TY - CHAP
DO - 10.1093/acprof:oso/9780199646944.003.0004
SN - 9780199646944
UR - http://www.oxfordscholarship.com/10.1093/acprof:oso/9780199646944.001.0001/acprof-9780199646944-chapter-4
TI - The Classical Ideal Gas: configurational Entropy
T2 - An Introduction to Statistical Mechanics and Thermodynamics
AU - Swendsen, Robert H.
PB - Oxford University Press
CY - Oxford
PY - 2012
LA - eng
AB - This chapter uses discrete probability theory to calculate the distribution of particles between two subsystems in a composite system. Following Boltzmann's 1877 definition of entropy, this leads to an explicit expression for the configurational contributions to the entropy of the classical ideal gas. A unique feature of this derivation is that it correctly obtains an extensive expression for entropy, even for distinguishable particles.
KW - classical ideal gas
KW - configurational entropy
KW - Boltzmann
KW - distinguishable particles
KW - probability theory
ER