# (p.131) References

# (p.131) References

Bibliography references:

Abraham, A. and Ikenberry, D. L. (1994). The individual investor and the weekend effect. *Journal of Financial and Quantitative Analysis*, **29**, 263–78.

Adams, G. J. and Goodwin, G. C. (1995). Parameter estimation for periodic ARMA models. *Journal of Time Series Analysis*, **16**, 127–45.

Akaike, H. (1969). Fitting autoregressive models for prediction. *Annals of the Institute of Statistical Mathematics*, **21**, 243–7.

Andel, J. (1983). Statistical analysis of periodic autoregression. *Aplikace Matematiky*, **28**, 364–85.

Anderson, P. L. and Vecchia, A. V. (1993). Asymptotic results for periodic autoregressive moving-average models. *Journal of Time Series Analysis*, **14**, 1–18.

Bac, C., Chevet, J. M., and Ghysels, E. (2001). Time-series model with periodic stochastic regime switching—Part II: Applications to 16th and 17th century grain prices. *Macroeconomic Dynamics*, **5**, 32–55.

Balcombe, K. (1999). Seasonal unit root tests with structural breaks in deterministic seasonality. *Oxford Bulletin of Economics and Statistics*, **61**, 569–82.

Bentarzi, M. and Hallin, M. (1994). On the invertibility of periodic moving-average models. *Journal of Time Series Analysis*, **15**, 263–8.

—— —— (1996). Locally optimal tests against periodical autoregression: Parametric and nonparametric approaches. *Econometric Theory*, **12**, 88–112.

Bessembinder, H. and Hertzel, M. G. (1993). Return autocorrelations around nontrading days. *Review of Financial Studies*, **6**, 155–89.

Birchenhall, C. R., Bladen-Hovell, R. C., Chui, A. P. L., Osborn, D. R., and Smith, J. P. (1989). A seasonal model of consumption. *Economic Journal*, **99**, 837–43.

(p.132)
Bloomfield, P., Hurd, H. L., and Lund, R. B. (1994). Periodic correlation in stratospheric ozone data. *Journal of Time Series Analysis*, **15**, 127–50.

Bollerslev, T. and Ghysels, E. (1996). Periodic autoregressive conditional heteroskedasticity. *Journal of Business and Economic Statistics*, **14**, 139–51.

—— Chou, R., and Kroner, K. (1992). ARCH modeling in finance: A review of the theory and empirical evidence. *Journal of Econometrics*, **52**, 5–59.

Boswijk, H. P. (1992). Cointegration, identification and exogeneity. Ph.D. thesis. Tinbergen Institute, Amsterdam.

—— (1994). Testing for an unstable root in conditional and structural error correction models. *Journal of Econometrics*, **63**, 37–60.

—— and Franses, P. H. (1992). Dynamic specification and cointegration. *Oxford Bulletin of Economics and Statistics*, **54**, 369–81.

—— —— (1995*a*). Periodic cointegration—representation and inference. *Review of Economics and Statistics*, **77**, 436–54.

—— —— (1995*b*). Testing for periodic integration. *Economics Letters*, **48**, 241–8.

—— —— (1996). Unit roots in periodic autoregressions. *Journal of Time Series Analysis*, **17**, 221–45.

—— —— and Haldrup, N. (1997). Multiple unit roots in periodic autoregression. *Journal of Econometrics*, **80**, 167–93.

Box, G. E. P. and Jenkins, G. M. (1970). *Time series analysis; forecasting and control*. Holden-Day, San Francisco.

Breitung, J. and Franses, P. H. (1997). Impulse response functions for periodic integration. *Economics Letters*, **55**, 35–40.

—— —— (1998). On Phillips–Perron type tests for seasonal unit roots. *Econometric Theory*, **14**, 200–21.

Burridge, P. and Taylor, A. M. R. (2001). On regression-based tests for seasonal unit roots in the presence of periodic heteroskedasticity. *Journal of Econometrics*, **104**, 91–117.

—— and Wallis, K. F. (1990). Seasonal adjustment and Kalman filtering: Extension to periodic variances. *Journal of Forecasting*, **9**, 109–18.

Canova, F. and Hansen, B. E. (1995). Are seasonal patterns constant over time? A test for seasonal stability. *Journal of Business and Economic Statistics*, **13**, 237–52.

(p.133)
Cipra, T. (1985). Periodic moving average processes. *Aplikace Matematiky*, **30**, 218–29.

Cleveland, W. P. and Tiao, G. C. (1979). Modelling seasonal time series. *Revue Economique Appliquee*, **32**, 107–29.

Dezhbakhsh, H. and Levy, D. (1994). Periodic properties of interpolated time series. *Economics Letters*, **44**, 221–8.

Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. *Journal of the American Statistical Association*, **74**, 427–31.

—— —— (1981). Likelihood ratio statistics for autoregressive time series with a unit root. *Econometrica*, **49**, 1057–72.

Diebold, F. X. and Inoue, A. (2001). Long memory and regime switching. *Journal of Econometrics*, **105**, 131–59.

Engle, R. F. and Granger, C. W. J. (1987). Co-integration and error correction: Representation, estimation, and testing. *Econometrica*, **55**, 251–76.

—— and Kozicki, S. (1993). Testing for common features (with discussion). *Journal of Business and Economic Statistics*, **11**, 369–95.

—— Granger, C. W. J., Hylleberg, S., and Lee, H. S. (1993). Seasonal cointegration: The Japanese consumption function. *Journal of Econometrics*, **55**, 275–98.

Foster, D. F. and Viswanathan, S. (1990). A theory of the interday variations in volume, variance, and trading costs in security markets. *Review of Financial Studies*, **3**, 593–624.

Franses, P. H. (1991). A multivariate approach to modeling univariate seasonal time series. Econometric Institute report 9101. Erasmus University, Rotterdam.

—— (1993). Periodically integrated subset autoregressions for Dutch industrial production and money stock. *Journal of Forecasting*, **12**, 601–13.

—— (1994). A multivariate approach to modeling univariate seasonal time series. *Journal of Econometrics*, **63**, 133–51.

—— (1995*a*). A vector of quarters representation for bivariate time series. *Econometric Reviews*, **14**, 55–63.

—— (1995*b*). The effects of seasonally adjusting a periodic autoregressive process. *Computational Statistics and Data Analysis*, **19**, 683–704.

—— (1995*c*). On periodic autoregressions and structural breaks in seasonal time series. *Environmetrics*, **6**, 451–6.

(p.134)
Franses, P. H. (1996*a*). Multi-step forecast error variances for periodically integrated time series. *Journal of Forecasting*, **15**, 83–95.

—— (1996*b*). *Periodicity and Stochastic Trends in Economic Time Series*. Oxford University Press.

—— (1998). *Time Series Models for Business and Economic Forecasting*. Cambridge University Press.

—— and Kloek, T. (1995). A periodic cointegration model of quarterly consumption. *Applied Stochastic Models and Data Analysis*, **11**, 159–66.

—— and Koehler, A. B. (1998). A model selection strategy for time series with increasing seasonal variation. *International Journal of Forecasting*, **14**, 405–14.

—— and Koop, G. (1997). A Bayesian analysis of periodic integration. *Journal of Forecasting*, **16**, 509–32.

—— and Kunst, R. M. (1999). On the role of seasonal intercepts in seasonal cointegration. *Oxford Bulletin of Economics and Statistics*, **61**, 409–33.

—— and McAleer, M. (1997). Testing nested and non-nested periodically integrated autoregressive models. *Communications in Statistics—Theory and Methods*, **26**, 1461–75.

—— and Ooms, M. (1997). A periodic long-memory model for quarterly UK inflation. *International Journal of Forecasting*, **13**, 117–26.

—— and Paap, R. (1994). Model selection in periodic autoregressions. *Oxford Bulletin of Economics and Statistics*, **56**, 421–40.

—— —— (1996). Periodic integration: Further results on model selection and forecasting. *Statistical Papers*, **37**, 33–52.

—— —— (2000). Modelling day-of-the-week seasonality in the S&P 500 index. *Applied Financial Economics*, **10**, 483–8.

—— —— (2002). Forecasting with periodic autoregressive time series models. In *A Companion to Economic Forecasting* (ed. M. P. Clements and D. F. Hendry), Chapter 19, pp. 432–52, Basil Blackwell, Oxford.

—— and Romijn, G. (1993). Periodic integration in quarterly UK macroeconomic variables. *International Journal of Forecasting*, **9**, 467–76.

—— and Taylor, A. M. R. (2000). Determining the order of differencing in seasonal time series processes. *Econometrics Journal*, **3**, 250–64.

—— and van Dijk, D. J. C. (2000). *Non-linear Time Series Models in Empirical Finance*. Cambridge University Press.

(p.135)
Franses, P. H. and Vogelsang, T. J. (1998). On seasonal cycles, unit roots and mean shifts. *Review of Economics and Statistics*, **80**, 231–40.

—— Hylleberg, S., and Lee, H. S. (1995). Spurious deterministic seasonality. *Economics Letters*, **48**, 249–56.

—— Hoek, H., and Paap, R. (1997). Bayesian analysis of seasonal unit roots and seasonal mean shifts. *Journal of Econometrics*, **78**, 359–80.

—— van der Leij, M., and Paap, R. (2002). Modeling and forecasting level shifts in absolute returns. *Journal of Applied Econometrics*, **17**, 601–16.

French, K. R. (1980). Stock returns and the weekend effect. *Journal of Financial Economics*, **8**, 55–69.

—— and Roll, R. (1986). Stock return variances: The arrival of information and the reaction of traders. *Journal of Financial Economics*, **17**, 5–26.

Fuller, W. A. (1976). *Introduction to Statistical Time Series*. Wiley, New York.

Gersovitz, M. and MacKinnon, J. G. (1978). Seasonality in regression: An application of smoothness priors. *Journal of the American Statistical Association*, **73**, 264–73.

Ghysels, E. (1994). On the periodic structure of the business cycle. *Journal of Business and Economic Statistics*, **12**, 289–98.

—— (2000). Time-series model with periodic stochastic regime switching—Part I: Theory. *Macroeconomic Dynamics*, **4**, 467–86.

—— and Osborn, D. R. (2001). *The Econometric Analysis of Seasonal Time Series*. Cambridge University Press.

—— Hall, A., and Lee, H. S. (1996). On periodic structures and testing for seasonal unit roots. *Journal of the American Statistical Association*, **91**, 1551–9.

—— McCulloch, R. E., and Tsay, R. S. (1998). Bayesian inference for periodic regime-switching models. *Journal of Applied Econometrics*, **13**, 129–44.

Gladyshev, E. G. (1961). Periodically correlated random sequences. *Soviet Mathematics*, **2**, 385–8.

Granger, C. W. J. (1986). Developments in the study of cointegrated variables. *Oxford Bulletin of Economics and Statistics*, **48**, 213–28.

—— and Hyung, N. J. Y. (1999). Occasional structural breaks and long memory. Technical report 99-14. University of California, San Diego.

—— and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. *Journal of Time Series Analysis*, **1**, 15–39.

(p.136)
Granger, C. W. J. and Teräsvirta, T. (1993). *Modelling Nonlinear Economic Relationships*. Oxford University Press.

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. *Econometrica*, **57**, 357–84.

—— (1994). *Time Series Analysis*. Princeton University Press, NJ.

Hansen, L. P. and Sargent, T. J. (1993). Seasonality and approximation errors in rational expectations models. *Journal of Econometrics*, **55**, 21–56.

Harvey, A. C. (1993). *Time Series Models*. MIT Press, Cambridge, MA.

Herwartz, H. (1997). Performance of periodic error correction models in forecasting consumption data. *International Journal of Forecasting*, **13**, 421–31.

Hosking, J. R. M. (1981). Fractional differencing. *Biometrika*, **68**, 165–76.

Hurd, H. L. and Gerr, N. L. (1991). Graphical methods for determining the presence of periodic correlation. *Journal of Time Series Analysis*, **12**, 337–50.

Hylleberg, S. (1995). Tests for seasonal unit roots: General to specific or specific to general. *Journal of Econometrics*, **69**, 5–25.

—— Engle, R. F., Granger, C. W. J., and Yoo, B. S. (1990). Seasonal integration and cointegration. *Journal of Econometrics*, **44**, 215–38.

Jaditz, T. (2000). Seasonality in variance is common in macro time series. *Journal of Business*, **73**, 245–54.

Johansen, S. (1988). Statistical analysis of cointegration vectors. *Journal of Economic Dynamics and Control*, **12**, 231–54.

—— (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. *Econometrica*, **59**, 1551–80.

—— (1992*a*). A representation of vector autoregressive processes integrated of order 2. *Econometric Theory*, **8**, 188–202.

—— (1992*b*). Determination of cointegration rank in the presence of a linear trend. *Oxford Bulletin of Economics and Statistics*, **54**, 383–97.

—— (1994). The role of constant and linear terms in cointegration analysis of nonstationary variables. *Econometric Reviews*, **13**, 205–29.

—— (1995). *Likelihood-Based Inference in Cointegrated Vector Autoregressive Models*. Oxford University Press.

—— and Shaumburg, E. (1999). Likelihood analysis of seasonal cointegration. *Journal of Econometrics*, **88**, 301–39.

(p.137)
Jones, R. H. and Brelsford, W. M. (1967). Time series with periodic structure. *Biometrika*, **54**, 403–7.

Keim, D. B. and Stambaugh, R. (1984). A further investigation of the weekend effect in stock returns. *Journal of Finance*, **39**, 819–35.

Kleibergen, F. (1998). Reduced rank regression using GMM. In *Generalized Method of Moments Estimation* (ed. L. Matyas), Chapter 7, pp. 171–210, Cambridge University Press.

—— and Franses, P. H. (1999). Cointegration in a periodic vector autoregression. Econometric Institute report 9906/A. Erasmus University Rotterdam.

Koopman, S. J. and Franses, P. H. (2002). Constructing seasonally adjusted data with time-varying confidence intervals. *Oxford Bulletin of Economics and Statistics*, **64**, 509–26.

Kunst, R. M. (1993). Seasonal cointegration in macroeconomic systems: Case studies for small and large European countries. *Review of Economics and Statistics*, **75**, 325–30.

—— (1997). Testing for cyclical non-stationarity in autoregressive processes. *Journal of Time Series Analysis*, **18**, 123–35.

Kurozumi, E. (2002). Testing for periodic stationarity. *Econometric Reviews*, **21**, 243–70.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., and Shin, Y. (1992). Testing for the null hypothesis of stationarity against the alternative of a unit root. *Journal of Econometrics*, **54**, 159–78.

Laroque, G. (1977). Analyse d'une méthode de désaissonnalisation: Le programme X-11 du Bureau de Census, version trimestrielle. *Annales de l’INSEE*, **28**, 105–27.

Lee, H. S. (1992). Maximum likelihood inference on cointegration and seasonal cointegration. *Journal of Econometrics*, **54**, 351–65.

Lewis, P. A. W. and Ray, B. K. (2002). Nonlinear modelling of periodic threshold autoregressions using TSMARS. *Journal of Time Series Analysis*, **23**, 459–71.

Löf, M. and Franses, P. H. (2001). On forecasting cointegrated seasonal time series. *International Journal of Forecasting*, **17**, 607–21.

Lütkepohl, H. (1991). *Introduction to Multiple Time Series Analysis*. Springer-Verlag, Berlin.

MacKinnon, J. G. (1991). Critical values for co-integration tests. In *Long-Run Economic Relationships* (R. F. Engle and C. W. J. Granger, eds.), Oxford University Press, Oxford, pp. 267–276.

(p.138)
McLeod, A. I. (1993). Parsimony, model adequacy and periodic correlation in time series forecasting. *International Statistical Review*, **61**, 387–93.

—— (1994). Diagnostic checking of periodic autoregression models with application. *Journal of Time Series Analysis*, **15**, 221–33.

Mills, T. C. (1991). *Time Series Techniques for Economists*. Cambridge University Press.

Nelson, D. B. and Cao, C. Q. (1992). Inequality constraints in the univariate GARCH model. *Journal of Business and Economic Statistics*, **10**, 229–35.

Noakes, D. J., McLeod, A. I., and Hipel, K. W. (1985). Forecasting monthly riverflow time series. *International Journal of Forecasting*, **1**, 179–90.

Ooms, M. and Franses, P. H. (1997). On periodic correlations between estimated seasonal and nonseasonal components in German and US unemployment. *Journal of Business and Economic Statistics*, **15**, 470–81.

—— —— (2001). A seasonal periodic long memory model for monthly river flows. *Environmental Modelling and Sofware*, **16**, 559–69.

Osborn, D. R. (1988). Seasonality and habit persistence in a life-cycle model of consumption. *Journal of Applied Econometrics*, **3**, 255–66.

—— (1991). The implications of periodically varying coefficients for seasonal time-series processes. *Journal of Econometrics*, **48**, 373–84.

—— (1993). Comment on Engle *et al.* (1993). *Journal of Econometrics*, **55**, 299–303.

—— (2000). Cointegration for seasonal time series processes, unpublised working paper, University of Manchester.

—— and Rodrigues, P. M. M. (2002). Asymptotic distributions of seasonal unit root tests: A unifying approach. *Econometric Reviews*, **21**, 221–41.

—— and Smith, J. P. (1989). The performance of periodic autoregressive models in forecasting seasonal U.K. consumption. *Journal of Business and Economic Statistics*, **7**, 117–27.

—— Chui, A. P. L., Smith, J. P., and Birchenhall, C. R. (1988). Seasonality and the order of integration for consumption. *Oxford Bulletin of Economics and Statistics*, **50**, 361–77.

Paap, R. and Franses, P. H. (1999). On trends and constants in periodic autoregressions. *Econometric Reviews*, **18**, 271–86.

Pagano, M. (1978). On periodic and multiple autoregressions. *Annals of Statistics*, **6**, 1310–17.

(p.139)
Pantula, S. G. (1989). Testing for unit roots in time series data. *Econometric Theory*, **5**, 256–71.

Park, J. Y. and Phillips, P. C. B. (1988). Statistical inference in regressions with integrated processes: Part I. *Econometric Theory*, **4**, 468–97.

—— —— (1989). Statistical inference in regressions with integrated processes: Part II. *Econometric Theory*, **5**, 95–131.

Parzen, E. and Pagano, M. (1979). An approach to modeling seasonally stationary time series. *Journal of Econometrics*, **9**, 137–53.

Proietti, T. (1998). Spurious periodic autoregressions. *Econometrics Journal*, **1**, 1–22.

Sakai, H. (1982). Circular lattice filtering using Pagano's method. *IEEE Transactions on Acoustics, Speech and Signal Processing*, **30**, 279–87.

Salas, J. D., Boes, D. C., and Smith, R. A. (1982). Estimation of ARMA models with seasonal parameters. *Water Resources Research*, **18**, 1006–10.

Schwarz, G. (1978). Estimating the dimension of a model. *Annals of Statistics*, **6**, 461–4.

Smirlock, M. and Starks, L. (1986). Day-of-the-week effect and intraday effects in stock returns. *Journal of Financial Economics*, **17**, 197–210.

Smith, R. J. and Taylor, A. M. R. (1998*a*). Additional critical values and asymptotic representations for seasonal unit root tests. *Journal of Econometrics*, **85**, 269–88.

—— —— (1998*b*). Likelihood ratio tests for seasonal unit roots. Discussion paper 98/444, University of Bristol.

—— —— (1999). Likelihood ratio tests for seasonal unit roots. *Journal of Time Series Analysis*, **20**, 453–76.

—— —— (2001). Recursive and rolling regression-based tests of the seasonal unit root hypothesis. *Journal of Econometrics*, **105**, 309–36.

Taylor, A. M. R. and Smith, R. J. (2001). Tests of the seasonal unit-root hypothesis against heteroskedastic seasonal integration. *Journal of Business and Economic Statistics*, **19**, 192–207.

Tiao, G. C. and Grupe, M. R. (1980). Hidden periodic autoregressive-moving average models in time series data. *Biometrika*, **67**, 365–73.

Todd, R. (1990). Periodic linear–quadratic methods for modeling seasonality. *Journal of Economic Dynamics and Control*, **14**, 763–95.

Tong, H. (1990). *Nonlinear Time Series: A Dynamic System Approach*. Oxford University Press.

(p.140)
Troutman, B. M. (1979). Some results in periodic autoregression. *Biometrika*, **66**, 219–28.

Vahid, F. and Engle, R. F. (1993). Common trends and common cycles. *Journal of Applied Econometrics*, **8**, 341–60.

Vecchia, A. V. (1985). Maximum likelihood estimation for periodic autoregressive moving average models. *Technometrics*, **27**, 375–84.

—— and Ballerini, R. (1991). Testing for periodic autocorrelations in seasonal time series data. *Biometrika*, **78**, 53–63.

—— Obeysekera, J. T., Salas, J. D., and Boes, D. C. (1983). Aggregation and estimation for low-order periodic ARMA models. *Water Resources Research*, **9**, 1297–306.