Jump to ContentJump to Main Navigation
A World of Three CulturesHonor, Achievement and Joy$

Miguel E. Basáñez

Print publication date: 2016

Print ISBN-13: 9780190270360

Published to Oxford Scholarship Online: January 2016

DOI: 10.1093/acprof:oso/9780190270360.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 26 February 2017

(p.327) Appendix 12 Subjective Development Index (SDI) Methodology

(p.327) Appendix 12 Subjective Development Index (SDI) Methodology

Source:
A World of Three Cultures
Publisher:
Oxford University Press

The Subjective Development Index (SDI) derives from Inglehart’s World Cultural Map (Figure 2.4 in Chapter 2). It combines the map’s two axes (survival–self-expression and traditional–secular/rational) into a single line in such a way that a unique value for each country is generated, enabling a world ranking. In other words, it turns the cultural map into an index. The WVS cultural map dynamics from the last 30 years (Figure 2.5 in Chapter 2) show that countries move toward the upper-right corner of the map, at least for most of the countries on the top right side.

Starting from this observation, SDI is the calculation of the distance of each country in the world cultural map to the highest position closer to the upper-right corner of the map. Sweden was the highest score in the survival–self expression axis in the 5th wave (2.35) and Japan was the highest in the traditional–secular/rational axis (1.96). Hence, a hypothetical country score of 2.35 and 1.96 is taken as the highest point of reference.

To measure the distance between an actual country and the maximum hypothetical score, the hypotenuse formula (a2 + b2 = c2) from the Pythagorean theorem is used:

In any right-angled triangle, the area of the square whose side is the hypotenuse c (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs a and b (the two sides that meet at a right angle).

The graphic representation is shown in Figure A12.1.

Appendix 12 Subjective Development Index (SDI) Methodology

Figure A12.1 Pythagorean theorem and the hypotenuse formula

In the World Cultural Map the scores for the “two legs” a and b of any country are always known: they are the distances in the axes scores to the hypothetical maximum. But the score c, or linear combination of the two axes for the new index, is unknown.

In order to find the c score, or linear combination, the hypotenuse formula can also be expressed as c = √ a2 + b2 (where √ stands for square root).

(p.328) Applying the formula to find the linear combination distance between Sweden, the closest country to the hypothetical maximum, the procedure is as follows: the a score is the difference between the hypothetical maximum in the survival–self-expression axis (2.35) and the actual Sweden scores on the same axis (2.35). In this case the distance a is 0. The b score is the difference between the hypothetical maximum on the traditional–secular/rational axis (1.96) and the actual Sweden score on the same axis (1.86). In this case the distance b is 0.10. In summary, a = 0 + b = 0.10. Applying the formula: 02 + 0.102 = 0 + 0.01 = 0.01. Hence, the square root of 0.01 = 0.10.

At the other end of the spectrum, Zimbabwe is the most distant country from the hypothetical maximum. The procedure is the same: the a score or difference between the hypothetical maximum in the survival–self-expression axis (2.35) and the actual Zimbabwe scores on the same axis (-1.36) is 3.71. The b score or difference between the hypothetical maximum on the traditional–secular/rational axis (1.96) and the actual Zimbabwe score on the same axis (-1.50) is 3.46. In summary, a = 3.71 + b = 3.46. Applying the formula: 3.712 + 3.462 = 13.76 + 11.97 = 25.74. Hence, the square root of 25.74 = 5.07.

Another expression of the same formula is:

Distance( countr y i  highest score )=( (SURVSELF highest score SURVSELF country) 2  + (TRADRAT highest scoreTRADRAT country) 2 ) where i= 1. n.

The index is the measurement of the distance from each country to the greatest value on both the horizontal axis of the cultural map and on the vertical axis. These distances range from 0.10 (that of Sweden) to 5.07 (that of Zimbabwe). The scores for all the countries are shown in Table A12.1.

The index’s benefits lies in its ability to (1) classify countries in a way that allows us to compare their positions in a ranking order; and (2) to perform further statistical analysis by producing a continuum value. In order to make the scale comparable with other international indices, it is inverted and standardized so that the higher the value, the better the ranking in the index. The calculations’ results are shown in Table A12.2 and the index in Table A12.3. (p.329)

Table A12.1 World Cultural Map Scores: Score Values for the World Values Survey Map’s Axes

Nation and Wave

Trad Rat Values

Surv Self Values

HD11

Albania 42

0.07

-1.14

3.97

Algeria 4

-1.48

-0.74

4.62

Andorra 5

0.8

1.62

1.37

Argentina 5

-0.66

0.38

3.28

Armenia 3

0.55

-1.31

3.92

Australia 5

0.21

1.75

1.85

Austria 4

0.25

1.43

1.94

Azerbaijan 3

-0.14

-1.38

4.28

Bangladesh 4

-1.21

-0.93

4.56

Belarus 4

0.89

-1.23

3.74

Belgium 4

0.5

1.13

1.90

Bosnia 4

0.34

-0.65

3.41

Brazil 5

-0.98

0.61

3.42

Britain 5

0.06

1.68

2.01

Bulgaria 5

1.13

-1.01

3.46

Burkina Faso 5

-1.32

-0.49

4.34

Canada 5

-0.26

1.91

2.26

Chile 5

-0.87

0

3.68

China 5

0.8

-1.16

3.70

Colombia 5

-1.87

0.6

4.21

Croatia 4

0.08

0.31

2.77

Cyprus 5

-0.56

0.13

3.36

Czech 4

1.23

0.38

2.10

Denmark 4

1.16

1.87

0.93

Dominican Republic 3

-1.05

0.33

3.62

East Germany 5

1.46

0.26

2.15

Egypt 4

-1.61

-0.46

4.54

El Salvador 4

-2.06

0.53

4.41

Estonia 4

1.27

-1.19

3.61

Ethiopia 5

-0.65

-0.36

3.76

Finland 5

0.82

1.12

1.68

France 5

0.63

1.13

1.80

Galicia 3

-0.04

1.34

2.24

Georgia 3

-0.04

-1.31

4.17

Ghana 5

-1.94

-0.29

4.71

Greece 4

0.77

0.55

2.16

Guatemala 4

-1.7

-0.17

4.44

Hong Kong 5

1.2

-0.98

3.42

Hungary 4

0.4

-1.22

3.90

Iceland 4

0.44

1.63

1.68

India 5

-0.36

-0.21

3.45

Indonesia 5

-0.47

-0.8

3.98

Iran 4

-1.22

-0.45

4.24

Iraq 5

-0.4

-1.68

4.67

Ireland 4

-0.91

1.18

3.10

Israel 4

0.26

0.36

2.62

Italy 5

0.13

0.6

2.53

Japan 5

1.96

-0.05

2.40

Jordan 4

-1.61

-1.05

4.93

Kyrgyz 4

-0.15

-0.91

3.88

Latvia 4

0.72

-1.27

3.83

Lithuania 4

0.98

-1

3.49

Luxemburg 4

0.42

1.13

1.96

Macedonia 4

0.12

-0.72

3.58

Malaysia 5

-0.73

0.09

3.51

Mali 5

-1.25

-0.08

4.03

Malta 4

-1.53

-0.03

4.22

Mexico 5

-1.47

1.03

3.68

Moldova 5

0.47

-1.28

3.92

Montenegro 4

0.86

-1.24

3.75

Morocco 5

-1.32

-1.04

4.72

Moscow 2

1.44

-0.79

3.18

Northern Ireland 4

-0.33

0.84

2.74

New Zealand 5

0

1.86

2.02

Netherlands 5

0.71

1.39

1.58

Nigeria 4

-1.53

0.28

4.06

Norway 5

1.39

2.17

0.60

Pakistan 4

-1.42

-1.25

4.94

Peru 4

-1.36

0.03

4.05

Philippines 4

-1.21

-0.11

4.01

Poland 5

-0.78

-0.14

3.70

Portugal 4

-0.9

0.49

3.41

Puerto Rico 4

-2.07

1.12

4.21

Romania 5

-0.39

-1.55

4.55

Russia 5

0.49

-1.42

4.05

Rwanda 5

-1.57

-0.62

4.61

South Africa 5

-1.09

-0.1

3.91

South Korea 5

0.61

-1.37

3.96

Saudi Arabia 4

-1.31

0.15

3.94

Serbia 5

0.35

-0.62

3.38

Singapore 4

-0.54

-0.28

3.63

Slovakia 4

0.67

-0.43

3.06

Slovenia 2

0.64

-0.62

3.25

Slovenia 5

0.73

0.36

2.34

Spain 5

0.09

0.54

2.60

Sweden 5

1.86

2.35

0.10

Switzerland 5

0.74

1.9

1.30

Taiwan 5

1.16

-1.18

3.62

Tanzania 4

-1.84

-0.15

4.55

Thailand 5

-0.64

0.01

3.50

Trinidad 5

-1.83

-0.26

4.60

Turkey 5

-0.89

-0.33

3.91

Uganda 1

-1.42

-0.5

4.42

Ukraine 5

0.3

-0.83

3.59

Uruguay 5

-0.37

0.99

2.70

United States 5

-0.81

1.76

2.83

Venezuela 4

-1.6

0.43

4.04

Vietnam 5

-0.3

-0.26

3.45

West Germany 5

1.31

0.74

1.74

Zambia 5

-0.77

-0.62

4.03

Zimbabwe 4

-1.5

-1.36

5.07

(1) Hypothenus distance (HD1) = SQRT(((B$49-B2)^2)+((C$87-C2)^2)).

(2) Survey year: 1 = 1980; 2 = 1990; 3 = 1995; 4 = 2000; 5 = 2005.

(p.330) (p.331) (p.332)

Table A12.2 Hypotenuse Distance (HD) or Linear Combination Scores

Standardized Values for the World Values Survey Map’s Countries

Nation and Wave**

Trad Rat Values

Surv Self Values

HD*

Standard Score

Nation and Wave

Trad Rat Values

Surv Self Values

HD*

Standard Score

1

Sweden 5

1.86

2.35

0.10

1.000

52

Dominican Republic 3

-1.05

0.33

3.62

0.291

2

Norway 5

1.39

2.17

0.60

0.900

53

Singapore 4

-0.54

-0.28

3.63

0.290

3

Denmark 4

1.16

1.87

0.93

0.833

54

Mexico 5

-1.47

1.03

3.68

0.281

4

Switzerland 5

0.74

1.9

1.30

0.759

55

Chile 5

-0.87

0

3.68

0.280

5

Andorra 5

0.8

1.62

1.37

0.745

56

China 5

0.8

-1.16

3.7

0.277

6

Netherlands 5

0.71

1.39

1.58

0.703

57

Poland 5

-0.78

-0.14

3.7

0.276

7

Finland 5

0.82

1.12

1.68

0.683

58

Belarus 4

0.89

-1.23

3.74

0.269

8

Iceland 4

0.44

1.63

1.68

0.682

59

Montenegro 4

0.86

-1.24

3.75

0.265

9

West Germany 5

1.31

0.74

1.74

0.671

60

Ethiopia 5

-0.65

-0.36

3.76

0.264

10

France 5

0.63

1.13

1.80

0.657

61

Latvia 4

0.72

-1.27

3.83

0.251

11

Australia 5

0.21

1.75

1.85

0.648

62

Kyrgyz 4

-0.15

-0.91

3.88

0.239

12

Belgium 4

0.5

1.13

1.90

0.638

63

Hungary 4

0.4

-1.22

3.9

0.237

13

Austria 4

0.25

1.43

1.94

0.630

64

Turkey 5

-0.89

-0.33

3.91

0.233

14

Luxemburg 4

0.42

1.13

1.96

0.625

65

South Africa 5

-1.09

-0.1

3.91

0.233

15

Britain 5

0.06

1.68

2.01

0.615

66

Armenia 3

0.55

-1.31

3.92

0.231

16

New Zealand 5

0

1.86

2.02

0.614

67

Moldova 5

0.47

-1.28

3.92

0.231

17

Czech 4

1.23

0.38

2.10

0.598

68

Saudi Arabia 4

-1.31

0.15

3.94

0.228

18

East Germany 5

1.46

0.26

2.15

0.588

69

South Korea 5

0.61

-1.37

3.96

0.224

19

Greece 4

0.77

0.55

2.16

0.586

70

Albania 4

0.07

-1.14

3.97

0.222

20

Galicia 3

-0.04

1.34

2.24

0.570

71

Indonesia 5

-0.47

-0.8

3.98

0.220

21

Canada 5

-0.26

1.91

2.26

0.565

72

Philippines 4

-1.21

-0.11

4.01

0.213

22

Slovenia 5

0.73

0.36

2.34

0.550

73

Mali 5

-1.25

-0.08

4.03

0.211

23

Japan 5

1.96

-0.05

2.40

0.538

74

Zambia 5

-0.77

-0.62

4.03

0.209

24

Italy 5

0.13

0.6

2.53

0.511

75

Venezuela 4

-1.6

0.43

4.04

0.207

25

Spain 5

0.09

0.54

2.60

0.497

76

Russia 5

0.49

-1.42

4.05

0.206

26

Israel 4

0.26

0.36

2.62

0.494

77

Peru 4

-1.36

0.03

4.05

0.206

27

Uruguay 5

-0.37

0.99

2.70

0.478

78

Nigeria 4

-1.53

0.28

4.06

0.204

28

N. Ireland 4

-0.33

0.84

2.74

0.469

79

Georgia 3

-0.04

-1.31

4.17

0.181

29

Croatia 4

0.08

0.31

2.77

0.462

80

Colombia 5

-1.87

0.6

4.21

0.173

30

United States 5

-0.81

1.76

2.83

0.451

81

Puerto Rico 4

-2.07

1.12

4.21

0.173

31

Slovakia 4

0.67

-0.43

3.06

0.404

82

Malta 4

-1.53

-0.03

4.22

0.171

32

Ireland 4

-0.91

1.18

3.10

0.397

83

Iran 4

-1.22

-0.45

4.24

0.168

33

Moscow 2

1.44

-0.79

3.18

0.380

84

Azerbaijan 3

-0.14

-1.38

4.28

0.159

34

Slovenia 2

0.64

-0.62

3.25

0.367

85

BurkinaFas 5

-1.32

-0.49

4.34

0.148

35

Argentina 5

-0.66

0.38

3.28

0.361

86

El Salvador 4

-2.06

0.53

4.41

0.133

36

Cyprus 5

-0.56

0.13

3.36

0.345

87

Uganda 1

-1.42

-0.5

4.42

0.131

37

Serbia 5

0.35

-0.62

3.38

0.341

88

Guatemala 4

-1.7

-0.17

4.44

0.127

38

Bosnia 4

0.34

-0.65

3.41

0.335

89

Egypt 4

-1.61

-0.46

4.54

0.107

39

Portugal 4

-0.9

0.49

3.41

0.334

90

Tanzania 4

-1.84

-0.15

4.55

0.105

40

Hong Kong 5

1.2

-0.98

3.42

0.333

91

Romania 5

-0.39

-1.55

4.55

0.105

41

Brazil 5

-0.98

0.61

3.42

0.333

92

Bangladesh 4

-1.21

-0.93

4.56

0.103

42

Vietnam 5

-0.3

-0.26

3.45

0.326

93

Trinidad 5

-1.83

-0.26

4.6

0.095

43

India 5

-0.36

-0.21

3.45

0.325

94

Rwanda 5

-1.57

-0.62

4.61

0.092

44

Bulgaria 5

1.13

-1.01

3.46

0.324

95

Algeria 4

-1.48

-0.74

4.62

0.090

45

Lithuania 4

0.98

-1

3.49

0.318

96

Iraq 5

-0.4

-1.68

4.67

0.081

46

Thailand 5

-0.64

0.01

3.50

0.317

97

Ghana 5

-1.94

-0.29

4.71

0.073

47

Malaysia 5

-0.73

0.09

3.51

0.314

98

Morocco 5

-1.32

-1.04

4.72

0.072

48

Macedonia 4

0.12

-0.72

3.58

0.300

99

Jordan 4

-1.61

-1.05

4.93

0.029

49

Ukraine 5

0.3

-0.83

3.59

0.299

100

Pakistan 4

-1.42

-1.25

4.94

0.027

50

Estonia 4

1.27

-1.19

3.61

0.295

101

Zimbabwe 4

-1.5

-1.36

5.07

0.000

51

Taiwan 5

1.16

-1.18

3.62

0.292

(*) Hypothenus distance (HD) = SQRT(((B$49-B2)^2)+((C$87-C2)^2)).

(**) Survey year: 1 = 1980; 2 = 1990; 3 = 1995; 4 = 2000; 5 = 2005.

*** Standardized = (Maximum score on a desired scale from “0” to “x”) * (N-minimum)/(max – min).

(p.333) (p.334)

Table A12.3 The Subjective Development Index (SDI), Country Scores and Ranking

1

Sweden 5*

1.000

2

Norway 5*

0.900

3

Denmark 4*

0.833

4

Switzerland 5*

0.759

5

Andorra 5*

0.745

6

Netherlands 5*

0.703

7

Finland 5*

0.683

8

Iceland 4*

0.682

9

West Germany 5*

0.671

10

France 5*

0.657

11

Australia 5*

0.648

12

Belgium 4*

0.638

13

Austria 4*

0.630

14

Luxemburg 4*

0.625

15

Britain 5*

0.615

16

New Zealand 5*

0.614

17

Czech 4*

0.598

18

East Germany 5*

0.588

19

Greece 4*

0.586

20

Galicia 3*

0.570

21

Canada 5*

0.565

22

Slovenia 5*

0.550

23

Japan 5*

0.538

24

Italy 5*

0.511

25

Spain 5*

0.497

26

Israel 4*

0.494

27

Uruguay 5*

0.478

28

Northern Ireland 4*

0.469

29

Croatia 4*

0.462

30

United States 5*

0.451

31

Slovakia 4*

0.404

32

Ireland 4*

0.397

33

Moscow 2*

0.380

34

Slovenia 2*

0.367

35

Argentina 5*

0.361

36

Cyprus 5*

0.345

37

Serbia 5*

0.341

38

Bosnia 4*

0.335

39

Portugal 4*

0.334

40

Hong Kong 5*

0.333

41

Brazil 5*

0.333

42

Vietnam 5*

0.326

43

India 5*

0.325

44

Bulgaria 5*

0.324

45

Lithuania 4*

0.318

46

Thailand 5*

0.317

47

Malaysia 5*

0.314

48

Macedonia 4*

0.300

49

Ukraine 5*

0.299

50

Estonia 4*

0.295

51

Taiwan 5*

0.292

52

Dominican Republic 3*

0.291

53

Singapore 4*

0.290

54

Mexico 5*

0.281

55

Chile 5*

0.280

56

China 5*

0.277

57

Poland 5*

0.276

58

Belarus 4*

0.269

59

Montenegro 4*

0.265

60

Ethiopia 5*

0.264

61

Latvia 4*

0.251

62

Kyrgyz 4*

0.239

63

Hungary 4*

0.237

64

Turkey 5*

0.233

65

South Africa 5*

0.233

66

Armenia 3*

0.231

67

Moldova 5*

0.231

68

Saudi Arab. 4*

0.228

69

South Korea 5*

0.224

70

Albania 4*

0.222

71

Indonesia 5*

0.220

72

Philippines 4*

0.213

73

Mali 5*

0.211

74

Zambia 5*

0.209

75

Venezuela 4*

0.207

76

Russia 5*

0.206

77

Peru 4*

0.206

78

Nigeria 4*

0.204

79

Georgia 3*

0.181

80

Colombia 5*

0.173

81

Puerto Rico 4*

0.173

82

Malta 4*

0.171

83

Iran 4*

0.168

84

Azerbaijan 3*

0.159

85

Burkina Faso 5*

0.148

86

El Salvador 4*

0.133

87

Uganda 1*

0.131

88

Guatemala 4*

0.127

89

Egypt 4*

0.107

90

Tanzania 4*

0.105

91

Romania 5*

0.105

92

Bangladesh 4*

0.103

93

Trinidad 5*

0.095

94

Rwanda 5*

0.092

95

Algeria 4*

0.090

96

Iraq 5*

0.081

97

Ghana 5*

0.073

98

Morocco 5*

0.072

99

Jordan 4*

0.029

100

Pakistan 4*

0.027

101

Zimbabwe 4*

0.0

(*) This number refers to the most recent survey available for each country.

(p.335) (p.336)