Jump to ContentJump to Main Navigation
Philosophy of MathematicsStructure and Ontology$

Stewart Shapiro

Print publication date: 2000

Print ISBN-13: 9780195139303

Published to Oxford Scholarship Online: November 2003

DOI: 10.1093/0195139305.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2016. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 03 December 2016

(p.263) References

(p.263) References

Source:
Philosophy of Mathematics
Publisher:
Oxford University Press

Bibliography references:

Aspray, W., and P. Kitcher [1988], History and philosophy of modern mathematics, Minnesota studies in the philosophy of science 11, Minneapolis, Minnesota University Press.

Azzouni, J. [1994], Metaphysical myths, mathematical practice, Cambridge, Cambridge University Press.

Balaguer, M. [1994], “Against (Maddian) naturalized epistemology,” Philosophia Mathematica (3) 2: 97–108.

Balaguer, M. [1995], “A Platonist epistemology,” Synthese 103: 303–325.

Barbut, M. [1970], “On the meaning of the word ‘structure’ in mathematics,” in Introduction to structuralism, ed. by M. Lane, New York, Basic Books, 367–388.

Barwise, J. [1985], “Model‐theoretic logics: Background and aims,” in Model‐theoretic logics, ed. by J. Barwise and S. Feferman, New York, Springer‐Verlag, 3–23.

Benacerraf, P. [1965], “What numbers could not be,” Philosophical Review 74: 47–73; reprinted in Benacerraf and Putnam [1983], 272–294.

Benacerraf, P. [1973], “Mathematical truth,” Journal of Philosophy 70: 661–679; reprinted in Benacerraf and Putnam [1983], 403–420.

Benacerraf, P., and H. Putnam [1983], Philosophy of mathematics, second edition, Cambridge, Cambridge University Press.

Bernays, P. [1935], “Sur le platonisme dans les mathématiques,” L'enseignement mathématique 34: 52–69; tr. as “Platonism in mathematics,” in Benacerraf and Putnam [1983], 258–271.

Bernays, P. [1961], “Zur Frage der Unendlichkeitsschemata in der axiomatischen Mengenlehre,” in Essays on the foundation of mathematics, ed. by Y. Bar‐Hillel et al., Jerusalem, Magnes Press, 3–49.

Bernays, P. [1967], “Hilbert, David,” in The encyclopedia of philosophy, vol. 3. ed. By P. Edwards, New York, Macmillan and The Free Press, 496–504.

Beth, E. W., and J. Piaget [1966], Mathematical epistemology and psychology, Dordrecht, Holland, D. Reidel.

Bishop, E. [1967], Foundations of constructive analysis, New York, McGraw‐Hill.

Bishop, E. [1975], “The crises in contemporary mathematics,” Historia Mathematica 2: 505–517.

(p.264) Blackburn, S. [1984], Spreading the word, Oxford, Clarendon Press.

Block, N. (ed.) [1980], Readings in philosophy of psychology 1, Cambridge, Harvard University Press.

Boolos, G. [1984], “To be is to be a value of a variable (or to be some values of some variables),” Journal of Philosophy 81: 430–449.

Boolos, G. [1985], “Nominalist Platonism,” Philosophical Review 94: 327–344.

Boolos, G. [1987], “The consistency of Frege's Foundations of arithmetic,” in On being and saying: Essays for Richard Cartwright, ed. by Judith Jarvis Thompson, Cambridge, MIT Press, 3–20.

Bourbaki, N. [1949], “Foundations of mathematics for the working mathematician,” Journal of Symbolic Logic 14: 1–8.

Bourbaki, N. [1950], “The architecture of mathematics,” American Mathematical Monthly 57: 221–232.

Bourbaki, N. [1968], Theory of sets, Paris, Hermann.

Brouwer, L. E. J. [1948], “Consciousness, philosophy and mathematics,” in Benacerraf and Putnam [1983], 90–96.

Buck, R. [1956], Advanced calculus, New York, McGraw‐Hill.

Burgess, J. [1983], “Why I am not a nominalist,” Notre Dame Journal of Formal Logic 24: 93–105.

Burgess, J. [1984], “Synthetic mechanics,” Journal of Philosophical Logic 13: 379–395.

Burgess, J. [1992], “Proofs about proofs: A defense of classical logic,” in Proof, logic and formalization, ed. by Michael Detlefsen, London, Routledge, 8–23.

Cantor, G. [1899], “Letter to Dedekind,” van Heijenoort [1967], 113–117.

Cantor, G. [1932], Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, ed. by E. Zermelo, Berlin, Springer.

Carnap, R. [1931], “Die logizistische Grundlegung der Mathematik,” Erkenntnis 2: 91–105; tr. as “The logicist foundations of mathematics,” in Benacerraf and Putnam [1983], 41–52.

Carnap, R. [1934], Logische Syntax der Sprache, Vienna, Springer; tr. as The logical syntax of language, New York, Harcourt, 1937.

Carnap R. [1942], Introduction to semantics, Cambridge, Harvard University Press.

Carnap, R. [1950], “Empiricism, semantics, and ontology,” Revue Internationale de Philosophie 4: 20–40; reprinted in Benacerraf and Putnam [1983], 241–257.

Cartwright, N. [1983], How the laws of physics lie, Oxford, Oxford University Press.

Chihara, C. [1973], Ontology and the vicious‐circle principle, Ithaca, New York, Cornell University Press.

Chihara, C. [1984], “A simple type theory without Platonic domains,” Journal of Philosophical Logic 13: 249–283.

Chihara, C. [1990], Constructibility and mathematical existence, Oxford, Oxford University Press.

Chihara, C. [1993], “Modality without worlds,” in Philosophy of mathematics: Proceedings of the fifteenth international Wittgenstein symposium 1, ed. by J. Czermak, Vienna, Verlag‐ Hölder‐Pichler‐Tempsky, 253–268.

Coffa, A. [1986], “From geometry to tolerance: Sources of conventionalism in nineteenth‐ century geometry,” in From quarks to quasars: Philosophical problems of modern physics, University of Pittsburgh series, vol. 7, Pittsburgh, Pittsburgh University Press, 3–70.

Coffa, A. [1991], The semantic tradition from Kant to Carnap, Cambridge, Cambridge University Press.

Cooper, R. [1984], “Early number development: Discovering number space with addition and subtraction,” in Origins of cognitive skills, ed. by C. Sophian, Hillsdale, New Jersey, Erlbaum, 157–192.

(p.265) Corry, L. [1992], “Nicolas Bourbaki and the concept of mathematical structure,” Synthese 92: 315–348.

Crossley, J., C. J. Ash, C. J. Brickhill, J. C. Stillwell, and N. H. Williams [1972], What is mathematical logic? New York, Oxford University Press.

Crowell, R., and R. Fox [1963], Introduction to knot theory, Boston, Ginn.

Curry, H. [1950], A theory of formal deducibility, Notre Dame, Edwards Brothers.

Davidson, D. [1974], “On the very idea of a conceptual scheme,” Proceedings and Addresses of the American Philosophical Association 47: 5–20.

Dedekind, R. [1872], Stetigkeit und irrationale Zahlen, Brunswick, Vieweg;

tr. as Continuity and irrational numbers, in Essays on the theory of numbers, ed. by W. W. Beman, New York, Dover, 1963, 1–27.

Dedekind, R. [1888], Was sind und was sollen die Zahlen? Brunswick, Vieweg;

tr. as The nature and meaning of numbers, in Essays on the theory of numbers, ed. by W. W. Beman, New York, Dover, 1963, 31–115.

Dedekind, R. [1932], Gesammelte mathematische Werke 3, ed. by R. Fricke, E. Noether, and O. Ore, Brunswick, Vieweg.

Demopoulos, W. [1994], “Frege, Hilbert, and the conceptual structure of model theory,” History and Philosophy of Logic 15: 211–225.

Dieterle, J. [1994], Structure and object, Ph.D. dissertation, The Ohio State University.

Dummett, M. [1973], “The philosophical basis of intuitionistic logic,” in Truth and other enigmas, by M. Dummett, Cambridge, Harvard University Press, 1978, 215–247; reprinted in Benacerraf and Putnam [1983], 97–129.

Dummett, M. [1973a], Frege: Philosophy of language, New York, Harper and Row.

Dummett, M. [1977], Elements of intuitionism, Oxford, Oxford University Press.

Dummett, M. [1981], The interpretation of Frege's philosophy, Cambridge, Harvard University Press.

Dummett, M. [1991], Frege: Philosophy of mathematics, Cambridge, Harvard University Press.

Dummett, M. [1991a], The logical basis of metaphysics, Cambridge, Harvard University Press.

Edwards, H. [1988], “Kronecker's place in history,” in Aspray and Kitcher [1988], 139–144.

Etchemendy, J. [1988], “Tarski on truth and logical consequence,” Journal of Symbolic Logic 53: 51–79.

Feynman, R. [1967], The character of physical law, Cambridge, MIT Press.

Field, H. [1980], Science without numbers, Princeton, Princeton University Press.

Field, H. [1984], “Is mathematical knowledge just logical knowledge?” Philosophical Review 93: 509–552; reprinted (with added appendix) in Field [1989], 79–124.

Field, H. [1985], “On conservativeness and incompleteness,” Journal of Philosophy 82: 239–260; reprinted in Field [1989], 125–146.

Field, H. [1989], Realism, mathematics and modality, Oxford, Blackwell.

Field, H. [1991], “Metalogic and modality,” Philosophical Studies 62: 1–22.

Fine, A. [1986], The shaky game: Einstein, realism and the quantum theory, Chicago, University of Chicago Press.

Frege, G. [1879], Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle, Louis Nebert; tr. in van Heijenoort [1967], 1–82.

Frege, G. [1884], Die Grundlagen der Arithmetik, Breslau, Koebner; The foundations of arithmetic, tr. by J. Austin, second edition, New York, Harper, 1960.

Frege, G. [1903], Grundgesetze der Arithmetik 2, Olms, Hildescheim.

Frege, G. [1903a], “Über die Grundlagen der Geometrie,” Jahresbericht der Mathematiker‐ Vereinigung 12: 319–324, 368–375.

(p.266) Frege, G. [1906], “Über die Grundlagen der Geometrie,” Jahresbericht der Mathematiker‐ Vereinigung 15: 293–309, 377–403, 423–430.

Frege, G. [1967], Kleine Schriften, Darmstadt, Wissenschaftlicher Buchgesellschaft (with I. Angelelli).

Frege, G. [1971], On the foundations of geometry and formal theories of arithmetic, tr. by Eikee‐Henner W. Kluge, New Haven, Yale University Press.

Frege, G. [1976], Wissenschaftlicher Briefwechsel, ed. by G. Gabriel, H. Hermes, F. Kambartel, and C. Thiel, Hamburg, Felix Meiner.

Frege, G. [1980], Philosophical and mathematical correspondence, Oxford, Blackwell.

Freudenthal, H. [1962], “The main trends in the foundations of geometry in the 19th century,” in Logic, methodology and philosophy of science, Proceedings of the 1960 Congress, ed. by E. Nagel, P. Suppes, A. Tarski, Stanford, Stanford University Press, 613–621.

Friedman, M. [1983], Foundations of space‐time theories: Relativistic physics and philosophy of science, Princeton, Princeton University Press.

Friedman, M. [1988], “Logical truth and analyticity in Carnap's Logical syntax of language,” in Aspray and Kitcher [1988], 82–94.

Gandy, R. [1988], “The confluence of ideas in 1936,” in R. Herken, ed., The universal Turing machine, New York, Oxford University Press, 55–111.

Geach, P. [1967], “Identity,” Review of Metaphysics 21: 3–12.

Geach, P. [1968], Reference and generality, Ithaca, New York, Cornell University Press.

Geroch, R. [1985], Mathematical physics, Chicago, University of Chicago Press.

Gödel, K. [1944], “Russell's mathematical logic,” in Benacerraf and Putnam [1983], 447–469.

Gödel, K. [1951], “Some basic theorems on the foundations of mathematics and their implications,” in Collected Works 3, Oxford, Oxford University Press, 1995, 304–323.

Gödel, K. [1953], “Is mathematics syntax of language?” in Collected Works 3, Oxford, Oxford University Press, 1995, 334–362.

Gödel, K. [1964], “What is Cantor's continuum problem?,” in Benacerraf and Putnam [1983], 470–485.

Gödel, K. [1986], Collected works 1, Oxford, Oxford University Press.

Goldfarb, W. [1979], “Logic in the twenties: The nature of the quantifier,” Journal of Symbolic Logic 44: 351–368.

Goldfarb, W. [1988], “Poincaré against the logicists,” in Aspray and Kitcher [1988], 61–81.

Goldfarb, W. [1989], “Russell's reasons for ramification,” in Rereading Russell, Minnesota studies in the philosophy of science 12: 24–40.

Goldman, A. [1986], Epistemology and cognition, Cambridge, Harvard University Press.

Goodman, Nicolas [1979], “Mathematics as an objective science,” American Mathematical Monthly 86: 540–551.

Grassmann, H. [1972], Gessammelte mathematische und physicalische Werke 1, ed. by F. Engels, New York, Johnson Reprint Corporation.

Gupta, A., and N. Belnap [1993], The revision theory of truth, Cambridge, MIT Press.

Hale, Bob [1987], Abstract objects, Oxford, Blackwell.

Hallett, M. [1990], “Physicalism, reductionism and Hilbert,” in Physicalism in mathematics, ed. by A. D. Irvine, Dordrecht, Holland, Kluwer Academic Publishers, 183–257.

Hallett, M. [1994], “Hilbert's axiomatic method and the laws of thought,” in Mathematics and mind, ed. by Alexander George, Oxford, Oxford University Press, 158–200.

Hand, M. [1993], “Mathematical structuralism and the third man,” Canadian Journal of Philosophy 23: 179–192.

Hazen, A. [1983], “Predicative logics,” in Handbook of philosophical logic 1, ed. by D. Gabbay and F. Guenthner, Dordrecht, Holland, Reidel, 331–407.

(p.267) Heath, T. [1921], A history of Greek mathematics, Oxford, Clarendon Press.

Hellman, G. [1983], “Realist principles,” Philosophy of Science 50: 227–249.

Hellman, G. [1989], Mathematics without numbers, Oxford, Oxford University Press.

Hellman, G. [1996], “Structuralism without structures,” Philosophia Mathematica (3) 4: 100–123.

Helmholtz, H. von [1921], Schriften zur Erkenntnistheorie, ed. by P. Hertz and M. Schlick, Berlin, Springer; tr. as Epistemological writings, Dordrecht, Holland Reidel, 1977.

Hersh, R. [1979], “Some proposals for reviving the philosophy of mathematics,” Advances in mathematics 31: 31–50.

Heyting, A. [1931], “The intuitionistic foundations of mathematics,” in Benacerraf and Putnam [1983], 52–61.

Heyting, A. [1956], Intuitionism, An introduction, Amsterdam, North Holland.

Hilbert, D. [1899], Grundlagen der Geometrie, Leipzig, Teubner; Foundations of geometry, tr. by E. Townsend, La Salle, Illinois, Open Court, 1959.

Hilbert, D. [1900], “Mathematische Probleme,” Bulletin of the American Mathematical Society 8 (1902): 437–479.

Hilbert, D. [1900a], “Über den Zahlbegriff,” Jahresbericht der Deutschen Mathematiker‐ Vereinigung 8: 180–194.

Hilbert, D. [1902], Les principes fondamentaux de la géometrie, Paris, Gauthier‐Villars; the French tr. of Hilbert [1899].

Hilbert, D. [1905], “Über der Grundlagen der Logik und der Arithmetik,” in Verhandlungen des dritten internationalen Mathematiker‐Kongresses in Heidelberg vom 8 bis 13 August 1904, Leipzig, Teubner, 174–185;

tr. as “On the foundations of logic and arithmetic,” in van Heijenoort [1967], 129–138.

Hilbert, D. [1925], “Über das Unendliche,” Mathematische Annalen 95: 161–190;

tr. as “On the infinite,” in van Heijenoort [1967], 369–392; Benacerraf and Putnam [1983], 83–201.

Hilbert, D. [1935], Gesammelte Abhandlungen, 3, Berlin, Springer.

Hilbert, D., and S. Cohn‐Vossen [1932], Geometry and the imagination, tr. by P. Nemenyi, New York, Chelsea Publishing Company, 1952.

Hodes, H. [1984], “Logicism and the ontological commitments of arithmetic,” Journal of Philosophy 81: 123–149.

Hodges, W. [1985], “Truth in a structure,” Proceedings of the Aristotelian Society 86 (1985–1986): 135–151.

Horwich, P. [1990], Truth, Oxford, Blackwell.

Huntington, E. [1902], “A complete set of postulates for the theory of absolute continuous magnitude,” Transactions of the American Mathematical Society 3: 264–279.

Kitcher, P. [1983], The nature of mathematical knowledge, New York, Oxford University Press.

Kitcher, P. [1986], “Frege, Dedekind, and the philosophy of mathematics,” in Frege synthesized, ed. by L. Haaparanta and J. Hintikka, Dordrecht, Holland, Reidel, 299–343.

Klein, F. [1921], Gesammelte mathematische Abhandlungen 1, Berlin, Springer.

Klein, J. [1968], Greek mathematical thought and the origin of algebra, Cambridge, MIT Press.

Kraut, R. [1980], “Indiscernibility and ontology,” Synthese 44: 113–135.

Kraut, R. [1993], “Robust deflationism,” Philosophical Review 102: 247–263.

Kreisel, G. [1967], “Informal rigour and completeness proofs,” Problems in the philosophy of mathematics, ed. by I. Lakatos, Amsterdam, North Holland, 138–186.

Kripke, S. [1965], “Semantical analysis of intuitionistic logic I,” in Formal systems and recursive functions, ed. by J. Crossley and M. Dummett, Amsterdam, North Holland, 92–130.

(p.268) Kripke, S. [1975], “Outline of a theory of truth,” Journal of Philosophy 72: 690–716.

Kuhn, T. [1970], The structure of scientific revolutions, second edition, Chicago, University of Chicago Press.

Lakatos, I. [1976], Proofs and refutations, ed. by J. Worrall and E. Zahar, Cambridge, Cambridge University Press.

Lakatos, I. [1978], Mathematics, science and epistemology, ed. by J. Worrall and G. Currie, Cambridge, Cambridge University Press.

Landman, F. [1989], “Groups,” Linguistics and Philosophy 12: 559–605, 723–744.

Lawvere, W. [1966], “The category of categories as a foundation for mathematics,” in Proceedings of the conference on categorical algebra in La Jolla, 1965, ed. by S. Eilenberg et al., New York, Springer, 1–21.

Lebesgue, H. [1971], “A propos de quelques travaux mathematiques recents,” Enseignement mathematique (2) 17: 1–48.

Lévi‐Strauss, C. [1949], Les Structures élémentaires de la parenté, Paris, P.U.F.

Levy, A. [1960], “Principles of reflection in axiomatic set theory,” Fundamenta Mathematicae 49: 1–10.

Lewis, D. [1986], On the plurality of worlds, Oxford, Blackwell.

Lewis, D. [1991], Parts of classes, Oxford, Blackwell.

Lewis, D. [1993], “Mathematics is megethology,” Philosophia Mathematica (3) 1: 3–23.

Luce, L. [1988], “Frege on cardinality,” Philosophy and Phenomenological Research 48: 415–434.

Maddy, P. [1981], “Sets and numbers,” Nous 11: 495–511.

Maddy, P. [1988], “Mathematical realism,” Midwest Studies in Philosophy 12: 275–285.

Maddy, P. [1990], Realism in mathematics, Oxford, Oxford University Press.

Maddy, P. [1993], “Does V equal L?” Journal of Symbolic Logic 58: 15–41.

Maddy, P. [1998], “Naturalizing mathematical methodology,” in Philosophy of mathematics today: Proceedings of an international conference in Munich, ed. by M. Schirn, The Mind Association, Oxford, Oxford University Press, 75–93.

McCarty, C. [1987], “Variations on a thesis: Intuitionism and computability,” Notre Dame Journal of Formal Logic 28: 536–580.

McCarty, C. [1995], “The mysteries of Richard Dedekind,” in From Dedekind to Gödel, ed. by Jaakko Hintikka, Synthese Library Series 251, Dordrecht, The Netherlands, Kluwer Academic Publishers, 53–96.

McLarty, C. [1993], “Numbers can be just what they have to,” Nous 27: 487–498.

Moore, G. H. [1982], Zermelo's axiom of choice: Its origins, development, and influence, New York, Springer‐Verlag.

Myhill, J. [1960], “Some remarks on the notion of proof,” Journal of Philosophy 57: 461–471.

Nagel, E. [1939], “The formation of modern conceptions of formal logic in the development of geometry,” Osiris 7: 142–224.

Nagel, E. [1979], “Impossible numbers: A chapter in the history of modern logic,” in Teleology revisited and other essays in the philosophy and history of science, New York, Columbia University Press, 166–194.

Neurath, O. [1932], “Protokollsätze,” Erkenntnis 3: 204–214.

Nolt, J. [1978], The language of set theory, Ph.D. dissertation, The Ohio State University.

Padoa, A. [1900], “Essai d'une théorie algébrique des nombres entiers, précede d'une introduction logique à une théorie déductive qelconque,” in Bibliothèque du Congrès international de philosophie, Paris; tr. as “Logical introduction to any deductive theory,” in van Heijenoort [1967], 118–123.

(p.269) Parsons, C. [1965], “Frege's theory of number,” in Philosophy in America, ed. by Max Black, Ithaca, New York, Cornell University Press, 180–203; reprinted in Parsons [1983], 150–175.

Parsons, C. [1977], “What is the iterative conception of set?” in Logic, foundations of mathematics and computability theory, ed. by R. Butts and J. Hintikka, Dordrecht, Holland, Reidel, 335–367; reprinted in Benacerraf and Putnam [1983], 503–529; and in Parsons [1983], 268–297.

Parsons, C. [1983], Mathematics in philosophy, Ithaca, New York, Cornell University Press.

Parsons, C. [1990], “The structuralist view of mathematical objects,” Synthese 84: 303–346.

Parsons, C. [1995], “Structuralism and the concept of set,” in Modality, morality, and belief: Essays in honor of Ruth Barcan Marcus, ed. by W. Sinnott‐Armstrong, D. Raffman, N. Ascher, Chicago, University of Chicago Press, 74–92.

Pasch, M. [1926], Vorlesungen über neuere Geometrie, Zweite Auflage, Berlin, Springer.

Plücker, J., [1846], System der Geometrie des Raumes, Dusseldorf.

Poincaré, H. [1899], “Des fondements de la géométrie,” Revue de Métaphysique et de Morale 7: 251–279.

Poincaré, H. [1900], “Sur les principes de la géométrie,” Revue de Métaphysique et de Morale 8: 72–86.

Poincaré, H. [1906], “Les mathématiques et la logique,” Revue de Métaphysique et de Morale 14: 294–317.

Poincaré, H. [1908], Science et méthode, Paris, Flammarion,

tr. as Science and method, Foundation of science, tr. by G. Halsted, New York, Science Press, 1921, 359–546.

Polya, G. [1954], Mathematics and plausible reasoning, Princeton, Princeton University Press.

Polya, G. [1977], Mathematical methods in science, Washington, D.C., Mathematical Association of America.

Posy, C. [1984], “Kant's mathematical realism,” Monist 67: 115–134.

Proclus [485], Commentary on Euclid's elements I, tr. by G. Morrow, Princeton, Princeton University Press, 1970.

Putnam, H. [1967], “Mathematics without foundations,” Journal of Philosophy 64: 5–22; reprinted in Benacerraf and Putnam [1983], 295–311.

Putnam, H. [1971], Philosophy of logic, New York, Harper Torchbooks.

Putnam, H. [1975], “What is mathematical truth?” in Mathematics, matter and method: Philosophical papers, vol. 1, by Hillary Putnam, Cambridge, Cambridge University Press, 60–78.

Putnam, H. [1980], “Models and reality,” Journal of Symbolic Logic 45: 464–482; reprinted in Benacerraf and Putnam [1983], 421–444.

Putnam, H. [1981], Reason, truth and history, Cambridge, Cambridge University Press.

Putnam, H. [1987], The many faces of realism, LaSalle, Illinois, Open Court.

Quine, W. V. O. [1937], “New foundations for mathematical logic,” American Mathematical Monthly 44: 70–80.

Quine, W. V. O. [1941], “Whitehead and the rise of modern logic,” in P. A. Schilpp, The philosophy of Alfred North Whitehead, New York, Tudor, 127–163.

Quine, W. V. O. [1951], “Two dogmas of empiricism,” Philosophical Review 60: 20–43.

Quine, W. V. O. [1960], Word and object, Cambridge, MIT Press.

Quine, W. V. O. [1969], Ontological relativity and other essays, New York, Columbia University Press.

Quine, W. V. O. [1981], Theories and things, Cambridge, Harvard University Press.

(p.270) Quine, W. V. O. [1986], Philosophy of logic, second edition, Englewood Cliffs, New Jersey, Prentice‐Hall.

Quine, W. V. O. [1992], “Structure and nature,” Journal of Philosophy 89: 5–9.

Ramsey, F. [1925], “The foundations of mathematics,” Proceedings of the London Mathematical Society (2) 25: 338–384.

Resnik, M. [1966], “On Skolem's paradox,” Journal of Philosophy 63: 425–438.

Resnik, M. [1975], “Mathematical knowledge and pattern cognition,” Canadian Journal of Philosophy 5: 25–39.

Resnik, M. [1980], Frege and the philosophy of mathematics, Ithaca, New York, Cornell University Press.

Resnik, M. [1981], “Mathematics as a science of patterns: Ontology and reference,” Nous 15: 529–550.

Resnik, M. [1982], “Mathematics as a science of patterns: Epistemology,” Nous 16: 95–105.

Resnik, M. [1985], “How nominalist is Hartry Field's nominalism?,” Philosophical Studies 47: 163–181.

Resnik, M. [1988], “Mathematics from the structural point of view,” Revue Internationale de Philosophie 42: 400–424.

Resnik, M. [1988a], “Second‐order logic still wild,” Journal of Philosophy 85: 75–87.

Resnik, M. [1990] “Beliefs about mathematical objects,” in Physicalism in mathematics, ed. by A. D. Irvine, Dordrecht, Holland, Kluwer Academic Publishers, 41–71.

Resnik, M. [1992], “A structuralist's involvement with modality” (review of Hellman [1989]), Mind 101: 107–122.

Resnik, M. [1996], “Structural relativity,” Philosophia Mathematics (3) 4: 83–99.

Resnik, M. [1998], “Holistic mathematics,” in Philosophy of mathematics today: Proceedings of an international conference in Munich, ed. by M. Schirn, The Mind Association, Oxford, Oxford University Press, 227–246.

Rogers, H. [1967], Theory of recursive functions and effective computability, New York, McGraw‐Hill.

Russell, B. [1899] “Sur les axiomes de la géométrie,” Revue de Métaphysique et de Morale 7: 684–707.

Russell, B. [1903], The principles of mathematics, London, Allen and Unwin.

Russell, B. [1904], “Non‐euclidean geometry,” Athenaeum 4018: 592–593.

Russell, B. [1956], An essay on the foundations of geometry, New York, Dover; first published in 1897.

Russell, B. [1993], Introduction to mathematical philosophy, New York, Dover; first published in 1919.

Scanlan, M. [1888] “Beltrami's model and the independence of the parallel postulate,” History and Philosophy of Logic 9: 13–34.

Scanlan, M. [1991], “Who were the American postulate theorists?” Journal of Symbolic Logic 56: 981–1002.

Schoenfield, J. [1967], Mathematical logic, Reading, Massachusetts, Addison Wesley.

Shapiro, S. [1980], “On the notion of effectiveness,” History and Philosophy of Logic 1: 209–230.

Shapiro, S. [1983], “Conservativeness and incompleteness,” Journal of Philosophy 80: 521–531.

Shapiro, S. [1983a], “Mathematics and reality,” Philosophy of Science 50: 523–548.

Shapiro, S. [1983b], “Remarks on the development of computability,” History and Philosophy of Logic 4: 203–220.

(p.271) Shapiro, S. [1985], “Epistemic and intuitionistic arithmetic,” in Intensional mathematics, ed. by S. Shapiro, Amsterdam, North Holland, 11–46.

Shapiro, S. [1987], “Principles of reflection and second‐order logic,” Journal of Philosophical Logic 16: 309–333.

Shapiro, S. [1989], “Logic, ontology, mathematical practice,” Synthese 79: 13–50.

Shapiro, S. [1991], Foundations without foundationalism: A case for second‐order logic, Oxford, Oxford University Press.

Shapiro, S. [1993], “Understanding Church's thesis, again,” Acta Analytica 11: 59–77.

Shapiro, S. [1993a], “Modality and ontology,” Mind 102: 455–481.

Shapiro, S. [1995], “Skolem paradox,” in The Oxford companion to philosophy, ed. by T. Honderich, Oxford, Oxford University Press, 827.

Shapiro, S. [1998], “Logical consequence: Models and modality,” Philosophy of mathematics today: Proceedings of an international conference in Munich, ed. by M. Schirn, The Mind Association, Oxford, Oxford University Press, 131–156.

Sher, G. [1991], The bounds of logic, Cambridge, MIT Press.

Sieg, W. [1990], “Physicalism, reductionism and Hilbert,” in Physicalism in mathematics, ed. by A. D. Irvine, Dordrecht, Holland, Kluwer Academic Publishers, 183–257.

Sieg, W. [1994], “Mechanical procedures and mathematical experience,” in Mathematics and mind, ed. by Alexander George, Oxford, Oxford University Press, 71–140.

Skolem, T. [1922], “Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre,” Matematikerkongressen i Helsingfors den 4–7 Juli 1922, Helsinki, Akademiska Bokhandeln, 217–232;

tr. as “Some remarks on axiomatized set theory,” in van Heijenoort [1967], 291–301.

Stein, H. [1988], “Logos, logic, and Logistiké: Some philosophical remarks on the nineteenth century transformation of mathematics,” in Aspray and Kitcher [1988], 238–259.

Steiner, M. [1989], “The application of mathematics to natural science,” Journal of Philosophy 86: 449–480.

Tait, W. [1981], “Finitism,” Journal of Philosophy 78: 524–546.

Tait, W. [1986], “Truth and proof: The Platonism of mathematics,” Synthese 69: 341–370.

Tait, W. [1986a], “Critical notice: Charles Parsons' Mathematics in philosophy,” Philosophy of Science 53: 588–607.

Tait, W. [1997], “Frege versus Cantor and Dedekind on the concept of number,” in Early analytic philosophy: Frege, Russell, Wittgenstein: Essays in honor of Leonard Linsky, ed. by W. Tait, Chicago, Open Court, 213–248.

Tarski, A. [1933], “Der Warheitsbegriff in dem formalisierten Sprachen,” Studia Philosophica 1: 261–405;

tr. as “The concept of truth in formalized languages,” in Tarski [1956], 152–278.

Tarski, A. [1935], “On the concept of logical consequence,” in Tarski [1956], 417–429.

Tarski, A. [1944], “The semantic conception of truth and the foundations of semantics,” Philosophy and Phenomenological Research 4: 341–376.

Tarski, A. [1956], Logic, semantics and metamathematics, Oxford, Clarendon Press; second edition, ed. by John Corcoran, Indianapolis, Hackett, 1983.

Tarski, A. [1986], “What are logical notions?” (ed. by John Corcoran), History and Philosophy of Logic 7: 143–154.

Taylor, R. [1993], “Zermelo, reductionism, and the philosophy of mathematics,” Notre Dame Journal of Formal Logic 34: 539–563.

Tennant, N. [1987], Anti‐realism and logic, Oxford, Oxford University Press.

Tennant, N. [1997], “On the necessary existence of numbers,” Nous 31.

(p.272) Turing, A. [1936], “On computable numbers, with an application to the Entscheidungs‐ problem,” Proceedings of the London Mathematical Society 42: 230–265; reprinted in The Undecidable, ed. by M. Davis, Hewlett, New York, The Raven Press, 1965, 116–153.

Turnbull, R. [1978], “Knowledge of the Forms in the later Platonic Dialogues,” Proceedings and Addresses of the American Philosophical Association 51: 735–758.

Vaihinger, H. [1913], Die Philosophie des Als Ob, Berlin, Verlag von Reuther & Reichard; tr. as The philosophy of “as if ,” by C. K. Ogden, London, Routledge and Kegan Paul, 1935.

Van Fraassen, B. [1980], The scientific image, Oxford, Oxford University Press.

Van Heijenoort, J. [1967], From Frege to Gödel, Cambridge, Harvard University Press.

Van Heijenoort, J. [1967a], “Logic as calculus and logic as language,” Synthese 17: 324–330.

Veblen, O. [1904], “A system of axioms for geometry,” Transactions of the American Mathematical Society 5: 343–384.

Veblen, O. [1925], “Remarks on the foundations of geometry,” Bulletin of the American Mathematical Society 31: 121–141.

Wagner, S. [1987], “The rationalist conception of logic,” Notre Dame Journal of Formal Logic 28: 3–35.

Wang, H. [1974], From mathematics to philosophy, London, Routledge and Kegan Paul.

Wang, H. [1987], Reflections on Kurt Gödel, Cambridge, MIT Press.

Weinberg, S. [1986], “Lecture on the applicability of mathematics,” Notices of the American Mathematical Society 33.5.

Weyl, H. [1949], Philosophy of mathematics and natural science, Princeton, Princeton University Press; revised and augmented edition, New York, Athenaeum Press, 1963.

Wilson, M. [1981], “The double standard in ontology,” Philosophical Studies 39: 409–427.

Wilson, M. [1992], “Frege: The royal road from geometry,” Nous 26: 149–180.

Wilson, M. [1993], “There's a hole and a bucket, dear Leibniz,” Midwest Studies in Philosophy 18: 202–241.

Wilson, M. [1993a], “Honorable intensions,” in Naturalism: A critical appraisal, ed. by S. Wagner and R. Warner, Notre Dame, University of Notre Dame Press, 53–94.

Wittgenstein, L. [1953], Philosophical investigations, tr. by G. E. M. Anscombe, New York, Macmillan.

Wittgenstein, L. [1978], Remarks on the foundations of mathematics, tr. by G. E. M. Anscombe, Cambridge, MIT Press.

Wright, C. [1983], Frege's conception of numbers as objects, Aberdeen University Press.

Wright, C. [1992], Truth and objectivity, Cambridge, Harvard University Press.

Yaqub, A. [1993], The liar speaks the truth: A defense of the revision theory of truth, New York, Oxford University Press, 1993.

Zalta, E. [1983], Abstract objects: An introduction to axiomatic metaphysics, Dordrecht, Holland, Reidel.

Zermelo, E. [1904], “Beweis, dass jede Menge wohlgeordnet werden kann,” Mathematische Annalen 59: 514–516; tr. in van Heijenoort [1967], 139–141.