Jump to ContentJump to Main Navigation
Surfing UncertaintyPrediction, Action, and the Embodied Mind$

Andy Clark

Print publication date: 2016

Print ISBN-13: 9780190217013

Published to Oxford Scholarship Online: October 2015

DOI: 10.1093/acprof:oso/9780190217013.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 27 February 2017

(p.329) References

(p.329) References

Surfing Uncertainty
Oxford University Press

Bibliography references:

Adams, F., & Aizawa, K. (2001). The bounds of cognition. Philosophical Psychology, 14(1), 43–64.

Adams, R. A., Perrinet, L. U., & Friston, K. (2012). Smooth pursuit and visual occlusion: Active inference and oculomotor control in schizophrenia. PLoS One, 7(10), e47502. doi:10.1371/journal.pone. 0047502.

Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands: Active inference in the motor system. Brain Struct. Funct., 218(3), 611–643.

Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., & Friston, K. J. (2013). The computational anatomy of psychosis. Front. Psychiatry, 30(4), 47. 1–26.

Addis, D. R., Wong, A., & Schacter, D. L. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45, 1363–1377.

Addis, D. R., Wong, A., & Schacter, D. L. (2008). Age-related changes in the episodic simulation of future events. Psychological Science, 19, 33–41.

Aertsen, A., Bonhöffer, T., & Krüger, J. (1987). Coherent activity in neuronal populations: Analysis and interpretation. In E. R. Caianiello (Ed.), Physics of cognitive processes (pp. 1-3400–00). Singapore World Scientific Publishing.

Aertsen, A., and Preißl, H. (1991). Dynamics of activity and connectivity in physiological neuronal networks. In H. G. Schuster (Ed.), Non linear dynamics and neuronal networks (pp. 281–302). New York: VCH Publishers.

(p.330) Alais, D., & Blake, R. (Eds.). (2005). Binocular rivalry. Cambridge, MA: MIT Press.

Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.

Alink, A., Schwiedrzik, C. M., Kohler, A., Singer, W., & Muckli, L. (2010). Stimulus predictability reduces responses in primary visual cortex. J. Neurosci., 30, 2960–2966.

Allard, F., & Starkes, J. (1991). Motor skill experts in sports, dance and other domains. In K. Ericsson & J. Smith (Eds.), Towards a general theory of expertise: Prospects and limits (pp. 126–152). New York: Cambridge University Press.

Anchisi, D., & Zanon, M. (2015). A Bayesian perspective on sensory and cognitive integration in pain perception and placebo analgesia. Plos One, 10, e0117270. doi:10.1371/journal.pone.0117270.

Andersen, R. A., & Buneo, C. A. (2003). Sensorimotor integration in posterior parietal cortex. Adv. Neurol., 93, 159–177.

Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33, 245–313.

Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain Cambridge, MA: MIT Press.

Anderson, M. L., & Chemero, A. (2013). The problem with brain GUTs: Conflation of different senses of ‘prediction’ threatens metaphysical disaster. Behavioral and Brain Sciences, 36(3), 204–205.

Anderson, M. L., Richardson, M., & Chemero, A. (2012). Eroding the boundaries of cognition: Implications of embodiment. Topics in Cognitive Science, 4(4), 717–730.

Ansari, D. (2011). Culture and education: New frontiers in brain plasticity. Trends in Cognitive Sciences, 16(2), 93–95.

Anscombe, G. E. M. (1957). Intention. Oxford: Basil Blackwell.

Arbib, M., Metta, G., & Van der Smagt, P. (2008). Neurorobotics: From vision to action. In B. Siciliano & K. Oussama (Eds.), Handbook of robotics. New York: Springer.

Arthur, B. (1994). Increasing returns and path dependence in the economy. Ann Arbor: University of Michigan Press.

Asada, M., MacDorman, K., Ishiguro, H., & Kuniyoshi, Y. (2001). Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Robotics and Autonomous Systems, 37, 185–193.

Asada, M., MacDorman, K., Ishiguro, H., & Kuniyoshi, Y. (2009). Cognitive developmental robotics: A survey. IEEE Trans. Autonomous Mental Development, 1(1), 12–34.

Atlas, L. Y., & Wager, T. D. (2012). How expectations shape pain. Neuroscience Letters, 520, 140–148. doi:10.1016/j.neulet.2012.03.039.

Avila, M. T., Hong, L. E., Moates, A., Turano, K. A., & Thaker, G. K. (2006). Role of anticipation in schizophrenia-related pursuit initiation deficits. J. Neurophysiol., 95(2), 593–601.

(p.331) Bach, D. R., & Dolan, R. J. (2012). Knowing how much you don’t know: a neural organization of uncertainty estimates. Nature Reviews Neuroscience, 13(8), 572–586. doi: 10.1038/nrn3289.

Baess, P., Jacobsen, T., & Schroger, E. (2008). Suppression of the auditory N1 event-related potential component with unpredictable self-initiated tones: Evidence for internal forward models with dynamic stimulation. Int. J. Psychophysiol., 70, 137–143.

Baldo, J. V., Bunge, S. A., Wilson, S. M., & Dronkers, N. F. (2010). Is relational reasoning dependent on language? A voxel-based lesion symptom mapping study. Brain and Language, 113(2), 59–64. doi:10.1016/j.bandl.2010.01.004.

Ballard, D. (1991). Animate vision. Artificial Intelligence, 48, 57–86.

Ballard, D. H., & Hayhoe, M. M. (2009). Modeling the role of task in the control of gaze. Visual Cognition, 17, 1185–1204.

Ballard, D., Hayhoe, M., Pook, P., & Rao, R. (1997). Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences, 20, 4. 723–767.

Bar, M. (2004). Visual objects in context. Nat. Rev. Neurosci. 5, 617–629.

Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280–289.

Bar, M. (2009). The proactive brain: Memory for predictions. Theme issue: Predictions in the brain: Using our past to generate a future (M. Bar, Ed.). Philosophical Transactions of the Royal Society B, 364, 1235–1243.

Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmidt, A. M., Dale, A. M., Hamalainen, M. S., Marinkovic, K., Schacter, D. L., Rosen, B. R., & Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Science, 103(2), 449–454.

Bargh, J. A. (2006). What have we been priming all these years? On the development, mechanisms, and ecology of nonconscious social behavior. European Journal of Social Psychology, 36, 147–168.

Bargh, J. A., Chen, M., & Burrows, L. (1996). Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action. Journal of Personality and Social Psychology, 71, 230–244.

Barlow, H. B. (1961). The coding of sensory messages. In W. H. Thorpe & O. L. Zangwill (Eds.), Current problems in animal behaviour (pp. 330–360). Cambridge: Cambridge University Press.

Barnes, G. R., & Bennett, S. J. (2003). Human ocular pursuit during the transient disappearance of a visual target. Journal of Neurophysiology, 90(4), 2504–2520.

Barnes, G. R., & Bennett, S. J. (2004). Predictive smooth ocular pursuit during the transient disappearance of a visual target. Journal of Neurophysiology, 92(1), 578–590.

Barone, P., Batardiere, A., Knoblauch, K., & Kennedy, H. (2000). Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J. Neurosci., 20, 3263–3281. pmid: 10777791.

(p.332) Barrett, H. C., & Kurzban, R. (2006). Modularity in cognition: Framing the debate. Psychological Review, 113(3), 628–647.

Barrett, L. F., & Bar, M. (2009). See it with feeling: Affective predictions in the human brain. Royal Society Phil. Trans. B, 364, 1325–1334.

Barsalou, L. (1999). Perceptual symbol systems. Behav. Brain Sci., 22, 577–660.

Barsalou, L. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society of London: Biological Science, 358, 1177–1187.

Barsalou, L. (2009). Simulation, situated conceptualization, and prediction. Philosophical Transactions of the Royal Society of London: Biological Sciences, 364, 1281–1289.

Barto, A., Sutton, R., & Anderson, C. (1983). Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans. Syst. Man Cybern., 13, 834–846.

Barto, A. G. (1995). Adaptive critics and the basal ganglia. In J. L. Davis, J. C. Houk, & D. G. Beiser (Eds.), Models of information processing in the basal ganglia (pp. 215–232). Cambridge, MA: MIT Press.

Bastian, A. (2006). Learning to predict the future: The cerebellum adapts feedforward movement control. Current Opinion in Neurobiology, 16(6), 645–649.

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76, 695–711.

Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J.-M., Oostenveld, R., Dowdall, J. R., De Weerd, P., Kennedy, H., and Fries, P. (2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron, 1–12. doi:10.1016/j.neuron.2014.12.018.

Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene understanding. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18327–18332. doi:10.1073/pnas.1306572110.

Becchio, C., et al. (2010). Perception of shadows in children with autism spectrum disorders. PLoS One, 5, e10582. doi:10.1371/journal.pone.0010582.

Beck, D. M., & Kastner, S. (2005). Stimulus context modulates competition in human extrastriate cortex. Nature Neuroscience, 8, 1110–1116.

Beck, D. M., & Kastner, S. (2008). Top-down and bottom-up mechanisms in biasing competition in the human brain. Vision Research, 49, 1154–1165.

Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E., & Pouget, A. (2012, April 12). Not noisy, just wrong: The role of suboptimal inference in behavioral variability. Neuron, 74(1), 30–39. doi:10.1016/j.neuron.2012.03.016.

Beer, R. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4(3), 91–99.

Beer, R. (2003). The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior, 11, 209–243.

Bell, C. C., Han, V., & Sawtell, N. B. (2008). Cerebellum-like structures and their implications for cerebellar function. Annu. Rev. Neurosci., 31, 1–24.

(p.333) Benedetti, F. (2013). Placebo and the new physiology of the doctor–patient relationship. Physiol. Rev., 93, 1207–1246.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):, 1–127.

Bengio, Y., & Le Cun, Y. (2007). Scaling learning algorithms towards AI. In Bottou L., Chapelle O., DeCoste D. and Weston J. (Eds.), Large scale kernel machines (pp. 321–360). Cambridge, MA: MIT Press.

Berkes, P., Orban, G., Lengyel, M., & Fiser, J. (2011). Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331, 83–87.

Berlyne, D. (1966). Curiosity and exploration. Science, 153(3731), 25–33.

Bermúdez, J. (2005). Philosophy of psychology: A contemporary introduction. New York: Routledge.

Berniker, M., & Körding, K. P. (2008). Estimating the sources of motor errors for adaptation and generalization. Nature Neuroscience, 11, 1454–1461.

Betsch, B. Y., Einhäuser, W., Körding, K. P., & König, P. (2004). The world from a cat’s perspective: Statistics of natural videos. Biological Cybernetics, 90, 41–50.

Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147.

Bindra, D. (1959). Stimulus change, reactions to novelty, and response decrement. Psychological Review, 66, 96–103.

Bingel, U., Wanigasekera, V., Wiech, K., Ni Mhuircheartaigh, R., Lee, M. C., Ploner, M., & Tracey, I. (2011). The effect of treatment expectation on drug efficacy: Imaging the analgesic benefit of the opioid remifentanil. Sci. Transl. Med., 3, 70ra14. 1–9 doi:10.1126/scitranslmed.3001244.

Bissom, T. (1991). Alien/Nation. Omni. (Science fiction magazine)

Blackmore, S. (2004). Consciousness: An introduction. New York: Oxford University Press.

Blakemore, S.-J., Frith, C. D., & Wolpert, D. W. (1999). Spatiotemporal prediction modulates the perception of self-produced stimuli. Journal of Cognitive Neuroscience, 11(5), 551–559.

Blakemore, S.-J., Wolpert, D. M., & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. Nature Neuroscience, 1(7), 635–640.

Blakemore S. J., Wolpert D., Frith C. (2000). Why can’t you tickle yourself? Neuroreport 11, R11–16.

Blakemore, S.-J., Wolpert, D. M., & Frith, C. D. (2002). Abnormalities in the awareness of action. Trends in Cognitive Sciences, 6, 237–242.

Block, N., & Siegel, S. (2013). Attention and perceptual adaptation. Behavioral and Brain Sciences, 36(4), 205–206.

Boden, M. (1970). Intentionality and physical systems. Philosophy of Science, 37, 200–214.

Botvinick, M. (2004). Probing the neural basis of body ownership. Science, 305, 782–783. doi:10.1126/science. 1101836.

(p.334) Botvinick, M., & Cohen, J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, 391, 756. doi:10. 1038/35784.

Bowman, H., Filetti, M., Wyble, B., & Olivers, C. (2013). Attention is more than prediction precision. Behav. Brain Sci., 36(3), 233–253.

Box, G. P., & Draper, N. R. (1987). Empirical model-building and response surfaces. NJ Wiley.

Boynton, G. M. (2005). Attention and visual perception. Curr. Opin. Neurobiol., 15, 465–469. doi:10.1016/j.conb.2005. 06.009.

Brainard, D. (2009). Bayesian approaches to color vision. In M. Gazzaniga (Ed.), The visual neurosciences (4th ed.). Cambridge, MA: MIT Press.

Bram, U. (2013). Thinking statistically. San Francisco: Capara Books.

Braver, T. S., Barch, D. M., & Cohen, J. D. (1999). Cognition and control in schizophrenia: A computational model of dopamine and prefrontal function. Biological Psychiatry, 46(3), 312–328.

Brayanov, J. B., & Smith, M. A. (2010). Bayesian and “anti-Bayesian” biases in sensory integration for action and perception in the size–weight illusion. Journal of Neurophysiology, 103(3), 1518–1531.

Brock, J. (2012, November 2). Alternative Bayesian accounts of autistic perception: Comment on Pellicano and Burr. Trends in Cognitive Sciences, 16(12), 573–574. doi:10.1016/j.tics.2012.10.005.

Brooks, R., & Flynn, A(1989). Fast, cheap, and out of control: A robot invasion of the solar system. J. Brit. Interplanetary Soc., 42(10), 478–485.

Brown, E. C., & Brüne, M. (2012). The role of prediction in social neuroscience. Front. Hum. Neurosci., 6, 147. doi:10.3389/fnhum.2012.00147.

Brown, H., Adams, R. A., Parees, I., Edwards, M., & Friston, K. (2013). Active inference, sensory attenuation and illusions. Cogn. Process. 14 (4), 411–427.

Brown, H., & Friston, K. (2012). Free-energy and illusions: The Cornsweet effect. Frontiers in Psychology, 3, 43. doi:10.3389/fpsyg.2012.00043.

Brown, H., Friston, K., & Bestmann, S. (2011). Active inference, attention, and motor preparation. Frontiers in Psychology, 2, 218. doi:10.3389/fpsyg.2011.00218.

Brown, R. J. (2004). Psychological mechanisms of medically unexplained symptoms: An integrative conceptual model. Psychol. Bull., 130, 793–812.

Bubic, A., von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Front. Hum. Neurosci., 4, 25. doi:10.3389/fnhum.2010.00025.

Buchbinder, R., & Jolley, D. (2005). Effects of a media campaign on back beliefs is sustained 3 years after its cessation. Spine, 30, 1323–1330.

Büchel, C., Geuter, S., Sprenger, C., & Eippert, F., et al. (2014). Placebo analgesia: A predictive coding perspective. Neuron, 81(6), 1223–1239.

Buckingham, G., & Goodale, M. (2013). When the predictive brain gets it really wrong. Behavioral and Brain Sciences, 36(3), 208–209.

Buffalo, E. A., Fries, P., Landman, R., Buschman, T. J., & Desimone, R. (2011). Laminar differences in gamma and alpha coherence in the ventral stream. (p.335) Proceedings of the National Academy of Sciences of the United States of America, 108(27), 11262–11267. doi.org/10.1073/pnas.1011284108.

Burge, J., Fowlkes, C., & Banks, M. (2010). Natural-scene statistics predict how the figure–ground cue of convexity affects human depth perception. Journal of Neuroscience, 30(21), 7269–7280. doi:10.1523/JNEUROSCI.5551-09.2010.

Burge, T. (2010). Origins of objectivity. New York: Oxford University Press.

Byrne, A., & Logue, H. (Eds.). (2009). Disjunctivism: Contemporary readings. Cambridge, MA: MIT Press.

Caligiore, D., Ferrauto, T., Parisi, D., Accornero, N., Capozza, M., & Baldassarre, G. (2008). Using motor babbling and Hebb rules for modeling the development of reaching with obstacles and grasping. In CogSys2008—International Conference on Cognitive Systems (E 1–8. Cambridge, MA: MIT Press.

Campbell, D. T. (1974). Evolutionary epistemology. In P. A. Schlipp (Ed.), The philosophy of Karl Popper (pp. 413–463). LaSalle, IL: Open Court.

Cardoso-Leite, P., Mamassian, P., Schütz-Bosbach, S., & Waszak, F. (2010). A new look at sensory attenuation: Action-effect anticipation affects sensitivity, not response bias. Psychological Science, 21, 1740–1745. doi:10.1177/0956797610389187.

Carey, S. (2009). The origin of concepts. New York: Oxford University Press.

Carrasco, M. (2011). Visual attention: The past 25 years. Vision Res., 51(13), 1484–1525. doi:10.1016/j.visres.2011.04.012.

Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7, 308–313.

Carruthers, P. (2009). Invertebrate concepts confront the generality constraint (and win). In Robert W. Lurz (Ed.), The philosophy of animal minds (pp. 89–107). Cambridge: Cambridge University Press.

Castiello, U. (1999). Mechanisms of selection for the control of hand action. Trends in Cognitive Sciences, 3(7), 264–271.

Chadwick, P. K. (1993). The step ladder to the impossible: A first hand phenomenological account of a schizo-affective psychotic crisis. Journal of Mental Health, 2, 239–250.

Chalmers, D. (1996). The conscious mind. Oxford: Oxford University Press.

Chalmers, D. (2005). The matrix as metaphysics. In R. Grau (Ed.), Philosophers explore the matrix. New York: Oxford University Press.

Chapman, S. (1968). Catching a baseball. American Journal of Physics, 36, 868–870.

Chater, N., & Manning, C. (2006). Probabilistic models of language processing and acquisition. Trends in Cognitive Sciences, 10(7), 335–344.

Chawla, D., Friston, K., & Lumer, E. (1999). Zero-lag synchronous dynamics in triplets of interconnected cortical areas. Neural Networks, 14(6–7) 727–735.

Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.

Chen, C. C., Henson, R. N., Stephan, K. E., Kilner, J. M., & Friston, K. J. (2009). Forward and backward connections in the brain: A DCM study of functional asymmetries. Neuroimage, 45(2), 453–462.

(p.336) Chen, Yi-Chuan, Su-Ling Yeh, & Spence, C. (2011). Crossmodal constraints on human perceptual awareness: Auditory semantic modulation of binocular rivalry. Frontiers in Psychology, 2, 212. doi:10.3389/fpsyg.2011.00212.

Christiansen, M., & Chater, N. (2003). Constituency and recursion in language. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 267–271). Cambridge, MA: MIT Press.

Churchland, P. M. (1989). The neurocomputational perspective. Cambridge, MA: MIT/Bradford Books.

Churchland, P. M. (2012). Plato’s camera: How the physical brain captures a landscape of abstract universals. Cambridge, MA: MIT Press.

Churchland, P. S. (2013). Touching a nerve: The self as brain. W. W. Norton.

Churchland, P. S., Ramachandran, V., & Sejnowski, T. (1994). A critique of pure vision. In C. Koch & J. Davis (Eds.), Large-scale neuronal theories of the brain (pp. 23–61). Cambridge, MA: MIT Press.

Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B, 362, 1585–1599.

Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron, 45(5), 801–814.

Cisek, P., & Kalaska, J. F. (2011). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.

Clark, A. (1989). Microcognition: Philosophy, cognitive science and parallel distributed processing. Cambridge, MA: MIT Press/Bradford Books.

Clark, A. (1993). Associative engines: Connectionism, concepts and representational change. Cambridge, MA: MIT Press, Bradford Books.

Clark, A. (1997). Being there: Putting brain, body and world together again. Cambridge, MA: MIT Press.

Clark, A. (1998). Magic words: How language augments human computation. In P. Carruthers & J. Boucher (Eds.), Language and thought: Interdisciplinary themes (pp. 162–183). Cambridge: Cambridge University Press.

Clark, A. (2003). Natural-born cyborgs: Minds, technologies, and the future of human intelligence. New York: Oxford University Press.

Clark, A. (2006). Language, embodiment and the cognitive niche. Trends in Cognitive Sciences, 10(8), 370–374.

Clark, A. (2008). Supersizing the mind: Action, embodiment, and cognitive extension New York: Oxford University Press.

Clark, A. (2012). Dreaming the whole cat: Generative models, predictive processing, and the enactivist conception of perceptual experience. Mind, 121(483), 753–771. doi:10.1093/mind/fzs106.

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.

Clark, A. (2014). Perceiving as predicting. In M. Mohan, S. Biggs, & D. Stokes (Eds.), Perception and its modalities. New York: Oxford University Press, 23–43.

(p.337) Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 7–19.

Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17, 493–501.

Coe, B., Tomihara, K., Matsuzawa, M., & Hikosaka, O. (2002). Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. J. Neurosci., 22(12), 5081–5090.

Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philosophical Transactions of the Royal Society London B: Biological Sciences, 29(362), 933–942. doi:10.1098/rstb.2007.2098.

Colder, B. (2011). Emulation as an integrating principle for cognition. Front. Hum. Neurosci., 5, 54. doi:10.3389/fnhum.2011.00054.

Cole, M. W., Anticevic, A., Repovs, G., and Barch, D. (2011). Variable global dysconnectivity and individual differences in schizophrenia. Biological Psychiatry, 70, 43–50.

Collins, S. H., Wisse, M., & Ruina, A. (2001). A 3-D passive dynamic walking robot with two legs and knees. International Journal of Robotics Research, 20(7), 607–615.

Colombetti, G. (2014). The feeling body. Cambridge, MA: MIT Press.

Colombetti, G., & Thompson, E. (2008). The feeling body: Towards an enactive approach to emotion. In W. F. Overton, U. Muller, & J. L. Newman (Eds.), Developmental perspectives on embodiment and consciousness (pp. 45–68). New York: Lawrence Erlbaum Assoc.

Colombo, M. (2013). Moving forward (and beyond) the modularity debate: A network perspective. Philosophy of Science, 80, 356–377.

Colombo, M. (in press). Explaining social norm compliance: A plea for neural representations. Phenomenology and the Cognitive Sciences.

Coltheart, M. (2007). Cognitive neuropsychiatry and delusional belief (The 33rd Sir Frederick Bartlett Lecture). Quarterly Journal of Experimental Psychology, 60(8), 1041–1062.

Conway, C., & Christiansen, M. (2001). Sequential learning in non-human primates. Trends in Cognitive Sciences, 5(12), 539–546.

Corlett, P. R., Frith, C. D., & Fletcher, P. C. (2009). From drugs to deprivation: A Bayesian framework for understanding models of psychosis. Psychopharmacology (Berl), 206(4), 515–530.

Corlett, P. R., Krystal, J. K., Taylor, J. R., & Fletcher, P. C. (2009). Why do delusions persist? Front. Hum. Neurosci., 3, 12. doi:10.3389/neuro.09.012.2009.

Corlett, P. R., Taylor, J. R., Wang, X. J., Fletcher, P. C., & Krystal, J. H. (2010). Toward a neurobiology of delusions. Progress in Neurobiology, 92(3), 345–369.

Coste, C. P., Sadaghiani, S., Friston, K. J., & Kleinschmidt, A. (2011). Ongoing brain activity fluctuations directly account for intertrial and indirectly for intersubject variability in Stroop task performance. Cereb. Cortex, 21, 2612–2619.

Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nat. Rev. Neurosci., 3, 655–666.

(p.338) Craig, A. D. (2003). Interoception: The sense of the physiological condition of the body. Curr. Opin. Neurobiol., 13, 500–505.

Craig, A. D. (2009). How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci., 10, 59–70.

Crane, T. (2005). What is the problem of perception? Synthesis Philosophica, 40(2), 237–264.

Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 81, 4586–4590.

Critchley, H. D. (2005). Neural mechanisms of autonomic, affective, and cognitive integration. Journal of Comparative Neurology, 493(1), 154–166. doi:10.1002/cne.20749.

Critchley, H. D., & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77, 624–638.

Critchley, H. D., et al. (2004). Neural systems supporting interoceptive awareness. Nat. Neurosci., 7, 189–195.

Crowe, S., Barot, J., Caldow, S., D’Aspromonte, J., Dell’Orso, J., Di Clemente, A., Hanson, K., Kellett, M., Makhlota, S., McIvor, B., McKenzie, L., Norman, R., Thiru, A., Twyerould, M., & Sapega, S. (2011). The effect of caffeine and stress on auditory hallucinations in a nonclinical sample. Personality and Individual Difference, 50(5), 626–630.

Cui, X., Jeter, C. B., Yang, D., Montague, P. R., and Eagleman, D. M. (2007). Vividness of mental imagery: Individual variability can be measured objectively. Vision Res., 47, 474–478.

Çukur, T., Nishimoto, S., Huth, A. G., & Gallant, J. L. (2013). Attention during natural vision warps semantic representation across the human brain. Nature Neuroscience, 16(6), 763–770. doi:10.1038/nn.3381.

Cunningham, A. E., & Stanovich, K. E. (1997). Early reading acquisition and its relation to reading experience and ability 10 years later. Developmental Psychology, 33(6), 934–945.

Damasio, A. (1999). The feeling of what happens. New York: Harcourt, Brace & Co.

Damasio, A. (2010). Self comes to mind: Constructing the conscious brain. Toronto Pantheon.

Damasio, A., & Damasio, H. (1994). Cortical systems for retrieval of concrete knowledge: The convergence zone framework. In C. Koch (Ed.), Large-scale neuronal theories of the brain (pp. 61–74). Cambridge, MA: MIT Press.

Daunizeau, J., Den Ouden, H., Pessiglione, M., Stephan, K., Kiebel, S., & Friston, K. (2010a). Observing the observer (I): Meta-Bayesian models of learning and decision-making. PLoS One, 5(12), e15554.

Daunizeau, J., Den Ouden, H., Pessiglione, M., Stephan, K., Kiebel, S., & Friston, K. (2010b). Observing the observer (II): Deciding when to decide. PLoS One, 5(12), e15555.

Davis, M. H., & Johnsrude, I. S. (2007). Hearing speech sounds: Top-down influences on the interface between audition and speech perception. Hearing Research, 229(1–2), 132–147.

(p.339) Daw, N., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal l and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–1711.

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69, 1204–1215.

Dayan, P. (1997). Recognition in hierarchical models. In F. Cucker & M. Shub (Eds.), Foundations of computational mathematics (pp. 79–87). Berlin, Germany: Springer.

Dayan, P. (2012). How to set the switches on this thing. Curr. Opin. Neurobiol., 22, 1068–1074.

Dayan, P., & Daw, N. D. (2008). Decision theory, reinforcement learning, and the brain. Cognitive, Affective & Behavioral Neuroscience, 8, 429–453.

Dayan, P., & Hinton, G. (1996). Varieties of Helmholtz machine. Neural Networks, 9, 1385–1403.

Dayan, P., Hinton, G. E., & Neal, R. M. (1995). The Helmholtz machine. Neural Computation, 7, 889–904.

De Brigard, F. (2012). Predictive memory and the surprising gap. Frontiers in Psychology, 3, 420. doi:10.3389/fpsyg.2012.00420.

De Ridder, D., Vanneste, S., & Freeman, W. (2012). The Bayesian brain: Phantom percepts resolve sensory uncertainty. Neurosci. Biobehav. Rev. http://dx.doi.org/10.1016/j.neubiorev.2012.04.001.

de Vignemont, F., & Fourneret, P. (2004). The sense of agency: A philosophical and empirical review of the Who system. Consciousness and Cognition, 13, 1–19.

de-Wit, L., Machilsen, B., & Putzeys, T. (2010). Predictive coding and the neural response to predictable stimuli. J. Neurosci., 30, 8702–8703.

den Ouden, H. E. M., Daunizeau, J., Roiser, J., Friston, K., & Stephan, K. (2010). Striatal prediction error modulates cortical coupling. J. Neurosci., 30, 3210–3219.

den Ouden, H. E. M., Kok, P. P., & de Lange, F. P. F. (2012). How prediction errors shape perception, attention, and motivation. Front. Psychol., 3, 548. doi:10.3389/fpsyg.2012.00548.

Decety, J. (1996). Neural representation for action. Rev. Neurosci., 7, 285–297.

Dehaene, S. (2004). Evolution of human cortical circuits for reading and arithmetic: The ‘neuronal recycling’ hypothesis. In S. Dehaene, J. Duhamel, M. Hauser, & G. Rizzolatti (Eds.), From monkey brain to human brain (pp.133–158). Cambridge, MA: MIT Press.

Dehaene, S., Pegado, F., Braga, L., Ventura, P., Nunes G., Jobert, A., Dehaene-Lambertz, G., Kolinsky, R., Morais, J., & Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359–1364. doi:10.1126/science.1194140.

Demiris, Y., & Meltzoff, A. (2008). The robot in the crib: A developmental analysis of imitation skills in infants and robots. Infant and Child Development, 17, 43–58.

(p.340) Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B, 39, 1–38.

Deneve, S. (2008). Bayesian spiking neurons I: inference. Neural Comput., 20, 91–117.

Dennett, D. (1982). Beyond belief. In A. Woodfield (Ed.), Thought and object (pp.74–98). Oxford: Clarendon Press.

Dennett, D. (1991). Consciousness explained. Boston: Little Brown.

Dennett, D. (2013). Expecting ourselves to expect: The Bayesian brain as a projector. Behavioral and Brain Sciences, 36(3), 209–210.

Desantis, A., Hughes, G., & Waszak, F. (2012). Intentional binding is driven by the mere presence of an action and not by motor prediction. PLoS One, 7, e29557. doi:10.1371/journal.pone.0029557.

Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proc. Natl. Acad. Sci. USA, 93(24), 13494–13499.

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annu. Rev. Neurosci., 18, 193–222.

Dewey, J. (1896). The reflex arc concept in psychology. Psychological Review, 3, 357–370.

DeWolf, T., & Eliasmith, C. (2011). The neural optimal control hierarchy for motor control. Journal of Neural Engineering, 8(6), 21. doi:10.1088/1741-2560/8/6/065009.

DeYoe, E. A., & Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience, 11, 219–226.

Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2007). Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends in Cognitive Sciences, 11, 379–386.

Dima, D., Roiser, J., Dietrich, D., Bonnemann, C., Lanfermann, H., Emrich, H., & Dillo, W. (2009). Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modelling. NeuroImage, 46(4), 1180–1186.

Dolan, R. J. (2002). Emotion, cognition, and behavior. Science, 298, 1191–1194.

Dorris, M. C., & Glimcher, P. W. (2004). Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. Neuron, 44(2), 365–378.

Doya, K., & Ishii, S. (2007). A probability primer. In K. Doya, S. Ishii, A. Pouget, & R. Rao (Eds.), Bayesian brain: Probabilistic approaches to neural coding (pp. 3–15). Cambridge, MA: MIT Press.

Doya, K., Ishii, S., Pouget, A., & Rao, R. (Eds.). (2007). Bayesian brain: Probabilistic approaches to neural coding. Cambridge, MA: MIT Press.

Dura-Bernal, S., Wennekers, T., & Denham, S. (2011). The role of feedback in a hierarchical model of object perception. Advances in Experimental Medicine and Biology, 718, 165–179. doi:10.1007/978-1-4614-0164-3_14.

Dura-Bernal, S., Wennekers, T., & Denham, S. (2012). Top-down feedback in an HMAX-like cortical model of object perception based on (p.341) hierarchical Bayesian networks and belief propagation. PloS One, 7(11), e48216. doi:10.1371/journal.pone.0048216.

Edelman, G. (1987). Neural Darwinism: The theory of neuronal group selection. New York: Basic Books.

Edelman, G., & Mountcastle, V. (1978). The mindful brain: Cortical organization and the group-selective theory of higher brain function. Cambridge, MA: MIT Press.

Edwards, M. J., Adams, R. A., Brown, H., Pareés, I., & Friston, K. (2012). A Bayesian account of ‘hysteria’. Brain, 135(Pt 11), 3495–3512.

Egner, T., Monti, J. M., & Summerfield, C. (2010). Expectation and surprise determine neural population responses in the ventral visual stream. Journal of Neuroscience, 30(49), 16601–16608.

Egner, T., & Summerfield, C. (2013). Grounding predictive coding models in empirical neuroscience research. Behavioral and Brain Sciences, 36, 210–211.

Ehrsson, H. H. (2007). The experimental induction of out-of-body experiences. Science, 317, 1048.

Einhäuser, W., Kruse, W., Hoffmann, K. P., & König, P. (2006). Differences of monkey and human overt attention under natural conditions. Vision Res., 46, 1194–1209.

Eliasmith, C. (2005). A new perspective on representational problems. Journal of Cognitive Science, 6, 97–123.

Eliasmith, C. (2007). How to build a brain: From function to implementation. Synthese, 153(3), 373–388.

Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. Cognition, 48, 71–99.

Enck, P., Bingel, U., Schedlowski, M., & Rief, W. (2013). The placebo response in medicine: Minimize, maximize or personalize? Nat. Rev. Drug Discov., 12, 191–204.

Engel, A., Maye, A., Kurthen, M., & König, P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17(5), 202–209. doi:10.1016/j.tics.2013.03.006.

Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews, 2, 704–716.

Ernst, M. O. (2010). Eye movements: Illusions in slow motion. Current Biology, 20(8), R357–R359.

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.

Evans, G. (1982). The varieties of reference. Oxford: Oxford University Press.

Evans, J. St. B. T. (2010). Thinking twice: Two minds in one brain. Oxford: Oxford University Press.

Fabre-Thorpe, M. (2011). The characteristics and limits of rapid visual categorization. Frontiers in Psychology, 2(243). doi:10.3389/fpsyg.2011.00243.

Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A TMS study. Eur. J. Neurosci., 15(2), 399–402.

Fair, D. (1979). Causation and the flow of energy. Erkenntnis, 14, 219–250.

(p.342) Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Rev. Neurosci., 9, 292–303. doi:10.1038/nrn2258.

Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10, 382–390.

Feldman, A. G. (2009). New insights into action-perception coupling. Experimental Brain Research, 194(1), 39–58.

Feldman, A. G., & Levin, M. F. (2009). The equilibrium-point hypothesis—past, present and future. Advances in Experimental Medicine and Biology, 629, 699–726.

Feldman, H., & Friston, K. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 2(4), 215. doi:10.3389/fnhum.2010.00215.

Feldman, J. (2010). Cognitive science should be unified: Comment on Griffiths et al. and McClelland et al. Trends in Cognitive Sciences, 14(8), 341. doi:10.1016/j.tics.2010.05.008.

Feldman, J. (2013). Tuning your priors to the world. Topics in Cognitive Science, 5(1), 13–34. doi:10.1111/tops.12003.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in primate cerebral cortex. Cerebral Cortex, 1, 1–47.

Fernandes, H. L., Stevenson, I. H., Phillips, A. N., Segraves, M. A., & Kording, K. P. (2014). Saliency and saccade encoding in the frontal eye field during natural scene search. Cerebral Cortex, 24(12), 3232–3245.

Fernyhough, C. (2012). Pieces of light: The new science of memory. London: Profile Books.

Ferrari, PF et al. (2003). Mirror neurons responding to the observation of ingestive and communicative mouth actions in the ventral premotor cortex. European Journal of Neuroscience, 17(8), 1703–1714.

Ferrari, R., Obelieniene, D., Russell, A. S., Darlington, P., Gervais, R., & Green, P. (2001). Symptom expectation after minor head injury: A comparative study between Canada and Lithuania. Clin. Neurol. Neurosurg., 103, 184–190.

Fink, P. W., Foo, P. S., & Warren, W. H. (2009). Catching fly balls in virtual reality: A critical test of the outfielder problem. Journal of Vision, 9(13):14, 1–8.

FitzGerald, T., Dolan, R., & Friston, K. (2014). Model averaging, optimal inference, and habit formation. Frontiers in Human Neuroscience, 8, 1–11. doi:10.3389/fnhum.2014.00457.

Fitzhugh, R. (1958). A statistical analyzer for optic nerve messages. Journal of General Physiology, 41, 675–692.

Fitzpatrick, P., Metta, G., Natale, L., Rao, S., & Sandini, G. (2003). Learning about objects through action: Initial steps towards artificial cognition. IEEE International Conference on Robotics and Automation (ICRA), 12–17 May, Taipei, Taiwan.

Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci., 5, 1688–1703.

(p.343) Fletcher, P., & Frith, C. (2009). Perceiving is believing: A Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews: Neuroscience, 10, 48–58.

Fodor, J. (1983). The modularity of mind. Cambridge, MA: MIT Press.

Fodor, J. (1988). A Reply to Churchland’s ‘Perceptual plasticity and theoretical neutrality’. Philosophy of Science, 55, 188–198.

Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28(1–2), 3–71.

Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308, 662–667. doi:10.1126/science.1106138.

Fogassi, L., Gallese, V., Fadiga, L., & Rizzolatti, G. (1998). Neurons responding to the sight of goal directed hand/arm actions in the parietal area PF (7b) of the macaque monkey. Soc. Neurosci. Abstr., 24, 257.

Ford, J., & Mathalon, D. (2012). Anticipating the future: Automatic prediction failures in schizophrenia. International Journal of Psychophysiology, 83, 232–239.

Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. Neuroimage, 62, 2296–2314.

Frankish, K. (in press). Dennett’s dual-process theory of reasoning. In C. Muñoz-Suárez and F. De Brigard, F. (Eds.), Content and consciousness revisited. New York: Springer.

Franklin, D. W., & Wolpert, D. M. (2011). Computational mechanisms of sensorimotor control. Neuron, 72, 425–442.

Freeman, T. C. A., Champion, R. A., & Warren, P. A. (2010). A Bayesian model of perceived head-centred velocity during smooth pursuit eye movement. Current Biology, 20, 757–762.

Friston, K. (1995). Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapp., 2, 56–78.

Friston, K. (2002). Beyond phrenology: What can neuroimaging tell us about distributed circuitry? Annu. Rev. Neurosci., 25, 221–250.

Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325–1352.

Friston, K. (2005). A theory of cortical responses. Philos. Trans. R. Soc. Lond. B Biol. Sci., 360(1456), 815–836.

Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4(11), e1000211.

Friston, K. (2009). The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13, 293–301.

Friston, K. (2010). The free-energy principle: A unified brain theory? Nat. Rev. Neurosci., 11(2), 127–138.

Friston, K. (2011a). What is optimal about motor control? Neuron, 72, 488–498.

Friston, K. (2011b). Embodied inference: or ‘I think therefore I am, if I am what I think’. In W. Tschacher & C. Bergomi (Eds.), The implications of embodiment (cognition and communication) (pp. 89–125). Exeter, UK: Imprint Academic.

(p.344) Friston, K. (2011c). Functional and effective connectivity: A review. Brain Connectivity, 1(1), 13–36. doi:10.1089/brain.2011.0008.

Friston, K. (2012a). Predictive coding, precision and synchrony. Cognitive Neuroscience, 3(3–4), 238–239.

Friston, K. (2012b). Prediction, perception and agency. Int. J. Psychophysiol., 83, 248–252.

Friston, K. (2012c). A free energy principle for biological systems. Entropy, 14, 2100–2121. doi:10.3390/e14112100.

Friston, K. (2013). Active inference and free energy. Behavioral and Brain Sciences, 36(3), 212–213.

Friston, K., Adams, R., & Montague, R. (2012). What is value-accumulated reward or evidence? Frontiers in Neurorobotics, 6, 11. doi:10.3389/fnbot.2012.00011.

Friston, K., Adams, R. A., Perrinet, L., & Breakspear, M. (2012). Perceptions as hypotheses: Saccades as experiments. Front. Psychol., 3, 151. doi:10.3389/fpsyg.2012.00151.

Friston, K., & Ao, P. (2012). Free-energy, value and attractors. Computational and Mathematical Methods in Medicine. Article ID 937860.

Friston, K. J., Bastos, A. M., Pinotsis, D., & Litvak, V. (2015). LFP and oscillations-what do they tell us? Current Opinion in Neurobiology, 31, 1–6. doi:10.1016/j.conb.2014.05.004

Friston, K., Breakspear, M., & Deco, G. (2012). Perception and self-organized instability. Front. Comput. Neurosci., 6, 44. doi:10.3389/fncom.2012.00044.

Friston, K., Daunizeau, J., & Kiebel, S. J. (2009, July 29). Reinforcement learning or active inference? PLoS One, 4(7), e6421.

Friston, K., Daunizeau, J., Kilner, J., & Kiebel, S. J. (2010). Action and behavior: A free-energy formulation. Biol Cybern., 102(3), 227–260.

Friston, K., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19, 1273–1302.

Friston, K., & Kiebel, S. (2009). Cortical circuits for perceptual inference. Neural Networks, 22, 1093–1104.

Friston, K., Lawson, R., & Frith, C. D. (2013). On hyperpriors and hypopriors: Comment on Pellicano and Burr. Trends in Cognitive. Sciences, 17, 1. doi:10.1016/j.tics.2012.11.003.

Friston, K., Mattout, J., & Kilner, J. (2011). Action understanding and active inference. Biol. Cybern., 104, 137–160.

Friston, K., & Penny, W. (2011). Post hoc Bayesian model selection. Neuroimage, 56(4), 2089–2099.

Friston, K., & Price, C. J. (2001). Dynamic representations and generative models of brain function. Brain Res. Bull., 54(3), 275–285.

Friston, K., Samothrakis, S., & Montague, R. (2012). Active inference and agency: Optimal control without cost functions. Biol. Cybern., 106(8–9), 523–541.

Friston, K., Shiner, T., FitzGerald, T., Galea, J. M., Adams, R., et al. (2012). Dopamine, affordance and active inference. PLoS Comput. Biol., 8(1), e1002327. doi:10.1371/journal.pcbi.1002327.

(p.345) Friston, K., & Stephan, K. (2007). Free energy and the brain. Synthese, 159(3), 417–458.

Friston, K., Thornton, C., & Clark, A. (2012). Free-energy minimization and the dark-room problem. Frontiers in Psychology, 3, 1–7. doi:10.3389/fpsyg.2012.00130.

Frith, C. (2005). The self in action: Lessons from delusions of control. Consciousness and Cognition, 14(4), 752–770.

Frith, C. (2007). Making up the mind: How the brain creates our mental world. Oxford: Blackwell.

Frith, C., & Friston, K. (2012). False perceptions and false beliefs: Understanding schizophrenia. In Working Group on Neurosciences and the Human Person: New perspectives on human activities, the Pontifical Academy of Sciences, 8–10 November 2012, Casina PioIV.

Frith, C., & Frith, U. (2012). Mechanisms of social cognition. Annu. Rev. Psychol., 63, 287–313.

Frith, C., Perry, R., & Lumer, E. (1999). The neural correlates of conscious experience: An experimental framework. Trends in Cognitive Sciences, 3(3), 105–114.

Frith, U. (1989). Autism: Explaining the enigma. Oxford: Blackwell.

Frith, U. (2008). Autism: A very short introduction. New York: Oxford University Press.

Froese, T., & Di Paolo, E. A. (2011). The enactive approach: Theoretical sketches from cell to society. Pragmatics and Cognition, 19, 1–36.

Froese, T., & Ikegami, T. (2013). The brain is not an isolated ‘black box’ nor is its goal to become one. Behavioral and Brain Sciences, 36(3), 33–34.

Gallagher, S., Hutto, D., Slaby, J., & Cole, J. (2013). The brain as part of an enactive system. Behavioral and Brain Sciences, 36(4), 421–422.

Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.

Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9), 396–403.

Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying visual mental imagery and visual perception: An fMRI study. Brain Res. Cogn. Brain Res., 20, 226–241.

Garrod, S., & Pickering, M. (2004). Why is conversation so easy? Trends in Cognitive Sciences, 8(1), 8–11.

Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: Single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19(6), 1239–1255.

Gendron, M., & Barrett, L. F. (2009). Reconstructing the past: A century of ideas about emotion in psychology. Emot. Rev., 1, 316–339.

Gerrans, P. (2007). Mechanisms of madness: Evolutionary psychiatry without evolutionary psychology. Biology and Philosophy, 22, 35–56.

Gershman, S. J., & Daw, N. D. (2012). Perception, action and utility: The tangled skein. In M. Rabinovich, M., K. Friston, & P. Varona (Eds.), Principles of (p.346) brain dynamics: Global state interactions (pp. 293–312). Cambridge, MA: MIT Press.

Gershman, S. J., Moore, C. D., Todd, M. T., Norman, K. N., & Sederberg, P. B. (2012). The successor representation and temporal context. Neural Computation, 24, 1–16.

Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing (pp. 66–82). Hillsdale, NJ.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton-Mifflin.

Gigernzer, G. & Goldstein, D. (2011). The recognition heuristic: A decade of research. Judgment and Decision Making 6: 1: 100–121.

Gigerenzer, G., & Selten, R. (2002). Bounded rationality. Cambridge, MA: MIT Press.

Gigerenzer, G., Todd, P. M., & the ABC Research Group. (1999). Simple heuristics that make us smart. New York: Oxford University Press.

Gilbert, C., & Sigman, M. (2007). Brain states: Top-down influences in sensory processing. Neuron, 54(5), 677–696.

Gilbert, D., & Wilson, T. (2009, May 12). Why the brain talks to itself sources of error in emotional prediction. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 364(1521), 1335–1341. doi:10.1098/rstb.2008.0305.

Gilestro, G. F., Tononi, G., & Cirelli, C. (2009). Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science, 324(5923), 109–112.

Glascher, J., Daw, N. D., Dayan, P., & O’Doherty, J. P. (2010). States versus rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 66(4):585–95 doi:10.1016/j.neuron.2010.04.016.

Gold, J. N., & Shadlen, M. N. (2001). Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Sciences, 5:1: pp. 10–16.

Goldstone, R. L. (1994). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology: General, 123, 178–200.

Goldstone, R. L., & Hendrickson, A. T. (2010). Categorical perception. Interdisciplinary Reviews: Cognitive Science, 1, 65–78.

Goldstone, R. L., Landy, D., & Brunel, L. (2011) Improving perception to make distant connections closer. Frontiers in Psychology, 2, 385. doi:10.3389/fpsyg.2011.00385.

Goldwater, S., Griffiths, T. L., & Johnson, M. (2009). A Bayesian framework for word segmentation: Exploring the effects of context. Cognition, 112, 21–54.

Goodman, N., Ullman, T., & Tenenbaum, J. (2011). Learning a theory of causality. Psychological Review. 118.1: 110–119.

Gregory, R. (2001). The Medawar Lecture 2001: Knowledge for vision: Vision for knowledge. Philosophical Transactions B, 360. 1458: 1231–1251.

Gregory, R. (1980). Perceptions as hypotheses. Phil. Trans. R. Soc. Lond., Series B, Biological Sciences, 290(1038), 181–197.

(p.347) Griffiths, P. E., & Gray, R. D. (2001). Darwinism and developmental systems. In S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 195–218). Cambridge, MA: MIT Press.

Griffiths, T., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14(8), 357–364.

Griffiths, T. L., Sanborn, A. N., Canini, K. R., & Navarro, D. J. (2008). Categorization as nonparametric Bayesian density estimation. In M. Oaksford & N. Chater (Eds.), The probabilistic mind: Prospects for rational models of cognition 303-350. Oxford: Oxford University Press.

Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14–23.

Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 87(1), 1–51.

Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377–442.

Gu, X., et al. (2013). Anterior insular cortex and emotional awareness. J. Comp. Neurol., 521, 3371–3388.

Haddock, A., & Macpherson, F. (Eds.). (2008). Disjunctivism: Perception, action, and knowledge. Oxford: Oxford University Press.

Happe, F., & Frith, U. (2006). The weak coherence account: Detail focused cognitive style in autism spectrum disorders. J. Autism Dev. Disord., 36, 5–25.

Happe, F. G. (1996). Studying weak central coherence at low levels: Children with autism do not succumb to visual illusions. A research note. J. Child Psychol. Psychiatry, 37, 873–877.

Harman, G. (1990). The intrinsic quality of experience. In J. Tomberlin (Ed.), Philosophical Perspectives 4 (pp. 64–82). Atascadero, CA: Ridgeview Press.

Harmelech, T., & Malach, R. 2013 Neurocognitive biases and the patterns of spontaneous correlations in the human cortex. Trends in Cognitive Sciences, 17(12), 606–615.

Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394, 780–784. doi:10.1038/29528.

Harris, C. M., & Wolpert, D. M. (2006). The main sequence of saccades optimizes speed-accuracy trade-off. Biological Cybernetics, 95(1), 21–29.

Harrison, L., Bestmann, S., Rosa, M., Penny, W., & Green, G. (2011). Time scales of representation in the human brain: Weighing past information to predict future events. Frontiers in Human Neuroscience, 5, 37. doi:10.3389/fnhum.2011.00037.

Haruno, M., Wolpert, D. M., & Kawato, M. (2003). Hierarchical mosaic for movement generation. International Congress Series, 1250, 575–590.

Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl Acad. Sci. USA, 104, 1726–1731. doi:10.1073/pnas.0610561104.

(p.348) Hassabis, D., & Maguire, E. A. (2009). The construction system of the brain. Phil. Trans. R. Soc. B, 364, 1263–1271. doi:10.1098/rstb.2008.0296.

Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., & Keysers, C. (2012). Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 16(2), 114–121.

Hawkins, J., & Blakeslee, S. (2004). On intelligence. New York: Owl Books.

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2425–2430.

Hayhoe, M. M., Shrivastava, A., Mruczek, R., & Pelz, J. B. (2003). Visual memory and motor planning in a natural task. Journal of Vision, 3(1), 49–63.

Hebb, D. O. (1949). The organization of behavior. New York: Wiley & Sons.

Heeger, D., & Ress, D. (2002). What does fMRI tell us about neuronal activity? Nature Reviews/Neuroscience, 3, 142–151.

Helmholtz, H. (1860/1962). Handbuch der physiologischen optik (J. P. C. Southall, Ed., English trans., Vol. 3). New York: Dover.

Henson, R. (2003). Neuroimaging studies of priming. Progress in Neurobiology, 70, 53–81.

Henson, R., & Gagnepain, P. (2010). Predictive, interactive multiple memory systems. Hippocampus, 20(11), 1315–1326.

Herzfeld, D., & Shadmehr, R. (2014). Cerebellum estimates the sensory state of the body. Trends in Cognitive Neurosciences, 18, 66–67.

Hesselmann, G., Kell, C., Eger, E., & Kleinschmidt, A. (2008). Spontaneous local variations in ongoing neural activity bias perceptual decisions. Proceedings of the National Academy of Sciences, 105(31), 10984–10989.

Hesselmann, G., Sadaghiani, S., Friston, K. J., & Kleinschmidt, A. (2010). Predictive coding or evidence accumulation? False inference and neuronal fluctuations. PLoS One, 5(3), e9926.

Hesslow, G. (2002). Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences, 6(6), 242–247.

Heyes, C. (2001). Causes and consequences of imitation. Trends in Cognitive Sciences, 5, 253–261. doi:10.1016/S1364-6613(00)01661-2.

Heyes, C. (2005). Imitation by association. In S. Hurley & N. Chater (Eds.), Perspectives on imitation: From mirror neurons to memes (pp. 157–176). Cambridge, MA: MIT Press.

Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews, 34, 575–583.

Heyes, C. (2012). New thinking: The evolution of human cognition. Phil. Trans. R. Soc. B 367, 2091–2096.

Hilgetag, C., Burns, G., O’Neill, M., Scannell, J., & Young, M. (2000). Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 91–110. doi:10.1098/rstb.2000.0551; pmid: 10703046.

Hilgetag, C., O’Neill, M., & Young, M. (1996). Indeterminate organization of the visual system. Science, 271, 776–777. doi:10.1126/science.271.5250.776; pmid: 8628990.

(p.349) Hinton, G. E. (1990). Mapping part–whole hierarchies into connectionist networks Artificial Intelligence, 46, 47–75.

Hinton, G. E. (2005). What kind of a graphical model is the brain? International Joint Conference on Artificial Intelligence, Edinburgh.

Hinton, G. E. (2007a). Learning multiple layers of representation. Trends in Cognitive Sciences, 11, 428–434.

Hinton, G. E. (2007b). To recognize shapes, first learn to generate images. In P. Cisek, T. Drew & J. Kalaska (Eds.), Computational neuroscience: Theoretical insights into brain function (pp. 535–548). Amsterdam: Elsevier.

Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268, 1158–1160.

Hinton, G. E., & Ghahramani, Z. (1997). Generative models for discovering sparse distributed representations. Philosophical Transactions Royal Society B, 352, 1177–1190.

Hinton, G. E., & Nair, V. (2006). Inferring motor programs from images of handwritten digits. In Y. Weiss (Ed.), Advances in neural information processing systems, 18 (pp. 515–522). Cambridge, MA: MIT Press.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.

Hinton, G. E., & von Camp, D. (1993). Keeping neural networks simple by minimizing the description length of weights. Proceedings of COLT-93, 5–13.

Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length and Helmholtz free energy. In J. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems, 6. San Mateo, CA: Morgan Kaufmann.

Hipp, J. F., Engel, A. K., & Siegel, M. (2011). Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron, 69, 387–396.

Hirschberg, L. (2003). Drawn to narrative. New York Times Magazine, November 9.

Hobson, J., & Friston, K. (2012). Waking and dreaming consciousness: Neurobiological and functional considerations. Prog. Neurobiol., 98(1), 82–98.

Hobson, J., & Friston, K. (2014). Consciousness, dreams, and inference. Journal of Consciousness Studies, 21(1–2), 6–32.

Hobson, J. A. (2001). The dream drugstore: Chemically altered states of consciousness. Cambridge, MA: MIT Press.

Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791–804.

Hohwy, J. (2007a). Functional integration and the mind. Synthese, 159(3), 315–328.

Hohwy, J. (2007b). The sense of self in the phenomenology of agency and perception. Psyche, 13(1) 1-20 (Susanna Siegel, Ed.).

Hohwy, J. (2012). Attention and conscious perception in the hypothesis testing brain. Frontiers in Psychology, 3, 96. doi:10.3389/fpsyg.2012.00096. 2012.

Hohwy, J. (2013). The predictive mind. New York: Oxford University Press.

Hohwy, J. (2014). The self-evidencing brain. Noûs. 1–27 doi: 10.1111/nous.12062.

(p.350) Hohwy, J., Roepstorff, A., & Friston, K. (2008). Predictive coding explains binocular rivalry: An epistemological review. Cognition, 108(3), 687–701.

Holle, H., et al. (2012). Neural basis of contagious itch and why some people are more prone to it. Proc. Natl. Acad. Sci. USA, 109, 19816–19821.

Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci., 1, 304–309.

Hong, L. E., Avila, M. T., & Thaker, G. K. (2005). Response to unexpected target changes during sustained visual tracking in schizophrenic patients. Exp. Brain Res., 165, 125–131. PubMed: 15883805.

Hong, L. E., Turano, K. A., O’Neill, J., Hao, L. I. W., McMahon, R. P., Elliott, A., & Thaker, G. K. (2008). Refining the predictive pursuit endophenotype in schizophrenia. Biol. Psychiatry, 63, 458–464. PubMed: 17662963.

Horwitz, B. (2003). The elusive concept of brain connectivity. Neuroimage, 19, 466–470.

Hoshi, E., & Tanji, J. (2007). Distinctions between dorsal and ventral premotor areas: Anatomical connectivity and functional properties. Curr. Opin. Neurobiol., 17(2), 234–242.

Hosoya, T., Baccus, S. A., & Meister, M. (2005). Dynamic predictive coding by the retina. Nature, 436(7), 71–77.

Houlsby, N. M. T., Huszár, F., Ghassemi, M. M., Orbán, G., Wolpert, D. M., & Lengyel, M. (2013). Cognitive tomography reveals complex, task-independent mental representations. Curr. Biol., 23, 2169–2175.

Howe, C. Q., & Purves, D. (2005). The Müller-Lyer illusion explained by the statistics of image–source relationships. Proceedings of the National Academy of Sciences of the United States of America, 102(4), 1234–1239. doi:10.1073/pnas.0409314102.

Huang, Y., & Rao, R. (2011). Predictive coding. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 580–593.

Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28, 229–289.

Hughes, H. C., Darcey, T. M., Barkan, H. I., Williamson, P. D., Roberts, D. W., & Aslin, C. H. (2001). Responses of human auditory association cortex to the omission of an expected acoustic event. Neuroimage, 13, 1073–1089.

Humphrey, N. (2000). How to solve the mind–body problem. Journal of Consciousness Studies, 7, 5–20.

Humphrey, N. (2006). Seeing red: A study in consciousness. Cambridge, MA: Harvard University Press.

Humphrey, N. (2011). Soul dust: The magic of consciousness. Princeton, NJ: Princeton University Press.

Humphreys, G. W., & Riddoch, J. M. (2000). One more cup of coffee for the road: Object-action assemblies, response blocking and response capture after frontal lobe damage. Exp. Brain Res., 133, 81–93.

(p.351) Hupé, J. M., James, A. C., Payne, B. R., Lomber, S. G., Girard, P., & Bullier, J. (1998). Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature, 394, 784–787.

Hurley, S. (1998). Consciousness in action. Cambridge, MA: Harvard University Press.

Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.

Hutchins, E. (2014). The cultural ecosystem of human cognition. Philosophical Psychology, 27(1), 34–49.

Hutto, D. D., & Myin, E. (2013). Radicalizing enactivism: Basic minds without content.

Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annu. Rev. Psychol., 60, 653–670.

Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3, e79.

Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526–2528.

Iglesias, S., Mathys, C., Brodersen, K. H., Kasper, L., Piccirelli, M., den Ouden, H. E., & Stephan, K. E. (2013). Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. Neuron, 80(2), 519–530. doi:10.1016/j.neuron.2013.09.009.

Ingvar, D. H. (1985). ‘Memory of the future’: An essay on the temporal organization of conscious awareness. Human Neurobiology, 4, 127–136.

Ito, M., & Gilbert, C. D. (1999). Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron, 22, 593–604.

Jackendoff, R. (1996). How language helps us think. Pragmatics and Cognition, 4(1), 1–34.

Jackson, F. (1977). Perception: A representative theory. Cambridge: Cambridge University Press.

Jacob, B., Hirsh, R., Mar, A., & Peterson, J. B. (2013). Personal narratives as the highest level of cognitive integration. Behavioral and Brain Sciences, 36, 216–217. doi:10.1017/S0140525X12002269.

Jacob, P., & Jeannerod, M. (2003). Ways of seeing: The scope and limits of visual cognition. Oxford: Oxford University Press.

Jacobs, R. A., & Kruschke, J. K. (2010). Bayesian learning theory applied to human cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 8–21. doi:10.1002/wcs.80.

Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical memory and perceptual learning. J. Exp. Psychol. Gen., 110, 306–340.

James, W. (1890/1950). The principles of psychology, Vols. I, II. Cambridge, MA: Harvard University Press.

Jeannerod, M. (1997). The cognitive neuroscience of action. Cambridge, MA: Blackwell.

(p.352) Jeannerod, M. (2006). Motor cognition: What actions tell the Self. Oxford: Oxford University Press.

Jehee, J. F. M., & Ballard, D. H. (2009). Predictive feedback can account for biphasic responses in the lateral geniculate nucleus. PLoS Comput. Biol., 5(5), e1000373.

Jiang, J., Heller, K., & Egner, T. (2014). Bayesian modeling of flexible cognitive control. Neuroscience and Biobehavioral Reviews, 46, 30–34.

Johnson, J. D., McDuff, S. G. R., Rugg, M. D., & Norman, K. A. (2009). Recollection, familiarity, and cortical reinstatement: A multivoxel pattern analysis. Neuron, 63, 697–708.

Johnson-Laird, P. N. (1988). The computer and the mind: An introduction to cognitive science. Cambridge, MA: Harvard University Press.

Jones, A., Wilkinson, H. J., & Braden, I. (1961). Information deprivation as a motivational variable. Journal of Experimental Psychology, 62, 310–311.

Joseph, R. M., et al. (2009). Why is visual search superior in autism spectrum disorder? Dev. Sci., 12, 1083–1096.

Joutsiniemi, S. L., & Hari, R. (1989) Omissions of auditory stimuli may activate frontal cortex. Eur. J. Neurosci., 1, 524–528.

Jovancevic, J., Sullivan, B., & Hayhoe, M. (2006). Control of attention and gaze in complex environments. Journal of Vision, 6(12):9, 1431–1450. http://www.journalofvision.org/content/6/12/9, doi:10.1167/6.12.9.

Jovancevic-Misic, J., & Hayhoe, M. (2009). Adaptive gaze control in natural environments. Journal of Neuroscience, 29, 6234–6238.

Joyce, J. (2008). Bayes’ Theorem. Stanford Encyclopedia of Philosophy (2008).

Kachergis, G., Wyatte, D., O’Reilly, R. C., de Kleijn, R., & Hommel, B. (2014). A continuous time neural model for sequential action. Phil. Trans. R. Soc. B 369: 20130623.

Kahneman, D. (2011). Thinking fast and slow. London: Allen Lane.

Kahneman, D., & Tversky, A. (1972). Subjective probability:A judgment of representativeness. Cognitive Psychology 3 (3), 430–454. doi:10.1016/0010-0285(72)90016-3

Kahneman, D., Krueger, A. B., Schkade, D., Schwarz, N., & Stone, A. A. (2006). Would you be happier if you were richer? A focusing illusion. Science, 312, 1908–1910.

Kaipa, K. N., Bongard, J. C., & Meltzoff, A. N. (2010). Self discovery enables robot social cognition: Are you my teacher? Neural Networks, 23, 1113–1124.

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nat. Neurosci., 8, 679–685.

Kanwisher, N. G., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302–4311.

Kaplan, E. (2004). The M, P and K pathways of the primate visual system. In J. S. Werner & L. M. Chalupa (Eds.), The visual neurosciences (pp. 481–493). Cambridge, MA: MIT Press.

(p.353) Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718–727.

Kawato, M., Hayakama, H., & Inui, T. (1993). A forward-inverse optics model of reciprocal connections between visual cortical areas. Network, 4, 415–422.

Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008). Identifying natural images from human brain activity. Nature, 452, 352–355.

Keele, S. W. (1968). Movement control in skilled motor performance. Psychol. Bull., 70, 387–403. doi:10.1037/ h0026739.

Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning overhypotheses with hierarchical Bayesian models. Developmental Science, 10(3), 307–321.

Keysers, C., Kaas, J. H., & Gazzola, V. (2010). Somatosensation in social perception. Nature Reviews Neuroscience, 11(6), 417–428.

Khaitan, P., & McClelland, J. L. (2010). Matching exact posterior probabilities in the Multinomial Interactive Activation Model. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd Annual Meeting of the Cognitive Science Society (p. 623). Austin, TX: Cognitive Science Society.

Kidd, C., Piantadosi, S., & Aslin, R. (2012). The Goldilocks effect: Human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS One, 7(5), e36399. doi:10.1371/journal.pone.0036399.

Kiebel, S. J., & Friston K. J. (2011) Free energy and dendritic self-organization. Frontiers in Systems Neurosci. 5(80), 1–13.

Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2009). Perception and hierarchical dynamics. Front. Neuroinform., 3, 20.

Kiebel, S. J., Garrido, M. I., Moran, R., Chen, C., & Friston, K. J. (2009). Dynamic causal modeling for EEG and MEG. Human Brain Mapping, 30(6), 1866–1876.

Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cogn. Process., 8, 159–166.

Kim, J. G., & Kastner, S. (2013). Attention flexibility alters tuning for object categories. Trends in Cognitive Sciences, 17(8), 368–370.

King, J., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space. Phil. Trans. R. Soc. B, 369.

Kirmayer, L. J., & Taillefer, S. (1997). Somatoform disorders. In S. M. Turner & M. Hersen (Eds.), Adult psychopathology and diagnosis (3rd edn.) (pp. 333–383). New York: Wiley.

Kluzik, J., Diedrichsen, J., Shadmehr, R., & Bastian, A. J. (2008). Reach adaptation: What determines whether we learn an internal model of the tool or adapt the model of our arm? J. Neurophysiol., 100, 1455–1464.

Knill, D., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719.

Koch, C., & Poggio, T. (1999). Predicting the visual world: Silence is golden. Nature Neuroscience, 2(1), 79–87.

Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4, 219–227.

(p.354) Kohonen, T. (1989). Self-organization and associative memory. Berlin: Springer-Verlag.

Kohonen, T. (2001). Self-organizing maps (3rd, extended edn.). Berlin: Springer.

Kok, P., Brouwer, G. J., van Gerven, M. A. J., & de Lange, F. P. (2013). Prior expectations bias sensory representations in visual cortex. Journal of Neuroscience. 33(41): 16275–16284; doi: 10.1523/JNEUROSCI.0742-13.2013.

Kok, P., Jehee, J. F. M., & de Lange, F. P. (2012). Less is more: Expectation sharpens representations in the primary visual cortex. Neuron, 75, 265–270.

Kolossa, A., Fingscheidt, T., Wessel, K., & Kopp, B. (2013). A model-based approach to trial-by-trial P300 amplitude fluctuations. Frontiers in Human Neuroscience, 6(359), 1–18. doi:10.3389/fnhum.2012.00359.

Kolossa, A., Kopp, B., & Fingscheidt, T. (2015). A computational analysis of the neural bases of Bayesian inference. NeuroImage, 106, 222–237. doi:10.1016/j.neuroimage.2014.11.007.

König, P., & Krüger, N. (2006). Symbols as self-emergent entities in an optimization process of feature extraction and predictions. Biological Cybernetics, 94(4), 325–334.

König, P., Wilming, N., Kaspar, K., Nagel, S. K., & Onat, S. (2013). Predictions in the light of your own action repertoire as a general computational principle. Behavioral and Brain Sciences, 36, 219–220.

Körding, K., & Wolpert, D. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10(7), 319–326. doi:10.1016/j.tics.2006.05.003.

Körding, K. P., Tenenbaum, J. B., & Shadmehr, R. (2007). The dynamics of memory as a consequence of optimal adaptation to a changing body. Nature Neuroscience, 10, 779–786.

Kosslyn, S. M., Thompson, W. L., Kim, I. J., & Alpert, N. M. (1995). Topographical representations of mental images in primary visual cortex. Nature, 378, 496–498.

Koster-Hale, J., & Saxe, R. (2013). Theory of mind: A neural prediction problem. Neuron, 79(5), 836–848.

Kriegstein, K., & Giraud, A. (2006). Implicit multisensory associations influence voice recognition. PLoS Biology, 4(10), e326.

Kuo, A. D. (2005). An optimal state estimation model of sensory integration in human postural balance. J. Neural Eng., 2, S235–S249.

Kveraga, K., Ghuman, A., & Bar, M. (2007). Top-down predictions in the cognitive brain. Brain and Cognition, 65, 145–168.

Kwisthout, J., & van Rooij, I. (2013). Bridging the gap between theory and practice of approximate Bayesian inference. Cognitive Systems Research, 24, 2–8.

Laeng, B., & Sulutvedt, U. (2014). The eye pupil adjusts to imaginary light. Psychol. Sci., 1, 188–197. doi:10.1177/0956797613503556. Epub 2013 Nov 27.

Land, M. (2001). Does steering a car involve perception of the velocity flow field? In J. M. Zanker & J. Zeil (Eds.), Motion vision: Computational, neural, and ecological constraints (pp. 227–235). Berlin: Springer Verlag.

(p.355) Land, M. F., & McLeod, P. (2000). From eye movements to actions: How batsmen hit the ball. Nature Neuroscience, 3, 1340–1345.

Land, M. F., Mennie, N., & Rusted, J. (1999). The roles of vision and eye movements in the control of activities of daily living. Perception, 28, 1311–1328.

Land, M. F., & Tatler, B. W. (2009). Looking and acting: Vision and eye movements in natural behaviour. Oxford: Oxford University Press.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The Latent Semantic Analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to Latent Semantic Analysis. Discourse Processes, 25, 259–284.

Landauer, T. K., McNamara, D. S., Dennis, S., & W. Kintsch (Eds.). (2007). Handbook of latent semantic analysis. Mahwah, NJ: Lawrence Erlbaum Associates.

Landy, D., & Goldstone, R. L. (2005). How we learn about things we don’t already understand. Journal of Experimental and Theoretical Artificial Intelligence, 17, 343–369. doi:0.1080/09528130500283832.

Lange, C. G. (1885). Om sindsbevaegelser: Et psyko-fysiologisk studie. Copenhagen: Jacob Lunds.

Langner, R., Kellermann, T., Boers, F., Sturm, W., Willmes, K., & Eickhoff, S. B. (2011). Modality-specific perceptual expectations selectively modulate baseline activity in auditory, somatosensory, and visual cortices. Cerebral Cortex, 21(12), 2850–2862.

Lauwereyns, J. (2012). Brain and the gaze: On the active boundaries of vision. Cambridge, MA: MIT Press.

LeDoux, J. E. (1995). Emotion: Clues from the brain. Annual Review of Psychology46, 209–235.

Lee, D., & Reddish, P. (1981). Plummeting gannets: A paradigm of ecological optics. Nature, 293, 293–294.

Lee, M. (2010). Emergent and structured cognition in Bayesian models: Comment on Griffiths et al. and McClelland et al. Trends in Cognitive Sciences, 14(8), 345–346.

Lee, R., Walker, R., Meeden, L., & Marshall, J. (2009). Category-based intrinsic motivation. In Proceedings of the Ninth International Conference on Epigenetic Robotics. Retrieved from http://www.cs.swarthmore.edu/~meeden/papers/meeden.epirob09.pdf.

Lee, S. H., Blake, R., & Heeger, D. J. (2005). Traveling waves of activity in primary visual cortex during binocular rivalry. Nature Neuroscience, 8(1), 22–23.

Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of Optical Society of America, A, 20(7), 1434–1448.

Lenggenhager, B., et al. (2007). Video ergo sum: Manipulating bodily self consciousness. Science, 317(5841), 1096–1099.

Leopold, D., & Logothetis, N. (1999). Multistable phenomena: Changing views in perception. Trends in Cognitive Sciences, 3, 254–264.

(p.356) Levine, J. (1983). Materialism and qualia: The explanatory gap. Pacific Philosophical Quarterly, 64, 354–361.

Levy, D. L., Sereno, A. B., Gooding, D. C., & O’Driscoll, G. A. (2010). Eye tracking dysfunction in schizophrenia: Characterization and pathophysiology. Current Topics in Behavioral Neuroscience, 4, 311–347.

Li, Y., & Strausfeld, N. J. (1999). Multimodal efferent and recurrent neurons in the medial lobes of cockroach mushroom bodies. J. Comp. Neurol., 409, 603–625.

Limanowski, J., & Blankenburg, F. (2013). Minimal self-models and the free energy principle. Frontiers in Human Neuroscience, 7, 547. doi:10.3389/fnhum.2013.00547.

Littman, M.L., Majercik, S.M., and Pitassi, T. (2001). Stochastic boolean satisfiability. J. Autom. Reason. 27, 251–296.

Lotze, H. (1852). Medicinische Psychologie oder Physiologie der Seele. Leipzig, Germany: Weidmannsche Buchhandlung.

Lovero, K. L., et al. (2009). Anterior insular cortex anticipates impending stimulus significance. Neuroimage, 45, 976–983.

Lowe, R., & Ziemke, T. (2011). The feeling of action tendencies: On the emotional regulation of goal-directed behavior. Frontiers in Psychology, 2, 346. doi:10.3389/fpsyg.2011.00346.

Lungarella, M., & Sporns, O. (2005). Information self-structuring: Key principles for learning and development. Proceedings 2005 IEEE Intern. Conf. Development and Learning, 25–30.

Lupyan, G. (2012a). Linguistically modulated perception and cognition: The label feedback hypothesis. Frontiers in Cognition, 3, 54. doi:10.3389/fpsyg.2012.00054.

Lupyan, G. (2012b). What do words do? Towards a theory of language-augmented thought. In B. H. Ross (Ed.), The psychology of learning and motivation, 57 (pp. 255–297). New York: Academic Press.

Lupyan, G. (in press). Cognitive penetrability of perception in the age of prediction: Predictive systems are penetrable systems. Review of Philosophy and Psychology.

Lupyan, G., & Bergen, B. (in press). How language programs the mind. Topics in Cognitive Science.

Lupyan, G., & Clark, A. (in press). Words and the world: Predictive coding and the language-perception-cognition interface. Current Directions in Psychological Science.

Lupyan, G., & Thompson-Schill, S. L. (2012). The evocative power of words: Activation of concepts by verbal and nonverbal means. Journal of Experimental Psychology-General, 141(1), 170–186. doi:10.1037/a0024904.

Lupyan, G., & Ward, E. J. (2013). Language can boost otherwise unseen objects into visual awareness. Proceedings of the National Academy of Sciences, 110(35), 14196–14201. doi:10.1073/pnas.1303312110.

Ma, W. Ji (2012). Organizing probabilistic models of perception. Trends in Cognitive Sciences, 16(10), 511–518.

(p.357) MacKay, D. (1956). The epistemological problem for automata. In C. E. Shannon & J. McCarthy (Eds.), Automata studies (pp. 235–251). Princeton, NJ: Princeton University Press.

MacKay, D. J. C. (1995). Free-energy minimization algorithm for decoding and cryptoanalysis. Electron Lett., 31, 445–447.

Maher, B. (1988). Anomalous experience and delusional thinking: The logic of explanations. In T. F. Oltmanns & B. A. Maher (Eds.), Delusional beliefs (pp. 15–33). Chichester: Wiley.

Maslach, C (1979). Negative emotional biasing of unexplained arousal. Journal of Personality and Social Psychology 37: 953–969. doi:10.1037/0022-3514.37.6.953.

Maloney, L. T., & Mamassian, P. (2009). Bayesian decision theory as a model of visual perception: Testing Bayesian transfer. Visual Neuroscience, 26, 147–155.

Mamassian, P., Landy, M., & Maloney, L. (2002). Bayesian modeling of visual perception. In R. Rao, B. Olshausen, & M. Lewicki (Eds.), Probabilistic models of the brain 13-36 Cambridge, MA: MIT Press.

Mansinghka, V. K., Kemp, C., Tenenbaum, J. B., & Griffiths, T. L. (2006). Structured priors for structure learning. In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence (UAI) 324–331 Arlington, VA: AUAI Press.

Marcus, G., & Davis, E. (2013). How robust are probabilistic models of higher-level cognition? Psychol. Sci., 24(12), 2351–2360. doi:10.1177/0956797613495418.

Mareschal, D., Johnson, M., Sirois, S., Spratling, M., Thomas, M., & Westermann, G. (2007). Neuroconstructivism—I: How the brain constructs cognition. Oxford, Oxford University Press.

Markov, N. T., Ercsey-Ravasz, M., Van Essen, D. C., Knoblauch, K., Toroczkai, Z., & Kennedy, H. (2013). Cortical high-density counterstream architectures. Science, 342(6158). doi:10.1126/science.1238406.

Markov, N. T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C., Lamy, C., Misery, P., Giroud, P., Ullman, S., Barone, P., Dehay, C., Knoblauch, K., & Kennedy, H. (2014). Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol., 522(1): 225–259.

Marshall, G. D.; Zimbardo, P.G. (1979). Affective consequences of inadequately explained physiological arousal. Journal of Personality and Social Psychology 37: 970–988. doi:10.1037/0022-3514.37.6.970.

Marr, D. (1982). Vision: A computational approach. San Francisco, CA: Freeman & Co.

Martius, G., Der, R., & Ay, N. (2013). Information driven self-organization of complex robotic behaviors. PLoS One, 8(5), e63400.

Matarić, M. (1990). Navigating with a rat brain: A neurobiologically-inspired model for robot spatial representation. In J.-A. Meyer & S. Wilson (Eds.), Proceedings, From Animals to Animats: First International Conference on Simulation of Adaptive Behavior (SAB-90) (pp. 169–175). Cambridge, MA: MIT Press.

Matarić, M. (1992). Integration of representation into goal-driven behavior-based robots. IEEE Transactions on Robotics and Automation, 8(3), 304–312.

(p.358) Maturana, H. (1980). Biology of cognition. In H. Maturana, R. Humberto, & F. Varela, Autopoiesis and cognition (pp. 2–62). Dordrecht: Reidel.

Maturana, H., & Varela, F. (1980). Autopoiesis and cognition: The realization of the living. Boston, MA: Reidel.

Maxwell, J. P., Masters, R. S., & Poolton, J. M. (2006). Performance breakdown in sport: The roles of reinvestment and verbal knowledge. Res. Q. Exerc. Sport, 77(2), 271–276.

McBeath, M., Shaffer, D., & Kaiser, M. (1995). How baseball outfielders determine where to run to catch fly balls. Science, 268, 569–573.

McClelland, J. L. (2013). Integrating probabilistic models of perception and interactive neural networks: A historical and tutorial review. Frontiers in Psychology, 4, 503.

McClelland, J. L., Mirman, D., Bolger, D. J., & Khaitan, P. (2014). Interactive activation and mutual constraint satisfaction in perception and cognition. Cognitive Science, 6, 1139–1189. doi:10.1111/cogs.

McClelland, J. L., & Rumelhart, D. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375–407.

McClelland, J. L., Rumelhart, D., & the PDP Research Group (1986). Parallel distributed processing (Vol. II). Cambridge, MA: MIT Press.

McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics Research, 9(2), 68–82.

Melloni, L., Schwiedrzik, C. M., Muller, N., Rodriguez, E., & Singer, W. (2011). Expectations change the signatures and timing of electrophysiological correlates of perceptual awareness. Journal of Neuroscience, 31(4), 1386–1396.

Meltzoff, A. N. (2007a). ‘Like me’: A foundation for social cognition. Developmental Science, 10(1), 126–134.

Meltzoff, A. N. (2007b). The ‘like me’ framework for recognizing and becoming an intentional agent. Acta Psychologica, 124(1), 26–43.

Meltzoff, A. N., & Moore, M. K. (1997). Explaining facial imitation: A theoretical model. Early Development and Parenting, 6, 179–192.

Menary, R. (Ed.). (2010). The extended mind. Cambridge, MA: MIT Press.

Merckelbach, H., & van de Ven, V. (2001). Another White Christmas: Fantasy proneness and reports of ‘hallucinatory experiences’ in undergraduate students. Journal of Behaviour Therapy and Experimental Psychiatry, 32, 137–144.

Merleau-Ponty, M. (1945/1962). The phenomenology of perception. Trans. Colin Smith. London: Routledge and Kegan Paul.

Mesulam, M. (1998). From sensation to cognition, Brain, 121(6), 1013–1052.

Metta, G., & Fitzpatrick, P. (2003). Early integration of vision and manipulation. Adaptive Behavior, 11(2), 109–128.

Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt, Rinehart and Winston, Inc.

Miller, L. K. (1999). The savant syndrome: Intellectual impairment and exceptional skill. Psychol. Bull., 125, 31–46.

(p.359) Millikan, R. G. (1996). Pushmi-pullyu representations. In J. Tomberlin (Ed.), Philosophical perspectives, 9 (pp. 185–200). Atascadero CA: Ridgeview Publishing.

Milner, D., & Goodale, M. (1995). The visual brain in action. Oxford: Oxford University Press.

Milner, D., & Goodale, M. (2006). The visual brain in action (2nd ed.). Oxford: Oxford University Press.

Miyawaki, Y., Uchida, H., Yamashita, O., Sato, M. A., Morito, Y., Tanabe, H. C., Sadato, N., & Kamitani, Y. (2008). Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron, 60(5), 915–929. doi:10.1016/j.neuron.2008.11.004.

Mnih, A., & Hinton, G. E. (2007). Three new graphical models for statistical language modelling. International Conference on Machine Learning, Corvallis, Oregon. Available at: http://www.cs.toronto.edu/~hinton/papers.html#2007.

Mohan, V., & Morasso, P. (2011). Passive motion paradigm: An alternative to optimal control. Frontiers in Neurorobotics, 5, 4. doi:10.3389/fnbot.2011.00004.

Mohan, V., Morasso, P., Sandini, G., & Kasderidis, S. (2013). Inference through embodied simulation in cognitive robots. Cognitive Computation, 5(3), 355–382.

Møller, P., & Husby, R. (2000). The initial prodrome in schizophrenia: Searching for naturalistic core dimensions of experience and behavior. Schizophrenia Bulletin, 26, 217–232.

Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci., 16, 1936–1947.

Montague, P. R., Dolan, R. J., Friston, K., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1), 72–80. doi:10.1016/j.tics.2011.11.018.

Moore, G. E. (1903/1922). The refutation of idealism. Reprinted in G. E. Moore, Philosophical studies. London: Routledge & Kegan Paul, 1922.

Moore, G. E. (1913/1922). The status of sense-data. Proceedings of the Aristotelian Society, 1913. Reprinted in G. E. Moore, Philosophical studies. London: Routledge & Kegan Paul, 1922.

Morrot, G., Brochet, F., & Dubourdieu, D. (2001). The color of odors. Brain and Language, 79, 309–320.

Mottron, L., et al. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. J. Autism Dev. Disord., 36, 27–43.

Moutoussis, M., Trujillo-Barreto, N., El-Deredy, W., Dolan, R. J., & Friston, K. (2014). A formal model of interpersonal inference. Frontiers in Human Neuroscience, 8, 160. doi:10.3389/fnhum.2014.00160.

Mozer, M. C., & Smolensky, P. (1990). Skeletonization: A technique for trimming the fat from a network via relevance assessment. In D. S. Touretzky & M. Kaufmann (Eds.), Advances in neural information processing, 1 (pp. 177–185). San Mateo, CA: Morgan Kaufmann.

Muckli, L. (2010). What are we missing here? Brain imaging evidence for higher cognitive functions in primary visual cortex v1. Int. J. Imaging Syst. Techno. (IJIST), 20, 131–139.

(p.360) Muckli, L., Kohler, A., Kriegeskorte, N., & Singer, W. (2005). Primary visual cortex activity along the apparent-motion trace reflects illusory perception. PLoSBio, 13, e265.

Mumford, D. (1992). On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol. Cybern., 66, 241–251.

Mumford, D. (1994). Neuronal architectures for pattern-theoretic problems. In C. Koch & J. Davis (Eds.), Large-scale theories of the cortex (pp. 125–152). Cambridge, MA: MIT Press.

Murray, S. O., Boyaci, H., & Kersten, D. (2006). The representation of perceived angular size in human primary visual cortex. Nature Reviews: Neuroscience, 9, 429–434.

Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L. (2002). Shape perception reduces activity in human primary visual cortex. Proc. Natl. Acad. Sci. USA, 99(23), 15164–15169.

Murray, S. O., Schrater, P., & Kersten, D. (2004). Perceptual grouping and the interactions between visual cortical areas. Neural Networks, 17(5–6), 695–705.

Musmann, H. (1979). Predictive image coding. In W. K. Pratt (Ed.), Image transmission techniques 73-112 New York: Academic Press.

Nagel, T. (1974). What is it like to be a bat? Philosophical Review, 83, 435–456.

Nakahara, K., Hayashi, T., Konishi, S., & Miyashita, Y. (2002). Functional MRI of macaque monkeys performing a cognitive set-shifting task. Science, 295, 1532–1536.

Namikawa, J., Nishimoto, R., & Tani, J. (2011) A neurodynamic account of spontaneous behaviour. PLoS Comput. Biol., 7(10), e1002221.

Namikawa, J., & Tani, J. (2010). Learning to imitate stochastic time series in a compositional way by chaos. Neural Netw., 23, 625–638.

Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M., & Gallant, J. L. (2009). Bayesian reconstruction of natural images from human brain activity. Neuron, 63(6), 902–915.

Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task on attention. Vision Research, 45, 205–231.

Neal, R. M., & Hinton, G. (1998). A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan (Ed.), Learning in Graphical Models (pp. 355–368). Dordrecht: Kluwer.

Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

Nirenberg, S., Bomash, I., Pillow, J. W., & Victor, J. D. (2010). Heterogeneous Response Dynamics in Retinal Ganglion Cells: The Interplay of Predictive Coding and Adaptation. Journal of Neurophysiology, 103(6), 3184–3194. doi:10.1152/jn.00878.2009.

Nkam, I., Bocca, M. L., Denise, P., Paoletti, X., Dollfus, S., Levillain, D., & Thibaut, F. (2010). Impaired smooth pursuit in schizophrenia results from prediction impairment only. Biological Psychiatry, 67(10), 992–997.

(p.361) Noë, A. (2004). Action in perception. Cambridge, MA: MIT Press.

Noë, A. (2010). Out of our heads: Why you are not your brain, and other lessons from the biology of consciousness. New York: Farrar, Straus & Giroux.

Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multivoxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10, 424–430.

Núñez, R., & Freeman, W. J. (Eds.). (1999). Reclaiming cognition: The primacy of action, intention and emotion. Bowling Green, OH: Imprint Academic; NY: Houghton-Mifflin.

O’Connor, D. H., Fukui, M. M., Pinsk, M. A., & Kastner, S. (2002). Attention modulates responses in the human lateral geniculate nucleus. Nature Neurosci., 5, 1203–1209.

O’Craven, K. M., Rosen, B. R., Kwong, K. K., Treisman, A., & Savoy, R. L. (1997). Voluntary attention modulates fMRI activity in human MT-MST. Neuron, 18, 591–598.

O’Regan, J. K., & Noë, A. (2001). A sensorimotor approach to vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 883–975.

O’Reilly, R. C., Wyatte, D., & Rohrlich, J. (ms). Learning through time in the thalamocortical loops. Preprint avail at: http://arxiv.org/abs/1407.3432.

O’Sullivan, I., Burdet, E., & Diedrichsen, J. (2009). Dissociating variability and effort as determinants of coordination. PLoS Comput Biol., 5, e1000345. doi:10.1371/journal.pcbi.1000345.

Ogata, T., Yokoya, R., Tani, J., Komatani, K., & Okuno, H. G. (2009). Prediction and imitation of other’s motions by reusing own forward-inverse model in robots. ICRA ’09. IEEE International Conference on Robotics and Automation, 4144–4149.

Okuda, J., et al. (2003). Thinking of the future and past: The roles of the frontal pole and the medial temporal lobes. Neuroimage, 19, 1369–1380. doi:10.1016/S1053- 8119(03)00179-4.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.

Orlandi, N. (2013). The innocent eye: Why vision is not a cognitive process. New York: Oxford University Press.

Oudeyer, P.-Y., Kaplan, F., & Hafner, V. (2007). Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation, 11(2), 265–286.

Oyama, S. (1999). Evolution’s eye: Biology, culture and developmental systems. Durham, NC: Duke University Press.

Oyama, S., Griffiths, P. E., & Gray, R. D. (Eds.). (2001). Cycles of contingency: Developmental systems and evolution. Cambridge, MA: MIT Press.

Oztop, E., Kawato, M., & Arbib, M. A. (2013). Mirror neurons: Functions, mechanisms and models. Neuroscience Letters, 540, 43–55.

Panichello, M., Cheung, O., & Bar, M. (2012). Predictive feedback and conscious visual experience. Frontiers in Psychology, 3, 620. doi:10.3389/fpsyg.2012.00620.

(p.362) Pariser, E. (2011). The filter bubble: What the internet is hiding from you. New York: Penguin Press.

Park, H. J., & Friston, K. (2013). Structural and functional brain networks: From connections to cognition. Science, 342, 579–588.

Park, J. C., Lim, J. H., Choi, H., & Kim, D. S. (2012). Predictive coding strategies for developmental neurorobotics. Front Psychol., 7(3), 134. doi:10.3389/fpsyg.2012.00134.

Parr, W. V., White, K. G., & Heatherbell, D. (2003). The nose knows: Influence of colour on perception of wine aroma. Journal of Wine Research, 14, 79–101.

Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427–445.

Paton, B., Skewes, J., Frith, C., & Hohwy, J. (2013). Skull-bound perception and precision optimization through culture. Behavioral and Brain Sciences, 36(3), p. 222.

Paulesu, E., McCrory, E., Fazio, F., Menoncello, L., Brunswick, N., Cappa, S. F., et al. (2000). A cultural effect on brain function. Nat. Neurosci., 3(1), 91–96.

Pearle, J (1988) Probabilistic Reasoning in Intelligent Systems, Morgan-Kaufmann

Peelen, M. V. M., & Kastner, S. S. (2011). A neural basis for real-world visual search in human occipitotemporal cortex. Proc. Natl. Acad. Sci. USA, 108, 12125–12130.

Pellicano, E., & Burr, D. (2012). When the world becomes too real: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16, 504–510. doi:10.1016/j.tics.2012.08.009.

Penny, W. (2012). Bayesian models of brain and behaviour. ISRN Biomathematics, 1–19. doi:10.5402/2012/785791.

Perfors, A., Tenenbaum, J. B., & Regier, T. (2006). Poverty of the stimulus? A rational approach. In Proceedings of the 28th Annual Conference of the Cognitive Science Society 663-668 Mahwah, NJ: Lawrence Erlbaum Assoc.

Pezzulo, G. (2007). Anticipation and future-oriented capabilities in natural and artificial cognition. In 50 Years of AI, Festschrift, LNAI, Berlin: Springer pp. 258–271.

Pezzulo, G. (2008). Coordinating with the future: The anticipatory nature of representation. Minds and Machines, 18, 179–225.

Pezzulo, G. (2012). An active inference view of cognitive control. Frontiers in Theoretical and Philosophical Psychology. 3: 478–479. doi: 10.3389/fpsyg.2012.00478.

Pezzulo, G. (2013). Why do you fear the Bogeyman? An embodied predictive coding model of perceptual inference. Cognitive, Affective, and Behavioral Neuroscience, 14(3), 902–911.

Pezzulo, G., Barsalou, L., Cangelosi, A., Fischer, M., McRae, K., & Spivey, M. (2013). Computational grounded cognition: A new alliance between grounded cognition and computational modeling. Front. Psychology, 3, 612. doi:10.3389/fpsyg.2012.00612.

(p.363) Pezzulo, G., Rigoli, F., & Chersi F. (2013). The mixed instrumental controller: Using value of information to combine habitual choice and mental simulation. Frontiers in Psychology, 4, 92. doi:10.3389/fpsyg.2013.00092.

Pfeifer, R., & Bongard, J. (2006). How the body shapes the way we think: A new view of intelligence. Cambridge, MA: MIT Press.

Pfeifer, R., Lungarella, M., Sporns, O., & Kuniyoshi, Y. (2007). On the information theoretic implications of embodiment: Principles and methods. In Lecture Notes in Computer Science (LNCS), 4850 (pp. 76–86). Berlin: Heidelberg: Springer.

Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge, MA: MIT Press.

Philippides, A., Husbands, P., & O’Shea, M. (2000). Four-dimensional neuronal signaling by nitric oxide: A computational analysis. J. Neurosci., 20, 1199–1207.

Philippides, A., Husbands, P., Smith, T., & O’Shea, M. (2005). Flexible couplings: Diffusing neuromodulators and adaptive robotics. Artificial Life, 11, 139–160.

Phillips, M. L., et al. (2001). Depersonalization disorder: Thinking without feeling. Psychiatry Res., 108, 145–160.

Phillips W. A. & Singer W. (1997) In search of common foundations for cortical computation. Behavioral and Brain Sciences 20, 657–722.

Phillips, W., Clark, A., & Silverstein, S. M. (2015). On the functions, mechanisms, and malfunctions of intracortical contextual modulation. Neuroscience and Biobehavioral Reviews52, 1–20.

Phillips, W., & Silverstein, S. (2013). The coherent organization of mental life depends on mechanisms for context-sensitive gain-control that are impaired in schizophrenia. Frontiers in Psychology, 4, 307. doi:10.3389/fpsyg.2013.00307.

Piaget, J. (1952). The origins of intelligence in children. New York: I. U. Press, Ed.

Pickering, M. J., & Clark, A. (2014). Getting ahead: Forward models and their place in cognitive architecture. Trends in Cognitive Sciences, 18(9), 451–456.

Pickering, M. J., & Garrod, S. (2007). Do people use language production to make predictions during comprehension? Trends in Cognitive Sciences, 11(3), 105–110.

Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and Brain Sciences, 36(04), 329–347.

Pinker, S. (1997). How the mind works. London: Allen Lane.

Plaisted, K. (2001). Reduced generalization in autism: An alternative to weak central coherence. In J. Burack et al. (Eds.), The development of autism: Perspectives from theory and research (pp. 149–169). NJ Erlbaum.

Plaisted, K., et al. (1998a). Enhanced visual search for a conjunctive target in autism: A research note. J. Child Psychol. Psychiatry, 39, 777–783.

Plaisted, K., et al. (1998b). Enhanced discrimination of novel, highly similar stimuli by adults with autism during a perceptual learning task. J. Child Psychol. Psychiatry, 39, 765–775.

(p.364) Ploner, M., & Tracey, I. (2011). The effect of treatment expectation on drug efficacy: Imaging the analgesic benefit of the opioid remifentanil. Sci. Transl. Med., 3, 70ra14.

Poeppel, D., & Monahan, P. J. (2011). Feedforward and feedback in speech perception: Revisiting analysis by synthesis. Language and Cognitive Processes, 26(7), 935–951.

Polich, J. (2003). Overview of P3a and P3b. In J. Polich (Ed.), Detection of change: Event-related potential and fMRI findings (pp. 83–98). Boston: Kluwer Academic Press.

Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.

Popper, K. (1963). Conjectures and refutations: The growth of scientific knowledge. London: Routledge.

Posner, M. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.

Potter, M. C., Wyble, B., Hagmann, C. E., & Mccourt, E. S. (2013). Detecting meaning in RSVP at 13 ms per picture. Attention, Perception, & Psychophysics, 1–10.

Pouget, A., Beck, J., Ma, Wei J., & Latham, P. (2013). Probabilistic brains: Knowns and unknowns. Nature Neuroscience, 16(9), 1170–1178. doi:10.1038/nn.3495.

Pouget, A., Dayan, P., & Zemel, R. (2003). Inference and computation with population codes. Annual Review of Neuroscience, 26, 381–410.

Powell, K. D., & Goldberg, M. E. (2000). Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. J. Neurophysiol., 84(1), 301–310.

Press, C., Richardson, D., & Bird, G. (2010). Intact imitation of emotional facial actions in autism spectrum conditions. Neuropsychologia, 48, 3291–3297.

Press, C. M., Heyes, C. M., & Kilner, J. M (2011). Learning to understand others’ actions. Biology Letters, 7(3), 457–460. doi:10.1098/rsbl.2010.0850.

Pribram, K. H. (1980). The orienting reaction: Key to brain representational mechanisms. In H. D. Kimme (Ed.), The orienting reflex in humans (pp. 3–20). Hillsdale, NJ: Lawrence Erlbaum Assoc.

Price, C. J., & Devlin, J. T. (2011). The interactive account of ventral occipito-temporal contributions to reading. Trends in Cognitive Neuroscience, 15(6), 246–253.

Price, D. D., Finniss, D. G., & Benedetti, F. (2008). A comprehensive review of the placebo effect: Recent advances and current thought. Annu. Rev. Psychol., 59, 565–590.

Prinz, J. (2004). Gut reactions. New York: Oxford University Press.

Prinz, J. (2005). A neurofunctional theory of consciousness. In A. Brook & K. Akins (Eds.), Cognition and the brain: Philosophy and neuroscience movement (pp. 381–396). Cambridge: Cambridge University Press.

Purves, D., Shimpi, A., & Lotto, R. B. (1999). An empirical explanation of the Cornsweet effect. Journal of Neuroscience, 19(19), 8542–8551.

(p.365) Pylyshyn, Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22(3), 341–365.

Quine, W. V. O. (1988). On what there is. In From a Logical Point of View: Nine Logico-Philosophical Essays (pp. 1–20). Cambridge, MA: Harvard University Press.

Raichle M. E. (2009). A brief history of human brain mapping. Trends Neurosci. 32:118–126.

Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4), 180–190.

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. USA, 98, 676–682.

Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: A brief history of an evolving idea. Neuroimage, 37, 1083–1090.

Raij, T., McEvoy, L., Mäkelä, J. P., & Hari, R. (1997). Human auditory cortex is activated by omissions of auditory stimuli. Brain Res., 745, 134–143.

Ramachandran, V. S., & Blakeslee, S. (1998). Phantoms in the brain: Probing the mysteries of the human mind. New York: Morrow & Co.

Ramsey, W. M. (2007). Representation reconsidered. Cambridge: Cambridge University.

Rao, R., & Ballard, D. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79.

Rao, R., & Sejnowski, T. (2002). Predictive coding, cortical feedback, and spike-timing dependent cortical plasticity. In Rao, R. P. N., Olshausen, B. and Lewicki, M. (Eds.), Probabilistic Models of the Brain (pp. 297–316). Cambridge, MA: MIT Press.

Rao, R., Shon, A., & Meltzoff, A. (2007). A Bayesian model of imitation in infants and robots. In C. L. Nehaniv & K. Dautenhahn (Eds.), Imitation and social learning in robots, humans, and animals: Behavioural, social and communicative dimensions (pp. 217–247). New York: Cambridge University Press.

Reddy, L., Tsuchiya, N., & Serre, T. (2010). Reading the mindʼs eye: Decoding category information during mental imagery. NeuroImage, 50(2), 818–825.

Reich, L., Szwed, M., Cohen, L., & Amedi, A. (2011). A ventral stream reading center independent of visual experience. Current Biology, 21, 363–368.

Remez, R. E., & Rubin, P. E. (1984). On the perception of intonation from sinusoidal sentences. Perception & Psychophysics, 35, 429–440.

Remez, R. E., Rubin, P. E., Pisoni, D. B., & Carrell, T. D. (1981). Speech perception without traditional speech cues. Science, 212, 947–949.

Rescorla, M. (2013). Bayesian perceptual psychology. In M. Matthen (Ed.), Oxford Handbook of the Philosophy of Perception. Oxford University Press, NY.

Rescorla, M. (in press). Bayesian sensorimotor psychology. Mind and Language.

(p.366) Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal of Neuroscience, 19, 1736–1753.

Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997). Spikes: Exploring the neural code. Cambridge, MA: MIT Press.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nat. Neurosci., 2, 1019–1025.

Rizzolatti, G., Fadiga, L., Fogassi, L., & Gallese, V. (1996). Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res., 3, 131–141.

Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci., 2, 661–670.

Rizzolatti, G., & Sinigaglia, C. (2007). Mirror neurons and motor intentionality. Functional Neurology, 22(4), 205–210.

Rizzolatti, G., et al. (1988). Functional organization of inferior area 6 in the macaque monkey: II. Area F5 and the control of distal movements. Exp. Brain Res., 71, 491–507.

Robbins, H. (1956). An empirical Bayes approach to statistics. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1: Contributions to the Theory of Statistics, 157–163.

Robbins, J. M., & Kirmayer, L. J. (1991). Cognitive and social factors in somatisation. In L. J. Kirmayer & J. M. Robbins (Eds.), Current concepts of somatisation: Research and clinical perspectives (pp. 107–141). Washington, DC: American Psychiatric Press.

Roberts, A., Robbins, T., & Weiskrantz, L. (1998). The prefrontal cortex: Executive and cognitive functions. New York: Oxford University Press.

Rock, I. (1997). Indirect perception. Cambridge, MA: MIT Press.

Roepstorff, A. (2013). Interactively human: Sharing time, constructing materiality. Behavioral and Brain Sciences, 36, 224–225. doi:10.1017/S0140525X12002427.

Roepstorff, A., & Frith, C. (2004). What’s at the top in the top-down control of action? Script-sharing and ‘top-top’ control of action in cognitive experiments. Psychological Research, 68(2–3), 189–198. doi:10.1007/s00426003-0155-4.

Roepstorff, A, Niewöhner, J, & Beck, S. (2010). Enculturating brains through patterned practices. Neural Networks, 23, 1051–1059.

Romo, R., Hernandez, A., & Zainos, A. (2004). Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron, 41(1), 165–173.

Rorty, R. (1979). Philosophy and the mirror of nature. Princeton, NJ: Princeton University Press.

Ross, D. (2004). Meta-linguistic signalling for coordination amongst social agents. Language Sciences, 26, 621–642.

Roth, M., Synofzik, M., & Lindner, A. (2013). The cerebellum optimizes perceptual predictions about external sensory events. Current Biology, 23(10), 930–935. doi:10.1016/j.cub.2013.04.027.

Rothkopf, C. A., Ballard, D. H., & Hayhoe, M. M. (2007). Task and context determine where you look. Journal of Vision, 7(14):16, 1–20.

(p.367) Rumelhart, D., McClelland, J., & the PDP Research Group (1986). Parallel Distributed Processing (Vol. 1). Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986a). Learning internal representations by error propagation. In D. E. Rumelhart, J. L. McClelland, & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition, Vol. 1: Foundations (pp. 318–362). Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986b). Learning representations by back-propagating errors. Nature, 323, 533–536.

Rupert, R. (2004). Challenges to the hypothesis of extended cognition. Journal of Philosophy, 101(8), 389–428.

Rupert, R. (2009). Cognitive systems and the extended mind. New York: Oxford University Press.

Sachs, E. (1967). Dissociation of learning in rats and its similarities to dissociative states in man. In J. Zubin & H. Hunt (Eds.), Comparative psychopathology: Animal and human (pp. 249–304). New York: Grune and Stratton.

Sadaghiani, S., Hesselmann, G., Friston, K. J., & Kleinschmidt, A. (2010). The relation of ongoing brain activity, evoked neural responses, and cognition. Frontiers in Systems Neuroscience, 4, 20.

Saegusa, R., Sakka, S., Metta, G., & Sandini, G. (2008). Sensory prediction learning: How to model the self and environment. 12th IMEKO TC1-TC7 Joint Symposium on Man Science and Measurement (IMEKO2008), Annecy, France, 269–275.

Salakhutdinov, R., & Hinton, G. (2009). Deep Boltzmann machines. Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS), 5, 448–455.

Salakhutdinov, R. R., Mnih, A., & Hinton, G. E. (2007). Restricted Boltzmann machines for collaborative filtering. International Conference on Machine Learning, Corvallis, Oregon. Available at: http://www.cs.toronto.edu/~hinton/papers.html#2007.

Salge, C., Glackin, C., & Polani, D. (2014). Changing the environment based on empowerment as intrinsic motivation. Entropy, 16(5), 2789–2819. doi:10.3390/e16052789.

Satz, D., & Ferejohn, J. (1994). Rational choice and social theory source. Journal of Philosophy, 91(2), 71–87.

Sawtell, N. B., Williams, A., & Bell, C. C. (2005). From sparks to spikes: Information processing in the electrosensory systems of fish. Current Opinion in Neurobiology, 15, 437–443.

Schachter, S., & Singer, J. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69, 379–399.

Schacter, D. L., & Addis, D. R. (2007a). The ghosts of past and future. Nature, 445, 27. doi:10.1038/445027a.

Schacter, D. L., & Addis, D. R. (2007b). The cognitive neuroscience of constructive memory: Remembering the past and imagining the future. Philosophical Transactions of the Royal Society of London, Series B, 362, 773–786.

(p.368) Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). The prospective brain: Remembering the past to imagine the future. Nature Reviews Neuroscience, 8, 657–661.

Schenk, L. A., Sprenger, C., Geuter, S., & Büchel, C. (2014). Expectation requires treatment to boost pain relief: An fMRI study. Pain, 155, 150–157.

Schenk, T., & McIntosh, R. D. (2010). Do we have independent visual streams for perception and action? Cognitive Neuroscience, 1(1), 52–62. doi:10.1080/17588920903388950. ISSN 1758-8928.

Scholl, B. (2005). Innateness and (Bayesian) visual perception: Reconciling nativism and development. In P. Carruthers, S. Laurence & S. Stich (Eds.), The innate mind: Structure and contents (pp. 34–52). New York: Oxford University Press.

Schultz, W. (1999). The reward signal of midbrain dopamine neurons. Physiology, 14(6), 249–255.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.

Schütz, A. C., Braun, D. I., & Gegenfurtner, K. (2011). Eye movements and perception: A selective review. Journal of Vision, 11(5), 1–30. doi:10.1167/11.5.9.

Schwartenbeck, P., Fitzgerald, T., Dolan, R. J., & Friston, K. (2013). Exploration, novelty, surprise, and free energy minimization. Frontiers in Psychology, 4, 710. doi:10.3389/fpsyg.2013.00710.

Schwartenbeck, P., FitzGerald, T. H. B., Mathys, C., Dolan, R., & Friston, K. (2014). The dopaminergic midbrain encodes the expected certainty about desired outcomes. Cerebral Cortex, bhu159. doi: 10.1093/cercor/bhu159

Schwartz, J., Grimault, N., Hupé, J., Moore, B., & Pressnitzer, D. (2012). Introduction: Multistability in perception: Binding sensory modalities, an overview. Phil. Trans. R. Soc. B., 367, 896–905. doi:10.1098/rstb.2011.0254.

Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol., 74(1), 1–58.

Sebanz, N., & Knoblich, G. (2009). Prediction in joint action: What, when, and where. Topics in Cognitive Science, 1, 353–367.

Sedley, W., & Cunningham, M. (2013). Do cortical gamma oscillations promote or suppress perception? An under-asked question with an over-assumed answer. Frontiers in Human Neuroscience, 7, 595.

Selen, L. P. J., Shadlen, M. N., & Wolpert, D. M. (2012). Deliberation in the motor system: Reflex gains track evolving evidence leading to a decision. Journal of Neuroscience, 32(7), 2276–2286.

Seligman, M., Railton, P., Baumeister, R., & Sripada, C. (2013). Navigating into the future or driven by the past. Perspectives on Psychological Science, 8, 119–141.

Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. USA, 104(15), 6424–6429.

Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17(11), 565–573. doi:10.1016/j.tics.2013.09.007.

(p.369) Seth, A. K. (2014). A predictive processing theory of sensorimotor contingencies: Explaining the puzzle of perceptual presence and its absence in synaesthesia. Cogn. Neurosci., 5(2), 97–118. doi:10.1080/17588928.2013.877880.

Seth, A. K., Suzuki, K., & Critchley, H. D. (2011). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2, 395. doi:10.3389/fpsyg.2011.00395.

Seymour, B., et al. (2004). Temporal difference models describe higher order learning in humans. Nature, 429, 664–667.

Sforza, A., et al. (2010). My face in yours: Visuo-tactile facial stimulation influences sense of identity. Soc. Neurosci., 5, 148–162.

Shaffer, D. M., Krauchunas, S. M., Eddy, M., & McBeath, M. K. (2004). How dogs navigate to catch Frisbees. Psychological Science, 15, 437– 441.

Shafir, E., & Tversky, A. (1995). Decision making. In E. E. Smith & D. N. Osherson (Eds.), Thinking: An invitation to cognitive science (pp. 77–100). Cambridge, MA: MIT Press.

Shah, A., & Frith, U. (1983). An islet of ability in autistic children: A research note. J. Child Psychol. Psychiatry, 24, 613–620.

Shams, L., Ma, W. J., & Beierholm, U. (2005). Sound-induced flash illusion as an optimal percept. Neuroreport, 16(10), 1107–1110.

Shani, I. (2006). Intentional directedness. Cybernetics & Human Knowing, 13, 87–110.

Shankar, M. U., Levitan, C., & Spence, C. (2010). Grape expectations: The role of cognitive influences in color–flavor interactions. Consciousness & Cognition, 19, 380–390.

Shea, N. (2013). Perception versus action: The computations may be the same but the direction of fit differs. Behavioral and Brain Sciences, 36(3), 228–229.

Shergill, S., Bays, P. M., Frith, C. D., & Wolpert, D. M. (2003). Two eyes for an eye: The neuroscience of force escalation. Science, 301(5630), 187.

Shergill, S., Samson, G., Bays, P. M., Frith, C. D., & Wolpert, D. M. (2005). Evidence for sensory prediction deficits in schizophrenia. American Journal of Psychiatry, 162(12), 2384–2386.

Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on another: Distinguishing ‘drivers’ from ‘modulators’. Proc. Natl. Acad. Sci. USA, 95, 7121–7126.

Shi, Yun Q., & Sun, H. (1999). Image and video compression for multimedia engineering: Fundamentals, algorithms, and standards. Boca Raton CRC Press.

Shipp, S. (2005). The importance of being agranular: A comparative account of visual and motor cortex. Phil. Trans. R. Soc. B, 360, 797–814. doi:10.1098/rstb.2005.1630.

Shipp, S., Adams, R. A., & Friston, K. J. (2013). Reflections on agranular architecture: Predictive coding in the motor cortex. Trends Neurosci., 36, 706–716. doi:10.1016/j.tins.2013.09.004.

Siegel, J. (2003). Why we sleep. Scientific American, November, pp. 92–97.

Siegel, S. (2006). Direct realism and perceptual consciousness. Philosophy and Phenomenological Research, 73(2), 379–409.

(p.370) Siegel, S. (2012). Cognitive penetrability and perceptual justification. Nous, 46(2), 201–222.

Sierra, M., & David, A. S. (2011). Depersonalization: A selective impairment of self-awareness. Conscious. Cogn., 20, 99–108.

Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129–138.

Skewes, J. C., Jegindø, E.-M., & Gebauer, L. (2014). Perceptual inference and autistic traits. Autism [Epub ahead of print]. 10.1177/1362361313519872.

Sloman, A. (2013). What else can brains do? Behavioral and Brain Sciences, 36, 230–231. doi:10.1017/S0140525X12002439.

Smith, A. D. (2002). The problem of perception Cambridge, MA: Harvard University Press.

Smith, F., & Muckli, L. (2010). Nonstimulated early visual areas carry information about surrounding context. Proceedings of the National Academy of Science (PNAS), 107(46), 20099–20103.

Smith, L., & Gasser, M. (2005). The development of embodied cognition: Six lesson from babies. Artificial Life, 11(1), 13–30.

Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple decisions. Trends in Neuroscience, 27, 161–168.

Smith, S.M., Vidaurre, D., Beckmann, C.F, Glasser, M.F., Jenkinson, M., Miller, K.L., Nichols, T., Robinson, E., Salimi-Khorshidi, G., Woolrich M.W., Ugurbil, K. & Van Essen D.C. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences.17(12), 666-682.

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11, 1–23.

Smolensky, P., & Legendre, G. (2006). The harmonic mind: From neural computation to optimality-theoretic grammar, Vol. 1: Cognitive architecture, Vol. 2: Linguistic and philosophical implications. Cambridge, MA: MIT Press.

Sokolov, E. N. (1960). Neuronal models and the orienting reflex. In M. A. B. Brazier (Ed.), The central nervous system and behavior (pp. 187–276). New York: Josiah Macy, Jr. Foundation.

Solway, A., & Botvinick, M. M. (2012). Goal-directed decision making as probabilistic inference: A computational framework and potential neural correlates. Psychological Review, 119(1), 120–154. doi: 10.1037/a0026435.

Sommer, M. A., & Wurtz, R. H. (2006). Influence of thalamus on spatial visual processing in frontal cortex. Nature, 444, 374–377.

Sommer, M. A., & Wurtz, R. H. (2008). Brain circuits for the internal monitoring of movements. Annual Review of Neuroscience, 31, 317–338.

Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14, 29–56.

Spence, C., & Shankar, M. U. (2010). The influence of auditory cues on the perception of, and responses to, food and drink. Journal of Sensory Studies, 25, 406–430.

Sperry, R. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol., 43(6), 482–489.

Spivey, M. J. (2007). The continuity of mind. New York: Oxford University Press.

(p.371) Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous attraction toward phonological competitors. Proceedings of the National Academy of Sciences, 102, 10393–10398.

Spivey, M. J., Richardson, D., & Dale, R. (2008). Movements of eye and hand in language and cognition. In E. Morsella & J. Bargh (Eds.), The psychology of action (pp. 225–249). New York: Oxford University Press.

Spivey, M., Richardson, D., & Fitneva, S. (2005). Thinking outside the brain: Spatial indices to linguistic and visual information. In J. Henderson & F. Ferreira (Eds.), The interface of vision language and action (pp.161–190). New York: Psychology Press.

Sporns, O. (2002). Network analysis, complexity and brain function. Complexity, 8, 56–60.

Sporns, O. (2007). What neuro-robotic models can teach us about neural and cognitive development. In D. Mareschal, S. Sirois, G. Westermann, & M. H. Johnson (Eds.), Neuroconstructivism: Perspectives and prospects, Vol. 2 (pp. 179–204). Oxford: Oxford University Press.

Sporns, O. (2010). Networks of the brain. Cambridge, MA: MIT Press.

Sprague, N., Ballard, D. H., & Robinson, A. (2007). Modeling embodied visual behaviors. ACM Transactions on Applied Perception, 4, 11.

Spratling, M. (2008). Predictive coding as a model of biased competition in visual attention. Vision Research, 48(12), 1391–1408.

Spratling, M. (2010). Predictive coding as a model of response properties in cortical area V1. Journal of Neuroscience, 30(9), 3531–3543.

Spratling, M. (2012). Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function. Neural Computation, 24(1), 60–103.

Spratling, M. (2013). Distinguishing theory from implementation in predictive coding accounts of brain function [commentary on Clark]. Behavioral and Brain Sciences, 36(3), 231–232.

Spratling, M. (2014). A single functional model of drivers and modulators in cortex. Journal of Computational Neuroscience, 36(1), 97–118.

Spratling, M., & Johnson, M. (2006). A feedback model of perceptual learning and categorization. Visual Cognition, 13(2), 129–165.

Sprevak, M. (2010). Computation, individuation, and the received view on representation. Studies in History and Philosophy of Science, 41, 260–270.

Sprevak, M. (2013). Fictionalism about neural representations. The Monist, 96, 539–560.

Stafford, T., & Webb, M. (2005). Mind hacks. CA: O’Reilly Media.

Stanovich, K. E. (2011). Rationality and the reflective mind. New York: Oxford University Press.

Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate. Behavioral and Brain Sciences, 23, 645–665.

Stein, J. F. (1992). The representation of egocentric space in the posterior parietal cortex. Behav. Brain Sci., 15, 691–700.

(p.372) Stephan, K. E., Harrison, L. M., Kiebel, S. J., David, O., Penny, W. D., & Friston, K. J. (2007). Dynamic causal models of neural system dynamics: Current state and future extensions. J. Biosci., 32, 129–144.

Stephan, K. E., Kasper, L., Harrison, L. M., Daunizeau, J., den Ouden, H. E., Breakspear, M., & Friston, K. J. (2008). Nonlinear dynamic causal models for fMRI. Neuroimage, 42, 649–662.

Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., and Friston, K. J. (2009). Bayesianmodelselectionforgroupstudies. Neuroimage 46, 1004–1017. doi: 10.1016/j.neuroimage.2009.03.025.

Sterelny, K. (2003). Thought in a hostile world: The evolution of human cognition. Oxford: Blackwell.

Stewart, J., Gapenne, O., & Di Paolo, E. A. (Eds.). (2010). Enaction: Towards a new paradigm for cognitive science. Cambridge, MA: MIT Press.

Stigler, J., Chalip, L., & Miller, F. (1986). Consequences of skill: The case of abacus training in Taiwan. American Journal of Education, 94(4), 447–479.

Stokes, M., Thompson, R., Cusack, R., & Duncan, J. (2009). Top–down activation of shape specific population codes in visual cortex during mental imagery. J. Neurosci., 29, 1565–1572.

Stone, J., Warlow, C., Carson, A., & Sharpe, M. (2005). Eliot Slater’s myth of the non-existence of hysteria. J. R. Soc. Med., 98, 547–548.

Stone, J., Warlow, C., & Sharpe, M. (2012a). Functional weakness: Clues to mechanism from the nature of onset. J. Neurol. Neurosurg. Psychiatry, 83, 67–69.

Stone, J., Wojcik, W., Durrance, D., Carson, A., Lewis, S., MacKenzie, L., et al. (2002). What should we say to patients with symptoms unexplained by disease? The ‘number needed to offend’. BMJ, 325, 1449–1450.

Stotz, K. (2010). Human nature and cognitive–developmental niche construction. Phenomenology and the Cognitive Sciences, 9(4), 483–501.

Suddendorf, T., & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genet. Soc. Gen. Psychol. Monogr. 123, 133–167.

Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel and is it unique to humans? Behav. Brain Sci., 30, 299–331.

Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M. M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience, 11(9), 1004–1006.

Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150, 1187–1188.

Suzuki, K., et al. (2013). Multisensory integration across interoceptive and exteroceptive domains modulates self-experience in the rubber-hand illusion. Neuropsychologia.http://dx.doi.org/10.1016/j.neuropsychologia. 2013.08.014 20.

Szpunar, K. K. (2010). Episodic future thought: An emerging concept. Perspect. Psychol. Sci., 5, 142–162. doi:10.1177/1745691610362350.

(p.373) Szpunar, K. K., Watson, J. M., & McDermott, K. B. (2007). Neural substrates of envisioning the future. Proc. Natl Acad. Sci. USA, 104, 642–647. doi:10.1073/pnas. 0610082104.

Tani, J. (2007). On the interactions between top-down anticipation and bottom-up regression. Frontiers in Neurorobotics, 1, 2. doi:10.3389/neuro.12.002.2007.

Tani, J., Ito, M., & Sugita, Y. (2004). Self-organization of distributedly represented multiple behavior schemata in a mirror system: Reviews of robot experiments using RNNPB. Neural Networks, 17(8), 1273–1289.

Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural vision: Reinterpreting salience. Journal of Vision, 11(5):5, 1–23.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279–1285.

Teufel, C, Fletcher, P, & Davis, G (2010). Seeing other minds: Attributed mental states influence perception. Trends in Cognitive Sciences, 14(2010), 376–382.

Thaker, G. K., Avila, M. T., Hong, L. E., Medoff, D. R., Ross, D. E., Adami, H. M. (2003). A model of smooth pursuit eye movement deficit associated with the schizophrenia phenotype. Psychophysiology, 40, 277–284. PubMed: 12820868.

Thaker, G. K., Ross, D. E., Buchanan, R. W., Adami, H. M., & Medoff, D. R. (1999). Smooth pursuit eye movements to extraretinal motion signals: Deficits in patients with schizophrenia. Psychiatry Res., 88, 209–219. PubMed: 10622341.

Thelen, E., Schöner, G., Scheier, C., & Smith, L. (2001). The dynamics of embodiment: A field theory of infant perseverative reaching. Behavioral and Brain Sciences, 24, 1–33.

Thelen, E., & Smith, L. (1994). A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT Press.

Thevarajah, D., Mikulic, A., & Dorris, M. C. (2009). Role of the superior colliculus in choosing mixed-strategy saccades. J. Neurosci., 29(7), 1998–2008.

Thompson, E. (2010). Mind in life: Biology, phenomenology, and the sciences of mind. Cambridge, MA: Harvard University Press.

Thornton, C. (ms). Experiments in sparse-coded predictive processing.

Todorov, E. (2004). Optimality principles in sensorimotor control. Nat. Neurosci., 7, 907–915.

Todorov, E. (2008). Parallels between sensory and motor information processing. In M. Gazzaniga (Ed.), The cognitive neurosciences (4th ed.) (pp. 613–624). Cambridge, MA: MIT Press.

Todorov, E. (2009). Efficient computation of optimal actions. Proc. Natl. Acad. Sci. USA, 106, 11478–11483.

Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5, 1226–1235.

(p.374) Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: An MEG Study. J. Neurosci., 31, 9118–9123.

Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The ontogeny and phylogeny of cultural cognition. Behavioral & Brain Sciences, 28(5), 675–691.

Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10(1), 49–62.

Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113, 766–786.

Toussaint, M. (2009). Probabilistic inference as a model of planned behavior. Künstliche Intelligenz, 3(9), 23–29.

Tracey, I. (2010). Getting the pain you expect: Mechanisms of placebo, nocebo and reappraisal effects in humans. Nat. Med., 16, 1277–1283.

Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends Neurosci., 24, 295–300. doi:10.1016/ S0166-2236(00)01814-2.

Tribus, M. (1961). Thermodynamics and thermostatics: An introduction to energy, information and states of matter, with engineering applications. New York: D. Van Nostrand.

Tsuchiya, N., & Koch, C. (2005). Continuous flash suppression reduces negative afterimages. Nature Neuroscience, 8(8), 1096–1101. doi:10.1038/nn1500.

Tsuda, I. (2001). The plausibility of a chaotic brain theory. Behavioral and Brain Sciences, 24(5), 829–840.

Tulving, E. (1983). Elements of episodic memory. New York: Oxford University Press.

Tulving, E., & Gazzaniga, M. S. (1995). Organization of memory: Quo vadis? In M. Gazzaniga (Ed.), The cognitive neurosciences (pp. 839– 847). Cambridge, MA: MIT Press.

Turvey, M., & Carello, C. (1986). The ecological approach to perceiving-acting: A pictorial essay. Acta Psychologica, 63, 133–155.

Turvey, M. T., & Shaw, R. E. (1999). Ecological foundations of cognition: I. Symmetry and specificity of animal-environment systems. Journal of Consciousness Studies, 6, 85–110.

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207–232.

Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.

Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics, 61, 89–101.

Van de Cruys, S., de-Wit, L., Evers, K., Boets, B., & Wagemans, J. (2013). Weak priors versus overfitting of predictions in autism: Reply to Pellicano and Burr (TICS, 2012). I-Perception, 4(2), 95–97. doi:10.1068/i0580ic.

Van de Cruys, S., & Wagemans, J. (2011). Putting reward in art: A tentative prediction error account of visual art. i-Perception, special issue on Art & Perception, 2(9), 1035–1062.

(p.375) Van den Berg, R., Keshvari, S., & Ma, W. J. (2012). Probabilistic computation in perception under variability in encoding precision. PLoS One, 7(6), e40216.

Van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. J. Neurosci., 31, 15775–15786.

Van Essen, D. C., Anderson, C. H., & Olshausen, B. A. (1994). Dynamic routing strategies in sensory, motor, and cognitive processing. In C. Koch & J. Davis (Eds.), Large scale neuronal theories of the brain (pp. 271–299). Cambridge, MA: MIT Press.

van Gerven, M. A. J., de Lange, F. P., & Heskes, T. (2010). Neural decoding with hierarchical generative models. Neural Comput., 22(12), 3127–3142.

van Kesteren, M. T., Ruiter, D. J., Fernandez, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends in Neurosciences, 35, 211–219. doi:10.1016/j.tins.2012.02.001.

van Leeuwen, C. (2008). Chaos breeds autonomy: Connectionist design between bias and babysitting. Cognitive Processing, 9, 83–92.

Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind. Cambridge, MA: MIT Press.

Vilares, I., & Körding, K. (2011). Bayesian models: The structure of the world, uncertainty, behavior, and the brain. Annals of the New York Acad. Sci., 1224, 22–39.

Von Holst, E. (1954). Relations between the central nervous system and the peripheral organs. British Journal of Animal Behaviour, 2(3), 89–94.

Voss, M., Ingram, J. N., Wolpert, D. M., & Haggard, P. (2008). Mere expectation to move causes attenuation of sensory signals. PLoS One, 3(8), e2866.

Wacongne, C., Changeux, J.-P., & Dehaene, S. (2012). A neuronal model of predictive coding accounting for the mismatch negativity. Journal of Neuroscience, 32(11), 3665–3678.

Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc. Natl. Acad. Sci. USA, 108, 20754–20759.

Warren, W. (2006). The dynamics of action and perception. Psychological Review113(2), 358–389.

Webb, B. (2004). Neural mechanisms for prediction: Do insects have forward models? Trends in Neurosciences, 27(5), 1–11.

Weber, C., Wermter, S., & Elshaw, M. (2006). A hybrid generative and predictive model of the motor cortex. Neural Networks, 19, 339–353.

Weiskrantz, L., Elliot, J., & Darlington, C. (1971). Preliminary observations of tickling oneself. Nature, 230(5296), 598–599.

Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nature Neuroscience, 5(6), 598–604.

Wheeler, M. (2005). Reconstructing the cognitive world. Cambridge, MA: MIT Press.

Wheeler, M., & Clark, A. (2008). Culture, embodiment and genes: Unravelling the triple helix. Philosophical Transactions of the Royal Society B, 363(1509), 3563–3575.

Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory’s echo: Vivid remembering reactivates sensory-specific cortex. Proc. Natl. Acad. Sci. USA, 97, 11125–11129.

(p.376) Wiese, W. (2014). Review of Jakob Hohwy: The Predictive Mind. Minds and Machines, 24(2), 233–237.

Wilson, R. A. (2004). Boundaries of the mind: The individual in the fragile sciences—cognition. Cambridge: Cambridge University Press.

Wolpert, D. M. (1997). Computational approaches to motor control. Trends in Cognitive Science, 1, 209–216.

Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society, 358, 593–602.

Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 18, R729–R732.

Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269, 1880–1882.

Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7–8), 1317–1329.

Wolpert, D. M., Miall, C. M., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.

Wurtz, R. H., McAlonan, K., Cavanaugh, J., & Berman, R. A. (2011). Thalamic pathways for active vision. Trends in Cognitive Sciences, 15, 177–184.

Yabe, H., Tervaniemi, M., Reinikainen, K., & Naatanen, R. (1997). Temporal window of integration revealed by MMN to sound omission. Neuroreport, 8, 1971–1974.

Yamashita, Y., & Tani, J. (2008). Emergence of functional hierarchy in a multiple timescale neural network model: A humanoid robot experiment. PLoS Computational Biology, 4(11), e1000220.

Yu, A. J. (2007). Adaptive behavior: Humans act as Bayesian learners. Current Biology, 17, R977–R980.

Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46, 681–692.

Yuille, A, & Kersten, D (2006). Vision as Bayesian inference: Analysis by synthesis? Trends in Cognitive Science, 10(7), 301–308.

Yuval-Greenberg, S., & Heeger, D. J. (2013). Continuous flash suppression modulates cortical activity in early visual cortex. Journal of Neuroscience, 33(23), 9635–9643.

Zhu, Q., & Bingham, G. P. (2011). Human readiness to throw: The size-weight illusion is not an illusion when picking the best objects to throw. Evolution and Human Behavior, 32(4), 288–293.

Ziv, I., Djaldetti, R., Zoldan, Y., Avraham, M., & Melamed, E. (1998). Diagnosis of ‘nonorganic’ limb paresis by a novel objective motor assessment: The quantitative Hoover’s test. J. Neurol., 245, 797–802.

Zorzi, M., Testolin, A., & Stoianov, I. (2013). Modeling language and cognition with deep unsupervised learning: A tutorial overview. Front. Psychol., 4, 515. doi:10.3389/fpsyg.2013.00515.