Bibliography - Oxford Scholarship Jump to ContentJump to Main Navigation
Atomic Force Microscopy$

Peter Eaton and Paul West

Print publication date: 2010

Print ISBN-13: 9780199570454

Published to Oxford Scholarship Online: May 2010

DOI: 10.1093/acprof:oso/9780199570454.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: null; date: 28 August 2016

(p.201) Bibliography

(p.201) Bibliography

Source:
Atomic Force Microscopy
Publisher:
Oxford University Press

Bibliography references:

[1] Hoffmann, R.; Baratoff, A.; Hug, H. J.; Hidber, H. R.; von Lohneysen, H.; Guntherodt, H. J. G., Mechanical manifestations of rare atomic jumps in dynamic force microscopy. Nanotechnology 2007, 18 (39), 395503.

[2] Crampton, N.; Yokokawa, M.; Dryden, D. T. F.; Edwardson, J. M.; Rao, D. N.; Takeyasu, K.; Yoshimura, S. H.; Henderson, R. M., Fast‐scan atomic force microscopy reveals that the type III restriction enzyme EcoP151 is capable of DNA translocation and looping. Proceedings of the National Academy of Sciences of the United States of America 2007, 104 (31), 12755–60.

[3] Ando, T.; Uchihashi, T.; Kodera, N.; Yamamoto, D.; Taniguchi, M.; Miyagi, A.; Yamashita, H., High‐speed atomic force microscopy for observing dynamic biomolecular processes. Journal of Molecular Recognition 2007, 20 (6), 448–58.

[4] Yokokawa, M.; Yoshimura, S. H.; Naito, Y.; Ando, T.; Yagi, A.; Sakai, N.; Takeyasu, K., Fast‐scanning atomic force microscopy reveals the molecular mechanism of DNA cleavage by Apal endonuclease. IEE Proceedings – Nanobiotechnology 2006, 153 (4), 60–66.

[5] Sullivan, C. J.; Morrell, J. L.; Allison, D. P.; Doktycz, M. J., Mounting of Escherichia coli spheroplasts for AFM imaging. Ultramicroscopy 2005, 105 (1–4), 96–102.

[6] Doktycz, M. J.; Sullivan, C. J.; Hoyt, P. R.; Pelletier, D. A.; Wu, S.; Allison, D. P., AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy 2003, 97 (1–4), 209–16.

[7] Schimmel, T.; Koch, T.; Kuppers, J.; Lux‐Steiner, M., True atomic resolution under ambient conditions obtained by atomic force microscopy in the contact mode. Applied Physics A: Materials Science & Processing 1999, 68 (4), 399–402.

[8] Sugimoto, Y.; Pou, P.; Abe, M.; Jelinek, P.; Perez, R.; Morita, S.; Custance, O., Chemical identification of individual surface atoms by atomic force microscopy. Nature 2007, 446 (7131), 64–67.

[9] Tromas, C.; Eaton, P.; Mimault, J.; Rojo, J.; Penadés, S., Structural characterization of self‐assembled monolayers of neoglycoconjugates using atomic force microscopy. Langmuir 2005, 21 (14), 6142–44.

[10] Shmalz, G., Uber Glatte und Ebenheit als physikalisches und physiologishes Problem. Verein Deutscher Ingenieure 1929, 1461–67.

[11] Becker, H.; Bender, O.; Bergmann, L.; Rost, K.; Zobel, A. Apparatus for measuring surface irregularities. United States Patent number: 2728222, 1955.

[12] Young, R.; Ward, J.; Scire, F., The topografiner: an instrument for measuring surface microtopography. Review of Scientific Instruments 1972, 43 (7), 999–1011.

[13] Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E., Surface studies by scanning tunneling microscopy. Physical Review Letters 1982, 49 (1), 57–61.

[14] Binnig, G.; Rohrer, H., Scanning tunneling microscopy. Helvetica Physica Acta 1982, 55 (6), 726–35.

[15] Binnig, G.; Rohrer, H., Scanning tunneling microscopy. Surface Science 1983, 126 (1–3), 236–44.

[16] Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E., 7 × 7 reconstruction on Si(111) resolved in real space. Physical Review Letters 1983, 50 (2), 120–23.

[17] The Nobel Prize in Physics 1986. http://nobelprize.org/nobel_prizes/physics/laureates/1986/

(p.202) [18] Feenstra, R. M.; Lutz, M. A. Scanning tunneling microscopy and spectroscopy of the Si(111) 5×5 surface, Fifth international conference on scanning tunneling microscopy/spectroscopy. AVS: Boston, MA, 1991; pp 716–20.

[19] Binnig, G.; Quate, C. F.; Gerber, C., Atomic force microscope. Physical Review Letters 1986, 56 (9), 930–33.

[20] Binnig, G. Atomic force microscope and method for imaging surfaces with atomic resolution. United States Patent number: 4724318, 02/09/1988, 1998.

[21] Binnig, G.; Gerber, C.; Stoll, E.; Albrecht, T. R.; Quate, C. F., Atomic resolution with atomic force microscope. Europhysics Letters 1987, 3 (12), 1281–86.

[22] Albrecht, T. R.; Akamine, S.; Carver, T. E.; Quate, C. F., Microfabrication of cantilever styli for the atomic force microscope. Journal of Vacuum Science & Technology A – Vacuum Surfaces and Films 1990, 8 (4), 3386–96.

[23] Meyer, G.; Amer, N. M., Novel optical approach to atomic force microscopy. Applied Physics Letters 1988, 53 (12), 1045–47.

[24] Alexander, S.; Hellemans, L.; Marti, O.; Schneir, J.; Elings, V.; Hansma, P. K.; Longmire, M.; Gurley, J., An atomic‐resolution atomic‐force microscope implemented using an optical lever. Journal of Applied Physics 1989, 65 (1), 164–67.

[25] Chen, C. J., Introduction to Scanning Tunneling Microscopy, second edition. Oxford University Press: Oxford, 2007.

[26] Bonnell, D. A., Scanning tunneling microscopy and spectroscopy of oxide surfaces. Progress in Surface Science 1998, 57 (3), 187–252.

[27] Kwon, J.; Hong, J.; Kim, Y. S.; Lee, D. Y.; Lee, K.; Lee, S. M.; Park, S. I., Atomic force microscope with improved scan accuracy, scan speed, and optical vision. Review of Scientific Instruments 2003, 74 (10), 4378–83.

[28] Dixson, R.; Koning, R.; Vorburger, T. V.; Fu, J.; Tsai, V. W., Measurement of pitch and width samples with the NIST calibrated atomic force microscope. In Metrology, Inspection, and Process Control for Microlithography Xii, Singh, B., Ed. 1998; Vol. 3332, pp 420–32.

[29] Youm, W.; Jung, J.; Lee, S.; Park, K., Control of voice coil motor nanoscanners for an atomic force microscopy system using a loop shaping technique. Review of Scientific Instruments 2008, 79 (1), 013707–6.

[30] Xie, H.; Rakotondrabe, M.; Regnier, S., Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage. Review of Scientific Instruments 2009, 80 (4), 046102–3.

[31] Barrett, R. C.; Quate, C. F., Optical scan‐correction system applied to atomic force microscopy. Review of Scientific Instruments 1991, 62 (6), 1393–99.

[32] Cronin, P. J.; Fekete, P. W.; Arnison, M. R.; Cogswell, C. J., Characterization of an open‐loop controlled scanning stage using a knife edge optical technique. Review of Scientific Instruments 2000, 71 (1), 118–23.

[33] Huang, Q.; Gonda, S.; Misumi, I.; Sato, O.; Keem, T.; Kurosawa, T., Nonlinear and hysteretic influence of piezoelectric actuators in AFMs on lateral dimension measurement Sensors and Actuators A: Physical 2006, 125 (2), 590–96.

[34] Ando, T.; Kodera, N.; Takai, E.; Maruyama, D.; Saito, K.; Toda, A., A high‐speed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America 2001, 98 (22), 12468–72.

[35] Picco, L. M.; Bozec, L.; Ulcinas, A.; Engledew, D. J.; Antognozzi, M.; Horton, M. A.; Miles, M. J., Breaking the speed limit with atomic force microscopy. Nanotechnology 2007, 18 (4), 044030.

[36] Humphris, A. D. L.; Miles, M. J.; Hobbs, J. K., A mechanical microscope: high‐speed atomic force microscopy. Applied Physics Letters 2005, 86 (3), 034106.

(p.203) [37] Ruf, A.; Abraham, M.; Lacher, M.; Mayr, K.; Zetterer, T. A miniaturised Fabry Perot AFM sensor, The 8th International Conference on Solid‐State Sensors and Actuators, 1995; pp 660–63.

[38] Peng, Z.; West, P., Crystal sensor for microscopy applications. Applied Physics Letters 2005, 86 (1), 014107–3.

[39] Kim, M. S.; Choi, J. H.; Park, Y. K.; Kim, J. H., Atomic force microscope cantilever calibration device for quantified force metrology at micro‐ or nano‐scale regime: the nano force calibrator (NFC). Metrologia 2006, 43 (5), 389–95.

[40] Tortonese, M.; Yamada, H.; Barrett, R. C.; Quate, C. F. Atomic force microscopy using a piezoresistive cantilever, TRANSDUCERS '91. International Conference on Solid‐State Sensors and Actuators. Digest of Technical Papers, San Francisco, CA, 1991; pp 448–51.

[41] Putman, C. A. J.; Degrooth, B. G.; Vanhulst, N. F.; Greve, J., A theoretical comparison between interferometric and optical beam deflection technique for the measurement of cantilever displacement in AFM. Ultramicroscopy 1992, 42, 1509–13.

[42] Neagu, C.; van der Werf, K. O.; Putman, C. A. J.; Kraan, Y. M.; de Grooth, B. G.; van Hulst, N. F.; Greve, J., Analysis of immunolabeled cells by atomic force microscopy, optical microscopy, and flow cytometry. Journal of Structural Biology 1994, 112 (1), 32–40.

[43] Nakano, K., A novel low profile atomic force microscope compatible with optical microscopes. Review of Scientific Instruments 1998, 69 (3), 1406.

[44] Clifford, C. A.; Seah, M. P., The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis. Nanotechnology 2005, 16 (9), 1666.

[45] Vick, D.; Brett, M. J.; Westra, K., Porous thin films for the characterization of atomic force microscope tip morphology. Thin Solid Films 2002, 408 (1–2), 79–86.

[46] DeRose, J. A.; Revel, J. P., Examination of atomic (scanning) force microscopy probe tips with the transmission electron microscope. Microscopy and Microanalysis 1997, 3 (3), 203–13.

[47] Chung, K. H.; Kim, D. E., Wear characteristics of diamond‐coated atomic force microscope probe. Ultramicroscopy 2007, 108 (1), 1–10.

[48] Ramirez‐Aguilar, K. A.; Rowlen, K. L., Tip characterization from AFM images of nanometric spherical particles. Langmuir 1998, 14 (9), 2562–66.

[49] Zeng, Z.‐g.; Zhu, G.‐d.; Guo, Z.; Zhang, L.; Yan, X.‐j.; Du, Q.‐g.; Liu, R., A simple method for AFM tip characterization by polystyrene spheres. Ultramicroscopy 2008, 108 (9), 975–80.

[50] Villarrubia, J. S., Scanned probe microscope tip characterization without calibrated tip characterizers. Journal of Vacuum Science & Technology B 1996, 14 (2), 1518–21.

[51] Williams, P. M.; Shakesheff, K. M.; Davies, M. C.; Jackson, D. E.; Roberts, C. J.; Tendler, S. J. B., Blind reconstruction of scanning probe image data. Journal of Vacuum Science & Technology B 1996, 14 (1557), 1557–62.

[52] Villarrubia, J. S., Morphological estimation of tip geometry for scanned probe microscopy. Surface Science 1994, 321 (3), 287–300.

[53] Villarrubia, J. S., Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. Journal of Research of the National Institute of Standards and Technology 1997, 102 (4), 425–54.

[54] Williams, P. M.; Shakesheff, K. M.; Davies, M. C.; Jackson, D. E.; Roberts, C. J.; Tendler, S. J. B., Toward true surface recovery: studying distortions in scanning probe microscopy image data. Langmuir 1996, 12 (14), 3468–71.

[55] Dongmo, L. S.; Villarrubia, J. S.; Jones, S. N.; Renegar, T. B.; Postek, M.; Song, J. F., Experimental test of blind tip reconstruction for scanning probe microscopy. Ultramicroscopy 2000, 85 (3), 141–53.

(p.204) [56] Todd, B. A.; Eppell, S. J., A method to improve the quantitative analysis of SFM images at the nanoscale. Surface Science 2001, 491 (3), 473–83.

[57] Tranchida, D.; Piccarolo, S.; Deblieck, R. A. C., Some experimental issues of AFM tip blind estimation: the effect of noise and resolution. Measurement Science and Technology 2006, 10, 2630–36.

[58] Kitching, S.; Williams, P. M.; Roberts, C. J.; Davies, M. C.; Tendler, S. J. B., Quantifying surface topography and scanning probe image reconstruction. Journal of Vacuum Science & Technology B 1999, 17 (2), 273–79.

[59] Emerson, R. J.; Camesano, T. A., On the importance of precise calibration techniques for an atomic force microscope. Ultramicroscopy 2006, 106 (4–5), 413–22.

[60] Higgins, M. J.; Proksch, R.; Sader, J. E.; Polcik, M.; Mc Endoo, S.; Cleveland, J. P.; Jarvis, S. P., Noninvasive determination of optical lever sensitivity in atomic force microscopy. Review of Scientific Instruments 2006, 77 (1), 013701.

[61] Green, C. P.; Lioe, H.; Cleveland, J. P.; Proksch, R.; Mulvaney, P.; Sader, J. E., Normal and torsional spring constants of atomic force microscope cantilevers. Review of Scientific Instruments 2004, 75 (6), 1988–96.

[62] Matei, G. A.; Thoreson, E. J.; Pratt, J. R.; Newell, D. B.; Burnham, N. A., Precision and accuracy of thermal calibration of atomic force microscopy cantilevers. Review of Scientific Instruments 2006, 77 (8), 083703.

[63] Burnham, N. A.; Chen, X.; Hodges, C. S.; Matei, G. A.; Thoreson, E. J.; Roberts, C. J.; Davies, M. C.; Tendler, S. J. B., Comparison of calibration methods for atomic‐force microscopy cantilevers. Nanotechnology 2003, 14 (1), 1–6.

[64] Gibson, C. T.; Smith, D. A.; Roberts, C. J., Calibration of silicon atomic force microscope cantilevers. Nanotechnology 2005, 16 (2), 234–38.

[65] Gibson, C. T.; Watson, G. S.; Myhra, S., Scanning force microscopy – Calibrative procedures for ‘best practice’. Scanning 1997, 19 (8), 564–81.

[66] Sader, J. E.; Chon, J. W. M.; Mulvaney, P., Calibration of rectangular atomic force microscope cantilevers. Review of Scientific Instruments 1999, 70 (10), 3967–69.

[67] Sader, J. E.; Larson, I.; Mulvaney, P.; White, L. R., Method for the calibration of atomic force microscope cantilevers. Review of Scientific Instruments 1995, 66 (7), 3789–98.

[68] Sader, J. E., Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics 1998, 84 (1), 64–76.

[69] Sader, J. E.; Pacifico, J.; Green, C. P.; Mulvaney, P., General scaling law for stiffness measurement of small bodies with applications to the atomic force microscope. Journal of Applied Physics 2005, 97 (12), 124903–7.

[70] Cleveland, J. P.; Manne, S.; Bocek, D.; Hansma, P. K., A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Review of Scientific Instruments 1993, 64 (2), 403–5.

[71] Jing, G. Y.; Ma, J.; Yu, D. P., Calibration of the spring constant of AFM cantilever. Journal of Electron Microscopy 2007, 56 (1), 21–25.

[72] Hutter, J. L.; Bechhoefer, J., Calibration of atomic‐force microscope tips. Review of Scientific Instruments 1993, 64 (7), 1868–73.

[73] Hutter, J. L., Comment on tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements. Langmuir 2005, 21 (6), 2630–32.

[74] Gates, R. S.; Reitsma, M. G., Precise atomic force microscope cantilever spring constant calibration using a reference cantilever array. Review of Scientific Instruments 2007, 78 (8), 086101–3.

[75] Tortonese, M.; Kirk, M., Characterization of application specific probes for SPMs. In Micromachining and Imaging, Michalske, T. A.; Wendman, M. A., Eds. SPIE – Int. Soc. Optical Engineering: Bellingham, 1997; Vol. 3009, pp 53–60.

(p.205) [76] Bogdanovic, G.; Meurk, A.; Rutland, M. W., Tip friction – torsional spring constant determination. Colloids and Surfaces B: Biointerfaces 2000, 19 (4), 397–405.

[77] Ogletree, D. F.; Carpick, R. W.; Salmeron, M., Calibration of frictional forces in atomic force microscopy. Review of Scientific Instruments 1996, 67 (9), 3298–3306.

[78] Minne, S. C.; Yaralioglu, G.; Manalis, S. R.; Adams, J. D.; Zesch, J.; Atalar, A.; Quate, C. F., Automated parallel high‐speed atomic force microscopy. Applied Physics Letters 1998, 72 (18), 2340–42.

[79] Viani, M. B.; Schaffer, T. E.; Paloczi, G. T.; Pietrasanta, L. I.; Smith, B. L.; Thompson, J. B.; Richter, M.; Rief, M.; Gaub, H. E.; Plaxco, K. W.; Cleland, A. N.; Hansma, H. G.; Hansma, P. K., Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Review of Scientific Instruments 1999, 70 (11), 4300–3.

[80] Hansma, P. K.; Schitter, G.; Fantner, G. E.; Prater, C., Applied physics – high‐speed atomic force microscopy. Science 2006, 314 (5799), 601–2.

[81] Fantner, G. E.; Schitter, G.; Kindt, J. H.; Ivanov, T.; Ivanova, K.; Patel, R.; Holten‐Andersen, N.; Adams, J.; Thurner, P. J.; Rangelow, I. W.; Hansma, P. K., Components for high speed atomic force microscopy. Ultramicroscopy 2006, 106 (8–9), 881–87.

[82] Viani, M. B.; Schaffer, T. E.; Chand, A.; Rief, M.; Gaub, H. E.; Hansma, P. K., Small cantilevers for force spectroscopy of single molecules. Journal of Applied Physics 1999, 86 (4), 2258–62.

[83] Walters, D. A.; Cleveland, J. P.; Thomson, N. H.; Hansma, P. K.; Wendman, M. A.; Gurley, G.; Elings, V., Short cantilevers for atomic force microscopy. Review of Scientific Instruments 1996, 67 (10), 3583–90.

[84] Schäffer, T. E.; Hansma, P. K., Characterization and optimization of the detection sensitivity of an atomic force microscope for small cantilevers. Journal of Applied Physics 1998, 84 (9), 4661–66.

[85] Burnham, N. A.; Colton, H. M.; Pollock, H. M., Interpretation of force curves in force microscopy. Nature 1993, 4, 64–80.

[86] Martin, C.; Murano, F. P.; Dagata, J. A., Measurements of electrical conductivity of a nanometer‐scale water meniscus by atomic force microscopy. 2003 Third IEEE Conference on Nanotechnology, Vols One and Two, Proceedings 2003, 781–84.

[87] Lee, J.; Chae, J.; Kim, C. K.; Kim, H.; Oh, S.; Kuk, Y., Versatile low‐temperature atomic force microscope with in situ piezomotor controls, charge‐coupled device vision, and tip‐gated transport measurement capability. Review of Scientific Instruments 2005, 76 (9), 093701–5.

[88] Broekmaat, J.; Brinkman, A.; Blank, D. H. A.; Rijnders, G., High temperature surface imaging using atomic force microscopy. Applied Physics Letters 2008, 92 (4), 043102–3.

[89] Shao, Z. F.; Zhang, Y. Y., Biological cryo atomic force microscopy: a brief review. Ultramicroscopy 1996, 66 (3–4), 141–52.

[90] Han, W. H.; Mou, J. X.; Sheng, J.; Yang, J.; Shao, Z. F., Cryo atomic force microscopy: a new approach for biological imaging at high resolution. Biochemistry 1995, 34 (26), 8215–20.

[91] Sheng, S.; Czajkowsky, D. M.; Shao, Z., Localization of linker histone in chromatosomes by cryo‐atomic force microscopy. Biophysical Journal 2006, 91 (4), L35–37.

[92] Wu, J. J.; Reading, M.; Craig, D. Q. A., Application of calorimetry, sub‐ambient atomic force microscopy and dynamic mechanical analysis to the study of frozen aqueous trehalose solutions. Pharmaceutical Research 2008, 25 (6), 1396–1404.

[93] Hug, H. J.; Stiefel, B.; van Schendel, P. J. A.; Moser, A.; Martin, S.; Guntherodt, H. J., A low temperature ultrahigh vaccum scanning force microscope. Review of Scientific Instruments 1999, 70 (9), 3625–40.

(p.206) [94] Friedbacher, G.; Fuchs, H., Classification of scanning probe microscopies (Technical report). Pure and Applied Chemistry 1999, 71 (7), 1337–57.

[95] Hecht, B.; Sick, B.; Wild, U. P.; Deckert, V.; Zenobi, R.; Martin, O. J. F.; Pohl, D. W., Scanning near‐field optical microscopy with aperture probes: fundamentals and applications. Journal of Chemical Physics 2000, 112 (18), 7761–74.

[96] Rasmussen, A.; Deckert, V., New dimension in nano‐imaging: breaking through the diffraction limit with scanning near‐field optical microscopy. Analytical and Bioanalytical Chemistry 2005, 381 (1), 165–72.

[97] Zhong, Q.; Inniss, D.; Kjoller, K.; Elings, V. B., Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surface Science 1993, 290 (1–2), L688–L692.

[98] Karrasch, S.; Dolder, M.; Schabert, F.; Ramsden, J.; Engel, A., Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophysical Journal 1993, 65 (6), 2437–46.

[99] Mou, J. X.; Czajkowsky, D. M.; Sheng, S. J.; Ho, R. Y.; Shao, Z. F., High resolution surface structure of E‐coli GroES oligomer by atomic force microscopy. FEBS Letters 1996, 381 (1–2), 161–64.

[100] Gonçalves, R. P.; Busselez, J.; Lévy, D.; Seguin, J.; Scheuring, S., Membrane insertion of Rhodopseudomonas acidophila light harvesting complex 2 investigated by high resolution AFM. Journal of Structural Biology 2005, 149 (1), 79–86.

[101] Le Grimellec, C.; Lesniewska, E.; Giocondi, M.‐C.; Finot, E.; Vie, V.; Goudonnet, J.‐P., Imaging of the surface of living cells by low‐force contact‐mode atomic force microscopy. Biophysical Journal 1998, 75 (2), 695–703.

[102] Müller, D. J.; Schoenenberger, C. A.; Schabert, F.; Engel, A., Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscope: a review. Journal of Structural Biology 1997, 119 (2), 149–57.

[103] Murphy, M. F.; Lalor, M. J.; Manning, F. C. R.; Lilley, F.; Crosby, S. R.; Randall, C.; Burton, D. R., Comparative study of the conditions required to image live human epithelial and fibroblast cells using atomic force microscopy. Microscopy Research and Technique 2006, 69 (9), 757–65.

[104] Möller, C.; Allen, M.; Elings, V.; Engel, A.; Müller, D. J., Tapping‐mode atomic force microscopy produces faithful high‐resolution images of protein surfaces. Biophysical Journal 1999, 77 (2), 1150–58.

[105] Martin, Y.; Wickramasinghe, H. K., Magnetic imaging by force microscopy with 1000‐Å resolution. Applied Physics Letters 1987, 50 (20), 1455–57.

[106] Morita, S.; Giessibl, F. J.; Sugawara, Y.; Hosoi, H.; Mukasa, K.; Sasahara, A.; Onishi, H., Noncontact atomic force microscopy and its related topics. In Nanotribology and Nanomechanics, 2005; pp 141–83.

[107] Morita, S.; Wiesendanger, R.; Meyer, E., Noncontact Atomic Force Microscopy. Springer: 2002.

[108] García, R.; Pérez, R., Dynamic atomic force microscopy methods. Surface Science Reports 2002, 47 (6–8), 197–301.

[109] Martin, Y.; Williams, C. C.; Wickramasinghe, H. K., Atomic force microscope–force mapping and profiling on a sub 100 Å scale. Journal of Applied Physics 1987, 61 (10), 4723–29.

[110] Ho, H.; West, P., Optimizing AC‐mode atomic force microscope imaging. Scanning 1996, 18 (5), 339–43.

[111] Giessibl, F. J.; Bielefeldt, H.; Hembacher, S.; Mannhart, J., Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy. Applied Surface Science 1999, 140 (3–4), 352–57.

(p.207) [112] Herminghaus, S.; Fery, A.; Reim, D., Imaging of droplets of aqueous solutions by tapping‐mode scanning force microscopy. Ultramicroscopy 1997, 69 (3), 211–17.

[113] Checco, A.; Schollmeyer, H.; Daillant, J.; Guenoun, P.; Boukherroub, R., Nanoscale wettability of self‐assembled monolayers investigated by noncontact atomic force microscopy. Langmuir 2006, 22 (1), 116–26.

[114] Yang, C.‐W.; Hwang, I.‐S.; Chen, Y. F.; Chang, C. S.; Tsai, D. P., Imaging of soft matter with tapping‐mode atomic force microscopy and non‐contact‐mode atomic force microscopy. Nanotechnology 2007, 18 (8), 084009.

[115] Hoogenboom, B. W.; Hug, H. J.; Pellmont, Y.; Martin, S.; Frederix, P. L. T. M.; Fotiadis, D.; Engel, A., Quantitative dynamic‐mode scanning force microscopy in liquid. Applied Physics Letters 2006, 88 (19), 193109–3.

[116] Zimmermann, H.; Hagedorn, R.; Richter, E.; Fuhr, G., Topography of cell traces studied by atomic force microscopy. European Biophysics Journal 1999, 28 (6), 516–25.

[117] Albrecht, T. R.; Grutter, P.; Horne, D.; Rugar, D., Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity. Journal of Applied Physics 1991, 69 (2), 668–73.

[118] Sugawara, Y.; Ohta, M.; Ueyama, H.; Morita, S., Defect motion on an InP(110) surface observed with noncontact atomic force microscopy. Science 1995, 270 (5242), 1646–48.

[119] Luthi, R.; Meyer, E.; Bammerlin, M.; Baratoff, A.; Lehmann, T.; Howald, L.; Gerber, C.; Guntherodt, H. J., Atomic resolution in dynamic force microscopy across steps on Si(111)7×7. Zeitschrift Fur Physik B – Condensed Matter 1996, 100 (2), 165–67.

[120] Sugimoto, Y.; Abe, M.; Konoshita, S.; Morita, S., Direct observation of the vacancy site of the iron silicide c(4 × 8) phase using frequency modulation atomic force microscopy. Nanotechnology 2007, 18 (8), 084012.

[121] Seino, Y.; Yoshikawa, S.; Abe, M.; Morita, S., Growth dynamics of insulating SrF2 films on Si(111). Journal of Physics – Condensed Matter 2007, 19 (44), 9.

[122] Sugimoto, Y.; Abe, M.; Hirayama, S.; Morita, S., Highly resolved non‐contact atomic force microscopy images of the Sn/Si(111)‐(2 root 3 × 2 root 3) surface. Nanotechnology 2006, 17 (16), 4235–39.

[123] Eaton, P.; Ragusa, A.; Clavel, C.; Rojas, C. T.; Graham, P.; Duran, R. V.; Penades, S., Glyconanoparticle–DNA interactions: an atomic force microscopy study. IEEE Transactions on Nanobioscience 2007, 6 (4), 309–18.

[124] Han, W.; Lindsay, S. M.; Jing, T., A magnetically driven oscillating probe microscope for operation in liquids. Applied Physics Letters 1996, 69 (26), 4111–13.

[125] Revenko, I.; Proksch, R., Magnetic and acoustic tapping mode microscopy of liquid phase phospholipid bilayers and DNA molecules. Journal of Applied Physics 2000, 87 (1), 526–33.

[126] Putman, C. A. J.; Van der Werf, K. O.; De Grooth, B. G.; Van Hulst, N. F.; Greve, J., Tapping mode atomic force microscopy in liquid. Applied Physics Letters 1994, 64 (18), 2454–56.

[127] Volkov, A. O.; Burnell‐Gray, J. S.; Datta, P. K., Frequency response of atomic force microscope cantilever driven by fluid. Applied Physics Letters 2004, 85 (22), 5397–99.

[128] Schäffer, T. E.; Cleveland, J. P.; Ohnesorge, F.; Walters, D. A.; Hansma, P. K., Studies of vibrating atomic force microscope cantilevers in liquid. Journal of Applied Physics 1996, 80 (7), 3622–7.

[129] Connell, S. D.; Smith, D. A., The atomic force microscope as a tool for studying phase separation in lipid membranes (review). Molecular Membrane Biology 2006, 23 (1), 17–28.

[130] Lantz, M.; Liu, Y. Z.; Cui, X. D.; Tokumoto, H.; Lindsay, S. M. Dynamic force microscopy in fluid, 3rd Conference on Development and Industrial Application of Scanning Probe Methods (SXM‐3), Switzerland, John Wiley, 1998; pp 354–60.

(p.208) [131] Rodriguez, T. R.; García, R., Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Applied Physics Letters 2004, 84 (3), 449–51.

[132] Stark, R. W.; Drobek, T.; Heckl, W. M., Tapping‐mode atomic force microscopy and phase‐imaging in higher eigenmodes. Applied Physics Letters 1999, 74 (22), 3296–98.

[133] Martínez, N. F.; Lozano, J. R.; Herruzo, E. T.; Garcia, F.; Richter, C.; Sulzbach, T.; García, R., Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids. Nanotechnology 2008, 19 (38), 384011.

[134] Lozano, J. R.; García, R., Theory of multifrequency atomic force microscopy. Physical Review Letters 2008, 1 (7), 076102.

[135] Crittenden, S.; Raman, A.; Reifenberger, R., Probing attractive forces at the nanoscale using higher‐harmonic dynamic force microscopy. Physical Review B 2005, 72 (23), 235422.

[136] Proksch, R., Multifrequency, repulsive‐mode amplitude‐modulated atomic force microscopy. Applied Physics Letters 2006, 89 (11), 113121–3.

[137] Stark, R. W.; Heckl, W. M., Higher harmonics imaging in tapping‐mode atomic‐force microscopy. Review of Scientific Instruments 2003, 74 (12), 5111–14.

[138] Patil, S.; Martinez, N. F.; Lozano, J. R.; García, R., Force microscopy imaging of individual protein molecules with sub‐pico newton force sensitivity. Journal of Molecular Recognition 2007, 20, 516–23.

[139] Giessibl, F. J., Higher‐harmonic atomic force microscopy. Surface and Interface Analysis 2006, 38 (12–13), 1696–1701.

[140] Stroscio, J. A.; Feenstra, R. M.; Fein, A. P., Electronic structure of the Si(111)2 × 1 surface by scanning‐tunneling microscopy. Physical Review Letters 1986, 57 (20), 2579.

[141] Chen, C. J., Scanning tunneling spectroscopy. In Introduction to Scanning Tunneling Microscopy, second edition. Oxford University Press: Oxford, 2008; pp 331–48.

[142] Butt, H.‐J.; Cappella, B.; Kappl, M., Force measurements with the atomic force microscope: technique, interpretation and applications. Surface Science Reports 2005, 59 (1–6), 1–152.

[143] Hinterdorfer, P.; Baumgartner, W.; Gruber, H. J.; Schilcher, K.; Schindler, H., Detection and localization of individual antibody‐antigen recognition events by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 1996, 93 (8), 3477–81.

[144] Tromas, C.; Rojo, J.; de la Fuente, J. M.; Barrientos, A. G.; García, R.; Penadés, S., Adhesion forces between Lewis X determinant antigens as measured by atomic force microscopy. Angewandte Chemie International Edition 2001, 40 (16), 3052–5.

[145] Clausen‐Schaumann, H.; Seitz, M.; Krautbauer, R.; Gaub, H. E., Force spectroscopy with single bio‐molecules. Current Opinion in Chemical Biology 2000, 4 (5), 524–30.

[146] Eaton, P.; Graham, P.; Smith, J. R.; Smart, J. D.; Nevell, T. G.; Tsibouklis, J., Mapping the surface heterogeneity of a polymer blend: an adhesion‐force‐distribution study using the atomic force microscope. Langmuir 2000, 16 (21), 7887–90.

[147] Subramanian, S.; Sampath, S., Effect of chain length on the adhesion behaviour of n‐alkanethiol self‐assembled monolayers on Au(111): an atomic force microscopy study. Pramana – Journal of Physics 2005, 65 (4), 753–61.

[148] Ralston, J.; Larson, I.; Rutland, M. W.; Feiler, A. A.; Kleijn, M., Atomic force microscopy and direct surface force measurements (IUPAC technical report). Pure and Applied Chemistry 2005, 77 (12), 2149–70.

[149] Ducker, W. A.; Senden, T. J.; Pashley, R. M., Direct measurement of colloidal forces using an atomic force microscope. Nature 1991, 353 (6341), 239–41.

[150] Butt, H.‐J.; Jaschke, M.; Ducker, W., Measuring surface forces in aqueous electrolyte solution with the atomic force microscope. Bioelectrochemistry and Bioenergetics 1995, 38 (1), 191–201.

(p.209) [151] Emerson, R. J.; Camesano, T. A., Nanoscale investigation of pathogenic microbial adhesion to a biomaterial. Applied and Environmental Microbiology 2004, 70 (10), 6012–22.

[152] Bowen, W. R.; Lovitt, R. W.; Wright, C. J., Atomic force microscopy study of the adhesion of Saccharomyces cerevisiae. Journal of Colloid and Interface Science 2001, 237 (1), 54–61.

[153] Janshoff, A.; Neitzert, M.; Oberdorfer, Y.; Fuchs, H., Force spectroscopy of molecular systems – Single molecule spectroscopy of polymers and biomolecules. Angewandte Chemie International Edition 2000, 39 (18), 3213–37.

[154] Butt, H.‐J., Measuring local surface‐charge densities in electrolyte‐solutions with a scanning force microscope. Biophysical Journal 1992, 63 (2), 578–82.

[155] Dufrêne, Y. F.; Boonaert, C. J. P.; van der Mei, H. C.; Busscher, H. J.; Rouxhet, P. G., Probing molecular interactions and mechanical properties of microbial cell surfaces by atomic force microscopy. Ultramicroscopy 2001, 86 (1–2), 113–20.

[156] Dupres, V.; Menozzi, F. D.; Locht, C.; Clare, B. H.; Abbott, N. L.; Cuenot, S.; Bompard, C.; Raze, D.; Dufrêne, Y. F., Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nature Methods 2005, 2 (7), 515–20.

[157] Müller, D. J., AFM: a nanotool in membrane biology. Biochemistry 2008, 47 (31), 7986–98.

[158] Eaton, P.; Fernández Estarlich, F.; Ewen, R. J.; Nevell, T. G.; Smith, J. R.; Tsibouklis, J., Combined nanoindention and adhesion force mapping using the atomic force microscope: investigations of a filled polysiloxane coating. Langmuir 2002, 18 (25), 10011–15.

[159] Eaton, P.; Smith, J. R.; Graham, P.; Smart, J. D.; Nevell, T. G.; Tsibouklis, J., Adhesion force mapping of polymer surfaces: factors influencing force of adhesion. Langmuir 2002, 18 (8), 3387–89.

[160] Vancso, G. J.; Hillborg, H.; Schonherr, H., Chemical composition of polymer surfaces imaged by atomic force microscopy and complementary approaches. In Polymer Analysis, Polymer Theory, Springer, Berlin, 2005; Vol. 182, pp 55–129.

[161] Ducker, W. A.; Senden, T. J.; Pashley, R. M., Measurement of forces in liquids using a force microscope. Langmuir 1992, 8 (7), 1831–36.

[162] Gotzinger, M.; Peukert, W., Adhesion forces of spherical alumina particles on ceramic substrates. Journal of Adhesion 2004, 80 (3), 223–42.

[163] Lee, G. U.; Kidwell, D. A.; Colton, R. J., Sensing discrete streptavidin‐biotin interactions with atomic force microscopy. Langmuir 1994, 10 (2), 354–7.

[164] Pelling, A. E.; Li, Y.; Shi, W.; Gimzewski, J. K., Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (18), 6484–89.

[165] Duwez, A. S.; Poleunis, C.; Bertrand, P.; Nysten, B., Chemical recognition of antioxidants and uv‐light stabilizers at the surface of polypropylene: atomic force microscopy with chemically modified tips. Langmuir 2001, 17 (20), 6351–57.

[166] Noy, A.; Vezenov, D. V.; Lieber, C. M., Chemical force microscopy. Annual Review of Materials Science 1997, 27, 381–421.

[167] VanLandingham, M. R., Review of instrumented indentation. Journal of Research of the National Institute of Standards and Technology 2003, 108 (4), 249–65.

[168] VanLandingham, M. R.; McKnight, S. H.; Palmese, G. R.; Elings, J. R.; Huang, X.; Bogetti, T. A.; Eduljee, R. F.; Gillespie, J. W., Nanoscale indentation of polymer systems using the atomic force microscope. Journal of Adhesion 1997, 64 (1–4), 31–59.

[169] Sirghi, L.; Rossi, F., Adhesion and elasticity in nanoscale indentation. Applied Physics Letters 2006, 89 (24), 243118–3.

[170] Eaton, P.; Fernandes, J. C.; Pereira, E.; Pintado, M. E.; Malcata, F. X., Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 2008, 108 (10), 1128–34.

(p.210) [171] Touhami, A.; Nysten, B.; Dufrêne, Y. F., Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 2003, 19 (11), 4539–43.

[172] Vadillo‐Rodriguez, V.; Beveridge, T. J.; Dutcher, J. R., Surface viscoelasticity of individual Gram‐negative bacterial cells measured using atomic force microscopy. Journal of Bacteriology 2008, 190 (12), 4225–32.

[173] Butt, H.‐J., Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophysical Journal 1991, 60 (6), 1438–44.

[174] Almqvist, N.; Delamo, Y.; Smith, B. L.; Thomson, N. H.; Bartholdson, Å.; Lal, R.; Brzezinski, M.; Hansma, P. K., Micromechanical and structural properties of a pennate diatom investigated by atomic force microscopy. Journal of Microscopy 2001, 202 (3), 518–32.

[175] Ludwig, T.; Kirmse, R.; Poole, K.; Schwarz, U., Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflügers Archiv European Journal of Physiology 2008, 456 (1), 29–49.

[176] Carl, P.; Schillers, H., Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflügers Archiv European Journal of Physiology 2008, 457 (2), 551–59.

[177] VanLandingham, M. R.; McKnight, S. H.; Palmese, G. R.; Eduljee, R. F.; Gillespie, J. W.; McCulough, R. L., Relating elastic modulus to indentation response using atomic force microscopy. Journal of Materials Science Letters 1997, 16 (2), 117–19.

[178] Fernandes, J. C.; Eaton, P.; Gomes, A. M.; Pintado, M. E.; Malcata, F. X., Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation. Ultramicroscopy 2009, 109, 854–60.

[179] Gaillard, Y.; Tromas, C.; Woirgard, J., Quantitative analysis of dislocation pile‐ups nucleated during nanoindentation in MgO. Acta Materialia 2006, 54 (5), 1409–17.

[180] Gaillard, Y.; Tromas, C.; Woirgard, J., Study of the dislocation structure involved in a nanoindentation test by atomic force microscopy and controlled chemical etching. Acta Materialia 2003, 51 (4), 1059–65.

[181] Bischel, M. S.; VanLandingham, M. R.; Eduljee, R. F.; Gillespie, J. W.; Schultz, J. M., On the use of nanoscale indentation with the AFM in the identification of phases in blends of linear low density polyethylene and high density polyethylene. Journal of Materials Science 2000, 35 (1), 221–28.

[182] VanLandingham, M. R.; Dagastine, R. R.; Eduljee, R. F.; McCullough, R. L.; Gillespie, J. W., Characterization of nanoscale property variations in polymer composite systems: 1. Experimental results. Composites Part A – Applied Science and Manufacturing 1999, 30 (1), 75–83.

[183] Penegar, I.; Toque, C.; Connell, S. D. A.; Smith, J. R.; Campbell, S. A., Nano‐indentation measurements of the marine bacteria sphigomonas paucimobilis using the atomic force microscope. Additional Papers from the 10th International Congress on Marine Corrosion and Fouling, DSTO Aeronautical and Maritime Research Laboratory, Victoria, Australia, 2001.

[184] Volle, C. B.; Ferguson, M. A.; Aidala, K. E.; Spain, E. M.; Núñez, M. E., Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy. Colloids and Surfaces B: Biointerfaces 2008, 67 (1), 32–40.

[185] Wampler, H. P.; Ivanisevic, A., Nanoindentation of gold nanoparticles functionalized with proteins. Micron 2009, 40 (4), 444–48.

[186] Armini, S.; Vakarelski, I. U.; Whelan, C. M.; Maex, K.; Higashitani, K., Nanoscale indentation of polymer and composite polymer‐silica core‐shell submicrometer particles by atomic force microscopy. Langmuir 2007, 23 (4), 2007–14.

[187] Vakarelski, I. U.; Toritani, A.; Nakayama, M.; Higashitani, K., Effects of particle deformability on interaction between surfaces in solutions. Langmuir 2003, 19 (1), 110–17.

(p.211) [188] Jeon, S.; Braiman, Y.; Thundat, T., Cross talk between bending, twisting, and buckling modes of three types of microcantilever sensors. Review of Scientific Instruments 2004, 75 (11), 4841–44.

[189] Gnecco, E.; Bennewitz, R.; Gyalog, T.; Meyer, E., Friction experiments on the nanometre scale. Journal of Physics – Condensed Matter 2001, 13 (31), R619–R642.

[190] Babcock, K. L.; Prater, C. B. Phase Imaging: Beyond Topography; Veeco Application Note: 1995.

[191] Tamayo, J.; García, R., Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 1996, 12 (18), 4430–35.

[192] Schmitz, I.; Schreiner, M.; Friedbacher, G.; Grasserbauer, M., Phase imaging as an extension to tapping mode AFM for the identification of material properties on humidity‐sensitive surfaces. Applied Surface Science 1997, 115 (2), 190–98.

[193] Nagao, E.; Dvorak, J. A., Phase imaging by atomic force microscopy: analysis of living homoiothermic vertebrate cells. Biophysical Journal 1999, 76 (6), 3289–97.

[194] Martínez, N. F.; García, R., Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy. Nanotechnology 2006, 17 (7), S167–S172.

[195] Tamayo, J.; García, R., Relationship between phase shift and energy dissipation in tapping‐mode scanning force microscopy. Applied Physics Letters 1998, 73 (20), 2926–28.

[196] García, R.; Tamayo, J.; San Paulo, A., Phase contrast and surface energy hysteresis in tapping mode scanning force microscopy. Surface and Interface Analysis 1999, 27 (5–6), 312–16.

[197] García, R.; Gomez, C. J.; Martinez, N. F.; Patil, S.; Dietz, C.; Magerle, R., Identification of nanoscale dissipation processes by dynamic atomic force microscopy. Physical Review Letters 2006, 97 (1), 016103.

[198] de Pablo, P. J.; Colchero, J.; Gomez‐Herrero, J.; Baro, A. M., Jumping mode scanning force microscopy. Applied Physics Letters 1998, 73 (22), 3300–2.

[199] Rosa‐Zeiser, A.; Weilandt, E.; Hild, S.; Marti, O., The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed‐force mode operation. Measurement Science and Technology 1997, 8 (11), 1333–38.

[200] Sotres, J.; Lostao, A.; Gómez‐Moreno, C.; Baró, A. M., Jumping mode AFM imaging of biomolecules in the repulsive electrical double layer. Ultramicroscopy 2007, 107, 1207–12.

[201] Moreno‐Herrero, F.; de Pablo, P. J.; Colchero, J.; Gómez‐Herrero, J.; Baró, A. M., The role of shear forces in scanning force microscopy: a comparison between the jumping mode and tapping mode. Surface Science 2000, 453 (1–3), 152–58.

[202] Moreno‐Herrero, F.; Colchero, J.; Gómez‐Herrero, J.; Baró, A. M., Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids. Physical Review E 2004, 69 (3), 031915.

[203] Moreno‐Herrero, F.; de Pablo, P. J.; Alvarez, M.; Colchero, J.; Gómez‐Hertero, J.; Baró, A. M., Jumping mode scanning force microscopy: a suitable technique for imaging DNA in liquids. Applied Surface Science 2003, 210 (1–2), 22–26.

[204] Moreno‐Herrero, F.; de Pablo, P. J.; Fernandez‐Sanchez, R.; Colchero, J.; Gómez‐Herrero, J.; Baró, A. M., Scanning force microscopy jumping and tapping modes in liquids. Applied Physics Letters 2002, 81 (14), 2620–22.

[205] Krüger, S.; Krüger, D.; Janshoff, A., Scanning force microscopy based rapid force curve acquisition on supported lipid bilayers: experiments and simulations using pulsed force mode. ChemPhysChem 2004, 5 (7), 989–97.

[206] Krotil, H.‐U.; Stifter, T.; Waschipky, H.; Weishaupt, K.; Hild, S.; Marti, O., Pulsed force mode: a new method for the investigation of surface properties. Surface and Interface Analysis 1999, 27 (5–6), 336–40.

[207] Holzwarth, M. J.; Gigler, A. M.; Marti, O., Digital pulsed force mode. Imaging & Microscopy 2006, 8 (4), 37–38.

(p.212) [208] Vanderwerf, K. O.; Putman, C. A. J.; Degrooth, B. G.; Greve, J., Adhesion force imaging in air and liquid by adhesion mode atomic‐force microscopy. Applied Physics Letters 1994, 65 (9), 1195–97.

[209] Martin, Y.; Rugar, D.; Wickramasinghe, H. K., High‐resolution magnetic imaging of domains in TbFe by force microscopy. Applied Physics Letters 1988, 52 (3), 244–46.

[210] Mamin, H. J.; Rugar, D.; Stern, J. E.; Terris, B. D.; Lambert, S. E., Force microscopy of magnetization patterns in longitudinal recording media. Applied Physics Letters 1988, 53 (16), 1563–65.

[211] Hartmann, U., Magnetic force microscopy. Annual Review of Materials Science 1999, 29, 53–87.

[212] Abelmann, L.; Porthun, S.; Haast, M.; Lodder, C.; Moser, A.; Best, M. E.; van Schendel, P. J. A.; Stiefel, B.; Hug, H. J.; Heydon, G. P.; Farley, A.; Hoon, S. R.; Pfaffelhuber, T.; Proksch, R.; Babcock, K., Comparing the resolution of magnetic force microscopes using the CAMST reference samples. Journal of Magnetism and Magnetic Materials 1998, 190 (1–2), 135–47.

[213] Porthun, S.; Abelmann, L.; Lodder, C., Magnetic force microscopy of thin film media for high density magnetic recording. Journal of Magnetism and Magnetic Materials 1998, 182 (1–2), 238–73.

[214] Lin, C. W.; Fan, F.‐R. F.; Bard, A. J., High resolution photoelectrochemical etching of n‐GaAs with the scanning electrochemical and tunneling microscope. Journal of the Electrochemical Society 1987, 134 (4), 1038–39.

[215] Giles, R.; Cleveland, J. P.; Manne, S.; Hansma, P. K.; Drake, B.; Maivald, P.; Boles, C.; Gurley, J.; Elings, V., Noncontact force microscopy in liquids. Applied Physics Letters 1993, 63 (5), 617–18.

[216] Hosaka, S.; Kikukawa, A.; Honda, Y.; Hasegawa, T., Just‐on‐surface magnetic force microscopy. Applied Physics Letters 1994, 65 (26), 3407–9.

[217] Raşa, M.; Kuipers, B. W. M.; Philipse, A. P., Atomic force microscopy and magnetic force microscopy study of model colloids. Journal of Colloid and Interface Science 2002, 250 (2), 303–15.

[218] Proksch, R.; Skidmore, G. D.; Dahlberg, E. D.; Foss, S.; Schmidt, J. J.; Merton, C.; Walsh, B.; Dugas, M., Quantitative magnetic field measurements with the magnetic force microscope. Applied Physics Letters 1996, 69 (17), 2599–2601.

[219] Proksch, R., Recent advances in magnetic force microscopy. Current Opinion in Solid State & Materials Science 1999, 4 (2), 231–36.

[220] Suter, A., The magnetic resonance force microscope. Progress in Nuclear Magnetic Resonance Spectroscopy 2004, 45 (3–4), 239–74.

[221] Schreiber, S.; Savla, M.; Pelekhov, D. V.; Iscru, D. F.; Selcu, C.; Hammel, P. C.; Agarwal, G., Magnetic force microscopy of superparamagnetic nanoparticles. Small 2008, 4 (2), 270–78.

[222] Stern, J. E.; Terris, B. D.; Mamin, H. J.; Rugar, D., Deposition and imaging of localized charge on insulator surfaces using a force microscope. Applied Physics Letters 1988, 53 (26), 2717–19.

[223] Ratzke, M.; Reif, H., On the reliability of scanning probe based electrostatic force measurements. Microelectronic Engineering 2007, 84 (3), 512–16.

[224] Nonnenmacher, M.; Oboyle, M. P.; Wickramasinghe, H. K., Kelvin probe force microscopy. Applied Physics Letters 1991, 58 (25), 2921–23.

[225] Palermo, V.; Palma, M.; Samori, P., Electronic characterization of organic thin films by Kelvin probe force microscopy. Advanced Materials 2006, 18 (2), 145–64.

[226] Jacobs, H. O.; Leuchtmann, P.; Homan, O. J.; Stemmer, A., Resolution and contrast in Kelvin probe force microscopy. Journal of Applied Physics 1998, 84 (3), 1168–73.

[227] Cui, X.; Freitag, M.; Martel, R.; Brus, L.; Avouris, P., Controlling energy‐level alignments at carbon nanotube/Au contacts. Nano Letters 2003, 3 (6), 783–87.

(p.213) [228] Hillner, P. E.; Manne, S.; Gratz, A. J.; Hansma, P. K., AFM images of dissolution and growth on a calcite crystal. Ultramicroscopy 1992, 42, 1387–93.

[229] Macpherson, J. V.; Unwin, P. R., Combined scanning electrochemical‐atomic force microscopy. Analytical Chemistry 2000, 72 (2), 276–85.

[230] Vidu, R.; Ku, J.‐R.; Stroeve, P., Growth of ultrathin films of cadmium telluride and tellurium as studied by electrochemical atomic force microscopy. Journal of Colloid and Interface Science 2006, 300 (1), 404–12.

[231] Pollock, H. M.; Hammiche, A., Micro‐thermal analysis: techniques and applications. Journal of Physics D: Applied Physics 2001, 34 (9), R23–R53.

[232] Price, D. M.; Reading, M.; Hammiche, A.; Pollock, H. M., Micro‐thermal analysis: scanning thermal microscopy and localised thermal analysis. International Journal of Pharmaceutics 1999, 192 (1), 85–96.

[233] Hammiche, A.; Price, D. M.; Dupas, E.; Mills, G.; Kulik, A.; Reading, M.; Weaver, J. M. R.; Pollock, H. M., Two new microscopical variants of thermomechanical modulation: scanning thermal expansion microscopy and dynamic localized thermomechanical analysis. Journal of Microscopy 2000, 199 (3), 180–90.

[234] Tsukruk, V. V.; Gorbunov, V. V.; Fuchigami, N., Microthermal analysis of polymeric materials. Thermochimica Acta 2003, 395 (1–2), 151–58.

[235] Fischer, H., Calibration of micro‐thermal analysis for the detection of glass transition temperatures and melting points – repeatability and reproducibility. Journal of Thermal Analysis and Calorimetry 2008, 92 (2), 625–30.

[236] Harding, L.; King, W. P.; Dai, X.; Craig, D. Q. M.; Reading, M., Nanoscale characterisation and imaging of partially amorphous materials using local thermomechanical analysis and heated tip AFM. Pharmaceutical Research 2007, 24 (11), 2048–54.

[237] Zhang, J. X.; Roberts, C. J.; Shakesheff, K. M.; Davies, M. C.; Tendler, S. J. B., Micro‐ and macrothermal analysis of a bioactive surface‐engineered polymer formed by physical entrapment of poly(ethylene glycol) into poly(lactic acid). Macromolecules 2003, 36 (4), 1215–21.

[238] Mallarino, S.; Chailan, J. F.; Vernet, J. L., Interphase investigation in glass fibre composites by micro‐thermal analysis. Composites Part A – Applied Science and Manufacturing 2005, 36 (9), 1300–6.

[239] Woodward, I.; Ebbens, S.; Zhang, J.; Luk, S.; Patel, N.; Roberts, C. J., A combined imaging, microthermal and spectroscopic study of a multilayer packaging system. Packaging Technology and Science 2004, 17 (3), 129–38.

[240] Bond, L.; Allen, S.; Davies, M. C.; Roberts, C. J.; Shivji, A. P.; Tendler, S. J. B.; Williams, P. M.; Zhang, J. X., Differential scanning calorimetry and scanning thermal microscopy analysis of pharmaceutical materials. International Journal of Pharmaceutics 2002, 243 (1–2), 71–82.

[241] Germinario, L. T.; Shang, P. P., Advances in nano thermal analysis of coatings. Journal of Thermal Analysis and Calorimetry 2008, 93 (1), 207–11.

[242] Zhang, J. X.; Botterill, N. W.; Roberts, C. J.; Grant, D. M., Micro‐thermal analysis of NiTi shape memory alloy thin films. Thermochimica Acta 2003, 401 (2), 111–19.

[243] Boroumand, F. A.; Hammiche, A.; Hill, G.; Lidzey, D. G., Characterizing joule heating in polymer light‐emitting diodes using a scanning thermal microscope. Advanced Materials 2004, 16 (3), 252–56.

[244] Stievenard, D.; Legrand, B., Silicon surface nano‐oxidation using scanning probe microscopy. Progress in Surface Science 2006, 81 (2–3), 112–40.

[245] Rank, R.; Bruckl, H.; Kretz, J.; Monch, I.; Reiss, G., Nanoscale modification of conducting lines with a scanning force microscope. Vacuum 1997, 48 (5), 467–72.

[246] Ginger, D. S.; Zhang, H.; Mirkin, C. A., The evolution of dip‐pen nanolithography. Angewandte Chemie International Edition 2004, 43 (1), 30–45.

(p.214) [247] Quate, C. F., Manipulation and modification of nanometer scale objects with the STM. Highlights in Condensed Matter Physics and Future Prospects 1991, 285, 573–630.

[248] Day, H. C.; Allee, D. R., Selective area oxidation of silicon with a scanning force microscope. Applied Physics Letters 1993, 62 (21), 2691–93.

[249] Xie, X. N.; Chung, H. J.; Sow, C. H.; Wee, A. T. S., Nanoscale materials patterning and engineering by atomic force microscopy nanolithography. Materials Science & Engineering R‐Reports 2006, 54 (1–2), 1–48.

[250] Martínez, R. V.; Losilla, N. S.; Martinez, J.; Huttel, Y.; García, R., Patterning polymeric structures with 2 nm resolution at 3 nm half pitch in ambient conditions. Nano Letters 2007, 7 (7), 1846–50.

[251] Snow, E. S.; Campbell, P. M.; Perkins, F. K., Nanofabrication with proximal probes. Proceedings of the IEEE 1997, 85 (4), 601–11.

[252] Snow, E. S.; Campbell, P. M.; Perkins, F. K., High speed patterning of a metal silicide using scanned probe lithography. Applied Physics Letters 1999, 75 (10), 1476–78.

[253] Fontaine, P. A.; Dubois, E.; Stievenard, D., Characterization of scanning tunneling microscopy and atomic force microscopy‐based techniques for nanolithography on hydrogen‐passivated silicon. Journal of Applied Physics 1998, 84 (4), 1776–81.

[254] Tello, M.; García, R., Nano‐oxidation of silicon surfaces: comparison of noncontact and contact atomic‐force microscopy methods. Applied Physics Letters 2001, 79 (3), 424–26.

[255] Cavallini, M.; Mei, P.; Biscarini, F.; García, R., Parallel writing by local oxidation nanolithography with submicrometer resolution. Applied Physics Letters 2003, 83 (25), 5286–88.

[256] Martínez, R. V.; Losilla, N. S.; Martinez, J.; Tello, M.; García, R., Sequential and parallel patterning by local chemical nanolithography. Nanotechnology 2007, 18 (8), 084021.

[257] Minne, S. C.; Adams, J. D.; Yaralioglu, G.; Manalis, S. R.; Atalar, A.; Quate, C. F., Centimeter scale atomic force microscope imaging and lithography. Applied Physics Letters 1998, 73 (12), 1742–44.

[258] Held, R.; Vancura, T.; Heinzel, T.; Ensslin, K.; Holland, M.; Wegscheider, W., In‐plane gates and nanostructures fabricated by direct oxidation of semiconductor heterostructures with an atomic force microscope. Applied Physics Letters 1998, 73 (2), 262–64.

[259] Held, R.; Heinzel, T.; Studerus, P.; Ensslin, K.; Holland, M., Semiconductor quantum point contact fabricated by lithography with an atomic force microscope. Applied Physics Letters 1997, 71 (18), 2689–91.

[260] Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A., ‘Dip‐pen’ nanolithography. Science 1999, 283 (5402), 661–63.

[261] Weeks, B. L.; Noy, A.; Miller, A. E.; De Yoreo, J. J., Effect of dissolution kinetics on feature size in dip‐pen nanolithography. Physical Review Letters 2002, 88 (25), 255505.

[262] Christman, K. L.; Enriquez‐Rios, V. D.; Maynard, H. D., Nanopatterning proteins and peptides. Soft Matter 2006, 2 (11), 928–39.

[263] Noy, A.; Miller, A. E.; Klare, J. E.; Weeks, B. L.; Woods, B. W.; DeYoreo, J. J., Fabrication of luminescent nanostructures and polymer nanowires using dip‐pen nanolithography. Nano Letters 2002, 2 (2), 109–12.

[264] Agarwal, G.; Sowards, L. A.; Naik, R. R.; Stone, M. O., Dip‐pen nanolithography in tapping mode. Journal of the American Chemical Society 2003, 125 (2), 580–83.

[265] Fu, L.; Liu, X.; Zhang, Y.; Dravid, V. P.; Mirkin, C. A., Nanopatterning of ‘hard’ magnetic nanostructures via dip‐pen nanolithography and a sol‐based ink. Nano Letters 2003, 3 (6), 757–60.

[266] Tseng, A. A.; Notargiacomo, A.; Chen, T. P., Nanofabrication by scanning probe microscope lithography: a review. Journal of Vacuum Science & Technology B 2005, 23 (3), 877–94.

(p.215) [267] King, W. P.; Kenny, T. W.; Goodson, K. E.; Cross, G.; Despont, M.; Durig, U.; Rothuizen, H.; Binnig, G. K.; Vettiger, P., Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Applied Physics Letters 2001, 78 (9), 1300–2.

[268] Durig, U.; Cross, G.; Despont, M.; Drechsler, U.; Haberle, W.; Lutwyche, M. I.; Rothuizen, H.; Stutz, R.; Widmer, R.; Vettiger, P.; Binnig, G. K.; King, W. P.; Goodson, K. E., ‘Millipede’ – an AFM data storage system at the frontier of nanotribology. Tribology Letters 2000, 9 (1–2), 25–32.

[269] Pozidis, H.; Haberle, W.; Wiesmann, D.; Drechsler, U.; Despont, M.; Albrecht, T. R.; Eleftheriou, E., Demonstration of thermomechanical recording at 641 Gbit/in2. IEEE Transactions on Magnetics 2004, 40 (4), 2531–36.

[270] Junno, T.; Deppert, K.; Montelius, L.; Samuelson, L., Controlled manipulation of nanoparticles with an atomic‐force microscope. Applied Physics Letters 1995, 66 (26), 3627–29.

[271] Hu, J.; Zhang, Y.; Gao, H. B.; Li, M. Q.; Hartmann, U., Artificial DNA patterns by mechanical nanomanipulation. Nano Letters 2002, 2 (1), 55–57.

[272] Ternes, M.; Lutz, C. P.; Hirjibehedin, C. F.; Giessibl, F. J.; Heinrich, A. J., The force needed to move an atom on a surface. Science 2008, 319 (5866), 1066–69.

[273] Sugimoto, Y.; Abe, M.; Hirayama, S.; Oyabu, N.; Custance, O.; Morita, S., Atom inlays performed at room temperature using atomic force microscopy. Nature Materials 2005, 4 (2), 156–59.

[274] Liu, M.; Amro, N. A.; Liu, G. Y., Nanografting for surface physical chemistry. Annual Review of Physical Chemistry 2008, 59, 367–86.

[275] Liang, J.; Scoles, G., Nanografting of alkanethiols by tapping mode atomic force microscopy. Langmuir 2007, 23 (11), 6142–47.

[276] Wadu‐Mesthrige, K.; Xu, S.; Amro, N. A.; Liu, G. Y., Fabrication and imaging of nanometer‐sized protein patterns. Langmuir 1999, 15 (25), 8580–83.

[277] Xu, S.; Liu, G. Y., Nanometer‐scale fabrication by simultaneous nanoshaving and molecular self‐assembly. Langmuir 1997, 13 (2), 127–29.

[278] Paik, P.; Kar, K. K.; Deva, D.; Sharma, A., Measurement of mechanical properties of polymer nanospheres by atomic force microscopy: effects of particle size. Micro & Nano Letters 2007, 2 (3), 72–77.

[279] Abdelhady, H. G.; Allen, S.; Ebbens, S. J.; Madden, C.; Patel, N.; Roberts, C. J.; Zhang, J. X., Towards nanoscale metrology for biomolecular imaging by atomic force microscopy. Nanotechnology 2005, 16 (6), 966–73.

[280] De la Fuente, J. M.; Eaton, P.; Barrientos, A. G.; Menendez, M.; Penades, S., Thermodynamic evidence for Ca2+‐mediated self‐aggregation of Lewis X gold glyconanoparticles. A model for cell adhesion via carbohydrate–carbohydrate interaction. Journal of the American Chemical Society 2005, 127 (17), 6192–97.

[281] Wang, H.; Tessmer, I.; Croteau, D. L.; Erie, D. A.; Van Houten, B., Functional characterization and atomic force microscopy of a DNA repair protein conjugated to a quantum dot. Nano Letters 2008, 8 (6), 1631–37.

[282] Quintana, M.; Haro‐Poniatowski, E.; Morales, J.; Batina, N., Synthesis of selenium nanoparticles by pulsed laser ablation. Applied Surface Science 2002, 195 (1–4), 175–86.

[283] Pimpha, N.; Rattanonchai, U.; Surassmo, S.; Opanasopit, P.; Rattanarungchai, C.; Sunintaboon, P., Preparation of PMMA/acid‐modified chitosan core‐shell nanoparticles and their potential as gene carriers. Colloid and Polymer Science 2008, 286 (8–9), 907–16.

[284] Garcia, P.; Eaton, P.; Geurts, H. P. M.; Sousa, M.; Gameiro, P.; Feiters, M. C.; Nolte, R. J. M.; Pereira, E.; de Castro, B., AFM and electron microscopy study of the unusual aggregation behavior of metallosurfactants based on iron(II) complexes with bipyridine ligands. Langmuir 2007, 23 (15), 7951–57.

(p.216) [285] Thomson, N. H., Imaging the substructure of antibodies with tapping‐mode AFM in air: the importance of a water layer on mica. Journal of Microscopy 2005, 217 (3), 193–99.

[286] Bickmore, B. R.; Hochella, M. F.; Bosbach, D.; Charlet, L., Methods for performing atomic force microscopy imaging of clay minerals in aqueous solutions. Clays and Clay Minerals 1999, 47 (5), 573–81.

[287] Vesenka, J.; Manne, S.; Giberson, R.; Marsh, T.; Henderson, E., Colloidal gold particles as an incompressible atomic‐force microscope imaging standard for assessing the compressibility of biomolecules. Biophysical Journal 1993, 65 (3), 992–97.

[288] Doron, A.; Joselevich, E.; Schlittner, A.; Willner, I., AFM characterization of the structure of Au‐colloid monolayers and their chemical etching. Thin Solid Films 1999, 340 (1–2), 183–88.

[289] Sato, H.; Ohtsu, T.; Komasawa, I., Atomic force microscopy study of ultrafine particles prepared in reverse micelles. Journal of Colloid and Interface Science 2000, 230 (1), 200–4.

[290] Vinelli, A.; Primiceri, E.; Brucale, M.; Zuccheri, G.; Rinaldi, R.; Samori, B., Sample preparation for the quick sizing of metal nanoparticles by atomic force microscopy. Microscopy Research and Technique 2008, 71 (12), 870–79.

[291] Benoit, M.; Holstein, T.; Gaub, H. E., Lateral forces in AFM imaging and immobilization of cells and organelles. European Biophysics Journal 1997, 26 (4), 283–90.

[292] Lobo, R. F. M.; Pereira‐da‐Silva, M. A.; Raposo, M.; Faria, R. M.; Oliveira Jr., O. N., In situ thickness measurements of ultra‐thin multilayer polymer films by atomic force microscopy. Nanotechnology 1999, 10 (4), 389–93.

[293] Kaczmarek, H.; Chaberska, H., The influence of solvent residue, support type and UV‐irradiation on surface morphology of poly(methyl methacrylate) films studied by atomic force microscopy. Polymer Testing 2008, 27 (6), 736–42.

[294] Wagner, P., Immobilization strategies for biological scanning probe microscopy. FEBS Letters 1998, 430 (1–2), 112–15.

[295] Adamcik, J.; Klinov, D. V.; Witz, G.; Sekatskii, S. K.; Dietler, G., Observation of single‐stranded DNA on mica and highly oriented pyrolytic graphite by atomic force microscopy. FEBS Letters 2006, 580 (24), 5671–75.

[296] Brett, A. M. O.; Chiorcea, A. M., Atomic force microscopy of DNA immobilized onto a highly oriented pyrolytic graphite electrode surface. Langmuir 2003, 19 (9), 3830–39.

[297] Vesenka, J.; Guthold, M.; Tang, C. L.; Keller, D.; Delaine, E.; Bustamante, C., Substrate preparation for reliable imaging of DNA‐molecules with the scanning force microscope. Ultramicroscopy 1992, 42, 1243–49.

[298] Hansma, H. G.; Laney, D. E., DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. Biophysical Journal 1996, 70 (4), 1933–39.

[299] Sanchez‐Sevilla, A.; Thimonier, J.; Marilley, M.; Rocca‐Serra, J.; Barbet, J., Accuracy of AFM measurements of the contour length of DNA fragments adsorbed on mica in air and in aqueous buffer. Ultramicroscopy 2002, 92 (3–4), 151–58.

[300] Lyubchenko, Y. L.; Shlyakhtenko, L. S., AFM for analysis of structure and dynamics of DNA and protein‐DNA complexes. Methods 2009, 47 (3), 206–13.

[301] Gaczynska, M.; Osmulski, P. A., AFM of biological complexes: what can we learn? Current Opinion in Colloid & Interface Science 2008, 13 (5), 351–67.

[302] El Kirat, K.; Burton, I.; Dupres, V.; Dufrêne, Y. F., Sample preparation procedures for biological atomic force microscopy. Journal of Microscopy 2005, 218 (3), 199–207.

[303] Cullen, D. C.; Lowe, C. R., AFM studies of protein adsorption. 1. Time‐resolved protein adsorption to highly oriented pyrolytic‐graphite. Journal of Colloid and Interface Science 1994, 166 (1), 102–8.

[304] Viani, M. B.; Pietrasanta, L. I.; Thompson, J. B.; Chand, A.; Gebeshuber, I. C.; Kindt, J. H.; Richter, M.; Hansma, H. G.; Hansma, P. K., Probing protein–protein interactions in real time. Nature Structural Biology 2000, 7 (8), 644–47.

(p.217) [305] Czajkowsky, D. M.; Shao, Z., Inhibition of protein adsorption to muscovite mica by monovalent cations. Journal of Microscopy 2003, 211 (1), 1–7.

[306] Klein, D. C. G.; Stroh, C. M.; Jensenius, H.; van Es, M.; Kamruzzahan, A. S. M.; Stamouli, A.; Gruber, H. J.; Oosterkamp, T. H.; Hinterdorfer, P., Covalent immobilization of single proteins on mica for molecular recognition force microscopy. ChemPhysChem 2003, 4 (12), 1367–71.

[307] Müller, D. J.; Engel, A., Strategies to prepare and characterize native membrane proteins and protein membranes by AFM. Current Opinion in Colloid & Interface Science 2008, 13 (5), 338–50.

[308] Neves, P.; Lopes, S. C. D. N.; Sousa, I.; Garcia, S.; Eaton, P.; Gameiro, P., Characterization of membrane protein reconstitution in LUVs of different lipid composition by fluorescence anisotropy. Journal of Pharmaceutical and Biomedical Analysis 2008, 49 (2), 276–81.

[309] Pelling, A. E.; Veraitch, F. S.; Chu, C. P.‐K.; Nicholls, B. M.; Hemsley, A. L.; Mason, C.; Horton, M. A., Mapping correlated membrane pulsations and fluctuations in human cells. Journal of Molecular Recognition 2007, 20 (6), 467–75.

[310] Espenel, C.; Giocondi, M.‐C.; Seantier, B.; Dosset, P.; Milhiet, P.‐E.; Le Grimellec, C., Temperature‐dependent imaging of living cells by AFM. Ultramicroscopy 2008, 108 (10), 1174–80.

[311] Braet, F.; de Zanger, R.; Seynaeve, C.; Baekeland, M.; Wisse, E., A comparative atomic force microscopy study on living skin fibroblasts and liver endothelial cells. Journal of Electron Microscopy 2001, 50 (4), 283–90.

[312] Núñez, M. E.; Martin, M. O.; Chan, P. H.; Duong, L. K.; Sindhurakar, A. R.; Spain, E. M., Atomic force microscopy of bacterial communities. In Environmental Microbiology, Elsevier Academic Press Inc: San Diego, 2005; Vol. 397, pp 256–68.

[313] Vadillo‐Rodriguez, V.; Busscher, H. J.; Norde, W.; de Vries, J.; Dijkstra, R. J. B.; Stokroos, I.; van der Mei, H. C., Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods. Applied and Environmental Microbiology 2004, 70 (9), 5541–46.

[314] Burks, G. A.; Velegol, S. B.; Paramonova, E.; Lindenmuth, B. E.; Feick, J. D.; Logan, B. E., Macroscopic and nanoscale measurements of the adhesion of bacteria with varying outer layer surface composition. Langmuir 2003, 19 (6), 2366–71.

[315] Micic, M.; Hu, D.; Suh, Y. D.; Newton, G.; Romine, M.; Lu, H. P., Correlated atomic force microscopy and fluorescence lifetime imaging of live bacterial cells. Colloids and Surfaces B: Biointerfaces 2004, 34 (4), 205–12.

[316] Volle, C. B.; Ferguson, M. A.; Aidala, K. E.; Spain, E. M.; Nuñez, M. E., Quantitative changes in the elasticity and adhesive properties of Escherichia coli ZK1056 prey cells during predation by Bdellovibrio bacteriovorus 109J. Langmuir 2008, 24 (15), 8102–10.

[317] Kailas, L.; Ratcliffe, E. C.; Hayhurst, E. J.; Walker, M. G.; Foster, S. J.; Hobbs, J. K., Immobilizing live bacteria for AFM imaging of cellular processes. Ultramicroscopy 2009, 109 (7), 775–80.

[318] Schultze, J. W.; Davepon, B.; Karman, F.; Rosenkranz, C.; Schreiber, A.; Voigt, O., Corrosion and passivation in nanoscopic and microscopic dimensions: the influence of grains and grain boundaries. Corrosion Engineering, Science and Technology 2004, 39, 45–52.

[319] Bezanilla, M.; Manne, S.; Laney, D. E.; Lyubchenko, Y. L.; Hansma, H. G., Adsorption of DNA to mica, silylated mica, and minerals – characterization by atomic‐force microscopy. Langmuir 1995, 11 (2), 655–59.

[320] Müller, D. J.; Janovjak, H.; Lehto, T.; Kuerschner, L.; Anderson, K., Observing structure, function and assembly of single proteins by AFM. Progress in Biophysics and Molecular Biology 2002, 79 (1–3), 1–43.

(p.218) [321] Bystrenova, E.; Radenovic, A.; Libioulle, L.; Dietler, G. Importance of substrate for biological imaging by AFM at low temperature. Scanning tunneling microscopy/spectroscopy and related techniques: 12th International Conference. AIP: Eindhoven, Netherlands, 2003; pp 461–66.

[322] Bhushan, B.; Tokachichu, D. R.; Keener, M. T.; Lee, S. C., Morphology and adhesion of biomolecules on silicon based surfaces. Acta Biomaterialia 2005, 1 (3), 327–41.

[323] Olbrich, A.; Ebersberger, B.; Boit, C., Conducting atomic force microscopy for nanoscale electrical characterization of thin SiO2. Applied Physics Letters 1998, 73 (21), 3114–16.

[324] Henke, L.; Nagy, N.; Krull, U. J., An AFM determination of the effects on surface roughness caused by cleaning of fused silica and glass substrates in the process of optical biosensor preparation. Biosensors & Bioelectronics 2002, 17 (6–7), 547–55.

[325] Banner, L. T.; Richter, A.; Pinkhassik, E., Pinhole‐free large‐grained atomically smooth Au(111) substrates prepared by flame‐annealed template stripping. Surface and Interface Analysis 2009, 41 (1), 49–55.

[326] Rundqvist, J.; Hoh, J. H.; Haviland, D. B., Substrate effects in poly(ethylene glycol) self‐assembled monolayers on granular and flame‐annealed gold. Journal of Colloid and Interface Science 2006, 301 (1), 337–41.

[327] Rundqvist, J.; Hoh, J. H.; Haviland, D. B., Poly(ethylene glycol) self‐assembled monolayer island growth. Langmuir 2005, 21 (7), 2981–87.

[328] Hegner, M.; Wagner, P.; Semenza, G., Ultralarge atomically flat template‐stripped Au surfaces for scanning probe microscopy. Surface Science 1993, 291 (1–2), 39–46.

[329] Wagner, P.; Hegner, M.; Guntherodt, H. J.; Semenza, G., Formation and in‐situ modification of monolayers chemisorbed on ultraflat template‐stripped gold surfaces. Langmuir 1995, 11 (10), 3867–75.

[330] Mosley, D. W.; Chow, B. Y.; Jacobson, J. M., Solid‐state bonding technique for template‐stripped ultraflat gold Substrates. Langmuir 2006, 22 (6), 2437–40.

[331] Cannara, R. J.; Eglin, M.; Carpick, R. W., Lateral force calibration in atomic force microscopy: a new lateral force calibration method and general guidelines for optimization. Review of Scientific Instruments 2006, 77 (5), 053701.

[332] Cain, R. G.; Reitsma, M. G.; Biggs, S.; Page, N. W., Quantitative comparison of three calibration techniques for the lateral force microscope. Review of Scientific Instruments 2001, 72 (8), 3304–12.

[333] Prunici, P.; Hess, P., Quantitative characterization of crosstalk effects for friction force microscopy with scan‐by‐probe SPMs. Ultramicroscopy 2008, 108 (7), 642–45.

[334] Leggett, G. J.; Brewer, N. J.; Chonga, K. S. L., Friction force microscopy: towards quantitative analysis of molecular organisation with nanometre spatial resolution. Physical Chemistry Chemical Physics 2005, 7 (6), 1107–20.

[335] Xie, H.; Vitard, J.; Haliyo, S.; Regnier, S.; Boukallel, M., Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor. Review of Scientific Instruments 2008, 79 (3), 033708.

[336] Cain, R. G.; Biggs, S.; Page, N. W., Force calibration in lateral force microscopy. Journal of Colloid and Interface Science 2000, 227 (1), 55–65.

[337] Varenberg, M.; Etsion, I.; Halperin, G., An improved wedge calibration method for lateral force in atomic force microscopy. Review of Scientific Instruments 2003, 74 (7), 3362–67.

[338] Ecke, S.; Raiteri, R.; Bonaccurso, E.; Reiner, C.; Deiseroth, H.‐J.; Butt, H. J., Measuring normal and friction forces acting on individual fine particles. Review of Scientific Instruments 2001, 72 (11), 4164–70.

[339] Asay, D. B.; Kim, S. H., Direct force balance method for atomic force microscopy lateral force calibration. Review of Scientific Instruments 2006, 77 (4), 043903.

(p.219) [340] Schäffer, T. E.; Radmacher, M.; Proksch, R., Magnetic force gradient mapping. Journal of Applied Physics 2003, 94 (10), 6525–32.

[341] García, R.; San Paulo, A., Dynamics of a vibrating tip near or in intermittent contact with a surface. Physical Review B 2000, 61 (20), 13381–84.

[342] García, R.; San Paulo, A., Amplitude curves and operating regimes in dynamic atomic force microscopy. Ultramicroscopy 2000, 82 (1–4), 79–83.

[343] Motamedi, R.; Wood‐Adams, P. M., Influence of fluid cell design on the frequency response of AFM microcantilevers in liquid media. Sensors 2008, 8 (9), 5927–41.

[344] Kokavecz, J.; Mechler, A., Investigation of fluid cell resonances in intermittent contact mode atomic force microscopy. Applied Physics Letters 2007, 91 (2), 023113.

[345] Nnebe, I.; Schneider, J. W., Characterization of distance‐dependent damping in tapping‐mode atomic force microscopy force measurements in liquid. Langmuir 2004, 20 (8), 3195–3201.

[346] Tamayo, J.; Humphris, A. D. L.; Miles, M. J., Piconewton regime dynamic force microscopy in liquid. Applied Physics Letters 2000, 77 (4), 582–84.

[347] Kowalewski, T.; Holtzman, D. M. In situ atomic force microscopy study of Alzheimer's beta‐amyloid peptide on different substrates: new insights into mechanism of beta‐sheet formation, Proceedings of the National Academy of Sciences, of the United States of America 1999, 96 (7), 3688–93.

[348] Herruzo, E. T.; García, R., Frequency response of an atomic force microscope in liquids and air: magnetic versus acoustic excitation. Applied Physics Letters 2007, 91 (14), 143113.

[349] Putman, C. A. J.; Vanderwerf, K. O.; Degrooth, B. G.; Vanhulst, N. F.; Greve, J., Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophysical Journal 1994, 67 (4), 1749–53.

[350] Maali, A.; Hurth, C.; Cohen‐Bouhacina, T.; Couturier, G.; Aime, J. P., Improved acoustic excitation of atomic force microscope cantilevers in liquids. Applied Physics Letters 2006, 88 (16), 163504.

[351] Dcosta, N. P.; Hoh, J. H., Calibration of optical lever sensitivity for atomic force microscopy. Review of Scientific Instruments 1995, 66 (10), 5096–97.

[352] Russ, J. C., Correcting image defects. In The Image Processing Handbook fifth edition. CRC: 2006; pp 195–268.

[353] Russ, J. C., Human vision. In The Image Processing Handbook, fifth edition. CRC: 2006; pp 83–134.

[354] Nguyen, C. V.; Stevens, R. M. D.; Barber, J.; Han, J.; Meyyappan, M.; Sanchez, M. I.; Larson, C.; Hinsberg, W. D., Carbon nanotube scanning probe for profiling of deep‐ultraviolet and 193 nm photoresist patterns. Applied Physics Letters 2002, 81 (5), 901–3.

[355] Tay, A. B. H.; Thong, J. T. L., High‐resolution nanowire atomic force microscope probe grown by a field‐emission induced process. Applied Physics Letters 2004, 84 (25), 5207–9.

[356] Haycocks, J.; Jackson, K. Detecting and addressing the surface following errors in the calibration of step heights by atomic force microscopy, Nanoscale 2006 Seminar, Bern, Switzerland, 2006; IOP Publishing Ltd; pp 469–75.

[357] ISO, ISO 5436‐1:2000. In Geometrical Product Specifications (GPS) – Surface Texture: Profile Method; Measurement Standards – Part 1: Material Measures, 2000.

[358] Poon, C. Y.; Bhushan, B., Comparison of surface roughness measurements by stylus profiler, AFM and non‐contact optical profiler. Wear 1995, 190 (1), 76–88.

[359] Ramón‐Torregrosa, P. J.; Rodríguez‐Valverde, M. A.; Amirfazli, A.; Cabrerizo‐Vílchez, M. A., Factors affecting the measurement of roughness factor of surfaces and its implications for wetting studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 323 (1–3), 83–93.

(p.220) [360] Ohlsson, R.; Wihlborg, A.; Westberg, H. The accuracy of fast 3D topography measurements, 8th International Conference on Metrology and Properties of Engineering Surfaces, Huddersfield, UK, 2000; Pergamon‐Elsevier Science Ltd: Oxford; pp 1899–1907.

[361] Smith, J. R.; Breakspear, S.; Campbell, S. A., AFM in surface finishing: Part II. Surface roughness. Transactions of the Institute of Metal Finishing 2003, 81, B55–B58.

[362] Fang, S. J.; Haplepete, S.; Chen, W.; Helms, C. R.; Edwards, H., Analyzing atomic force microscopy images using spectral methods. Journal of Applied Physics 1997, 82 (12), 5891–98.

[363] Thomas, T. R., Amplitude parameters. In Rough Surfaces. Imperial College Press: London, 1999.

[364] Gispert, M. P.; Serro, A. P.; Colaço, R.; Pires, E.; Saramago, B., Wear of ceramic coated metal‐on‐metal bearings used for hip replacement. Wear 2007, 263 (7–12), 1060–65.

[365] Patton, S. T.; Bhushan, B., Origins of friction and wear of the thin metallic layer of metal evaporated magnetic tape. Wear 1999, 224 (1), 126–40.

[366] Lamolle, S. F.; Monjo, M.; Lyngstadaas, S. P.; Ellingsen, J. E.; Haugen, H. J., Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance. Journal of Biomedical Materials Research Part A 2009, 88A (3), 581–88.

[367] Jähne, B., Segmentation. In Practical Handbook on Image Processing for Scientific and Technical Applications. CRC Press: 2004; pp 475–86.

[368] Klapetek, P.; Ohlídal, I.; Franta, D.; Montaigne‐Ramil, A.; Bonanni, A.; Stifter, D.; Sitter, H., Atomic force microscopy characterization of ZnTe epitaxial films. Acta Physica Slovaca 2003, 53 (3), 223–30.

[369] Beucher, S.; Meyer, F., The morphological approach to segmentation: the watershed transformation. In Mathematical Morphology in Image Processing Dougherty, E. R., Ed. CRC Press: 1993; pp 433–81.

[370] El Feninat, F.; Elouatik, S.; Ellis, T. H.; Sacher, E.; Stangel, I., Quantitative assessment of surface roughness as measured by AFM: application to polished human dentin. Applied Surface Science 2001, 183 (3–4), 205–15.

[371] Marga, F.; Grandbois, M.; Cosgrove, D. J.; Baskin, T. I., Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant Journal 2005, 43 (2), 181–90.

[372] Gan, Y., Atomic and subnanometer resolution in ambient conditions by atomic force microscopy. Surface Science Reports 2009, 64 (3), 99–121.

[373] Bokern, D. G.; Ducker, W. A. C.; Hunter, K. A.; McGrath, K. M., Surface imaging of a natural mineral surface using scanning‐probe microscopy. Journal of Crystal Growth 2002, 246 (1–2), 139–49.

[374] Bowen, W. R.; Doneva, T. A., Artefacts in AFM studies of membranes: correcting pore images using fast Fourier transform filtering. Journal of Membrane Science 2000, 171 (1), 141–47.

[375] Vallieres, K.; Chevallier, P.; Sarra‐Bournett, C.; Turgeon, S.; Laroche, G., AFM imaging of immobilized fibronectin: does the surface conjugation scheme affect the protein orientation/conformation? Langmuir 2007, 23 (19), 9745–51.

[376] Margeat, E.; Le Grimellec, C.; Royer, C. A., Visualization of trp repressor and its complexes with DNA by atomic force microscopy. Biophysical Journal 1998, 75 (6), 2712–20.

[377] Danzebrink, H. U.; Koenders, L.; Wilkening, G.; Yacoot, A.; Kunzmann, H. Advances in scanning force microscopy for dimensional metrology, CIRP Annals – Manufacturing Technology, 2006, 55 (2), 841–78.

[378] Taatjes, D. J.; Quinn, A. S.; Lewis, M. R.; Bovill, E. G., Quality assessment of atomic force microscopy probes by scanning electron microscopy: correlation of tip structure with rendered images. Microscopy Research and Technique 1999, 44 (5), 312–26.

(p.221) [379] Chen, Y.; Cai, J. Y.; Liu, M. L.; Zeng, G. C.; Feng, Q.; Chen, Z. W., Research on double‐probe, double‐ and triple‐tip effects during atomic force microscopy scanning. Scanning 2004, 26 (4), 155–61.

[380] Nie, H.‐Y.; Walzak, M. J.; Mcintyre, N. S., Use of biaxially oriented polypropylene film for evaluating and cleaning contaminated atomic force microscopy probe tips: an application to blind reconstruction. Review of Scientific Instruments 2002, 73 (11), 3831–36.

[381] Nowakowski, R.; Luckham, P.; Winlove, P., Imaging erythrocytes under physiological conditions by atomic force microscopy. Biochimica et Biophysica Acta – Biomembranes 2001, 1514 (2), 170–76.

[382] Velegol, S. B.; Pardi, S.; Li, X.; Velegol, D.; Logan, B. E., AFM imaging artifacts due to bacterial cell height and AFM tip geometry. Langmuir 2003, 19 (3), 851–57.

[383] Gruber, A.; Gspann, J.; Hoffmann, H., Nanostructures produced by cluster beam lithography. Applied Physics A: Materials Science & Processing 1999, 68 (2), 197–201.

[384] Stuart, B. H., Scanning probe microscopy. In Analytical Techniques in Materials Conservation, John Wiley and Sons: 2007; pp 100–03.

[385] Ploeger, R.; Murray, A.; Hesp, S.; Scalarone, D. An investigation of the chemical changes of artists' acrylic paint films when exposed to water, 7th Symposium on Materials Issues in Art and Archaeology, held at the 2004 MRS Fall Meeting, Boston, MA, 2004; Vandiver, P. B.; Mass, J. L.; Murray, A., Eds. Materials Research Society: pp 49–56.

[386] Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R., Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001. Journal of Microscopy 1998, 189 (1), 2–7.

[387] Nagy, K. L.; Blum, A. E., Scanning Probe Microscopy of Clay Minerals. Clay Minerals Society: 1994.

[388] Morris, V. J.; Gunning, A. P., Microscopy, microstructure and displacement of proteins from interfaces: implications for food quality and digestion. Soft Matter 2008, 4 (5), 943–51.

[389] Yang, H.; Wang, Y.; Lai, S.; An, H.; Li, Y.; Chen, F., Application of atomic force microscopy as a nanotechnology tool in food science. Journal of Food Science 2007, 72 (4), R65–R75.

[390] Ward, M. D., Bulk crystals to surfaces: combining X‐ray diffraction and atomic force microscopy to probe the structure and formation of crystal interfaces. Chemical Reviews 2001, 101 (6), 1697–1725.

[391] Meyer, E.; Hug, H. J.; Bennewitz, R., Force microscopy. In Scanning Probe Microscopy: The Lab on a Tip. Springer: 2003; pp 45–92.

[392] Masaki, N.; Machida, K.; Kado, H.; Yokoyama, K.; Tohda, T., Molecular‐resolution images of aspirin crystals with atomic force microscopy. Ultramicroscopy 1992, 42, 1148–54.

[393] Samori, P., Exploring supramolecular interactions and architectures by scanning force microscopies. Chemical Society Reviews 2005, 34 (7), 551–61.

[394] Carpick, R. W.; Salmeron, M., Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chemical Reviews 1997, 97 (4), 1163–94.

[395] Bhushan, B., Nanotribology and nanomechanics in nano/biotechnology. Philosophical Transactions of the Royal Society A – Mathematical Physical and Engineering Sciences 2008, 366 (1870), 1499–1537.

[396] Assender, H.; Bliznyuk, V.; Porfyrakis, K., How surface topography relates to materials' properties. Science 2002, 297 (5583), 973–76.

[397] Neogi, P., Length scales and roughness on a growing solid surface: a review. Journal of Electroanalytical Chemistry 2006, 595 (1), 1–10.

[398] Jandt, K. D., Atomic force microscopy of biomaterials surfaces and interfaces. Surface Science 2001, 491 (3), 303–32.

(p.222) [399] Agnihotri, A.; Garrett, J. T.; Runt, J.; Siedlecki, C. A., Atomic force microscopy visualization of poly(urethane urea) microphase rearrangements under aqueous environment. Journal of Biomaterials Science – Polymer Edition 2006, 17 (1–2), 227–38.

[400] Marti, O.; Stifter, T.; Waschipky, H.; Quintus, M.; Hild, S., Scanning probe microscopy of heterogeneous polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999, 154 (1–2), 65–73.

[401] Simon, A.; Durrieu, M. C., Strategies and results of atomic force microscopy in the study of cellular adhesion. Micron 2006, 37 (1), 1–13.

[402] Tak, Y.‐H.; Kim, K.‐B.; Park, H.‐G.; Lee, K.‐H.; Lee, J.‐R., Criteria for ITO (indium‐tin‐oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films 2002, 411 (1), 12–16.

[403] Whitehead, K. A.; Verran, J. The effect of surface topography on the retention of microorganisms, Food and Bioproducts Processing 2006, 84 (4), 253–59.

[404] Mitik‐Dineva, N.; Wang, J.; Truong, V. K.; Stoddart, P.; Malherbe, F.; Crawford, R. J.; Ivanova, E. P., Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Current Microbiology 2009, 58 (3), 268–73.

[405] Swerts, J.; Temst, K.; Van Bael, M. J.; Van Haesendonck, C.; Bruynseraede, Y., Magnetic domain wall trapping by in‐plane surface roughness modulation. Applied Physics Letters 2003, 82 (8), 1239–41.

[406] Cai, K. Y.; Muller, M.; Bossert, J.; Rechtenbach, A.; Jandt, K. D., Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate. Applied Surface Science 2005, 250 (1–4), 252–67.

[407] Yu, E. T., Nanoscale characterization of semiconductor materials and devices using scanning probe techniques. Materials Science & Engineering R‐Reports 1996, 17 (4–5), 147–206.

[408] Walther, F.; Heckl, W. M.; Stark, R. W., Evaluation of nanoscale roughness measurements on a plasma treated SU‐8 polymer surface by atomic force microscopy. Applied Surface Science 2008, 254 (22), 7290–95.

[409] Shellenberger, K.; Logan, B. E., Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environmental Science & Technology 2002, 36 (2), 184–89.

[410] Smith, J. R.; Swift, J. A., Maple syrup urine disease hair reveals the importance of 18‐methyleicosanoic acid in cuticular delamination. Micron 2005, 36 (3), 261–66.

[411] Cacciafesta, P.; Hallam, K. R.; Watkinson, A. C.; Allen, G. C.; Miles, M. J.; Jandt, K. D., Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness. Surface Science 2001, 491 (3), 405–20.

[412] Cacciafesta, P.; Hallam, K. R.; Oyedepo, C. A.; Humphris, A. D. L.; Miles, M. J.; Jandt, K. D., Characterization of ultraflat titanium oxide surfaces. Chemistry of Materials 2002, 14 (2), 777–89.

[413] MacDonald, D. E.; Markovic, B.; Allen, M.; Somasundaran, P.; Boskey, A. L., Surface analysis of human plasma fibronectin adsorbed to commercially pure titanium materials. Journal of Biomedical Materials Research 1998, 41 (1), 120–30.

[414] Larsson, C.; Thomsen, P.; Aronsson, B. O.; Rodahl, M.; Lausmaa, J.; Kasemo, B.; Ericson, L. E., Bone response to surface‐modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 1996, 17 (6), 605–16.

[415] Méndez‐Vilas, A.; Bruque, J. M.; Gonzalez‐Martin, M. L., Sensitivity of surface roughness parameters to changes in the density of scanning points in multi‐scale AFM studies. Application to a biomaterial surface. Ultramicroscopy 2007, 107 (8), 617–25.

(p.223) [416] Macdonald, W.; Campbell, P.; Fisher, J.; Wennerberg, A., Variation in surface texture measurements. Journal of Biomedical Materials Research B, Applied Biomaterials 2004, 70B (2), 262–69.

[417] Hues, S. M.; Draper, C. F.; Colton, R. J. Measurement of nanomechanical properties of metals using the atomic force microscope, Journal of Vacuum Science and Technology B 1994, 13 (3), 2211–14.

[418] Bhushan, B.; Koinkar, V. N. Microtribological studies of doped single‐crystal silicon and polysilicon films for MEMS devices, Sensors and Actuators A: Physical, 1996, 57(2), 91–102.

[419] Withers, J. R.; Aston, D. E., Nanomechanical measurements with AFM in the elastic limit. Advances in Colloid and Interface Science 2006, 120 (1–3), 57–67.

[420] Wen, J., Some mechanical properties of typical polymer‐based composites. In Physical Properties of Polymers Handbook, Mark, J. E., Ed. Springer: 2007; pp 487–97.

[421] Bullock, S.; Johnston, E. E.; Willson, T.; Gatenholm, P.; Wynne, K. J., Surface science of a filled polydimethylsiloxane‐based alkoxysilane‐cured elastomer: RTV11. Journal of Colloid and Interface Science 1999, 210 (1), 18–36.

[422] Raghavan, D.; Gu, X.; Nguyen, T.; VanLandingham, M.; Karim, A., Mapping polymer hetereogeneity using AFM phase imaging and nanoscale indentation. Macromolecules 2000, 69, 2573–83.

[423] Achalla, P.; McCormick, J.; Hodge, T.; Moreland, C.; Esnault, P.; Karim, A.; Raghavan, D., Characterization of elastomeric blends by atomic force microscopy. Journal of Polymer Science Part B – Polymer Physics 2006, 44 (3), 492–503.

[424] Sugimoto, Y.; Namikawa, T.; Abe, M.; Morita, S., Mapping and imaging for rapid atom discrimination: a study of frequency modulation atomic force microscopy. Applied Physics Letters 2009, 94 (2), 023108.

[425] Giessibl, F. J., Advances in atomic force microscopy. Reviews of Modern Physics 2003, 75 (3), 949–83.

[426] Kuwahara, Y., Comparison of the surface structure of the tetrahedral sheets of muscovite and phlogopite by AFM. Physics and Chemistry of Minerals 2001, 28 (1), 1–8.

[427] Jaschke, M.; Schonherr, H.; Wolf, H.; Butt, H.‐J.; Bamberg, E.; Besocke, M. K.; Ringsdorf, H., Structure of alkyl and perfluoroalkyl disulfide and azobenzenethiol monolayers on gold(111) Revealed by atomic force microscopy. Journal of Physical Chemistry 1996, 100 (6), 2290–2301.

[428] Hembacher, S.; Giessibl, F. J.; Mannhart, J.; Quate, C. F., Revealing the hidden atom in graphite by low‐temperature atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 2003, 100 (22), 12539–42.

[429] Ohnesorge, F.; Binnig, G., True atomic‐resolution by atomic force microscopy through repulsive and attractive forces. Science 1993, 260 (5113), 1451–56.

[430] Fukuma, T., Wideband low‐noise optical beam deflection sensor with photothermal excitation for liquid‐environment atomic force microscopy. Review of Scientific Instruments 2009, 80 (2), 023707–8.

[431] Enevoldsen, G. H.; Pinto, H. P.; Foster, A. S.; Jensen, M. C. R.; Kuhnle, A.; Reichling, M.; Hofer, W. A.; Lauritsen, J. V.; Besenbacher, F., Detailed scanning probe microscopy tip models determined from simultaneous atom‐resolved AFM and STM studies of the TiO2(110) surface. Physical Review B 2008, 78 (4), 045416.

[432] Enevoldsen, G. H.; Foster, A. S.; Christensen, M. C.; Lauritsen, J. V.; Besenbacher, F., Noncontact atomic force microscopy studies of vacancies and hydroxyls of TiO2(110): experiments and atomistic simulations. Physical Review B 2007, 76 (20), 205415.

[433] Maier, S.; Pfeiffer, O.; Glatzel, T.; Meyer, E.; Filleter, T.; Bennewitz, R., Asymmetry in the reciprocal epitaxy of NaCl and KBr. Physical Review B 2007, 75, 195408.

(p.224) [434] Giessibl, F. J.; Quate, C. F., Exploring the nanoworld with atomic force microscopy. Physics Today 2006, 59 (12), 44–50.

[435] Giessibl, F. J.; Hembacher, S.; Bielefeldt, H.; Mannhart, J., Subatomic features on the silicon (111)‐(7×7) surface observed by atomic force microscopy. Science 2000, 289 (5478), 422–25.

[436] Feenstra, R. M.; Stroscio, J. A.; Tersoff, J.; Fein, A. P., Atom‐selective imaging of the GaAs(110) surface. Physical Review Letters 1987, 58 (12), 1192–95.

[437] Zeinalipour‐Yazdi, C. D.; Pullman, D. P., A new interpretation of the scanning tunneling microscope image of graphite. Chemical Physics 2008, 348 (1–3), 233–36.

[438] Albrecht, T. R.; Mizes, H. A.; Nogami, J.; Park, S. I.; Quate, C. F., Observation of tilt boundaries in graphite by scanning tunneling microscopy and associated multiple tip effects. Applied Physics Letters 1988, 52 (5), 362–64.

[439] Ashino, M.; Schwarz, A.; Hölsher, H.; Schwarz, U. D.; Wiesendanger, R., Interpretation of the atomic scale contrast obtained on graphite and single‐walled carbon nanotubes in the dynamic mode of atomic force microscopy. Nanotechnology 2005, 16 (3), S134–S137.

[440] Mizes, H. A.; Park, S.; Harrison, W. A., multiple‐tip interpretation of anomalous scanning‐tunneling‐microscopy images of layered materials. Physical Review B 1987, 36 (8), 4491–94.

[441] Tomanek, D.; Louie, S. G.; Mamin, H. J.; Abraham, D. W.; Thomson, R. E.; Ganz, E.; Clarke, J., Theory and observation of highly asymmetric atomic‐structure in scanning‐tunneling‐microscopy images of graphite. Physical Review B 1987, 35 (14), 7790–93.

[442] Szlufarska, I.; Chandross, M.; Carpick, R. W., Recent advances in single‐asperity nanotribology. Journal of Physics D – Applied Physics 2008, 41 (12), 123001.

[443] Mate, C. M., Force microscopy studies of the molecular origins of friction and lubrication. IBM Journal of Research and Development 1995, 39 (6), 617–27.

[444] Zhang, Q.; Archer, L. A., Interfacial friction of surfaces grafted with one‐ and two‐component self‐assembled monolayers. Langmuir 2005, 21 (12), 5405–13.

[445] Martinez‐Martinez, D.; Kolodziejczyk, L.; Sánchez‐López, J. C.; Fernández, A., Tribological carbon‐based coatings: An AFM and LFM study. Surface Science 2009, 603 (7), 973–79.

[446] Oncins, G.; Garcia‐Manyes, S.; Sanz, F., Study of frictional properties of a phospholipid bilayer in a liquid environment with lateral force microscopy as a function of NaCl concentration. Langmuir 2005, 21 (16), 7373–79.

[447] Martinez‐Martinez, D.; Sanchez‐Lopez, J. C.; Rojas, T. C.; Fernandez, A.; Eaton, P.; Belin, M., Structural and microtribological studies of Ti‐C‐N based nanocomposite coatings prepared by reactive sputtering. Thin Solid Films 2005, 472 (1–2), 64–70.

[448] Leggett, G. J., Friction force microscopy of self‐assembled monolayers: probing molecular organisation at the nanometre scale. Analytica Chimica Acta 2003, 479 (1), 17–38.

[449] Krausch, G.; Hipp, M.; Boeltau, M.; Marti, O.; Mlynek, J., High‐resolution imaging of polymer surfaces with chemical sensitivity. Macromolecules 1995, 28 (1), 260–63.

[450] Cyganik, P.; Budkowski, A.; Raczkowska, J.; Postawa, Z., AFM/LFM surface studies of a ternary polymer blend cast on substrates covered by a self‐assembled monolayer. Surface Science 2002, 507–10, 700–6.

[451] Salaita, K.; Amarnath, A.; Maspoch, D.; Higgins, T. B.; Mirkin, C. A., Spontaneous ‘phase separation’ of patterned binary alkanethiol mixtures. Journal of the American Chemical Society 2005, 127 (32), 11283–87.

[452] Hampton, J. R.; Dameron, A. A.; Weiss, P. S., Transport rates vary with deposition time in dip‐pen nanolithography. Journal of Physical Chemistry B 2005, 109 (49), 23118–20.

[453] Gnecco, E.; Bennewitz, R.; Gyalog, T.; Loppacher, C.; Bammerlin, M.; Meyer, E.; Güntherodt, H. J., Velocity dependence of atomic friction. Physical Review Letters 2000, 84 (6), 1172.

(p.225) [454] Brewer, N. J.; Leggett, G. J., Chemical force microscopy of mixed self‐assembled monolayers of alkanethiols on gold: evidence for phase separation. Langmuir 2004, 20 (10), 4109–15.

[455] Tamayo, J.; Gonzalez, L.; Gonzalez, Y.; García, R., Compositional mapping of semiconductor structures by friction force microscopy. Applied Physics Letters 1996, 68 (16), 2297–99.

[456] Hay, M. B.; Workman, R. K.; Manne, S., Mechanisms of metal ion sorption on calcite: Composition mapping by lateral force microscopy. Langmuir 2003, 19 (9), 3727–40.

[457] Overney, R. M.; Meyer, E.; Frommer, J.; Brodbeck, D.; Luthi, R.; Howald, L.; Guntherodt, H. J.; Fujihira, M.; Takano, H.; Gotoh, Y., Friction measurements on phase‐separated thin‐films with a modified atomic force microscope. Nature 1992, 359 (6391), 133–35.

[458] Dufrêne, Y. F.; Barger, W. R.; Green, J. B. D.; Lee, G. U., Nanometer‐scale surface properties of mixed phospholipid monolayers and bilayers. Langmuir 1997, 13 (18), 4779–84.

[459] Tocha, E.; Schonherr, H.; Vancso, G. J., Quantitative nanotribology by AFM: a novel universal calibration platform. Langmuir 2006, 22 (5), 2340–50.

[460] Scandella, L.; Meyer, E.; Howald, L.; Luthi, R.; Guggisberg, M.; Gobrecht, J.; Guntherodt, H. J. Friction forces on hydrogen passivated (110) silicon and silicon dioxide studied by scanning force microscopy, Journal of Vacuum Science and Technology B, 1996, 14 (2), 1255–58.

[461] Beake, B. D.; Leggett, G. J.; Shipway, P. H., Frictional, adhesive and mechanical properties of polyester films probed by scanning force microscopy. Surface and Interface Analysis 1999, 27 (12), 1084–91.

[462] Basnar, B.; Friedbacher, G.; Brunner, H.; Vallant, T.; Mayer, U.; Hoffmann, H., Analytical evaluation of tapping mode atomic force microscopy for chemical imaging of surfaces. Applied Surface Science 2001, 171 (3–4), 213–25.

[463] Ciccotti, M.; George, M.; Ranieri, V.; Wondraczek, L.; Marliere, C. Dynamic condensation of water at crack tips in fused silica glass, Journal of Non‐Crystalline Solids 2008, 354 (2–9), 564–68.

[464] Wondraczek, L.; Dittmar, A.; Oelgardt, C.; Celarie, F.; Ciccotti, M.; Marliere, C., Real‐time observation of a non‐equilibrium liquid condensate confined at tensile crack tips in oxide glasses. Journal of the American Ceramic Society 2006, 89 (2), 746–49.

[465] Dong, R.; Yu, L. Y. E., Investigation of surface changes of nanoparticles using TM‐AFM phase imaging. Environmental Science & Technology 2003, 37 (12), 2813–19.

[466] Xu, J.; Guo, B.‐H.; Zhang, Z.‐M.; Zhou, J.‐J.; Jiang, Y.; Yan, S.; Li, L.; Wu, Q.; Chen, G.‐Q.; Schultz, J. M., Direct AFM observation of crystal twisting and organization in banded spherulites of chiral poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate). Macromolecules 2004, 37 (11), 4118–23.

[467] Bar, G.; Thomann, Y.; Brandsch, R.; Cantow, H. J.; Whangbo, M. H., Factors affecting the height and phase images in tapping mode atomic force microscopy. Study of phase‐separated polymer blends of poly(ethene‐co‐styrene) and poly(2,6‐dimethyl‐1,4‐phenylene oxide). Langmuir 1997, 13 (14), 3807–12.

[468] Bar, G.; Ganter, M.; Brandsch, R.; Delineau, L.; Whangbo, M. H., Examination of butadiene/styrene‐co‐butadiene rubber blends by tapping mode atomic force microscopy. Importance of the indentation depth and reduced tip‐sample energy dissipation in tapping mode atomic force microscopy study of elastomers. Langmuir 2000, 16 (13), 5702–11.

[469] Peponi, L.; Tercjak, A.; Gutierrez, J.; Stadler, H.; Torre, L.; Kenny, J. M.; Mondragon, I., Self‐assembling of SBS block copolymers as templates for conductive silver nanocomposites. Macromolecular Materials and Engineering 2008, 293 (7), 568–73.

[470] Holland, N. B.; Marchant, R. E., Individual plasma proteins detected on rough biomaterials by phase imaging AFM. Journal of Biomedical Materials Research 2000, 51 (3), 307–15.

(p.226) [471] Deleu, M.; Nott, K.; Brasseur, R.; Jacques, P.; Thonart, P.; Dufrêne, Y. F., Imaging mixed lipid monolayers by dynamic atomic force microscopy. Biochimica et Biophysica Acta – Biomembranes 2001, 1513 (1), 55–62.

[472] Crampton, N.; Bonass, W. A.; Kirkham, J.; Thomson, N. H., Studying silane mobility on hydrated mica using ambient AFM. Ultramicroscopy 2006, 106 (8–9), 765–70.

[473] García, R.; Magerle, R.; Perez, R., Nanoscale compositional mapping with gentle forces. Nature Materials 2007, 6 (6), 405–11.

[474] Tan, S.; Sherman, R. L.; Qin, D.; Ford, W. T., Surface heterogeneity of polystyrene latex particles determined by dynamic force microscopy. Langmuir 2005, 21 (1), 43–49.

[475] Dorobantu, L. S.; Bhattacharjee, S.; Foght, J. M.; Gray, M. R., Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. Langmuir 2008, 24 (9), 4944–51.

[476] Ando, T.; Uchihashi, T.; Fukuma, T., High‐speed atomic force microscopy for nano‐visualization of dynamic biomolecular processes. Progress in Surface Science 2008, 83 (7–9), 337–437.

[477] Uchihashi, T.; Ando, T.; Yamashita, H., Fast phase imaging in liquids using a rapid scan atomic force microscope. Applied Physics Letters 2006, 89 (21), 213112.

[478] Argaman, M.; Golan, R.; Thomson, N. H.; Hansma, H. G., Phase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscope. Nucleic Acids Research 1997, 25 (21), 4379–84.

[479] Kienberger, F.; Costa, L. T.; Zhu, R.; Kada, G.; Reithmayer, M.; Chtcheglova, L.; Rankl, C.; Pacheco, A. B. F.; Thalhammer, S.; Pastushenko, V.; Heckl, W. M.; Blaas, D.; Hinterdorfer, P., Dynamic force microscopy imaging of plasmid DNA and viral RNA. Biomaterials 2007, 28 (15), 2403–11.

[480] Hoo, C.; Starostin, N.; West, P.; Mecartney, M., A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. Journal of Nanoparticle Research 2008, 10 (Supplement 1), 89–96.

[481] Schwarz, A.; Wiesendanger, R., Magnetic sensitive force microscopy. Nano Today 2008, 3 (1–2), 28–39.

[482] Han, X. D.; Zhang, Z.; Wang, Z. L., Experimental nanomechanics of one‐dimensional nanomaterials by in situ microscopy. NANO: Brief Reports and Reviews 2007, 2 (5), 249–71.

[483] Dabbousi, B. O.; Rodriguez‐Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G., (CdSe)ZnS core‐shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry B 1997, 101 (46), 9463–75.

[484] Maye, M. M.; Luo, J.; Han, L.; Zhong, C. J., Probing Ph‐tuned morphological changes in core‐shell nanoparticle assembly using atomic force microscopy. Nano Letters 2001, 1 (10), 575–79.

[485] Eaton, P.; Doria, G.; Pereira, E.; Baptista, P. V.; Franco, R., Imaging gold nanoparticles for DNA sequence recognition in biomedical applications. IEEE Transactions on Nanobioscience 2007, 6, 282–88.

[486] Miura, A.; Tanaka, R.; Uraoka, Y.; Matsukawa, N.; Yamashita, I.; Fuyuki, T., The characterization of a single discrete bionanodot for memory device applications. Nanotechnology 2009, 20 (12), 125702.

[487] Corduneanu, O.; Diculescu, V. C.; Chiorcea‐Paquim, A. M.; Oliveira‐Brett, A. M., Shape‐controlled palladium nanowires and nanoparticles electrodeposited on carbon electrodes. Journal of Electroanalytical Chemistry 2008, 624 (1–2), 97–108.

[488] Bonanni, B.; Cannistraro, S., Gold nanoparticles on modified glass surface as height calibration standard for atomic force microscopy operating in contact and tapping mode. Journal of Nanotechnology Online 2005, 1, 1–14.

(p.227) [489] Stiger, R. M.; Gorer, S.; Craft, B.; Penner, R. M., Investigations of electrochemical silver nanocrystal growth on hydrogen‐terminated silicon(100). Langmuir 1999, 15 (3), 790–98.

[490] Hirai, M.; Kumar, A., Wavelength tuning of surface plasmon resonance by annealing silver‐copper nanoparticles. Journal of Applied Physics 2006, 100 (1), 014309.

[491] Raşa, M.; Philipse, A. P., Scanning probe microscopy on magnetic colloidal particles. Journal of Magnetism and Magnetic Materials 2002, 252 (1–3), 101–3.

[492] Sweetman, A.; Sharp, P.; Stannard, A.; Gangopadhyay, S.; Moriarty, P. J. AFM of self‐organised nanoparticle arrays: frequency modulation, amplitude modulation, and force spectroscopy, Conference on Nanostructured Thin Films, SPIE: San Diego, CA, 2008; pp 704102–11.

[493] Gomes, I.; Santos, N. C.; Oliveira, L. M. A.; Quintas, A.; Eaton, P.; Pereira, E.; Franco, R., Probing surface properties of cytochrome c@Au bionanoconjugates. Journal of Physical Chemistry C 2008, 112 (42), 16340–47.

[494] Katz, E.; Willner, I., Integrated nanoparticle‐biomolecule hybrid systems: synthesis, properties, and applications. Angewandte Chemie International Edition 2004, 43 (45), 6042–6108.

[495] Joralemon, M. J.; Murthy, K. S.; Remsen, E. E.; Becker, M. L.; Wooley, K. L., Synthesis, characterization, and bioavailability of mannosylated shell cross‐linked nanoparticles. Biomacromolecules 2004, 5 (3), 903–13.

[496] Dukette, T. E.; Mackay, M. E.; Van Horn, B.; Wooley, K. L.; Drockenmuller, E.; Malkoch, M.; Hawker, C. J., Conformation of intramolecularly cross‐linked polymer nanoparticles on solid substrates. Nano Letters 2005, 5 (9), 17049.

[497] Wei, Z. Q.; Mieszawska, A. J.; Zamborini, F. P., Synthesis and manipulation of high aspect ratio gold nanorods grown directly on surfaces. Langmuir 2004, 20 (11), 4322–26.

[498] Hsieh, S. C.; Meltzer, S.; Wang, C. R. C.; Requicha, A. A. G.; Thompson, M. E.; Koel, B. E., Imaging and manipulation of gold nanorods with an atomic force microscope. Journal of Physical Chemistry B 2002, 106 (2), 231–34.

[499] Fu, Y.; Ferdos, F.; Sadeghi, M.; Wang, S. M.; Larsson, A., Photoluminescence of an assembly of size‐distributed self–assembled InAs quantum dots. Journal of Applied Physics 2002, 92 (6), 3089–92.

[500] Wang, Y.; Wei, W.; Maspoch, D.; Wu, J.; Dravid, V. P.; Mirkin, C. A., Superparamagnetic sub‐5 nm Fe@C nanoparticles: isolation, structure, magnetic properties, and directed assembly. Nano Letters 2008, 8 (11), 3761–65.

[501] Wu, B.; Heidelberg, A.; Boland, J. J., Mechanical properties of ultrahigh‐strength gold nanowires. Nature Materials 2005, 4 (7), 525–29.

[502] Falvo, M. R.; Clary, G. J.; Taylor, R. M.; Chi, V.; Brooks, F. P.; Washburn, S.; Superfine, R., Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389 (6651), 582–84.

[503] Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M., Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381 (6584), 678–80.

[504] Bellucci, S., Carbon nanotubes: physics and applications. physica status solidi (c) 2005, 2 (1), 34–47.

[505] Yap, H. W.; Lakes, R. S.; Carpick, R. W., Mechanical instabilities of individual multiwalled carbon nanotubes under cyclic axial compression. Nano Letters 2007, 7 (5), 1149–54.

[506] Wong, E. W.; Sheehan, P. E.; Lieber, C. M., Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277 (5334), 1971–75.

[507] Song, J. H.; Wang, X. D.; Riedo, E.; Wang, Z. L., Elastic property of vertically aligned nanowires. Nano Letters 2005, 5 (10), 1954–58.

[508] Marszalek, P. E.; Greenleaf, W. J.; Li, H. B.; Oberhauser, A. F.; Fernandez, J. M., Atomic force microscopy captures quantized plastic deformation in gold nanowires. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (12), 6282–86.

(p.228) [509] Tan, E. P. S.; Lim, C. T., Mechanical characterization of nanofibers – a review. Composites Science and Technology 2006, 66 (9), 1102–11.

[510] Zhu, Y.; Ke, C.; Espinosa, H. D., Experimental techniques for the mechanical characterization of one‐dimensional nanostructures. Experimental Mechanics 2007, 47 (1), 7–24.

[511] Bigioni, T. P.; Cruden, B. A., Atomic force and optical microscopy characterization of the deformation of individual carbon nanotubes and nanofibers. Journal of Nanomaterials 2008, 352109.

[512] Yap, H. W.; Lakes, R. S.; Carpick, R. W., Negative stiffness and enhanced damping of individual multiwalled carbon nanotubes. Physical Review B 2008, 77 (4), 045423.

[513] Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J., Structural flexibility of carbon nanotubes. Journal of Chemical Physics 1996, 104 (5), 2089–92.

[514] Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321 (5887), 385–8.

[515] Garcia‐Sanchez, D.; van der Zande, A. M.; Paulo, A. S.; Lassagne, B.; McEuen, P. L.; Bachtold, A., Imaging mechanical vibrations in suspended graphene sheets. Nano Letters 2008, 8 (5), 1399–1403.

[516] Frank, I. W.; Tanenbaum, D. M.; Van der Zande, A. M.; McEuen, P. L., Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B 2007, 25 (6), 2558–61.

[517] Edwards, S., The visionaries. In The Nanotech Pioneers: Where Are They Taking Us?, Wiley‐VCH: 2006; pp 15–18.

[518] Luan, B.; Robbins, M. O., The breakdown of continuum models for mechanical contacts. Nature 2005, 435 (7044), 929–32.

[519] Li, G.; Xi, N.; Wang, D. H., In situ sensing and manipulation of molecules in biological samples using a nanorobotic system. Nanomedicine: Nanotechnology, Biology and Medicine 2005, 1 (1), 31–40.

[520] Sitti, M.; Hashimoto, H., Tele‐nanorobotics using an atomic force microscope as a nanorobot and sensor. Advanced Robotics 1999, 13 (4), 417–36.

[521] Taylor II, R. M.; Superfine, R., Advanced interfaces to scanned‐probe microscopes. In Handbook of Nanostructured Materials and Nanotechnology, Nalwa, H. S., Ed. Academic Press, New York, 1999; Vol. 1, pp 271–308.

[522] Ho‐Yin, C.; Ning, X.; Jiangbo, Z.; Guangyong, L. A deterministic process for fabrication and assembly of single carbon nanotube based devices, 5th IEEE Conference on Nanotechnology 2005; pp 713–16.

[523] Carlsson, S. B.; Junno, T.; Montelius, L.; Samuelson, L., Mechanical tuning of tunnel gaps for the assembly of single‐electron transistors. Applied Physics Letters 1999, 75 (10), 1461–63.

[524] Junno, T.; Carlsson, S. B.; Xu, H. Q.; Montelius, L.; Samuelson, L., Fabrication of quantum devices by angstrom‐level manipulation of nanoparticles with an atomic force microscope. Applied Physics Letters 1998, 72 (5), 548–50.

[525] Harel, E.; Meltzer, S. E.; Requicha, A. A. G.; Thompson, M. E.; Koel, B. E., Fabrication of polystyrene latex nanostructures by nanomanipulation and thermal processing. Nano Letters 2005, 5 (12), 2624–29.

[526] Hansen, L. T.; Kuhle, A.; Sorensen, A. H.; Bohr, J.; Lindelof, P. E., A technique for positioning nanoparticles using an atomic force microscope. Nanotechnology 1998, 9 (4), 337–42.

[527] Meltzer, S.; Resch, R.; Koel, B. E.; Thompson, M. E.; Madhukar, A.; Requicha, A. A. G.; Will, P., Fabrication of nanostructures by hydroxylamine seeding of gold nanoparticle templates. Langmuir 2001, 17 (5), 1713–18.

(p.229) [528] Resch, R.; Baur, C.; Bugacov, A.; Koel, B. E.; Madhukar, A.; Requicha, A. A. G.; Will, P., Building and manipulating three‐dimensional and linked two‐ dimensional structures of nanoparticles using scanning force microscopy. Langmuir 1998, 14 (23), 6613–16.

[529] Xie, H.; Haliyo, D. S.; Regnier, S., Parallel imaging/manipulation force microscopy. Applied Physics Letters 2009, 94 (15), 153106–3.

[530] Palacio, M.; Bhushan, B., A nanoscale friction investigation during the manipulation of nanoparticles in controlled environments. Nanotechnology 2008, 19 (31), 315710.

[531] Tranvouez, E.; Orieux, A.; Boer‐Duchemin, E.; Devillers, C. H.; Huc, V.; Comtet, G.; Dujardin, G., Manipulation of cadmium selenide nanorods with an atomic force microscope. Nanotechnology 2009, 20 (16), 165304.

[532] Rubio‐Sierra, F. J.; Heckl, W. M.; Stark, R. W., Nanomanipulation by atomic force microscopy. Advanced Engineering Materials 2005, 7 (4), 193–96.

[533] Stark, R. W.; Rubio‐Sierra, F. J.; Thalhammer, S.; Heckl, W. M., Combined nanomanipulation by atomic force microscopy and UV‐laser ablation for chromosomal dissection. European Biophysics Journal 2003, 32 (1), 33–9.

[534] Baptista, P.; Pereira, E.; Eaton, P.; Doria, G.; Miranda, A.; Gomes, I.; Quaresma, P.; Franco, R., Gold nanoparticles for the development of clinical diagnosis methods. Analytical and Bioanalytical Chemistry 2008, 391 (3), 943–50.

[535] Biju, V.; Itoh, T.; Anas, A.; Sujith, A.; Ishikawa, M., Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Analytical and Bioanalytical Chemistry 2008, 391 (7), 2469–95.

[536] Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J., Applications of magnetic nanoparticles in biomedicine. Journal of Physics D – Applied Physics 2003, 36 (13), R167–R181.

[537] Sperling, R. A.; Rivera Gil, P.; Zhang, F.; Zanella, M.; Parak, W. J., Biological applications of gold nanoparticles. Chemical Society Reviews 2008, 37 (9), 1896–1908.

[538] Pellegrino, T.; Kudera, S.; Liedl, T.; Javier, A. M.; Manna, L.; Parak, W. J., On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small 2005, 1 (1), 48–63.

[539] Wei, G.; Wang, L.; Zhou, H. L.; Liu, Z. G.; Song, Y. H.; Li, Z. A., Electrostatic assembly of CTAB‐capped silver nanoparticles along predefined gimel‐DNA template. Applied Surface Science 2005, 252 (5), 1189–96.

[540] Nakao, H.; Shiigi, H.; Yamamoto, Y.; Tokonami, S.; Nagaoka, T.; Sugiyama, S.; Ohtani, T., Highly ordered assemblies of Au nanoparticles organized on DNA. Nano Letters 2003, 3 (10), 1391–94.

[541] Jaganathan, H.; Ivanisevic, A., Heterostructured DNA templates: a combined magnetic force microscopy and circular dichroism study. Applied Physics Letters 2008, 93 (26), 263104–3.

[542] Braun, E.; Eichen, Y.; Sivan, U.; Ben‐Yoseph, G., DNA‐templated assembly and electrode attachment of a conducting silver wire. Nature 1998, 391 (6669), 775–78.

[543] Gu, Q.; Cheng, C. D.; Suryanarayanan, S.; Dai, K.; Haynie, D. T., DNA‐templated fabrication of nickel nanocluster chains. Physica E – Low‐Dimensional Systems & Nanostructures 2006, 33 (1), 92–98.

[544] Sun, L. L.; Sun, Y. J.; Xu, F. G.; Zhang, Y.; Yang, T.; Guo, C. L.; Liu, Z. L.; Li, Z., Atomic force microscopy and surface‐enhanced Raman scattering detection of DNA based on DNA‐nanoparticle complexes. Nanotechnology 2009, 20 (12), 125502.

[545] Ebenstein, Y.; Gassman, N.; Kim, S.; Antelman, J.; Kim, Y.; Ho, S.; Samuel, R.; Michalet, X.; Weiss, S., Lighting up individual DNA binding proteins with quantum dots. Nano Letters 2009, 9 (4), 1598–1603.

[546] Patolsky, F.; Weizmann, Y.; Lioubashevski, O.; Willner, I., Au‐nanoparticle nanowires based on DNA and polylysine templates. Angewandte Chemie International Edition 2002, 41 (13), 2323–27.

(p.230) [547] Braun, G.; Inagaki, K.; Estabrook, R. A.; Wood, D. K.; Levy, E.; Cleland, A. N.; Strouse, G. F.; Reich, N. O., Gold nanoparticle decoration of DNA on silicon. Langmuir 2005, 21 (23), 10699–701.

[548] Zhao, W.; Brook, M. A.; Li, Y. F., Design of gold nanoparticle‐based colorimetric biosensing assays. ChemBioChem 2008, 9 (15), 2363–71.

[549] Braun, G.; Diechtierow, M.; Wilkinson, S.; Schmidt, F.; Hüben, M.; Weinhold, E.; Reich, N. O., Enzyme‐directed positioning of nanoparticles on large DNA templates. Bioconjugate Chemistry 2008, 19 (2), 476–79.

[550] Zdrojek, M.; Melin, T.; Diesinger, H.; Stievenard, D.; Gebicki, W.; Adamowicz, L., Charging and discharging processes of carbon nanotubes probed by electrostatic force microscopy. Journal of Applied Physics 2006, 100 (11), 114326.

[551] Yaish, Y.; Park, J. Y.; Rosenblatt, S.; Sazonova, V.; Brink, M.; McEuen, P. L., Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. Physical Review Letters 2004, 92 (4), 046401.

[552] Bachtold, A.; Fuhrer, M. S.; Plyasunov, S.; Forero, M.; Anderson, E. H.; Zettl, A.; McEuen, P. L., Scanned probe microscopy of electronic transport in carbon nanotubes. Physical Review Letters 2000, 84 (26), 6082–85.

[553] Park, J. Y., Electrically tunable defects in metallic single‐walled carbon nanotubes. Applied Physics Letters 2007, 90 (2), 023112.

[554] Lu, W.; Wang, D.; Chen, L., Near‐static dielectric polarization of individual carbon nanotubes. Nano Letters 2007, 7 (9), 2729–33.

[555] Park, J. Y.; Yaish, Y.; Brink, M.; Rosenblatt, S.; McEuen, P. L., Electrical cutting and nicking of carbon nanotubes using an atomic force microscope. Applied Physics Letters 2002, 80 (23), 4446–48.

[556] Bozovic, D.; Bockrath, M.; Hafner, J. H.; Lieber, C. M.; Park, H.; Tinkham, M., Electronic properties of mechanically induced kinks in single‐walled carbon nanotubes. Applied Physics Letters 2001, 78 (23), 3693–95.

[557] Bozovic, D.; Bockrath, M.; Hafner, J. H.; Lieber, C. M.; Park, H.; Tinkham, M., Plastic deformations in mechanically strained single‐walled carbon nanotubes. Physical Review B 2003, 67 (3), 033407.

[558] Barboza, A. P. M.; Gomes, A. P.; Archanjo, B. S.; Araujo, P. T.; Jorio, A.; Ferlauto, A. S.; Mazzoni, M. S. C.; Chacham, H.; Neves, B. R. A., Deformation induced semiconductor‐metal transition in single wall carbon nanotubes probed by electric force microscopy. Physical Review Letters 2008, 100 (25), 256804.

[559] Woodside, M. T.; McEuen, P. L., Scanned probe imaging of single‐electron charge states in nanotube quantum dots. Science 2002, 296 (5570), 1098–1101.

[560] Tanaka, I.; Kamiya, I.; Sakaki, H.; Qureshi, N.; Allen, J. S. J.; Petroff, P. M., Imaging and probing electronic properties of self‐assembled InAs quantum dots by atomic force microscopy with conductive tip. Applied Physics Letters 1999, 74 (6), 844–46.

[561] Birjukovs, P.; Petkov, N.; Xu, J.; Svirksts, J.; Boland, J. J.; Holmes, J. D.; Erts, D., Electrical characterization of bismuth sulfide nanowire arrays by conductive atomic force microscopy. Journal of Physical Chemistry C 2008, 112 (49), 19680–85.

[562] Pan, N.; Wang, X. P.; Zhang, K.; Hu, H. L.; Xu, B.; Li, F. Q.; Hou, J. G., An approach to control the tip shapes and properties of ZnO nanorods. Nanotechnology 2005, 16 (8), 1069–72.

[563] He, J. H.; Ho, S. T.; Wu, T. B.; Chen, L. J.; Wang, Z. L., Electrical and photoelectrical performances of nano‐photodiode based on ZnO nanowires. Chemical Physics Letters 2007, 435 (1–3), 119–22.

[564] Lucchesi, M.; Privitera, G.; Labardi, M.; Prevosto, D.; Capaccioli, S.; Pingue, P., Electrostatic force microscopy and potentiometry of realistic nanostructured systems. Journal of Applied Physics 2009, 105 (5), 54301.

(p.231) [565] Erts, D.; Polyakov, B.; Dalyt, B.; Morris, M. A.; Ellingboe, S.; Boland, J.; Holmes, J. D., High density germanium nanowire assemblies: contact challenges and electrical characterization. Journal of Physical Chemistry B 2006, 110 (2), 820–26.

[566] Kalinin, S. V.; Shin, J.; Jesse, S.; Geohegan, D.; Baddorf, A. P.; Lilach, Y.; Moskovits, M.; Kolmakov, A., Electronic transport imaging in a multiwire SnO2 chemical field‐effect transistor device. Journal of Applied Physics 2005, 98 (4), 044503.

[567] Xu, D. G.; Watt, G. D.; Harb, J. N.; Davis, R. C., Electrical conductivity of ferritin proteins by conductive AFM. Nano Letters 2005, 5 (4), 571–77.

[568] Axford, D. N.; Davis, J. J., Electron flux through apo‐and holoferritin. Nanotechnology 2007, 18 (14), 145502.

[569] Zhao, J. W.; Davis, J. J., Molecular electron transfer of protein junctions characterised by conducting atomic force microscopy. Colloids and Surfaces B: Biointerfaces 2005, 40 (3–4), 189–94.

[570] MacCuspie, R. I.; Nuraje, N.; Lee, S.‐Y.; Runge, A.; Matsui, H., Comparison of electrical properties of viruses studied by AC capacitance scanning probe microscopy. Journal of the American Chemical Society 2008, 130 (3), 887–91.

[571] Luo, E. Z.; Wilson, I. H.; Yan, X.; Xu, J. B., Probing electron conduction at the microscopic level in percolating nanocomposites by conducting atomic‐force microscopy. Physical Review B 1998, 57 (24), R15120.

[572] Olbrich, A.; Ebersberger, B.; Boit, C.; Vancea, J.; Hoffmann, H., A new AFM‐based tool for testing dielectric quality and reliability on a nanometer scale. Microelectronics Reliability 1999, 39 (6–7), 941–46.

[573] Aliev, A. E.; Oh, J.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N.; Zhang, M.; Zakhidov, A. A.; Baughman, R. H., Giant‐stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323 (5921), 1575–78.

[574] Zdrojek, M.; Melin, T.; Boyaval, C.; Stievenard, D.; Jouault, B.; Wozniak, M.; Huczko, A.; Gebicki, W.; Adamowicz, L., Charging and emission effects of multiwalled carbon nanotubes probed by electric force microscopy. Applied Physics Letters 2005, 86 (21), 213114.

[575] Vitali, L.; Burghard, M.; Wahl, P.; Schneider, M. A.; Kern, K., Local pressure‐induced metallization of a semiconducting carbon nanotube in a crossed junction. Physical Review Letters 2006, 96 (8), 086804.

[576] Hansma, P. K.; Cleveland, J. P.; Radmacher, M.; Walters, D. A.; Hillner, P. E.; Bezanilla, M.; Fritz, M.; Vie, D.; Hansma, H. G.; Prater, C. B.; Massie, J.; Fukunaga, L.; Gurley, J.; Elings, V., Tapping mode atomic‐force microscopy in liquids. Applied Physics Letters 1994, 64 (13), 1738–40.

[577] Morris, V. J.; Kirby, A. R.; Gunning, A. P., Atomic Force Microscopy for Biologists. Imperial College Press: London, 1999.

[578] Jena, B. P.; Hörber, J. K. H., Atomic Force Microscopy in Cell Biology. Academic Press: San Diego, 2002; Vol. 68.

[579] Parot, P.; Dufrêne, Y. F.; Hinterdorfer, P.; Grimellec, C. L.; Navajas, D.; Pellequer, J.‐L.; Scheuring, S., Past, present and future of atomic force microscopy in life sciences and medicine. Journal of Molecular Recognition 2007, 20 (6), 418–31.

[580] Fuss, M.; Luna, M.; Alcantara, D.; de la Fuente, J. M.; Enriquez‐Navas, P. M.; Angulo, J.; Penades, S.; Briones, F., Carbohydrate–carbohydrate interaction prominence in 3D supramolecular self‐assembly. Journal of Physical Chemistry B 2008, 112 (37), 11595–600.

[581] De la Fuente, J. M.; Alcantara, D.; Eaton, P.; Crespo, P.; Rojas, T. C.; Fernandez, A.; Hernando, A.; Penades, S., Gold and gold‐iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties. Journal of Physical Chemistry B 2006, 110 (26), 13021–28.

(p.232) [582] Kirby, A. R.; Gunning, A. P.; Morris, V. J., Imaging polysaccharides by atomic force microscopy. Biopolymers 1996, 38 (3), 355–66.

[583] Adams, E. L.; Kroon, P. A.; Williamson, G.; Morris, V. J., Characterisation of heterogeneous arabinoxylans by direct imaging of individual molecules by atomic force microscopy. Carbohydrate Research 2003, 338 (8), 771–80.

[584] Misevic, G. N., Atomic force microscopy measurements – measurements of binding strength between a single pair of molecules in physiological solutions. Molecular Biotechnology 2001, 18 (2), 149–53.

[585] Stolz, M.; Stoffler, D.; Aebi, U.; Goldsbury, C., Monitoring biomolecular interactions by time‐lapse atomic force microscopy. Journal of Structural Biology 2000, 131 (3), 171–80.

[586] Forman, J. R.; Clarke, J., Mechanical unfolding of proteins: insights into biology, structure and folding. Current Opinion in Structural Biology 2007, 17 (1), 58–66.

[587] Zhao, J. W.; Davis, J. J.; Sansom, M. S. P.; Hung, A., Exploring the electronic and mechanical properties of protein using conducting atomic force microscopy. Journal of the American Chemical Society 2004, 126 (17), 5601–9.

[588] Vinckier, A.; Gervasoni, P.; Zaugg, F.; Ziegler, U.; Lindner, P.; Groscurth, P.; Pluckthun, A.; Semenza, G., Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins. Biophysical Journal 1998, 74 (6), 3256–63.

[589] Krishna, K. A.; Rao, G. V.; Rao, K., Chaperonin GroEL: structure and reaction cycle. Current Protein and Peptide Science 2007, 8 (5), 418–25.

[590] Mou, J. X.; Sheng, S. T.; Ho, R. Y.; Shao, Z. F., Chaperonins GroEL and GroES: views from atomic force microscopy. Biophysical Journal 1996, 71 (4), 2213–21.

[591] Leung, C.; Palmer, R. E., Adsorption of a model protein, the GroEL chaperonin, on surfaces. Journal of Physics – Condensed Matter 2008, 20 (35), 353001.

[592] Valle, F.; DeRose, J. A.; Dietler, G.; Kawe, M.; Pluckthun, A.; Semenza, G., AFM structural study of the molecular chaperone GroEL and its two‐dimensional crystals: an ideal ‘living’ calibration sample. Ultramicroscopy 2002, 93 (1), 83–89.

[593] Yokokawa, M.; Wada, C.; Ando, T.; Sakai, N.; Yagi, A.; Yoshimura, S. H.; Takeyasu, K., Fast‐scanning atomic force microscopy reveals the ATP/ADP‐dependent conformational changes of GroEL. EMBO Journal 2006, 25 (19), 4567–76.

[594] Sit, P. S.; Marchant, R. E., Surface‐dependent differences in fibrin assembly visualized by atomic force microscopy, Surface Science 2001, 491 (3), 421–32.

[595] Baselt, D. R.; Revel, J. P.; Baldeschwieler, J. D., Subfibrillar structure of type‐I collagen observed by atomic‐force microscopy. Biophysical Journal 1993, 65 (6), 2644–55.

[596] Gale, M.; Pollanen, M. S.; Markiewicz, P.; Goh, M. C., Sequential assembly of collagen revealed by atomic‐force microscopy. Biophysical Journal 1995, 68 (5), 2124–8.

[597] Paige, M. F.; Rainey, J. K.; Goh, M. C., A study of fibrous long spacing collagen ultrastructure and assembly by atomic force microscopy. Micron 2001, 32 (3), 341–53.

[598] Abraham, L. C.; Zuena, E.; Perez‐Ramirez, B.; Kaplan, D. L., Guide to collagen characterization for biomaterial studies. Journal of Biomedical Materials Research B, Applied Biomaterials 2008, 87 (1), 264–85.

[599] Revenko, I.; Sommer, F.; Minh, D. T.; Garrone, R.; Franc, J. M., Atomic‐force microscopy study of the collagen fiber structure. Biology of the Cell 1994, 80 (1), 67–9.

[600] Fotiadis, D.; Scheuring, S.; Müller, S. A.; Engel, A.; Müller, D. J., Imaging and manipulation of biological structures with the AFM. Micron 2002, 33 (4), 385–97.

[601] Anselmetti, D.; Luthi, R.; Meyer, E.; Richmond, T.; Dreier, M.; Frommer, J. E.; Guntherodt, H. J., Attractive‐mode imaging of biological materials with dynamic force microscopy. Nanotechnology 1994, 5 (2), 87–94.

(p.233) [602] Hansma, H. G.; Revenko, I.; Kim, K.; Laney, D. E., Atomic force microscopy of long and short double‐stranded, single‐stranded and triple‐stranded nucleic acids. Nucleic Acids Research 1996, 24 (4), 713–20.

[603] Palacios‐Lidón, E.; Pérez‐García, B.; Colchero, J., Enhancing dynamic scanning force microscopy in air: as close as possible. Nanotechnology 2009, 20 (8), 085707.

[604] Giro, A.; Bergia, A.; Zuccheri, G.; Bink, H. H. J.; Pleij, C. W. A.; Samori, B., Single molecule studies of RNA secondary structure: AFM of TYMV viral RNA. Microscopy Research and Technique 2004, 65 (4–5), 235–45.

[605] Bonin, M.; Oberstrass, J.; Lukacs, N.; Ewert, K.; Oesterschulze, E.; Kassing, R.; Nellen, W., Determination of preferential binding sites for anti‐dsRNA antibodies on double‐stranded RNA by scanning force microscopy. RNA – Publication of the RNA Society 2000, 6 (4), 563–70.

[606] Bonin, M.; Oberstrass, J.; Vogt, U.; Wassenegger, M.; Nellen, W., Binding of IRE‐BP to its cognate RNA sequence: SFM studies on a universal RNA backbone for the analysis of RNA‐protein interaction. Biological Chemistry 2001, 382 (8), 1157–62.

[607] Asami, Y.; Murakami, M.; Shimizu, M.; Pisani, F. M.; Hayata, I.; Nohmi, T., Visualization of the interaction between archaeal DNA polymerase and uracil‐containing DNA by atomic force microscopy. Genes to Cells 2006, 11 (1), 3–11.

[608] Kasas, S.; Thomson, N. H.; Smith, B. L.; Hansma, H. G.; Zhu, X. S.; Guthold, M.; Bustamante, C.; Kool, E. T.; Kashlev, M.; Hansma, P. K., Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 1997, 36 (3), 461–8.

[609] Engel, A.; Müller, D. J., Observing single biomolecules at work with the atomic force microscope. Nature Structural Biology 2000, 7 (9), 715–18.

[610] Thomson, N. H., Atomic force microscopy of DNA structure and function. In Applied Scanning Probe Methods, Vol VI: Characterization, Bhushan, B.; Fuchs, H.; Hosaka, S., Eds. Springer‐Verlag: Berlin, 2006.

[611] Gaboriaud, F.; Dufrêne, Y. F., Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces. Colloids and Surfaces B: Biointerfaces 2007, 54 (1), 10–19.

[612] Schmid, T.; Burkhard, J.; Yeo, B. S.; Zhang, W. H.; Zenobi, R., Towards chemical analysis of nanostructures in biofilms I: imaging of biological nanostructures. Analytical and Bioanalytical Chemistry 2008, 391 (5), 1899–1905.

[613] Zhao, L. M.; Schaefer, D.; Marten, M. R., Assessment of elasticity and topography of Aspergillus nidulans spores via atomic force microscopy. Applied and Environmental Microbiology 2005, 71 (2), 955–60.

[614] Plomp, M.; Leighton, T. J.; Wheeler, K. E.; Hill, H. D.; Malkin, A. J., In vitro high‐resolution structural dynamics of single germinating bacterial spores. Proceedings of the National Academy of Sciences of the United States of America 2007, 104 (23), 9644–9.

[615] Plomp, M.; Malkin, A. J., Mapping of proteomic composition on the surfaces of Bacillus spores by atomic force microscopy‐based immunolabeling. Langmuir 2009, 25 (1), 403–9.

[616] Das, S. K.; Das, A. R.; Guha, A. K., Adsorption behavior of mercury on functionalized Aspergillus versicolor mycelia: an atomic force microscopic study. Langmuir 2009, 25 (1), 360–66.

[617] Ma, H.; Snook, L. A.; Tian, C.; Kaminskyj, S. G. W.; Dahms, T. E. S., Fungal surface remodelling visualized by atomic force microscopy. Mycological Research 2006, 110 (8), 879–86.

[618] Bui, V. C.; Kim, Y. U.; Choi, S. S., Physical characteristics of Saccharomyces cerevisiae. Surface and Interface Analysis 2008, 40 (10), 1323–27.

[619] Schmatulla, A.; Maghelli, N.; Marti, O., Micromechanical properties of tobacco mosaic viruses. Journal of Microscopy 2007, 225 (3), 264–68.

(p.234) [620] Francius, G.; Tesson, B.; Dague, E.; Martin‐Jézéquel, V.; Dufrêne, Y. F., Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes. Environmental Microbiology 2008, 10 (5), 1344–56.

[621] Bolshakova, A. V.; Kiselyova, O. I.; Filonov, A. S.; Frolova, O. Y.; Lyubchenko, Y. L.; Yaminsky, I. V., Comparative studies of bacteria with an atomic force microscope operating in different modes. Ultramicroscopy 2001, 86 (1–2), 121–28.

[622] Méndez‐Vilas, A.; Gallardo‐Moreno, A. M.; Calzado‐Montero, R.; González‐Martín, M. L., AFM probing in aqueous environment of Staphylococcus epidermidis cells naturally immobilised on glass: physico‐chemistry behind the successful immobilisation. Colloids and Surfaces B: Biointerfaces 2008, 63 (1), 101–9.

[623] Cross, S. E.; Kreth, J.; Zhu, L.; Qi, F. X.; Pelling, A. E.; Shi, W. Y.; Gimzewski, J. K., Atomic force microscopy study of the structure‐function relationships of the biofilm‐forming bacterium Streptococcus mutans. Nanotechnology 2006, 17 (4), S1–S7.

[624] Braga, P. C.; Ricci, D., Differences in the susceptibility of Streptococcus pyogenes to rokitamycin and erythromycin A revealed by morphostructural atomic force microscopy. Journal of Antimicrobial Chemotherapy 2002, 50 (4), 457–60.

[625] Suo, Z.; Yang, X.; Avci, R.; Kellerman, L.; Pascual, D. W.; Fries, M.; Steele, A., HEPES‐stabilized encapsulation of Salmonella typhimurium. Langmuir 2007, 23 (3), 1365–74.

[626] Jonas, K.; Tomenius, H.; Kader, A.; Normark, S.; Romling, U.; Belova, L.; Melefors, O., Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiology 2007, 7, 70.

[627] Martinez, J. L.; Fajardo, A.; Garmendia, L.; Hernandez, A.; Linares, J. F.; Martínez‐Solano, L.; Sánchez, M. B., A global view of antibiotic resistance. FEMS Microbiology Reviews 2009, 33 (1), 44–65.

[628] Braga, P. C.; Ricci, D., Atomic force microscopy: application to investigation of Escherichia coli morphology before and after exposure to cefodizime. Antimicrobial Agents and Chemotherapy 1998, 42 (1), 18–22.

[629] Mortensen, N. P.; Fowlkes, J. D.; Sullivan, C. J.; Allison, D. P.; Larsen, N. B.; Molin, S.; Doktycz, M. J., Effects of colistin on surface ultrastructure and nanomechanics of Pseudomonas aeruginosa cells. Langmuir 2009, 25 (6), 3728–33.

[630] Meincken, M.; Holroyd, D. L.; Rautenbach, M., Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli. Antimicrobial Agents and Chemotherapy 2005, 49 (10), 4085–92.

[631] Boyle‐Vavra, S.; Hahm, J.; Sibener, S. J.; Daum, R. S., Structural and topological differences between a glycopeptide‐intermediate clinical strain and glycopeptide‐susceptible strains of Staphylococcus aureus revealed by atomic force microscopy. Antimicrobial Agents and Chemotherapy 2000, 44 (12), 3456–60.

[632] Francius, G.; Domenech, O.; Mingeot‐Leclercq, M. P.; Dufrêne, Y. F., Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. Journal of Bacteriology 2008, 190 (24), 7904–9.

[633] Qin, Z.; Zhang, J.; Hu, Y.; Chi, Q.; Mortensen, N. P.; Qu, D.; Molin, S.; Ulstrup, J., Organic compounds inhibiting S. epidermidis adhesion and biofilm formation. Ultramicroscopy 2009, 109 (8), 881–88.

[634] Deupree, S. M.; Schoenfisch, M. H., Morphological analysis of the antimicrobial action of nitric oxide on Gram‐negative pathogens using atomic force microscopy. Acta Biomaterialia 2009, 5 (5), 1405–15.

[635] Beckmann, M. A.; Venkataraman, S.; Doktycz, M. J.; Nataro, J. P.; Sullivan, C. J.; Morrell‐Falvey, J. L.; Allison, D. P., Measuring cell surface elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM. Ultramicroscopy 2006, 106 (8–9), 695–702.

(p.235) [636] Schaer‐Zammaretti, P.; Ubbink, J., Imaging of lactic acid bacteria with AFM‐elasticity and adhesion maps and their relationship to biological and structural data. Ultramicroscopy 2003, 97 (1–4), 199–208.

[637] Wright, C. J.; Armstrong, I., The application of atomic force microscopy force measurements to the characterisation of microbial surfaces. Surface and Interface Analysis 2006, 38 (11), 1419–28.

[638] Dague, E.; Alsteens, D.; Latge, J.‐P.; Verbelen, C.; Raze, D.; Baulard, A. R.; Dufrêne, Y. F., Chemical force microscopy of single live cells. Nano Letters 2007, 7 (10), 3026–30.

[639] Francius, G.; Lebeer, S.; Alsteens, D.; Wildling, L.; Gruber, H. J.; Hols, P.; De Keersmaecker, S.; Vanderleyden, J.; Dufrêne, Y. F., Detection, localization and conformational analysis of single polysaccharide molecules on live bacteria. ACS Nano 2008, 2 (9), 1921–29.

[640] Deupree, S. M.; Schoenfisch, M. H., Quantitative method for determining the lateral strength of bacterial adhesion and application for characterizing adhesion kinetics. Langmuir 2008, 24 (9), 47007.

[641] Boyd, R. D.; Verran, J.; Jones, M. V.; Bhakoo, M., Use of the atomic force microscope to determine the effect of substratum surface topography on bacterial adhesion. Langmuir 2002, 18 (6), 2343–46.

[642] Lower, S. K.; Hochella, M. F., Jr.; Beveridge, T. J., Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α‐FeOOH. Science 2001, 292 (5520), 1360–63.

[643] Razatos, A.; Ong, Y. L.; Sharma, M. M.; Georgiou, G., Evaluating the interaction of bacteria with biomaterials using atomic force microscopy. Journal of Biomaterials Science – Polymer Edition 1998, 9 (12), 1361–73.

[644] Ong, Y. L.; Razatos, A.; Georgiou, G.; Sharma, M. M., Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir 1999, 15 (8), 2719–25.

[645] Camesano, T. A.; Liu, Y.; Datta, M., Measuring bacterial adhesion at environmental interfaces with single‐cell and single‐molecule techniques. Advances in Water Resources 2007, 30 (6–7), 1470–91.

[646] Jass, J.; Tjarnhage, T.; Puu, G., From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: an atomic force microscopy study. Biophysical Journal 2000, 79 (6), 3153–63.

[647] Jeuken, L. J. C.; Connell, S. D.; Henderson, P. J. F.; Gennis, R. B.; Evans, S. D.; Bushby, R. J., Redox enzymes in tethered membranes. Journal of the American Chemical Society 2006, 128 (5), 1711–16.

[648] Hui, S. W.; Viswanathan, R.; Zasadzinski, J. A.; Israelachvili, J. N., The structure and stability of phospholipid bilayers by atomic force microscopy. Biophysical Journal 1995, 68 (1), 171–78.

[649] Egawa, H.; Furusawa, K., Liposome adhesion on mica surface studied by atomic force microscopy. Langmuir 1999, 15 (5), 16606.

[650] Ohler, B.; Revenko, I.; Husted, C., Atomic force microscopy of nonhydroxy‐galactocerebroside nanotubes and their self‐assembly at the air‐water interface, with applications to myelin. Journal of Structural Biology 2001, 133 (1), 1–9.

[651] Simons, K.; Ikonen, E., Functional rafts in cell membranes. Nature 1997, 387 (6633), 569–72.

[652] Dufrêne, Y. F.; Lee, G. U., Advances in the characterization of supported lipid films with the atomic force microscope. Biochimica et Biophysica Acta – Biomembranes 2000, 1509 (1–2), 14–41.

[653] Eeman, M.; Deleu, M.; Paquot, M.; Thonart, P.; Dufrêne, Y. F., Nanoscale properties of mixed fengycin/ceramide monolayers explored using atomic force microscopy. Langmuir 2005, 21 (6), 2505–11.

(p.236) [654] Schneider, J.; Dufrêne, Y. F.; Barger Jr, W. R.; Lee, G. U., Atomic force microscope image contrast mechanisms on supported lipid bilayers. Biophysical Journal 2000, 79 (2), 1107–18.

[655] Nicolini, C.; Baranski, J.; Schlummer, S.; Palomo, J.; Lumbierres‐Burgues, M.; Kahms, M.; Kuhlmann, J.; Sanchez, S.; Gratton, E.; Waldmann, H.; Winter, R., Visualizing association of N‐Ras in lipid microdomains: influence of domain structure and interfacial adsorption. Journal of the American Chemical Society 2006, 128 (1), 192–201.

[656] Butt, H.‐J.; Franz, V., Rupture of molecular thin films observed in atomic force microscopy. I. Theory. Physical Review E 2002, 66 (3), 031601.

[657] Sanderson, J. M., Peptide lipid interactions: insights and perspectives. Organic & Biomolecular Chemistry 2005, 3 (2), 201–12.

[658] El Kirat, K.; Lins, L.; Brasseur, R.; Dufrêne, Y. F., Fusogenic tilted peptides induce nanoscale holes in supported phosphatidylcholine bilayers. Langmuir 2005, 21 (7), 3116–21.

[659] García‐Sáez, A. J.; Chiantia, S.; Salgado, J.; Schwille, P., Pore formation by a Bax‐derived peptide: effect on the line tension of the membrane probed by AFM. Biophysical Journal 2007, 93 (1), 103–12.

[660] El Kirat, K.; Dufrêne, Y. F.; Lins, L.; Brasseur, R., The SIV tilted peptide induces cylindrical reverse micelles in supported lipid bilayers. Biochemistry 2006, 45 (30), 9336–41.

[661] Grandbois, M.; Clausen‐Schaumann, H.; Gaub, H., Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A(2). Biophysical Journal 1998, 74 (5), 2398–2404.

[662] Milhiet, P.‐E.; Gubellini, F.; Berquand, A.; Dosset, P.; Rigaud, J. L.; Le Grimellec, C.; Levy, D., High‐resolution AFM of membrane proteins directly incorporated at high density in planar lipid bilayer. Biophysical Journal 2006, 91 (9), 3268–75.

[663] Domke, J.; Parak, W. J.; George, M.; Gaub, H. E.; Radmacher, M., Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope. European Biophysics Journal 1999, 28 (3), 179–86.

[664] Friedrichs, J.; Taubenberger, A.; Franz, C. M.; Müller, D. J., Cellular remodelling of individual collagen fibrils visualized by time‐lapse AFM. Journal of Molecular Biology 2007, 372 (3), 594–607.

[665] Weyn, B.; Kalle, W.; Kumar‐Singh, S.; Marck, E. V.; Tanke, H.; Jacob, W., Atomic force microscopy: influence of air drying and fixation on the morphology and viscoelasticity of cultured cells. Journal of Microscopy 1998, 189 (2), 172–80.

[666] You, H. X.; Lau, J. M.; Zhang, S. W.; Yu, L., Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology, Ultramicroscopy 2000, 82 (1–4), 297–305.

[667] Yokokawa, M.; Takeyasu, K.; Yoshimura, S. H., Mechanical properties of plasma membrane and nuclear envelope measured by scanning probe microscope. Journal of Microscopy 2008, 232 (1), 82–90.

[668] Rotsch, C.; Radmacher, M., Drug‐induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophysical Journal 2000, 78 (1), 520–35.

[669] Kim, S. J.; Kim, S.; Shin, H.; Uhm, C. S., Intercellular interaction observed by atomic force microscopy. Ultramicroscopy 2008, 108 (10), 1148–51.

[670] Braet, F.; Soon, L.; Kelly, T. F.; Larson, D. J.; Ringer, S. P., Live cell imaging. In Nanosystem Characterization Tools in the Life Sciences, Kumar, C. S. S. R., Ed. Wiley‐VCH: 2006; pp 309–312.

[671] Puech, P.‐H.; Poole, K.; Knebel, D.; Müller, D. J., A new technical approach to quantify cell‐cell adhesion forces by AFM. Ultramicroscopy 2006, 106 (8–9), 637–44.

[672] Lehenkari, P. P.; Charras, G. T.; Nykänen, A.; Horton, M. A., Adapting atomic force microscopy for cell biology. Ultramicroscopy 2000, 82 (1–4), 289–95.

(p.237) [673] Folprecht, G.; Schneider, S.; Oberleithner, H., Aldosterone activates the nuclear pore transporter in cultured kidney cells imaged with atomic force microscopy. Pflügers Archiv European Journal of Physiology 1996, 432 (5), 831–38.

[674] Pandey, V.; Vijayakumar, M. V.; Kaul‐Ghanekar, R.; Mamgain, H.; Paknikar, K.; Bhat, M. K., Atomic force microscopy, biochemical analysis of 3T3‐L1 cells differentiated in the absence and presence of insulin. Biochimica et Biophysica Acta 2009, 1790 (1), 57–64.

[675] Schneider, S.; Sritharan, K.; Geibel, J. P.; Oberleithner, H.; Jena, B., Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proceedings of the National Academy of Sciences of the United States of America 1997, 94 (1), 316–21.

[676] You, H. X.; Yu, L., Atomic force microscopy imaging of living cells: progress, problems and prospects. Methods in Cell Science 1999, 21 (1), 1–17.

[677] Li, Q. S.; Lee, G. Y. H.; Ong, C. N.; Lim, C. T., AFM indentation study of breast cancer cells. Biochemical and Biophysical Research Communications 2008, 374 (4), 609–13.

[678] Domke, J.; Dannohl, S.; Parak, W. J.; Muller, O.; Aicher, W. K.; Radmacher, M., Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids and Surfaces B: Biointerfaces 2000, 19 (4), 367–79.

[679] Haga, H.; Nagayama, M.; Kawabata, K., Imaging mechanical properties of living cells by scanning probe microscopy. Current Nanoscience 2007, 3 (1), 97–103.

[680] Cross, S. E.; Jin, Y. S.; Tondre, J.; Wong, R.; Rao, J.; Gimzewski, J. K., AFM‐based analysis of human metastatic cancer cells. Nanotechnology 2008, 19 (38), 384003.

[681] Cross, S. E.; Jin, Y. S.; Rao, J.; Gimzewski, J. K., Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology 2007, 2 (12), 7803.

[682] Lekka, M.; Laidler, P.; Gil, D.; Lekki, J.; Stachura, Z.; Hrynkiewicz, A. Z., Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. European Biophysics Journal 1999, 28 (4), 312–16.

[683] Gutsmann, T.; Fantner, G. E.; Kindt, J. H.; Venturoni, M.; Danielsen, S.; Hansma, P. K., Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization. Biophysical Journal 2004, 86 (5), 3186–93.

[684] Lee, C. K.; Wang, Y. M.; Huang, L. S.; Lin, S. M., Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein‐ligand interaction. Micron 2007, 38 (5), 446–61.

[685] Chtcheglova, L. A.; Haeberli, A.; Dietler, G., Force spectroscopy of the fibrin(ogen) – Fibrinogen interaction. Biopolymers 2008, 89 (4), 292–301.

[686] Barattin, R.; Voyer, N., Chemical modifications of AFM tips for the study of molecular recognition events. Chemical Communications 2008, 13, 1513–32.

[687] Ebner, A.; Wildling, L.; Kamruzzahan, A. S. M.; Rankl, C.; Wruss, J.; Hahn, C. D.; Holzl, M.; Zhu, R.; Kienberger, F.; Blaas, D.; Hinterdorfer, P.; Gruber, H. J., A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjugate Chemistry 2007, 18 (4), 1176–84.

[688] Lee, I.; Marchant, R. E., Molecular interaction studies of hemostasis: fibrinogen ligand‐human platelet receptor interactions. Ultramicroscopy 2003, 97 (1–4), 341–52.

[689] Schwesinger, F.; Ros, R.; Strunz, T.; Anselmetti, D.; Guntherodt, H. J.; Honegger, A.; Jermutus, L.; Tiefenauer, L.; Pluckthun, A., Unbinding forces of single antibody‐antigen complexes correlate with their thermal dissociation rates. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (18), 9972–77.

[690] Merkel, R.; Nassoy, P.; Leung, A.; Ritchie, K.; Evans, E., Energy landscapes of receptor‐ligand bonds explored with dynamic force spectroscopy. Nature 1999, 397 (6714), 50–3.

[691] Moy, V. T.; Florin, E. L.; Gaub, H. E., Intermolecular forces and energies between ligands and receptors. Science 1994, 266 (5183), 257–59.

(p.238) [692] Allen, S.; Davies, J.; Dawkes, A. C.; Davies, M. C.; Edwards, J. C.; Parker, M. C.; Roberts, C. J.; Sefton, J.; Tendler, S. J. B.; Williams, P. M., In situ observation of streptavidin‐biotin binding on an immunoassay well surface using an atomic force microscope. FEBS Letters 1996, 390 (2), 161–64.

[693] Ebner, A.; Madl, J.; Kienberger, F.; Chtcheglova, L. A.; Puntheeranurak, T.; Zhu, R.; Tang, J. L.; Gruber, H. J.; Schutz, G. J.; Hinterdorfer, P., Single molecule force microscopy on cells and biological membranes. Current Nanoscience 2007, 3 (1), 49–56.

[694] Kienberger, F.; Kada, G.; Mueller, H.; Hinterdorfer, P., Single molecule studies of antibody‐antigen interaction strength versus intra‐molecular antigen stability. Journal of Molecular Biology 2005, 347 (3), 597–606.

[695] Allen, S.; Chen, X. Y.; Davies, J.; Davies, M. C.; Dawkes, A. C.; Edwards, J. C.; Roberts, C. J.; Sefton, J.; Tendler, S. J. B.; Williams, P. M., Detection of antigen‐antibody binding events with the atomic force microscope. Biochemistry 1997, 36 (24), 7457–63.

[696] Soman, P.; Rice, Z.; Siedlecki, C. A., Measuring the time‐dependent functional activity of adsorbed fibrinogen by atomic force microscopy. Langmuir 2008, 24 (16), 88016.

[697] Rankl, C.; Kienberger, F.; Wildling, L.; Wruss, J.; Gruber, H. J.; Blaas, D.; Hinterdorfer, P., Multiple receptors involved in human rhinovirus attachment to live cells. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (46), 17778–83.

[698] Zhang, X.; Chen, A.; De Leon, D.; Li, H.; Noiri, E.; Moy, V. T.; Goligorsky, M. S., Atomic force microscopy measurement of leukocyte‐endothelial interaction. American Journal of Physiology – Heart and Circulatory Physiology 2004, 286 (1), 359–67.

[699] Lamontagne, C.‐A.; Cuerrier, C.; Grandbois, M., AFM as a tool to probe and manipulate cellular processes. Pflügers Archiv European Journal of Physiology 2008, 456 (1), 61–70.

[700] Heinz, W. F.; Hoh, J. H., Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends In Biotechnology 1999, 17 (4), 143–50.

[701] Yersin, A.; Steiner, P., Receptor trafficking and AFM. Pflügers Archiv European Journal of Physiology 2008, 456 (1), 189–98.

[702] Kim, H.; Arakawa, H.; Hatae, N.; Sugimoto, Y.; Matsumoto, O.; Osada, T.; Ichikawa, A.; Ikai, A., Quantification of the number of EP3 receptors on a living CHO cell surface by the AFM. Ultramicroscopy 2006, 106 (8–9), 652–62.

[703] Gad, M.; Itoh, A.; Ikai, A., Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy. Cell Biology International 1997, 21 (11), 697–706.

[704] Verbelen, C.; Christiaens, N.; Alsteens, D.; Dupres, V.; Baulard, A. R.; Dufrêne, Y. F., Molecular mapping of lipoarabinomannans on mycobacteria. Langmuir 2009, 25 (8), 4324–27.

[705] Gilbert, Y.; Deghorain, M.; Wang, L.; Xu, B.; Pollheimer, P. D.; Gruber, H. J.; Errington, J.; Hallet, B.; Haulot, X.; Verbelen, C.; Hols, P.; Dufrêne, Y. F., Single‐molecule force spectroscopy and imaging of the vancomycin/D‐Ala‐D‐Ala interaction. Nano Letters 2007, 7 (3), 796–801.

[706] Dufrêne, Y.; Hinterdorfer, P., Recent progress in AFM molecular recognition studies. Pflügers Archiv European Journal of Physiology 2008, 456 (1), 237–45.

[707] Chtcheglova, L. A.; Waschke, J.; Wildling, L.; Drenckhahn, D.; Hinterdorfer, P., Nano‐scale dynamic recognition imaging on vascular endothelial cells. Biophysical Journal 2007, 93 (2), L11–3.

[708] Stroh, C. M.; Ebner, A.; Geretschläger, M.; Freudenthaler, G.; Kienberger, F.; Kamruzzahan, A. S. M.; Smith‐Gill, S. J.; Gruber, H. J.; Hinterdorfer, P., Simultaneous topography and recognition imaging using force microscopy. Biophysical Journal 2004, 87 (3), 1981–90.

[709] Kienberger, F.; Ebner, A.; Gruber, H. J.; Hinterdorfer, P., Molecular recognition imaging and force spectroscopy of single biomolecules. Accounts of Chemical Research 2006, 39 (1), 29–36.

(p.239) [710] Grandbois, M.; Dettmann, W.; Benoit, M.; Gaub, H. E., Affinity imaging of red blood cells using an atomic force microscope. Journal of Histochemistry & Cytochemistry 2000, 48 (5), 719–24.

[711] Lee, G. U.; Chrisey, L. A.; Colton, R. J., Direct measurement of the forces between complementary strands of DNA. Science 1994, 266 (5186), 771–73.

[712] Bonin, M.; Zhu, R.; Klaue, Y.; Oberstrass, J.; Oesterschulze, E.; Nellen, W., Analysis of RNA flexibility by scanning force spectroscopy. Nucleic Acids Research 2002, 30 (16), e81.

[713] Mitsui, K.; Hara, M.; Ikai, A., Mechanical unfolding of alpha(2)‐macroglobulin molecules with atomic force microscope. FEBS Letters 1996, 385 (1–2), 29–33.

[714] Oberhauser, A. F.; Marszalek, P. E.; Erickson, H. P.; Fernandez, J. M., The molecular elasticity of the extracellular matrix protein tenascin. Nature 1998, 393 (6681), 181–85.

[715] Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E., Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997, 276 (5315), 1109–12.

[716] Brockwell, D. J., Force denaturation of proteins – an unfolding story. Current Nanoscience 2007, 3 (1), 3–15.

[717] Borgia, A.; Williams, P. M.; Clarke, J., Single‐molecule studies of protein folding. Annual Review of Biochemistry 2008, 77, 101–25.

[718] Carrion‐Vazquez, M.; Oberhauser, A. F.; Fowler, S. B.; Marszalek, P. E.; Broedel, S. E.; Clarke, J.; Fernandez, J. M., Mechanical and chemical unfolding of a single protein: a comparison. Proceedings of the National Academy of Sciences of the United States of America 1999, 96 (7), 3694–99.

[719] Ng, S. P.; Rounsevell, R. W. S.; Steward, A.; Geierhaas, C. D.; Williams, P. M.; Paci, E.; Clarke, J., Mechanical unfolding of TNfn3: the unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation. Journal of Molecular Biology 2005, 350 (4), 776–89.

[720] Oberhauser, A. F.; Hansma, P. K.; Carrion‐Vazquez, M.; Fernandez, J. M., Stepwise unfolding of titin under force‐clamp atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 2001, 98 (2), 468–72.

[721] Schlierf, M.; Li, H. B.; Fernandez, J. M., The unfolding kinetics of ubiquitin captured with single‐molecule force‐clamp techniques. Proceedings of the National Academy of Sciences of the United States of America 2004, 101 (19), 7299–7304.

[722] Bippes, C. A.; Janovjak, H.; Kedrov, A.; Müller, D. J., Digital force‐feedback for protein unfolding experiments using atomic force microscopy. Nanotechnology 2007, 18 (4), 044022.

[723] Schäffer, T. E., Calculation of thermal noise in an atomic force microscope with a finite optical spot size. Nanotechnology 2005, 16 (6), 664–70.

[724] Chinga‐Carrasco, G.; Kauko, H.; Myllys, M.; Timonen, J.; Wang, B.; Zhou, M.; Fossum, J. O., New advances in the 3D characterization of mineral coating layers on paper. Journal of Microscopy 2008, 232 (2), 212–24.

[725] Di Risio, S.; Yan, N., Characterizing coating layer z‐directional binder distribution in paper using atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 289 (1–3), 65–74.

[726] Sadaie, M.; Nishikawa, N.; Ohnishi, S.; Tamada, K.; Yase, K.; Hara, M., Studies of human hair by friction force microscopy with the hair‐model‐probe. Colloids and Surfaces B: Biointerfaces 2006, 51 (2), 120–29.

[727] Swift, J. A.; Smith, J. R., Atomic force microscopy of human hair. Scanning 2000, 22 (5), 310–18.

[728] Breakspear, S.; Smith, J. R.; Luengo, G., Effect of the covalently linked fatty acid 18‐MEA on the nanotribology of hair's outermost surface. Journal of Structural Biology 2005, 149 (3), 235–42.

(p.240) [729] Chen, N.; Bhushan, B., Morphological, nanomechanical and cellular structural characterization of human hair and conditioner distribution using torsional resonance mode with an atomic force microscope. Journal of Microscopy 2005, 220 (2), 96–112.

[730] Knight, S.; Dixson, R.; Jones, R. L.; Lin, E. K.; Orji, N. G.; Silver, R.; Villarrubia, J. S.; Vladar, A. E.; Wu, W. L., Advanced metrology needs for nanoelectronics lithography. Comptes Rendus Physique 2006, 7 (8), 931–41.

[731] Foucher, J.; Ernst, T.; Pargon, E.; Martin, M. Critical dimension metrology: perspectives and future trends. http://dx.doi.org/10.1117/2.1200811.1345.

[732] Kwon, J.; Kim, Y.‐S.; Yoon, K.; Lee, S.‐M.; Park, S.‐i., Advanced nanoscale metrology of pole‐tip recession with AFM. Ultramicroscopy 2005, 105 (1–4), 51–56.

[733] Gupta, B. K.; Young, K.; Chilamakuri, S.; Menon, A. K., Head design considerations for lower thermal pole tip recession and alumina overcoat protrusion. Tribology International 2000, 33 (5–6), 309–14.

[734] Choi, M.; Yang, J. M.; Lim, J.; Lee, N.; Kang, S., Measurement and analysis of magnetic domain properties of high‐density patterned media by magnetic force microscopy, IEEE Transactions on Magnetics 2009, 45 (5), 2308–11.

[735] Breakspear, S.; Smith, J. R.; Nevell, T. G.; Tsibouklis, J., Friction coefficient mapping using the atomic force microscope. Surface and Interface Analysis 2004, 36 (9), 1330–34.

[736] Nie, H.‐Y.; McIntyre, N. S., A simple and effective method of evaluating atomic force microscopy tip performance. Langmuir 2001, 17 (2), 432–36.

[737] Bolhuis, T.; Pasop, J. R.; Abelmann, L.; Lodder, J. C. Scanning probe microscopy markup language, Scanning Tunneling Microscopy/Spectroscopy and Related Techniques: 12th International Conference. AIP: Eindhoven, 2003; pp 271–8.

[738] Horcas, I.; Fernandez, R.; Gómez‐Rodriguez, J. M.; Colchero, J.; Gomez‐Herrero, J.; Baró, A. M., WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments 2007, 78 (1), 013705.