Jump to ContentJump to Main Navigation
Out of Equilibrium$

Mario Amendola and Jean-Luc Gaffard

Print publication date: 1998

Print ISBN-13: 9780198293804

Published to Oxford Scholarship Online: November 2003

DOI: 10.1093/0198293801.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 26 February 2017

(p.260) Appendix Numerical Simulations Data1

(p.260) Appendix Numerical Simulations Data1

Source:
Out of Equilibrium
Publisher:
Oxford University Press

Chapter 6

Steady State

a c ih = ( 8   8   8   8 )   i   0 , , n a u ih = ( 8   8   8   8 )   i   n + 1 , n + N or a ih c = ( 8   6   4   2 )   i a ih u = ( 8   6   4   2 )   i b i = 100   i   n + 1 , n + N n = 9 ,   N = 10 g ¯ = 0 . 02 p = 1 w h = ( 0 . 5   1   1 . 5   2 ) μ = 0 . 3 ϱ = σ = 0

Periodic Orbits/complex Dynamics

Figure

κ

ν

η

c

f

f D

ϱ

6.1

1

0

1

a

b

Y

0.01

6.2

1

0

1

a

b

Y

0.01

6.3

0.5

0.5

1

a

a

Y

0

6.4

0.5

0.5

1

a

a

Y

0

6.5

0.5

0.5

1

b

b

N

0.001

6.6

0 → 2

0 → 2

1

b

b

N

0.001

6.7

0.5

0.5

1

a

a

N

0.001

6.8

0.5

0.5

1

a

a

N

0.001

The letters a,b (and c and c * in the following tables) refer to c as determined in equations 42a, 42b, 42c, or 42c* in the case of μ < μ, respectively.

The letters a,b (and c and c * in the following tables) refer to f as determined in equations 41a, 41b, 41c, respectively.

Y = Yes; N = No.

(p.261) Chapter 7

Changes in Technology

From t = 1 to t = 19

a ih c = ( 8   8   8   8 )   i a ih u = ( 8   8   8   8 )   i

From t = 20 onward

  a ih c = ( 10   10   10   10 )   i a ih u = ( 5   5   5   5 )   i

Figure

κ

ν

α

η

c

f

hrc

μ (0)

λ1; λ2

7.1a

0

0

0

1

a

b

(N/Y)

0.3

0

7.1b

0.5

0.5

0

1

a

b

N

0.3

0

7.1c

0.5

0.5

0

1

a

b

Y

0.3

0

7.2a

0

0

0

1

c

b

Y

0.5

0

7.2b

0

0

0

1

c

b

Y

0.3

0

7.2c

0.1

0.1

0

1

c

b

Y

0.3

0

7.3a

0.5

0

1

1

a

b

Y

0.3

0

7.3b

0.5

0

1

1

c

b

Y

0.5

0

From t = 20 onward

a ih c increases by 5% each 20 periods;

the real productivity of the technology increases by 2% over time

Figure

κ

ν

α

η

c

f

hrc

μ (0)

λ1; λ2

7.4a

0

0

0

1

a

b

(N.Y)

0.3

0

7.4b

0.05

0.05

0

1

a

b

N

0.3

0

7.5a

0.5

0.5

0

1

c

b

Y

0.3

0

7.5b

0.1

0.1

0

1

c

b

Y

0.3

0

7.6a

0.1

0.1

0

1

c

c

Y

0.3

0

7.6b

0.05

0

1

1

c

c

Y

0.3

0

7.6c

0.5

0

1

1

c

c

Y

0.3

0

Note: hrc = human resource constraint

(p.262) Changes in Skill

From t = 1 to t = 19

a ih c = ( 8   6   4   2 )   i a ih u = ( 8   6   4   2 )   i

From t = 20 onward

a ih c = ( 7 . 6   5 . 8   4 . 1   2 . 1 )   i a ih u = ( 7 . 6   5 . 8   4 . 1   2 . 1 )   i

Figure

κ

ν

α

η

c

f

ξ (0)

7.7

0.05

0.05

0

1

a

b

0.8

7.8

0.05

0.05

0

1

a

b

0.1

7.9a

0.05

0.05

0

1

c

b

0.8

7.9b

0.05

0.05

0

1

c

b

0.02

7.9c

0.05

0.05

0

1

c

b

0.8

From t = 20 onward

a ih c increases by 5% each 20 period ∀ h = 3.4;

the real productivity of the technology increases by 2% over time

Figure

κ

ν

α

η

c

f

ξ (0)

7.10a

0.05

0.05

0

1

a

b

0.1

7.10b

0.01

0.01

0

1

a

b

0.1

7.10c

0.05

0.05

0

1

a

b

0.1

0.005

7.11

0.01

0.01

0

1

c

c

0.1

Credit Creation

From t = 1 to t = 19

g f = 0.020

From t = 20 onward

g f = 0.025

Figure

κ

ν

α

η

c

f

hrc

λ1; λ2

7.12a

0.5

0.5

0

1

a

b

N

0

7.12b

1.8

1.8

0

1

a

b

N

0

7.13a

0.5

0.5

0

1

a

b

Y

0

7.13b

1.5

1.5

0

1

b

b

Y

0

7.14

0.05

1

0

1

a

b

Y

0

7.15a

0.5

0.5

0

1

a

b

Y

1

(p.263) From t = 20 onward

g f = 0.0246

a ih = (7.8 7.8 7.8 7.8) ∀ i

Figure

κ

ν

α

η

c

f

hrc

λ1; λ2

7.15b

1.15

1.15

0

1

a

b

Y

1

Changes in Expectations

From t = 1 to t = 19

ϱ = 0

From t = 20 onward

ϱ = 0.001

Figure

κ

ν

α

η

c

f S

f D

μmin

7.16a

0.05

0.05

0

1

b

b

Y

N

7.16b

0.05

0.05

0

1

b

b

Y

N

7.16c

0.05

0

1

1

b

b

Y

Y

7.17a

0.05

0.05

0

1

a

b

Y

Y

7.17b

0.05

0.05

0

1

a

b

Y

Y

0

Limits to Growth

From t = 1 to t = 19

μ = 0.3; g f = 0.02

From t = 20 onward

Figure

κ

ν

α

η

c

f

μmin

g f

λ1 λ2

7.18a

0.5

0.5

0

1

c *

b

0.28

0.02

1

7.18b

0.5

0.5

0

1

c *

b

0.05

0.02

1

7.19a

0.5

0.5

0

1

c *

b

0.28

0.025

1

7.19b

0.01

0.01

0

1

c *

b

0.28

0.025

1

7.20

0.01

0.01

0

1

c *

b

0.28

0.02

1

(p.264) From t = 1 to t = 19

a ih c = ( 8 8 8 8 ) i a ih u = ( 8 8 8 8 ) i

From t = 20 onward

a ih c = ( 10 10 10 10 ) i a ih u = ( 5 5 5 5 ) i

Figure

κ

ν

α

η

c

f

μmin

g f

λ1; λ2

7.21a

0.01

0.01

0

1

c *

b

0.28

0.0246

1

7.21b

0.5

0.5

0

1

c *

b

0.28

0.0246

1

7.22

0.01

0.01

0

1

c *

b

0.28

0.0246

1

Note: c = c * sudden decrease of the take out

From t = 1 to t = 19

a ih c = ( 8 6 4 2 ) i a ih u = ( 8 6 4 2 ) i

From t = 20 onward

a ih c = ( 7 . 6 5 . 8 4 . 2 2 . 1 ) i a ih u = ( 7 . 6 5 . 8 4 . 2 2 . 1 ) i

Figure

κ

ν

α

η

c

f

μmin

g f

From t =

7.23a

0.5

0.5

0

1

c *

b

0.2

0.03

30

7.23b

0.5

0.5

0

1

c *

b

0.2

0.025

20

7.23c

0.5

0.5

0

1

c *

b

0.2

0.025

20

0

7.23d

0.05

0.05

0

1

c *

b

0.2

0.025

20

7.24

0.5

0.5

0

1

a

b

0.2

0.025

20

Figure

κ

ν

α

η

c

f

μmin

h d h

7.25a

0.005

0.005

0

1

c *

b

0.28

Y

7.25b

0.005

0.005

0

1

c *

b

0.28

N

7.25c

0.5

0.5

0

1

c *

b

0.28

Y

Notes:

(1) The program for the simulations was written by Elena Lega and Claude Froeschlé using Fortran 617