge, X., Elder, G. H., Lorenz, F. O., & Simons, R. L. (1994). Economic stress, coercive family process, and developmental problems of adolescents. Child Development, 65, 541–561.

Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. London: Chapman and Hall.

Cooney, N. L., Kadden, R. M., Litt, M. D., & Getter, H. (1991). Matching alcoholics to coping skills or interactional therapies: Two-year follow-up results. Journal of Consulting and Clinical Psychology, 59, 598–601.

Cox, D. R. (1972). Regression models and life tables. Journal of the Royal Statistical Society, 34, 187–202.

Cox, D. R. (1975). Partial likelihood. Biometrika, 62, 269–276.

Cox, D. R., & Oakes, D. (1984). Analysis of survival data. London: Chapman and Hall.

Cronbach, L. J., & Furby, L. (1970). How we should measure “change”—or should we? Psychological Bulletin, 74, 68–80.

Curran, P. J., Stice, E., & Chassin, L. (1997). The relation between adolescent and peer alcohol use: A longitudinal random coefficients model. Journal of Consulting and Clinical Psychology, 65, 130–140.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 44, 1–38.

Derogatis, L. R. (1994). SCL-90-R: Administration, scoring and procedural manual. Minneapolis: National Computer Systems, Inc.

Dickter, D. N., Roznowski, M., & Harrison, D. A. (1996). Temporal tempering: An event history analysis of the process of voluntary turnover. Journal of Applied Psychology, 81, 705–716.

Diekmann, A., Jungbauer-Gans, M., Krassnig, H., & Lorenz, S. (1996). Social status and aggression: A field study analyzed by survival analysis. Journal of Social Psychology, 136, 761–768.

Diekmann, A., & Mitter, P. (1983). The sickle-hypothesis: A time dependent poisson model with applications to deviant behavior. Journal of Mathematical Sociology, 9, 85–101.

Diggle, P. J., Liang, K-Y., & Zeger, S. L. (1994). Analysis of longitudinal data. New York: Oxford University Press.

(p.616) Draper, D. (1995). Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society, Series B, 57, 45–97.

Efron, B. (1977). The efficiency of Cox’s likelihood function for censored data. Journal of the American Statistical Association, 72, 557–565.

Efron, B. (1988). Logistic regression, survival analysis, and the Kaplan-Meier curve. Journal of the American Statistical Association, 83, 414–425.

Espy, K. A., Francis, D. J., & Riese, M. L. (2000). Prenatal cocaine exposure and prematurity: Developmental growth. Developmental and Behavioral Pediatrics, 21, 264–272.

Estes, W. K. (1950). Toward a statistical theory of learning. Psychological Review, 57, 94–107.

Estes, W. K. (1956). The problem of inference from curves based on grouped data. Psychological Bulletin, 53, 134–140.

Estes, W. K., &. Burke, C. J. (1955). Applications of a statistical model to simple discrimination learning in human subjects. Journal of Experimental Psychology, 50, 81–88.

Fahrmeir, L., & Wagenpfeil, S. (1996). Smoothing hazard functions and time-varying effects in discrete duration and competing risks models. Journal of the American Statistical Association, 91, 1584–1594.

Felmlee, D., & Eder, D. (1984). Contextual effects in the classroom: The impact of ability groups on student attention. Sociology of Education, 56, 77–87.

Fergusson, D. M., Horwood, L. J., & Shannon, F. T. (1984). A proportional hazards model of family breakdown. Journal of Marriage and the Family, 46, 539–549.

Fichman, M. (1989). Attendance makes the heart grow fonder: A hazard rate approach to modeling attendance. Journal of Applied Psychology, 74, 325–335.

Fisher, L. D., & Lin, D. Y. (1999). Time dependent covariates in the Cox proportional hazards regression model. Annual Review of Public Health, 20, 145–157.

Fleming, T. R., & Harrington, D. P. (1991). Counting processes and survival analysis. New York: Wiley.

Flinn, C. J., & Heckman, J. J. (1982). New methods for analyzing individual event histories. In S. Leinhardt (Ed.), Sociological methodology (pp. 99–140). San Francisco: Jossey-Bass.

Follmann, D. A., & Goldberg, M. S. (1988). Distinguishing heterogeneity from decreasing hazard rates. Technometrics, 30, 389–396.

Foster, E. M. (1999). Service use under the continuum of care: Do followup services forestall hospital readmission? Health Services Research, 34, 715–736.

Foster, E. M. (2000). Does the continuum of care reduce inpatient length of stay? Evaluation and Program Planning, 23, 53–65.

Fox, J. (1998). Applied regression analysis, linear models, and related methods. Thousand Oaks, CA: Sage.

Francis, D. J., Shaywitz, S. E., Stuebing, K. K., Shaywitz, B. A., & Fletcher, J. M. (1996). Developmental lag versus deficit models of reading disability: A longitudinal, individual growth curves analysis. Journal of Educational Psychology, 88, 3–17.

Frank, A. R., & Keith, T. Z. (1984). Academic abilities of persons entering and remaining in special education. Exceptional Children, 51, 76–77.

(p.617) Fryer, G. E., & Miyoshi, T. J. (1994). A survival analysis of the revictimization of children: The case of Colorado. Child Abuse and Neglect, 18, 1063–1071.

Furby, L., Weinrott, M. R., & Blackshaw, L. (1989). Sex offender recidivism: A review. Psychological Bulletin, 105, 3–30.

Gail, M. H., Wieand, S., & Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regression and omitted covariates. Biometrika, 71, 431–444.

Gamse, B. C., & Conger, D. (1997). An evaluation of the Spencer post-doctoral dissertation program. Cambridge, MA: Abt Associates.

Gardner, W., & Griffin, W. A. (1988). Methods for the analysis of parallel streams of continuously recorded social behaviors. Psychological Bulletin, 106, 497–502.

Gehan, E. A. (1969). Estimating survival functions for the life table. Journal of Chronic Diseases, 21, 629–644.

Gelman, A., & Rubin, D. B. (1995). Avoiding model selection in Bayesian social research. Sociological Methodology, 25, 165–195.

Gentleman, R., & Crowley, J. (1991). Graphical methods for censored data. Journal of the American Statistical Association, 86, 678–683.

Gilks, W., Richardson, S., & Spiegelhalter, D. (1996). Markov chain Monte Carlo in practice. London: Chapman and Hall.

Ginexi, E. M., Howe, G. W., & Caplan, R. D. (2000). Depression and control beliefs in relation to reemployment: What are the directions of effect? Journal of Occupational Health Psychology, 5, 323–336.

Goldman, A. I. (1992). EVENTCHARTS: Visualizing survival and other timed-events data. The American Statistician, 46, 13–18.

Goldstein, H. (1995). Multilevel statistical models, 2nd ed. New York: Halstead Press.

Goldstein, H. (1998). MLwiN, available from http://multilevel.ioe.ac.uk

Goldstein, H., Healy, M. J. R., & Rasbash, J. (1994). Multilevel time series models with applications to repeated measures data. Statistics in Medicine, 13, 1643–1655.

Graham, S. E. (1997). The exodus from mathematics: When and why? Unpublished doctoral dissertation. Harvard University, Graduate School of Education.

Greenhouse, J. B., Stangl, D., & Bromberg, J. (1989). An introduction to survival analysis methods for analysis of clinical trial data. Journal of Consulting and Clinical Psychology, 57, 536–544.

Greenland S., & Finkle, W. D. (1995). A critical look at methods for handling missing covariates in epidemiologic regression analyses. American Journal of Epidemiology, 142, 1255–1264.

Greenwood, M. (1926). The natural duration of cancer. Reports on Public Health and Medical Subjects. 33, 1–26. London: Her Majesty’s Stationery Office.

Grice, G. R. (1942). An experimental study of the gradient of reinforcement in maze learning. Journal of Experimental Psychology, 30, 475–489.

Gross, A. J., & Clark, V. A. (1975). Survival distributions: Reliability applications in the biomedical sciences. New York: Wiley.

Guire, K. E., & Kowalski, C. (1979). Mathematical description and representation of developmental change functions on the intra- and inter-individual levels. In J. Nesselroade & P. Baltes (Ed.), Longitudinal research in the study of behavior and development. New York: Academic Press.

(p.618) Gulliksen, H. (1934). A rational equation of the learning curve based on Thorndike’s law of effect. Journal of General Psychology, 11, 395–433.

Gulliksen, H. (1953). A generalization of Thurstone’s learning function. Psychometrika, 18, 297–307.

Ha, J. C., Kimpo, C. L., & Sackett, G. P. (1997). Multiple-spell, discrete-time survival analysis of developmental data: Object concept in pigtailed macaques. Developmental Psychology, 33, 1054–1059.

Hachen, D. S., Jr. (1988). The competing risks model: A method for analyzing processes with multiple types of events. Sociological Methods and Research, 17, 21–54.

Hall, S. M., Havassy, B. E., & Wasserman, D. A. (1990). Commitment to abstinence and acute stress in relapse to alcohol, opiates, and nicotine. Journal of Consulting and Clinical Psychology, 58, 175–181.

Harrell, F. E. (2001). Regression modeling strategies with applications to linear models, survival analysis and logistic regression. New York: Springer.

Harris, E. K., & Albert, A. (1991). Survivorship analysis for clinical studies. New York: Marcel Dekker.

Harris, V., & Koepsell, T. D. (1996). Criminal recidivism in mentally ill offenders: A pilot study. Bulletin of the American Academy of Psychiatry and Law, 24, 177–186.

Harrison, D. A., Virick, M., & William, S. (1996). Working without a net: Time, performance, and turnover under maximally contingent rewards. Journal of Applied Psychology, 81, 331–345.

Harville, D. A. (1974). Bayesian inference for variance components using only error contrasts. Biometrika, 61, 383–385.

Hasin, D. S., Tsai, W.-Y., Endicott, J., Mueller, T. I., Coryell, W., & Keller, M. (1996). The effect of major depression on alcoholism: Five year course. The American Journal on Addictions, 5, 144–155.

Hauck, W. W., & Donner, A. (1977). Wald’s test as applied to hypotheses in logit analysis. Journal of the American Statistical Association. 72, 851–853.

Heckman, J. J., & Singer, B. (Eds.). (1984). Longitudinal analysis of labor market data. New York: Cambridge University Press.

Hedeker, D. R., & Gibbons, R. D. (1996). MIXREG: A computer program for mixed-effects regression analysis with autocorrelated errors. Computer Methods and Programs in Biomedicine, 49, 229–252, available from http://www.uic.edu/~hedeker

Hedeker D. R., & Gibbons R. D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods, 2, 64–78.

Hedeker D. R., Gibbons R. D., & Flay B. R. (1994). Random regression models for clustered data: With an example from smoking prevention research. Journal of Clinical and Consulting Psychology, 62, 757–765.

Henning, K. R., & Frueh, B. C. (1996). Cognitive-behavioral treatment of incarcerated offenders: An evaluation of the Vermont Department of Corrections’ cognitive self-change program. Criminal Justice and Behavior, 23, 523–541.

Hertz-Picciotto, I., & Rockhill, B. (1997). Validity and efficiency of approximation methods for tied survival times in Cox regression. Biometrics, 53, 1151–1156.

(p.619) Hicklin, W. J. (1976). A model for mastery learning based on dynamic equilibrium theory. Journal of Mathematical Psychology, 13, 79–88.

Hodges, K., McKnew, D., Cytryn, L., Stern, L., & Klien, J. (1982). The child assessment schedule (CAS) diagnostic interview: A report on reliability and validity. Journal of the American Academy of Child Psychiatry, 21, 468–473.

Hofmann, D. A., & Gavin, M. B. (1998). Centering decisions in hierarchical linear models: Theoretical and methodological implications for organizational science. Journal of Management, 24, 623–641.

Hosmer, D. W., Jr., & Lemeshow, S. (1999). Applied survival analysis: Regression modeling of time to event data. New York: Wiley.

Hosmer, D. W., Jr., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). New York: Wiley.

Hsieh, F. Y. (1995). A cautionary note on the analysis of extreme data with Cox regression. The American Statistician, 49, 226–228.

Hu, X. J., & Lawless, J. F. (1996). Estimation from truncated lifetime data with supplementary information on covariates and censoring times. Biometrika, 83, 747–762.

Hull, C. (1939). Simple trial and error learning: An empirical investigation. Journal of Comparative Psychology, 27, 233–258.

Hull, C. (1943). Principles of behavior. New York: Appleton-Century-Crofts.

Hull, C. (1952). A behavior system. New Haven, CT: Yale University Press.

Hurlburt, M. S., Wood, P. A., & Hough, R. L. (1996). Providing independent housing for the homeless mentally ill: A novel approach to evaluating long-term longitudinal housing patterns. Journal of Community Psychology, 24, 291–310.

Huttenlocher, J., Haight, W., Bryk, A., Seltzer, M., & Lyons, T. (1991). Early vocabulary growth: relation to language input and gender. Developmental Psychology, 27, 236–248.

Joreskog, K. G., & Sorbom, D. (1996). LISREL 8: User’s reference guide. Chicago: Scientific Software International.

Kalbfleisch, J. D., & Prentice, R. L. (1973). Marginal likelihoods based on Cox’s regression and life model. Biometrika, 60, 267–279.

Kalbfleisch, J. D., & Prentice, R. L. (1980). The statistical analysis of failure time data. New York: Wiley.

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481.

Keats, J. A. (1983). Ability measures and theories of cognitive development. In H. Wainer and S. Messick (Eds.), Principles of modern psychological measurement: A festschrift for Frederick M. Lord (pp. 81–101). Hillsdale, NJ: Lawrence Erlbaum.

Keifer, N. M. (1988). Economic duration data and hazard functions. Journal of Economic Literature, 26, 646–679.

Keiley, M. K., & Martin, N. C. (2002). Child abuse, neglect, and juvenile delinquency: How “new” statistical approaches can inform our understanding of “old” questions—a reanalysis of Widon, 1989. Manuscript submitted for publication.

Keiley, M. K., Bates, J. E., Dodge, K. A., & Pettit, G. S. (2000). A cross-domain growth analysis: Externalizing and internalizing behavior during 8 years of childhood. Journal of Abnormal Child Psychology, 28, 161–179.

(p.620) Killen, J. D., Robinson, T. N., Haydel, K. F., et al. (1997). Prospective study of risk factors for the initiation of cigarette smoking. Journal of Consulting and Clinical Psychology, 65 (6): 1011–1016.

Klein, J. P., & Moeschberger, M. L. (1997). Survival analysis: Techniques for censored and truncated data. New York: Springer.

Kleinbaum, D. G., Kupper, L. L., & Morgenstern, H. (1982). Epidemiological research: Principles and quantitative methods. Belmont, CA: Lifetime Learning Publications.

Kreft, I. G. G., & de Leeuw, J. (1998). Introducing multilevel modeling. Thousand Oaks, CA: Sage.

Kreft, I. G. G., & de Leeuw, J., & Aiken, L. S. (1995). The effect of different forms of centering in hierarchical linear models. Multivariate Behavioral Research, 30, 1–21.

Kreft, I. G. G., de Leeuw, J., & Kim, K. S. (1990). Comparing four different statistical packages for hierarchical linear regression: GENMOD, HLM, ML2, and VARCL (Technical report 311). Los Angeles: Center for the Study of Evaluation, University of California at Los Angeles.

Lahey, B. B., McBurnett, K., Loeber, R., & Hart, E. L. (1995). Psychobiology of conduct disorder. In G. P. Sholevar (Ed.), Conduct disorders in children and adolescents: Assessments and Interventions (pp. 27–44). Washington, DC: American Psychiatric Press.

Laird, N. M. (1988). Missing data in longitudinal studies. Statistics in Medicine, 7, 305–315.

Laird, N., & Olivier, D. (1981). Covariance analysis of censored survival data using log-linear analysis techniques. Journal of the American Statistical Association, 76, 231–240.

Lancaster, T. (1990). The econometric analysis of transition data. New York: Cambridge University Press.

Lavori, P. W., Dawson, R., Mueller, T. I., Warshaw, M., Swartz, A., & Leon, A. (1996). Analysis of the course of psychopathology: Transitions among states of health and illness. International Journal of Methods in Psychiatric Research, 6, 321–334.

Lawless, J. F. (1982). Statistical models and methods for lifetime data. New York: Wiley.

Lee, E. T. (1992). Statistical methods for survival data analysis (2nd ed.). New York: Wiley.

Lewis, D. (1960). Quantitative methods in psychology. New York: McGraw-Hill.

Lilienfeld, A. M., & Stolley, P. D. (1994). Foundations of epidemiology (3rd ed.). New York: Oxford University Press.

Linn, R. L., & Slinde, J. A. (1977). The determination of the significance of change between pre- and posttesting periods. Review of Educational Research, 47, 121–150.

Little, R. J. A. (1995). Modeling the dropout mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112–1121.

Little, R. J. A., & Rubin, D. (1987). Statistical analysis with missing data. New York: Wiley.

Little, R. J. A., & Yau, L. (1998). Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using Rubin’s causal model. Psychological Methods, 3, 147–159.

(p.621) Long, J. S. (1997). Regression models for categorical and limited dependent variables. Beverly Hills: Sage.

Longford, N. T. (1990). VARCL. Software for variance component analysis of data with nested random effects (maximum likelihood). Princeton, NJ: Educational Testing Service.

Longford, N. T. (1993). Random coefficient models. New York: Oxford University Press.

Longford, N. T. (1999). Standard errors in multilevel analysis. Multilevel Modeling Newsletter, 11(1), 10–13.

Lord, F. M. (1963). Elementary models for measuring change. In C. W. Harris (Ed.), Problems in the measurement of change (pp. 21–39). Madison, WI: University of Wisconsin Press.

MaCurdy, T., Mroz, T., & Gritz, R. M. (1998). An evaluation of the National Longitudinal Survey of Youth. Journal of Human Resources, 33, 345–436.

Mare, R. D. (1994). Discrete-time bivariate hazards with unobserved heterogeneity: A partially observed contingency table approach. Sociological Methodology, 24, 341–383.

Mason, W. M., Anderson, A. F., & Hayat, N. (1988). Manual for GENMOD. Ann Arbor: Population Studies Center, University of Michigan.

Masse, L. C., & Tremblay, R. E. (1997). Behavior of boys in kindergarten and the onset of substance use during adolescence. Archives of General Psychiatry, 54, 52–68.

McArdle, J. J. (1986a). Dynamic but structural equation modeling of repeated measures data. In J. R. Nesselrode & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology (Vol. 2, pp. 561–614). New York: Plenum.

McArdle, J. J. (1986b). Latent variable growth within behavior genetic models. Behavior Genetics, 16, 163–200.

McArdle, J. J. (1989). A structural modeling experiment with multiple growth functions. In P. Ackerman, R. Kanfer, & R. Cudek (Eds.), Learning and individual differences: Abilities, motivation, and methodology (pp. 71–117). Hillsdale, NJ: Lawrence Erlbaum.

McArdle, J. J. (1991). Structural models of developmental theory in psychology. Annals of Theoretical Psychology, 7, 139–159.

McArdle, J.J., Anderson, E., & Aber, M. (1987). Covergence hypotheses modeled and tested with linear structural equations. Proceedings of the 1987 public health conference on records and statistics (pp. 351–357). Hyattsville, MD: National Center for Health Statistics.

McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation models. Child Development, 58, 110–133.

McArdle, J. J., Hamagami, F., Elias, M. F., & Robbins, M. A. (1991). Structural modeling of mixed longitudinal and cross-sectional data, Experimental Aging Research, 17, 29–52.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed). London: Chapman and Hall.

Mead, R., & Pike, D. J. (1975). A review of response surface methodology from a biometric point of view. Biometrics, 31, 803–851.

Meredith, W., & Tisak, J. (1984). “Tuckerizing” curves. Paper presented at the annual meeting of the Psychometric Society, Santa Barbara, CA.

(p.622) Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122.

Miller, R. G. (1981). Survival analysis. New York: Wiley.

Miller, R. (1986). Beyond ANOVA, Basics of applied statistics. New York: Wiley.

Mojtabai, R., Nicholson, R. A., & Neesmith, D. H. (1997). Factors affecting relapse in patients discharged from a public hospital: Results from survival analysis. Psychiatric Quarterly, 68, 117–129.

Mosteller, F., & Tukey, J. W. (1977). Data analysis and regression: A second course in statistics. Reading, MA: Addison-Wesley.

Murnane, R. J., Boudett, K. P., & Willett, J. B. (1999). Do male dropouts benefit from obtaining a GED, postsecondary education, and training? Evaluation Review, 23, 475–502.

Murnane, R. J., Singer, J. D., & Willett, J. B. (1989). The influences of salaries and opportunity costs on teachers’ career choices: Evidence from North Carolina. Harvard Educational Review, 59, 325–346.

Muthen, B. O. (1989). Latent variable modelling in heterogeneous populations. Psychometrika, 54, 557–585.

Muthen, B. O. (1991). Analysis of longitudinal data using latent variable models with varying parameters. In L. M. Collins & J. L. Horn (Eds.), Best methods for the analysis of change: Recent advances, unanswered questions, future directions (pp. 1–17). Washington, DC: American Psychological Assocation.

Muthen, B. O. (1992). Latent variable modeling of growth with missing data and multilevel data. Paper presented at the Seventh International Conference on Multivariate Analysis, Barcelona, Spain.

Muthen, B. O. (2001). MPLUS. Available at http://www.statmodel.com

Muthén, B. O., & Satorra, A. (1989). Multilevel aspects of varying parameters in structural models. In D. Bock (Ed.), Multilevel analysis of educational data (pp. 87–89). San Diego, CA: Academic Press.

Myers, K., McCauley, E., Calderon, R., & Treder, R. (1991). The 3-year longitudinal course of suicidality and predictive factors for subsequent suicidality in youths with major depressive disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 30, 804–810.

Patterson H. D., & Thompson R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58, 545–554.

Pepe, M., & Mori, M. (1993). Kaplan-Meier, marginal or conditional probability curves in summarizing competing risks failure time data. Statistics in Medicine, 12, 737–751.

Peto, R. (1972). Discussion of Professor Cox’s paper. Journal of the Royal Statistical Society, Series B, 34, 205–207.

Peto, R., Pike, M. C., Armitage, P., Breslow, N. E., Cox, D. R., Howard, S. V., Mantel, N., McPherson, K., Peto, J., & Smith, P. G. (1976). Design and analysis of randomized clinical trials requiring prolonged observation of each patient: Introduction and design. British Journal of Cancer, 34, 585–612.

Pinheiro, J. C., & Bates, D. M. (1995). Approximations to the log-likelihood function in nonlinear mixed-effects models. Journal of Computational and Graphical Statistics, 4, 12–35.

Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. New York: Springer-Verlag.

Pinheiro, J. C., & Bates, D. M. (2001). SPLUS’ NLME, available at http://cm.belllabs.com/cm/ms/departments/sia/project/nlme/

(p.623) Powers, D. A., & Xie, Y. (1999). Statistical methods for categorical data analysis. San Diego: Academic Press.

Prentice, R. L., & Gloeckler, L. A. (1978). Regression analysis of grouped survival data with application to breast cancer data. Biometrics, 34, 57–67.

Radloff, L. S. (1977). The CES-D scale: A self report major depressive disorder scale for research in the general population. Applied Psychological Measurement, 1, 385–401.

Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163.

Raftery, A. E., Lewis, S. M., Aghajanian, A., & Kahn, M. J. (1996). Event history modeling of World Fertility Survey data. Mathematical Population Studies, 6, 129–153.

Ramlau-Hansen, H. (1983). Smoothing counting process intensities by means of kernel functions. Annals of Statistics, 11, 453–466.

Rasbash, J., & Woodhouse, G. (1995). MLn Command Reference. Multilevel Models Project. London: Institute of Education.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.

Raudenbush, S. W., Bryk, A. S., Cheong, Y., & Congdon, R. (2001). HLM. Available from http://www.ssicentral.com

Raudenbush, S. W., Bryk., A. S., & Congdon, R. T. (1988). HLM: Hierarchical linear modeling. Chicago: Scientific Software International, Inc.

Raudenbush, S. W., & Chan, W. S. (1992). Growth curve analysis in accelerated longitudinal designs. Journal of Research in Crime and Delinquency, 29, 387–411.

Rayman, P., & Brett, B. (1995). Women science majors: What makes a difference in persistence to graduation? Journal of Higher Education, 66, 388–414.

Robertson, T. B. (1908). Sur la dynamique du systeme nerveux central. Archives of International Physiology, 6, 388–454.

Robertson, T. B. (1909). A biochemical conception of memory and sensation. The Monist, 19, 367–386.

Roderick, M. (1994). Grade retention and school dropout: Investigating the association. American Educational Research Journal, 31, 729–759.

Rogosa, D. R., Brandt, D., & Zimowski, M. (1982). A growth curve approach to the measurement of change. Psychological Bulletin, 90, 726–748.

Rogosa, D. R., & Willett, J. B. (1985). Understanding correlates of change by modeling individual differences in growth. Psychometrika, 50, 203–228.

Rothenberg, T. J. (1984). Hypothesis testing in linear models when the error covariance matrix is nonscalar. Econometrica, 52, 827–842.

Sargeant J. K., Bruce, M. L., Florio L. P., & Weissman, M. (1990). Factors associated with 1-year outcome of major depression in the community. Archives of General Psychiatry, 47, 519–526.

SAS Institute. (2001). Statistical analysis system. Available at http://www.sas.com

Schafer, J. (1997). Analysis of incomplete multivariate data. New York: Chapman and Hall.

Scheike, T. H., & Jensen, T. K. (1997). A discrete survival model with random effects: An application to time to pregnancy. Biometrics, 53, 318–329.

Schmueli, G., & Cohen, A. (1999). Analysis and display of hierarchical lifetime data. The American Statistician, 53, 140–146.

Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model. Biometrika, 69, 239–241.

(p.624) Schukarew, A. (1907). Uber die energetischen grundlagen des Gesetzes von Weber-Sechner und der Dynamik des Gedachtnisses. Annalen des Natur-philosophie, 6, 139–149.

Schwarz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6, 461–464.

Shanahan, M. J., Elder, G. H., Jr., Burchinal, M., & Conger, R. D. (1996). Adolescent paid labor and relationships with parents: Early work-family linkages. Child Development, 67, 2183–2200.

Siegfried, J. J., & Stock, W. A. (2001). So you want to earn a Ph.D. in economics?: How long do you think it will take? Journal of Human Resources, 34, 364–378.

Singer, J. D. (1993). Are special educators’ careers special? Exceptional Children, 59, 262–279.

Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 25, 323–355.

Singer, J. D. (2001). Fitting individual growth models using SAS PROC MIXED. In D. S. Moskowitz & S. L. Hershberger (Eds.), Modeling intraindividual variability with repeated measures data: Method and applications. Englewood Clifs, NJ: Erlbaum.

Singer, J. D., Davidson, S., Graham, S., & Davidson, H. S. (1998). Physician retention in community and migrant health centers: Who stays and for how long? Medical Care, 38, 1198–1213.

Singer, J. D., Fuller, B., Keiley, M. K., & Wolf, A. (1998). Early child care selection: Variation by geographic location, maternal characteristics, and family structure. Developmental Psychology, 34, 1129–1144.

Singer, J. D., & Willett, J. B. (1991). Modeling the days of our lives: Using survival analysis when designing and analyzing longitudinal studies of duration and the timing of events. Psychological Bulletin, 110, 268–290.

Singer, J. D., & Willett, J. B. (1993). It’s about time: Using discrete-time survival analysis to study duration and the timing of events. Journal of Educational Statistics, 18, 155–195.

Singer, J. D., & Willett, J. B. (2001, April). Improving the quality of longitudinal research. Paper presented at the Annual Meeting of the American Educational Research Association, Seattle, Washington.

Snijders, T. A. B., & Bosker, R. J. (1994). Modeled variance in two-level models. Sociological Methods and Research, 22, 342–363.

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. London: Sage.

Sorenson, S. B., Rutter, C. M., & Aneshensel, C. S. (1991). Depression in the community: An investigation into age of onset. Journal of Consulting and Clinical Psychology, 59, 541–546.

South, S. J. (1995). Do you need to shop around: Age at marriage, spousal alternatives, and marital dissolution. Journal of Family Issues, 16, 432–449.

South, S. J. (2001). Time-dependent effects of wives’ employment on marital dissolution. American Sociological Review, 66, 226–245.

Stage, S. A. (2001). Program evaluation using hierarchical linear modeling with curriculum-based measurement reading probes. School Psychology Quarterly, 16, 91–112.

Stata Corporation. (2001). STATA. Available at http://www.stata.com

(p.625) Strober, M., Freeman, R., Bower, S., & Rigali, J. (1996). Binge eating in anorexia nervosa predicts later onset of substance use disorder: A ten-year prospective, longitudinal follow-up of 95 adolescents. Journal of Youth and Adolescence, 25, 519–532.

Sueyoshi, G. T. (1995). A class of binary response models for grouped duration data. Journal of Applied Econometrics, 10, 411–431.

Svartzberg, M., Seltzer, M. H., Stiles, T. C., & Khoo, E. (1995). Symptom improvement and its temporal course in short-term dynamic psychotherapy—A growth curve analysis. Journal of Nervous and Mental Disorders, 183, 242–248.

Tanner, J. M. (1964). The human growth curve. In G. A. Harrison, J. S. Winer, J. M. Tanner, & N. A. Barnicot (Eds.), Human biology (pp. 299–320). New York: Oxford University Press.

Therneau, T. M., & Grambsch, P. M. (2000). Modeling survival data: Extending the Cox model. New York: Springer.

Thurstone, L. L. (1917). The learning curve equation. Psychological Bulletin, 14, 64–65.

Thurstone, L. L. (1930). The learning function. Journal of General Psychology, 3, 469–493.

Tisak, J., & Meredith, W. (1990). Descriptive and associative developmental models. In A. Von Eye (Ed.), Statistical methods in longitudinal research (Vol. 2, pp. 387–406). New York: Academic Press.

Tivnan, T. (1980). Improvements in performance on cognitive tasks: The acquisition of new skills by elementary school children. Unpublished doctoral dissertation. Harvard University, Graduate School of Education.

Tomarken, A. J., Shelton, R. C., Elkins, L., & Anderson, T. (1997). Sleep deprivation and anti-depressant medication: Unique effects on positive and negative affect. Poster session presented at the 9th annual meeting of the American Psychological Society, Washington, DC.

Tuma, N. B., & Hannan, M. T. (1984). Social dynamics: Models and methods. New York: Academic Press.

Turnbull, B. W. (1974). Non-parametric estimation of a survivorship function with doubly censored data. Journal of the American Statistical Association, 69, 169–173.

Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society, 38, 290–295.

Van Leeuwen, D. M. (1997). A note on the covariance structure in a linear model. The American Statistician, 51, 140–144.

Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–454.

Vaupel, J. W., & Yashin, A. I. (1985). Heterogeneity’s ruses: Some surprising effects of selection on population dynamics. The American Statistician, 39, 176–185.

Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data. New York: Springer-Verlag.

Wheaton, B., Roszell, P., & Hall, K. (1997). The impact of twenty childhood and adult traumatic stressors on the risk of psychiatric disorder. In I. H. Gotlib & B. Wheaton (Eds.), Stress and adversity over the life course: Trajectories and turning points (pp. 50–72). New York: Cambridge University Press.

(p.626) Willett, J. B. (1988). Questions and answers in the measurement of change. In E. Rothkopf (Ed.), Review of research in education (1988–89) (pp. 345–422). Washington, DC: American Educational Research Association.

Willett, J. B. (1989). Some results on reliability for the longitudinal measurement of change: Implications for the design of studies of individual growth. Educational and Psychological Measurement, 49, 587–602.

Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of change. Psychological Bulletin, 116, 363–381.

Willett, J. B., & Singer, J. D. (1991). From whether to when: New methods for studying student dropout and teacher attrition. Review of Educational Research, 61, 407–450.

Willett, J. B., & Singer, J. D. (1993). Investigating onset, cessation, relapse, and recovery: Why you should, and how you can, use discrete-time survival analysis to examine event occurrence. Journal of Consulting and Clinical Psychology, 61, 952–965.

Wolfinger, R. D. (1993). Covariance structure selection in general mixed models. Communications in Statistics-Simulations, 22, 1079–1106.

Wolfinger, R. D. (1996). Heterogeneous variance-covariance structures for repeated measures. Journal of Agricultural, Biological, and Environmental Statistics, 1, 205–230.

Wu, Z. (1995). Premarital cohabitation and postmarital cohabiting union formation. Journal of Family Issues, 16, 212–232.

Wu, L. L., & Martinson, B. C. (1993). Family structure and the risk of a premarital birth. American Sociological Review, 58, 210–232.

Xie, Y. (1994). The log-multiplicative models for discrete-time, discrete-covariate event history data. Sociological Methodology, 24, 301–340.

Xue, X., & Brookmeyer, R. (1997). Regression analysis of discrete time survival data under heterogeneity. Statistics in Medicine, 16, 1983–1993.

Yamaguchi, K. (1991). Event history analysis. Newbury Park, CA: Sage.

Yamaguchi, K., & Kandel, D. B. (1985). Dynamic relationships between premarital cohabitation and illicit drug use: An event history analysis of role selection and role socialization. American Sociological Review, 50, 530–546.

Yamaguchi, K., & Kandel, D. B. (1987). Drug use and other determinants of premarital pregnancy and its outcome: A dynamic analysis of competing life events. Journal of Marriage and the Family, 49, 257–270.

Young, M. A., Meaden, P. M., Fogg, L. F., Cherin, E. A., & Eastman, C. I. (1997). Which environmental variables are related to the onset of seasonal affective disorder? Journal of Abnormal Psychology, 106, 554–562.

Zorn, C. J., & van Winkle, S. R. (2000). A competing risks model of Supreme Court vacancies, 1780–1992. Political Behavior, 22, 145–166.